Departement de Mathematique d'Orsay
Département de Mathématiques d'Orsay
Amaury Freslon
Université Paris-Sud XI
Institut de Mathématique d'Orsay - Bâtiment 307
91405 Orsay Cedex

Courrier électronique :
Bureau : 2L22 Bât. 307

I am currently Maître de Conférence at Université Paris-Sud in the Topology and dynamics team. My research field is operator algebras. I am particulary interested in the study of discrete quantum groups, their structure and properties.

Here is my CV in english and in french.

Si vous cherchez ma page d'enseignement, elle se trouve ici.


  • Positive definite functions and cut-off for discrete groups, ArXiv preprint pdf.
  • Abstract
  • Topological generation and matrix models for quantum reflection groups (with M. Brannan and A. Chirvasitu), ArXiv preprint pdf.
  • Abstract
  • On the representation theory of some noncrossing partition quantum groups, ArXiv preprint pdf.
  • Abstract
  • On two-coloured noncrossing quantum groups, ArXiv preprint pdf.
  • Abstract


  1. Quantum reflections, random walks and cut-off, to appear in Internat. J. Math., pdf (old version).
  2. Abstract
  3. Cut-off phenomenon for random walks on free orthogonal quantum groups, to appear in Probab. Theory Related Fields, link and pdf (old version).
  4. Abstract
  5. Torsion and K-theory for some free wreath products (with R. Martos), to appear in Int. Math. Res. Not. : link and pdf (old version).
  6. Abstract
  7. Modelling questions for quantum permutations (with T. Banica), Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 21 (2018), no 2, 1-26 : link and pdf (old version).
  8. Abstract
  9. The radial MASA in free orthogonal quantum groups (with R. Vergnioux), J. Funct. Anal. 271 (2016), no 10, 2776-2807: link and pdf (old version).
  10. Abstract
  11. Wreath products of finite groups by quantum groups (with A. Skalski), J. Noncommut. Geom. 12 (2018), no 1, 29-68 : link and pdf (old version).
  12. Abstract
  13. On the partition approach to Schur-Weyl duality and free quantum groups (with an appendix by A. Chirvasitu), Transform. Groups 22 (2017), no 3, 707-751 : link and pdf (old version).
  14. Abstract
  15. On bi-free De Finetti theorems (with M. Weber), Ann. Math. Blaise Pascal 23 (2016), no 1, 21-51 : link and pdf (old version).
  16. Abstract
  17. Permanence of approximation properties for discrete quantum groups, Ann. Inst. Fourier 65 (2015), no 4, 1437-1467 : link and pdf (old version).
  18. Abstract
  19. Fusion (semi)rings arising from quantum groups, J. Algebra 417 (2014), 161-197 : link and pdf (revised version).
  20. Abstract
  21. On the representation theory of partition (easy) quantum groups (with M. Weber), J. Reine Angew. Math. 720 (2016), 155-197 : link and pdf (old version).
  22. Abstract
  23. Graphs of quantum groups and K-amenability (with P. Fima), Adv. Math. 260 (2014), 233-280 : link and pdf (old version).
  24. Abstract
  25. CCAP for universal discrete quantum groups (with K. De Commer and M. Yamashita, with an appendix by S. Vaes), Comm. Math. Phys. 331 (2014), no 2, 677-701 : link and pdf (old version).
  26. Abstract
  27. Examples of weakly amenable discrete quantum groups, J. Funct. Anal. 265 (2013), no 9, 2164-2187 : link and pdf (old version).
  28. Abstract
  29. A note on weak amenability for free products of discrete quantum groups, C. R. Acad. Sci. Paris 350 (2012), no 7-8, 403-406 : link and pdf (old version).
  30. Abstract


  • Approximation properties for discrete quantum groups (PhD thesis) : pdf.
  • Abstract


  1. Mathématiques, exercices incontournables - MPSI (avec J. Freslon, M. Hézard and J. Poineau), lien.
  2. Mathématiques, exercices incontournables - PCSI/PTSI (avec J. Freslon, M. Hézard and J. Poineau), lien.

Other documents

  • Notes (in english) from a talk on the Cut-off for quantum random walks.
  • Notes (in french) from a talk on Partition algebras and free quantum groups.
  • Notes (in french) from a talk on Approximation properties for quantum groups.
  • An introduction (in french) to the Elliott program.
  • An introduction (in french) to C*-simplicity.
  • An exposition (in french) of A. Connes' result on the fundamental group of a property (T) factor.

Département de Mathématiques
, Université Paris-Sud, Bât. 425, F-91405 Orsay Cedex ,France