KODAIRA EMBEDDING THEOREM

MIRKO MAURI

ABSTRACT. The aim of this report is to prove Kodaira embedding theorem:

Theorem 0.1 (Kodaira Embedding Theorem). A compact Kähler manifold endowed with a positive line bundle admits a projective embedding.

The main idea is recasting local problems in global ones, with the help of a surgery technique called "blowing up", which means namely replacing a point of a complex manifold with a hypersurface. Despite the growth of complexity of the underlying complex manifold, one is then able to employ a codimension one machinery to tackle the problem. In fact Kodaira-Akizuki-Nakano vanishing theorem yields the result, which in turn is a clever combination of Kähler identities.

Contents

1. Ampleness of a line bundle	2
2. Holomorphic hermitian line bundles	4
3. Positivity of a line bundle	5
4. Positivity of the hyperplane bundle	6
5. Blowing up	7
6. Positivity of a line bundle on a blowing up	9
7. Canonical line bundle on a blowing up	11
8. Kodaira-Akizuki-Nakano vanishing theorem	12
9. Cohomological characterization of very ampleness	13
10. Kodaira Embedding Theorem: a proof	15
11. Applications of Kodaira Embedding Theorem	17
12. Chow's Theorem	20
Appendix: Hirzebruch-Riemann-Roch theorem	21
References	23

Date: March 11, 2015.

1. Ampleness of a line bundle

Let X be a complex manifold and $\xi : L \longrightarrow X$ holomorphic line bundle.

Definition 1.1. *L* has no base points or *L* is spanned if for all $x \in X$ there exits a section of *L*, $s \in H^0(X, L)$, such that $s(x) \neq 0$.

Remark. Let $\mathcal{U} = \{U_{\alpha}\}$ cover of open subsets of X trivializing the line bundle L and $\varphi_{\alpha} : \xi^{-1}(U_{\alpha}) \longrightarrow U_{\alpha} \times \mathbb{C}$. A section $s \in H^{0}(X, L)$ can be described as a collection of sections $s_{\alpha} := \varphi_{\alpha} \circ s \in H^{0}(U_{\alpha}, L|_{U_{\alpha}}) = \mathcal{O}(U_{\alpha})$ satisfying the cocycle condition $s_{\alpha}(x) = g_{\alpha\beta}(x)s_{\beta}(x)$ in $U_{\alpha} \cap U_{\beta}$, where $g_{\alpha\beta} \in \mathcal{O}^{*}(U_{\alpha} \cap U_{\beta})$ are transition functions of the line bundle Lrelative to the cover \mathcal{U} . Hence, the vanishing of a section is independent of the trivialization φ_{α} and the condition $s(x) \neq 0$ is thus meaningful.

Given a spanned line bundle, we can define a morphism

$$i_L: X \longrightarrow \mathbb{P}\big(H^0(X, L)\big)$$
$$x \longmapsto H_x,$$

where H_x is the hyperplane in $\mathbb{P}(H^0(X, L))$ consisting of sections of the line bundle L vanishing at x.

We can describe the morphism i_L more explicitly as follow. Choose a basis s_0, \ldots, s_n of $H^0(X, L)$. In the notation of the remark, $s_i = (s_{i,\alpha})$ with $s_{i,\alpha} \in \mathcal{O}(U_{\alpha})$ such that $s_{i,\alpha} = g_{\alpha\beta}s_{i,\beta}$, for $i = 0, \ldots, n$. Under the identification $\mathbb{P}(H^0(X, L))^* \cong \mathbb{P}^n$ induced by the choice of the basis, the map is given by

$$i_L(x) = [s_{0,\alpha}(x) : \ldots : s_{n,\alpha}(x)].$$

(1) The map is independent of the trivialization. Indeed,

$$[s_{0,\alpha}(x):\ldots:s_{n,\alpha}(x)] = [g_{\alpha\beta}(x)s_{0,\beta}(x):\ldots:g_{\alpha\beta}(x)s_{n,\beta}(x)]$$
$$= [s_{0,\beta}(x):\ldots:s_{n,\beta}(x)],$$

since $g_{\alpha\beta}(x) \neq 0$.

(2) The map is well-defined since the line bundle L is spanned and then $(s_{0,\alpha}(x), \ldots, s_{n,\alpha}(x)) \neq (0, \ldots, 0).$

(3)
$$i_L$$
 is holomorphic. In the affine open coordinate subsets of \mathbb{P}^n ,
 $V_i = \{ [z_0 : \ldots : z_n] \in \mathbb{P}^n | z_i \neq 0 \}$, the map is described by
 $i_L^{-1}(V_i) \longrightarrow \mathbb{C}^n$
 $x \longmapsto \left(\frac{s_{0,\alpha}(x)}{s_{i,\alpha}(x)}, \ldots, \widehat{s_{i,\alpha}(x)}, \ldots, \frac{s_{n,\alpha}(x)}{s_{i,\alpha}(x)} \right),$

and each $\frac{s_{j,\alpha}}{s_{i,\alpha}}$ is a holomorphic map outside the zero locus of $s_{i,\alpha}$ and in particular in $i_L^{-1}(V_i)$ (independent of the trivialization φ_{α}).

- (4) The map is independent of the basis s_0, \ldots, s_n of $H^0(X, L)$ up to projective transformation.
- (5) The pullback of the hyperplane section defined by the equation $\sum_{i=0}^{n} a_i z_i = 0$ is the divisor $\operatorname{div}(s) = \operatorname{div}(\sum_{i=0}^{n} a_i s_i) = L$. Hence,

$$i_L^*(\mathcal{O}_{\mathbb{P}^n}(1)) = L$$
$$i_L^*H^0(\mathbb{P}^n, \mathcal{O}(1)) = H^0(X, L)$$

Let X be a compact complex manifold

Definition 1.2. A line bundle *L* is **very ample** if $i_L : X \longrightarrow \mathbb{P}^n$ is an embedding.

Given a section $s \in H^0(X, L)$ of a very ample divisor, the divisor $D = \operatorname{div}(s)$ is a hyperplane section under a projective embedding.

The interest of this definition relies on the fact that a compact complex manifold endowed with a very ample line bundle enjoys the properties of a submanifold of a projective space.

Example 1.3. $\mathcal{O}_{\mathbb{P}^n}(1)$ is very ample by definition.

We report the argument provided by Robert Lazarsfeld [LAZ] to introduce the concept of ampleness besides that one of very ampleness:

> [Very ampleness] turns out to be rather difficult to work with technically: already on curves it can be quite subtle to decide whether or not a given divisor is very ample. It is found to be much more convenient to focus instead on the condition that some positive multiple of D is very ample; in this case D is ample. This definition leads to a very satisfying theory, which was largely worked out in the fifties and in the sixties. The fundamental conclusion is that on a projective variety, amplitude can be characterized geometrically (which we take as the definition), cohomologically (theorem Cartan-Serre-Grothendieck) or numerically (Nakai-Moishezon-Kleiman criterion).

Definition 1.4. *L* is **ample** if there exists m > 0 such that $L^{\otimes m}$ is very ample.

Remark. A divisor D is very ample or ample if its corresponding line bundle $\mathcal{O}_X(D)$ is so.

Remark. A power of an ample divisor may have enough sections to define a projective embedding, but in general the divisor itself is not very ample. For instance, let X be a Riemann surface of genus 1. One can show that a divisor of degree 3 is very ample (proposition 9.1). By Riemann-Roch theorem for curves, dim $H^0(X, D) = \dim H^1(X, D) +$ $\deg(D)+1-g = 3$, thus X is a hypersurface in \mathbb{P}^2 and, since $\deg(i_D(X)) =$ $\deg(D)$, X can be realized as a smooth cubic in \mathbb{P}^2 . All the hyperplane divisors are equivalent, in particular $D \sim 3P$ where P is a flex of the cubic. Hence, 3P is very ample but P is not (although it is by definition ample). Indeed, again by Riemann-Roch, dim $H^0(X, P) =$ $\dim H^1(X, P) + \deg(P) + 1 - g = 1$, hence i_P is not an embedding.

2. Holomorphic hermitian line bundles

Let (X, ω) be a compact Kähler manifold. Let (L, h) a holomorphic line bundle on X endowed with the hermitian metric h. We denote D = D' + D'' its Chern connection, $\Theta(D) \in \Lambda^{1,1}T_X^*$ its curvature form¹ and $c_1(L) = \left[\frac{i}{2\pi}\Theta(D)\right]$ its first Chern class.

Let $\mathcal{U} = \{\mathcal{U}_{\alpha}^{n}\}$ be a cover of open subsets of X trivializing the line bundle L and $\varphi_{\alpha} : \xi^{-1}(U_{\alpha}) \longrightarrow U_{\alpha} \times \mathbb{C}$. A hermitian metric h on L can be described as a collection of smooth (real) function $h_{\alpha} \in \mathcal{C}^{\infty}(U_{\alpha})$, satisfying the cocycle condition $h_{\alpha}(x) = |g_{\alpha\beta}(x)|^{2}h_{\beta}(x)$ in $U_{\alpha} \cap U_{\beta}$, where $g_{\alpha\beta} \in \mathcal{O}^{*}(U_{\alpha} \cap U_{\beta})$ are the transition functions of the line bundle L relative to the cover \mathcal{U} . Then, more explicitly,

$$D' \cong_{\varphi_{\alpha}} \partial + \partial \log(h_{\alpha}) \wedge \cdot, \qquad D'' = \overline{\partial}, \qquad \Theta(D) = \overline{\partial} \partial \log(h_{\alpha}).$$

Notice that $\Theta(D)$ is independent of the trivialization φ_{α} . Indeed,

$$\overline{\partial}\partial \log(h_{\alpha}) = \overline{\partial}\partial \log(|g_{\alpha\beta}|^2 h_{\beta}) = \overline{\partial}\partial \log|g_{\alpha\beta}|^2 + \overline{\partial}\partial \log(h_{\beta}) = \overline{\partial}\partial \log(h_{\beta}),$$

since the function $\log |g_{\alpha\beta}|^2$ is pluriharmonic. Hence,

$$c_1(L) = \left[\frac{i}{2\pi}\overline{\partial}\partial\log(h)\right].$$

Equivalently, if we define the differential operator $d^c = \frac{i}{4\pi} (\overline{\partial} - \partial)$,

$$c_1(L) = \left[-dd^c \log(h)\right].$$

¹If there is no ambiguity, we will simply denote $\Theta(L)$ the curvature form of the Chern connection of a hermitian line bundle (L, h).

3. Positivity of a line bundle

Definition 3.1. A real (1, 1)-form ω is **positive** if for all non zero v in the real tangent space of X

$$\omega(v, Jv) > 0$$

where J is the complex structure of X.

Definition 3.2. A line bundle L is **positive** if there exists a metric on L with positive curvature form.

The positivity of a line bundle of a compact Kähler manifold is a topological property.

Theorem 3.3. A line bundle L is positive if and only if its first Chern class may be represented by a positive form in $H^2_{dB}(X)$.

Proof. If L is positive, the statement holds because, even if $c_1(L) = \left[\frac{i}{2\pi}\Theta(D)\right]$, the first Chern class of a line bundle does not depend on the connection the line bundle is endowed with.

Indeed, in the notation of the previous remark, given any two hermitian metric h and h' on L with curvature form respectively Θ and Θ' , the quotient $\frac{h'(z)}{h(z)} := \frac{h'_{\alpha}(z)}{h'_{\alpha}(z)}$ is independent of the trivialization φ_{α} and thus it is a well defined positive function e^{ρ} for some real smooth function ρ . The formula $h' = e^{\rho}h$ yields

$$\Theta' = \overline{\partial}\partial\rho + \Theta.$$

In particular,

$$\left[\frac{i}{2\pi}\Theta'\right] = \left[\frac{i}{2\pi}\Theta\right]$$

Conversely, let $\frac{i}{2\pi}\vartheta$ be a real positive (1, 1)-form representing $c_1(L)$ in $H^2_{dR}(X)$ and Θ the curvature form of the Chern connection of any hermitian metric h on L. By $\overline{\partial}\partial$ -lemma² the equation

$$\vartheta = \overline{\partial}\partial\rho + \Theta$$

can be solved for a real smooth function ρ . It means that the hermitian metric $e^{\rho}h$ on L will have curvature ϑ .

²For a proof of $\overline{\partial}\partial$ -lemma we refer the interested reader to Corollary 3.2.10, [HYB].

4. Positivity of the hyperplane bundle

The basic example of a positive line bundle is the hyperplane bundle $\mathcal{O}_{\mathbb{P}^n}(1)$. The tautological bundle $\mathcal{O}_{\mathbb{P}^n}(-1)$, the dual of the hyperplane bundle, is the bundle whose fibre over $[z_0 : \ldots : z_n] \in \mathbb{P}^n$ is the complex line in $\mathbb{C}^n \setminus \{0\}$ through (z_0, \ldots, z_n) .

The standard hermitian metric in \mathbb{C}^n induces by restriction a hermitian metric on the tautological bundle. In the standard coordinates of \mathbb{C}^n , $|(z_0, \ldots, z_n)|^2 = \sum_{i=0}^n |z_i|^2$. In the trivialization

$$\varphi_{\alpha}: \mathcal{O}_{\mathbb{P}^n}(-1)_{[z_0:\ldots:z_n]} \longrightarrow [z_0:\ldots:z_n] \times \mathbb{C}$$
$$(z_0,\ldots,z_n) \longmapsto ([z_0:\ldots:z_n],z_{\alpha}),$$

with $\alpha = 0, \ldots, n$, the hermitian metric on the tautological bundle can be described by the collection of smooth (real) functions

$$h_{\alpha} = \frac{1}{|z_{\alpha}|^2} \sum_{i=0}^{n} |z_i|^2.$$

The curvature form Θ^* in $\mathcal{O}_{\mathbb{P}^n}(-1)$ is then

$$\Theta^* = \overline{\partial} \partial \log \left(\frac{1}{|z_{\alpha}|^2} \sum_{i=0}^n |z_i|^2 \right),\,$$

or more intrinsically,

$$\Theta^* = \overline{\partial} \partial \log \left(\sum_{i=0}^n |z_i|^2 \right).$$

The curvature form Θ of the dual metric in $\mathcal{O}_{\mathbb{P}^n}(1)$ is $-\Theta^*$. Hence,

$$c_1(\mathcal{O}_{\mathbb{P}^n}(1)) = -\frac{i}{2\pi}\overline{\partial}\partial\log\left(\sum_{i=0}^n |z_i|^2\right) = dd^c\log\left(\sum_{i=0}^n |z_i|^2\right),$$

which is just the fundamental (1, 1)-form associated to the Fubini-Study metric in \mathbb{P}^n and hence positive.

In particular, any ample line bundle L can be endowed with a hermitian metric with positive curvature. Indeed, if $i_{L^{\otimes m}}$ is a projective embedding, the pullback of a positive hermitian metric on $\mathcal{O}_{\mathbb{P}^n}(1)$ gives rise to a positive hermitian metric on $L^{\otimes m}$ and its m-th root gives a positive metric on L. Conversely, Kodaira embedding theorem grants that any positive line bundle is ample.

5. Blowing up

Blowing up is a surgery tool which allows to replace a point with a divisor blowing up (i.e. magnifying) the local geometry of a neighbourhood of complex manifold.

Let U be a neighbourhood of 0 in \mathbb{C}^n with local coordinate z_1, \ldots, z_n . Define

$$\tilde{U} = \{(z,l) \in U \times \mathbb{P}^{n-1} | z_i l_j = z_j l_i \text{ for all } i, j = 0, \dots, n\}$$
$$= \{(z,l) \in U \times \mathbb{P}^{n-1} | \operatorname{rk} \begin{pmatrix} z_1 & \dots & z_n \\ l_1 & \dots & l_n \end{pmatrix} \leq 1\}$$
$$= \{(z,l) \in U \times \mathbb{P}^{n-1} | z = (z_1, \dots, z_n) \in l = [l_1 : \dots : l_n] \text{ complex line} \}$$

and the map

$$\pi: \quad \tilde{U} \longrightarrow U$$
$$(z,l) \longmapsto z,$$

such that

- (1) $\pi|_{\tilde{U}\setminus\pi^{-1}(0)}: \tilde{U}\setminus\pi^{-1}(0)\longrightarrow U\setminus\{0\}$ is a biholomorphism; (2) $E:=\pi^{-1}(0)\cong\mathbb{P}^{n-1}$, called exceptional divisor.

Morally, \tilde{U} consists of lines through the origin of \mathbb{C}^n made disjoint. We replace a point with the directions pointing out of 0.

We can repeat the same construction for a neighbourhood of a point xof a complex manifold X of dimension n. Moreover, exploiting the fact that away from the exceptional divisor the map π is a biholomorphism, we can glue U and $X \setminus \{x\}$ to obtain a complex compact manifold called **blowing up** or blowup of X at x.

Remark. The construction is independent of the choice of coordinates. Choose $z' = (z'_1, \ldots, z'_n) = (f_1(z), \ldots, f_n(z))$ coordinates of U centred at x. Then the isomorphism

$$f:\tilde{U}\setminus E\longrightarrow \tilde{U}'\setminus E'$$

may be extended by setting f(0, l) = (0, l'), where

$$l_j' = \sum \frac{\partial f_j}{\partial z_i}(0) l_i.$$

In particular, the identification

$$E \longrightarrow \mathbb{P}\left(T_{1,0}(X)_x\right)$$
$$(0,l) \longmapsto \left[\sum l_i \frac{\partial}{\partial z_i}\right]$$

is independent of the choice of the coordinates. This identification formalizes the previous informal remark: we replace a point with the directions pointing out of 0.

We describe the complex structure of a blowup providing explicit charts. In terms of coordinate z_1, \ldots, z_n in an open coordinate U of x, we have denoted $\tilde{U} = \{(z, l) \in U \times \mathbb{P}^{n-1} | z_i l_j = z_j l_i \text{ for all } i, j = 0, \ldots, n\}$ and in addition we set $\tilde{U}_i = \tilde{U} \setminus \{(l_i = 0)\}$.

We endow \tilde{U}_i with coordinates

$$z(i)_j = \begin{cases} \frac{z_j}{z_i} = \frac{l_j}{l_i} & j \neq i; \\ z_i & j = i. \end{cases}$$

Hence, locally

- (1) $\pi|_{U_i}: (z(i)_1, \dots, z(i)_n) \longrightarrow (z_i z(i)_1, \dots, z_i, \dots, z_i z(i)_n);$ (2) $E|_{U_i} = (z(i)_i) = (z_i)^{\cdot}$
- (2) $E|_{U_i} = (z(i)_i) = (z_i);$
- (3) (\tilde{U}_i, φ_i) is an open coordinate subset with the charts φ_i given by

$$\varphi_i: \quad \tilde{U}_i \longrightarrow \mathbb{C}^n$$
$$(z,l) \longmapsto \left(\frac{z_1}{z_i}, \dots, z_i, \dots, \frac{z_n}{z_i}\right) = (z(i)_1, \dots, z(i)_i, \dots, z(n)_i).$$

Without loss of generality suppose i < j. Then, the change of coordinates are given by

$$\varphi_{j} \circ \varphi_{i}^{-1}|_{U_{j} \cap U_{i}}(z(i)_{1}, \dots, z(i)_{i}, \dots, z(i)_{j}, \dots, z(i)_{n}) = \\ = \left(\frac{z(i)_{1}}{z(i)_{j}}, \dots, \frac{1}{z(j)_{i}}, \dots, z(i)_{i}z(i)_{j}, \dots, \frac{z(i)_{n}}{z(i)_{j}}\right).$$

Since $E|_{U_i} = (z_i)$, the transition functions of the line bundle $\mathcal{O}_{\tilde{X}}(E)$ are given by

$$g_{ij} = z(j)_i = \frac{z_i}{z_j} = \frac{l_i}{l_j}$$
 in $\tilde{U}_i \cap \tilde{U}_j$

and so we can realize $\mathcal{O}_{\tilde{U}}(E)$ by identifying the fibre in (z, l) with the complex line in \mathbb{C}^n passing through (l_1, \ldots, l_n) ,

$$\mathcal{O}_{\tilde{U}}(E)|_{(z,l)} = \{ (\lambda l_1, \dots, \lambda l_2) | \lambda \in \mathbb{C} \}.$$
(1)

In particular, the line bundle $\mathcal{O}_E(E)$ is just the tautological bundle $\mathcal{O}_{\mathbb{P}^{n-1}}(-1)$. Through the identification of E with $\mathbb{P}(T_{1,0}(X)_x)$, we obtain

$$H^0(E, -E) \cong T^{1,0}(X)_x$$

Holomorphic functions vanishing at x in X correspond via the map π to holomorphic section of the line bundle $\mathcal{O}_{\tilde{X}}(-E)$. Hence, the differential

map $H^0(U, \mathcal{I}_x) \longrightarrow T^{1,0}(U)_x$ which sends $f \in \mathcal{O}(U)$ to $d_x f$ is induced by the restriction map $\mathcal{O}_{\tilde{U}}(-E) \longrightarrow \mathcal{O}_{\tilde{E}}(-E) \longrightarrow 0$. Equivalently, the following diagram commutes:

More precisely, after extending in series $f \in H^0(U, \mathcal{I}_x)$

$$f = \sum \frac{\partial f}{\partial z_j} z_j + O(z),$$

in the open coordinate subset (\tilde{U}_i, φ_i) the map $\pi^* f \in H^0(\tilde{U}, -E)$ can be described by

$$\pi^* f = z_i \left(\sum \frac{\partial f}{\partial z_j} z(i)_j + O(z_i) \right).$$

It means that the previous diagram commutes:

With Griffiths and Harris' words [GH],

This correspondence reflects a basic aspect of the local analytic character of blowups: the infinitesimal behaviour of functions, maps, or differential forms at the point x of X is transformed into global phenomena on \tilde{X} .

6. Positivity of a line bundle on a blowing up

In the following we will display some properties of blowing up that can be exploit to prove Kodaira embedding theorem.

First we discuss positivity of the line bundle $\mathcal{O}_X(E)$. We construct a hermitian metric h on $\mathcal{O}_X(E)$:

(1) Let h_1 be the metric on $\mathcal{O}_{\tilde{U}}(E)$ restriction of the standard metric in \mathbb{C}^n onto the complex line in \mathbb{C}^n passing through (l_1, \ldots, l_n) (cfr. identification (1)).

- (2) Let h_2 be the metric on $\mathcal{O}_{\tilde{X}\setminus E}(E)$ such that $h_2(\sigma) \equiv 1$, where $\sigma \in H^0(\tilde{X}, E)$ is a global section of $\mathcal{O}_{\tilde{X}}(E)$ with $(\sigma) = E$ (in the notation above $\sigma = (z_i)$).
- (3) For $\epsilon > 0$, $U_{\epsilon} := \{z \in U | ||z|| < \epsilon\}$ and $\tilde{U}_{\epsilon} := \pi^{-1}(U_{\epsilon})$. Let ρ_1, ρ_2 be a partial of unity relative to the cover $\{\tilde{U}_{2\epsilon}, \tilde{X} \setminus \tilde{U}_{\epsilon}\}$ of \tilde{X} and h be a global hermitian metric given by

$$h = \rho_1 h_1 + \rho_2 h_2.$$

We will compute the positivity of the first Chern class of the hermitian line bundle (E, h).

(1) On $\tilde{X} \setminus \tilde{U}_{2\epsilon}$, $\rho_2 \equiv 1$ so $h(\sigma) \equiv 1$, i.e. in the trivialization above $h_{\alpha} |\sigma_{\alpha}|^2 = 1$, and

$$c_1(E) = -dd^c \log \frac{1}{|\sigma|^2} = 0$$

since $\log \frac{1}{|\sigma|^2}$ is a harmonic function.

(2) On $\tilde{X} \setminus \tilde{U}_{2\epsilon}$, $\rho_2 \equiv 0$ and denote

$$\pi': \tilde{U} \longrightarrow \mathbb{P}^{n-1}$$
$$(z, l) \longmapsto l.$$

Then

$$c_1(E) = -dd^c \log ||z||^2 = -(\pi')^* \omega_{FS},$$

i.e. the pullback $(\pi')^* \omega_{FS}$ of the fundamental (1, 1)-form associated to the Fubini-Study metric under the map π' . Hence, $c_1(E)$ is semi-positive on $\tilde{U}_{\epsilon} \setminus E$.

(3) On E, $-c_1(E)|_E = \omega > 0$ by continuity from the previous remark or since $h_1|_E$ is the hermitian metric induced by the standard metric in \mathbb{C}^n (section 4).

To sum up,

$$c_1(-E) = \begin{cases} 0 & \text{on } \tilde{X} \setminus \tilde{U}_{2\epsilon}; \\ \ge 0 & \text{on } \tilde{U}_{\epsilon}; \\ > 0 & \text{on } T_{1,0}(E)_x \subset T_{1,0}(\tilde{X})_x \quad \forall x \in E. \end{cases}$$

Let (L, h_L) a hermitian positive line bundle on \tilde{X} . Then

$$c_1(\pi^*L) = \pi^*c_1(L).$$

For any $x \in E$ and $v \in T(\tilde{X})_x$

$$c_1(\pi^*L)(v,\overline{v}) = c_1(L)(\pi_*v,\overline{\pi_*v}) \ge 0$$

and equality holds if and only if $\pi^* v = 0$. Hence,

$$c_1(\pi^*L) = \begin{cases} \geq 0 & \text{everywhere;} \\ > 0 & \text{on } \tilde{X} \setminus E; \\ > 0 & \text{on } T_{1,0}(\tilde{X})_x / T_{1,0}(E)_x \quad \forall x \in E. \end{cases}$$

Finally, $c_1(\pi^*L^k \otimes (-E)) = kc_1(\pi^*L) - c_1(E)$ is positive on \tilde{U}_{ϵ} and on $\tilde{X} \setminus \tilde{U}_{2\epsilon}$ for ϵ small enough. Since $\tilde{U}_{2\epsilon} \setminus \tilde{U}_{\epsilon}$ is relatively compact, $-c_1(E)$ is bounded below and $c_1(\pi^*L)$ is strictly positive, then for klarge enough $\pi^*L^k \otimes (-E)$ is a positive line bundle on \tilde{X} .

Therefore,

Proposition 6.1. If L is a positive line bundle on a compact complex line bundle X, for any multiple nE of the exceptional divisor there exists k > 0 such that $L^k - nE$ is a positive line bundle on the blowing up \tilde{X} (at a point).

7. CANONICAL LINE BUNDLE ON A BLOWING UP

Proposition 7.1. $K_{\tilde{X}} = \pi^* K_X + (n-1)E$.

Proof. We will just prove the statement in the case X admits a meromorphic *n*-form α (in the general case one has to compute explicitly the transition function of the canonical bundle). In terms of coordinate z_1, \ldots, z_n in an open coordinate U of x, meromorphic *n*-form α can be expressed as

$$\alpha = \frac{f}{g} dz_1 \wedge \dots \wedge dz_n,$$

where $f, g \in \mathcal{O}(U)$.

In the open neighbourhood \tilde{U}_i , the map π is given by

$$\pi|_U: (z(i)_1, \dots, z(i)_n) \longrightarrow (z_i z(i)_1, \dots, z_i, \dots, z_i z(i)_n)$$

and

$$\pi^* \alpha = \pi^* \left(\frac{f}{g}\right) d(z_i z(i)_1) \wedge \dots \wedge d(z_i) \wedge \dots \wedge d(z_i z(i)_n)$$
$$= \pi^* \left(\frac{f}{g}\right) z_i^{n-1} d(z(i)_1) \wedge \dots \wedge d(z_i) \wedge \dots \wedge d(z(i)_n)$$

Writing $E := \pi^{-1}(x)$ the exceptional divisor, we obtain $\operatorname{div}(\pi^*\alpha) = \pi^*\operatorname{div}(\alpha) + (n-1)E$. Away from E, $\operatorname{div}(\pi^*\alpha) = \pi^*\operatorname{div}(\alpha)$ since $\pi|_{\tilde{U}\setminus E}$ is a biholomorphism. The two arguments together yields the result. \Box

8. Kodaira-Akizuki-Nakano vanishing theorem

Let (X, ω) be a Kähler manifold. Let (L, h) a holomorphic line bundle on X endowed with the hermitian metric h and $\Theta(L) \in \Lambda^{1,1}T_X^*$ the curvature form of the Chern connection of the hermitian line bundle (L, h). Let $\Delta' := D'D'^* + D'^*D'$ and $\Delta'' := D''D''^* + D''^*D''$ be the (complex) Laplacian operators, $L := \omega \wedge \cdot$ be the Lefschetz operator and $\Lambda := L^*$ its adjoint.

Theorem 8.1 (Bochner-Kodaira-Nakano identity).

$$\Delta'' = \Delta' + [i\Theta(L), \Lambda].$$

Proof. Kähler identities (for vector bundles) yield $D''^* = -i[\Lambda, D']$. Hence,

$$\Delta'' = [D'', D''^*] = -i[D'', [\Lambda, D']].$$

Finally, graded Jacobi identity³ implies

$$[D'', [\Lambda, D']] = [\Lambda, [D', D'']] + [D', [D'', \Lambda]] = [\Lambda, \Theta(L)] + i[D', D'^*],$$

since $[D', D''] = D^2 = \Theta(L).$

Suppose that X is a compact Kähler manifold. For any $u \in C^{\infty}(X, \Lambda^{p,q}T^*X \otimes L)$,

$$\int_{X} h(\Delta' u, u) dV = \|D'u\|^2 + \|D'^*u\|^2 \ge 0$$
$$\int_{X} h(\Delta'' u, u) dV = \|D''u\|^2 + \|D''^*u\|^2 \ge 0$$

The previous relations combined with Bochner-Kodaira-Nakano identity yield

$$||D''u||^2 + ||D''^*u||^2 \ge \int_X h([i\Theta(L), \Lambda]u, u) \, dV.$$

If u is Δ'' -harmonic,

$$0 \ge \int_X h([i\Theta(L), \Lambda]u, u) \, dV.$$

If the operator $h([i\Theta(L), \Lambda], \cdot)$ is positive on each fibre of $\Lambda^{p,q}T^*X \otimes L$, then $u \equiv 0$ and $H^{p,q}(X, L) \cong \mathcal{H}^{p,q}_{\Delta''}(X, L) = 0$. Therefore, a positivity

³Let A and B be endomorphisms of the graded module $C^{\infty}(\Lambda^{\cdot,\cdot}T^*X \otimes L)$ of degree respectively a and b. The graded commutator is defined as

$$[A,B] = AB - (-1)^{ab}BA$$

If C is another endomorphism of degree c, then the graded Jacobi identity holds: $(-1)^{ca}[A,[B,C]] + (-1)^{ab}[B,[C,A]] + (-1)^{bc}[C,[A,B]] = 0.$ assertion on the operator $[i\Theta(L), \Lambda]$ yields to vanishing theorems for cohomology.

Suppose for instance that $i\Theta(L)$ is a (real) positive (1, 1)-form. We can endow X with the Kähler metric $\omega := i\Theta(L)$. Since

$$\left\{\frac{i}{2\pi}\Theta(L),\Lambda,(\deg-n)\operatorname{Id}\right\}$$

is an \mathfrak{sl}_2 -triplet,

$$h([i\Theta(L),\Lambda]u,u) = (p+q-n)|u|^2.$$

Therefore,

Theorem 8.2 (Kodaira-Akizuki-Nakano vanishing theorem). If L is a positive line bundle on a complex compact manifold X, then

$$H^{p,q}(X,L) = H^q(X,\Omega^p_X \otimes L) = 0 \qquad \text{for } p+q > n.$$

Corollary 1. If L is a positive line bundle on a complex compact manifold X, then $H^q(X, K_X + L) = 0$ for q > 0.

9. COHOMOLOGICAL CHARACTERIZATION OF VERY AMPLENESS

To answer to the question whether a line bundle is very ample or not, we will recast the property of being an embedding for i_L in cohomological term, as follows:

(1) i_L is a well-defined **morphism** if L is spanned, i.e. for all $x \in X$ there exists a section of L, $s \in H^0(X, L)$, such that $s(x) \neq 0$, or equivalently the map

$$H^0(X,L) \longrightarrow L_x$$

is surjective. Notice that this map is sited in the long exact sequence induced by the short exact sequence of sheaves⁴

$$0 \longrightarrow L \otimes \mathcal{I}_x \longrightarrow L \longrightarrow L_x \longrightarrow 0.$$

where $\mathcal{I}_x \in \mathcal{O}_X$ is the ideal sheaf of holomorphic functions vanishing at x and L_x the skyscraper sheaf centred in x with global sections⁵ the fiber of the line bundle L over x.

⁴Recall that any short exact sequence of sheaves

$$0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{G} \to 0$$

induces a long exact sequence in cohomology

$$0 \to H^0(X, \mathcal{E}) \to H^0(X, \mathcal{F}) \to H^0(X, \mathcal{G}) \to H^1(X, \mathcal{E}) \to \cdots$$

⁵In the following we will use indistinctly the same notation for the skyscraper sheaf and for the set of its global sections.

(2) i_L is **injective**. This is the case if for all $x, y \in X, x \neq y$, there exists a section of $L, s \in H^0(X, L)$, vanishing at x but not at y (cfr. the intrinsic definition of the morphism $i_L : X \longrightarrow \mathbb{P}(H^0(X, L))^*$), or equivalently the map

$$H^0(X,L) \longrightarrow L_x \oplus L_y$$

is surjective. Notice that this map is sited in the long exact sequence induced by the short exact sequence

$$0 \longrightarrow L \otimes \mathcal{I}_{x,y} \longrightarrow L \longrightarrow L_x \oplus L_y \longrightarrow 0.$$

(3) i_L is an **immersion**. We need to check the injectivity of $d_x i_L$ at any $x \in X$. Complete a basis $s_1, \ldots s_n$ of the hyperplane of sections in $H^0(X, L)$ vanishing at x, identified with $H^0(X, L \otimes \mathcal{I}_x) \subset H^0(X, L)$, to a basis $s_0, s_1, \ldots s_n$ of $H^0(X, L)$ (so that $s_0(x) \neq 0$ since L is spanned). In an open neighbourhood of x, the map i_L is given by

$$x \longmapsto \left(\frac{s_1(x)}{s_0(x)}, \dots, \frac{s_n(x)}{s_0(x)}\right).$$

Hence, $d_x i_L$ is injective if and only if $d(\frac{s_1}{s_0}), \ldots, d(\frac{s_n}{s_0})$ span the holomorphic cotangent space $T^{1,0}(X)_x$. Equivalently, we require that the map

$$d_x: H^0(X, L \otimes \mathcal{I}_x) \longrightarrow L_x \otimes T^{1,0}(X)_x \cong \operatorname{End}(T(X), L)_x$$
$$s_x \longmapsto d_x(s_\alpha),$$

is surjective. Notice that the map is well-defined since independent of the trivialization

$$d_x(s_\alpha) = d_x(g_{\alpha\beta}s_\beta) = g_{\alpha\beta}(x)d_x(s_\beta),$$

as $s_{\beta}(x) = 0$. Again, this map is sited in the long exact sequence induced by the short exact sequence

$$0 \longrightarrow L \otimes \mathcal{I}_x^2 \longrightarrow L \otimes \mathcal{I}_x \longrightarrow L_x \otimes T^{1,0}(X)_x \longrightarrow 0.$$

Indeed, $\mathcal{I}_x/\mathcal{I}_x^2 \cong T^{1,0}(X)_x$.

To prove that the previous maps are surjective, it would suffice to prove

$$H^1(X, L \otimes \mathcal{I}_x^2) = H^1(X, L \otimes \mathcal{I}_x) = 0$$

Let X be a Riemann surface of genus g.

Proposition 9.1. If D is a divisor of degree $\geq 2g + 1$, then the line bundle $\mathcal{O}_X(D)$ is very ample.

Proof. By Kodaira-Akizuki-Nakano vanishing theorem

 $H^{1}(X, L \otimes \mathcal{I}_{x}^{2}) = H^{1}(X, L - 2[x]) = H^{1}(X, K_{X} + (L - 2[x] - K_{X})) = 0.$ In fact, notice that $\deg(L - 2[x] - K_{X}) = \deg(L) - 2 - 2g + 2 \ge 1$: the divisor $L - 2[x] - K_{X}$ is, then, positive, since its first Chern class is a multiple of the fundamental class of X, which is positive (recall $H^{1,1}(X, \mathbb{Z}) = H^{2}(X, \mathbb{Z}) \cong \mathbb{Z}$).

Analogously,
$$H^1(X, L \otimes \mathcal{I}_x) = 0.$$

However, unless X is a Riemann surface, the sheaves \mathcal{I}_x^2 and \mathcal{I}_x are not invertible, which prevents us to exploit Kodaira-Akizuki-Nakano vanishing theorem. Then, one would replace x with a divisor by blowing up X at x.

10. Kodaira Embedding Theorem: a proof

Theorem 10.1 (Kodaira Embedding Theorem). If L is a compact Kähler manifold, a line bundle L is positive if and only if it is ample.

Proof. As we discuss in section 4, the difficult implication is proving that a positive line bundle is ample, i.e. we need to prove that there exist k > 0 such that

(1) the restriction map

$$H^0(X, L^k) \longrightarrow L^k_x \oplus L^k_y \tag{2}$$

is surjective for any $x, y \in X, x \neq y;$

(2) the differential map

$$d_x: H^0(X, L^k \otimes \mathcal{I}_x) \longrightarrow L^k_x \otimes T^{1,0}(X)_x \tag{3}$$

is surjective for any $x \in X$.

Let $\pi : \tilde{X} \longrightarrow X$ be the blowing up of X at $x, y \in X, x \neq y$ with $E_x := \pi^{-1}(x)$ and $E_y = \pi^{-1}(y)$ exceptional divisors and $E = E_x + E_y$ - if X is a Riemann surface, $\pi = id_X$ and $E = \{x, y\}$. Consider the following commutative diagram:

(1) $\pi^* L^k$ is trivial along E_x and E_y , i.e.

$$\pi^* L^k|_{E_x} \cong E_x \times L_x^k \qquad \pi^* L^k|_{E_y} \cong E_y \times L_y^k,$$

so that

$$H^0(E,\pi^*L^k) = L^k_x \oplus L^k_y.$$

- (2) $\pi^* : H^0(X, L^k) \longrightarrow H^0(\tilde{X}, \pi^*L^k)$ is an isomorphism. Since π is a biholomorphism away from E, π^* is injective. By Hartogs' theorem, any holomorphic section of π^*L^k on $\tilde{X} \setminus \{E_x, E_y\} \cong X \setminus \{x, y\}$ extends to a holomorphic section of L^k on the whole X. Hence, π^* is surjective.
- (3) Notice that the restriction map $H^0(\tilde{X}, \pi^*L^k) \longrightarrow H^0(E, \pi^*L^k)$ is sited in the long exact sequence induced by the short exact sequence

$$0 \longrightarrow \mathcal{O}_{\tilde{X}}(\pi^*L^k - E) \longrightarrow \mathcal{O}_{\tilde{X}}(\pi^*L^k) \longrightarrow \mathcal{O}_E(\pi^*L^k) \longrightarrow 0.$$

Hence, surjectivity of the map (2) follows from the vanishing of $H^1(\tilde{X}, \pi^*L^k - E)$ by Kodaira-Akizuki-Nakano vanishing theorem.

Indeed, by proposition 7.1,

$$\pi^* L^k - E = \pi^* L^k - E + K_{\tilde{X}} - K_{\tilde{X}}$$

= $\pi^* L^k - E + K_{\tilde{X}} - \pi^* K_X - (n-1)E$
= $K_{\tilde{X}} + (\pi^* L^{k_1} - nE) + \pi^* (L^{k_2} - K_X)$

for some $k > k_1 + k_2$ suitably chosen such that both the line bundle $\pi^* L^{k_1} - nE$ and $-K_X + L^{k_2}$ are positive (cfr. proposition 6.1 and 7.1). In particular, $(\pi^* L^{k_1} - nE) + \pi^* (L^{k_2} - K_X)$ is positive since product of a positive line bundle and a semipositive line bundle. Finally, Kodaira-Akizuki-Nakano vanishing theorem applies.

Similarly, one can prove surjectivity of the differential map (3) Let $\pi : \tilde{X} \longrightarrow X$ blowing up of X at $x \in X$, with $E := \pi^{-1}(x)$ exceptional divisors and E. Consider the following commutative diagram

(1) Since $\pi^* L^k$ is trivial along E,

$$H^0(E, \pi^*L^k - E) = L^k_x \otimes H^0(E, -E) \cong L^k_x \otimes T^{1,0}(X)_x,$$

where the first identity holds since by dimensional reasons the injection $H^0(E, \pi^*L^k) \otimes H^0(E, -E) \hookrightarrow H^0(E, \pi^*L^k - E)$ is a bijection.

(2) $\pi^* : H^0(X, L^k \otimes \mathcal{I}_x) \longrightarrow H^0(\tilde{X}, \pi^*L^k - E)$ is an isomorphism. Indeed, holomorphic sections of the line bundle L on X vanishing at x are in bijective correspondence with holomorphic sections of the line bundle π^*L^k on \tilde{X} vanishing along E.

(3) Notice that the restriction map $H^0(\tilde{X}, \pi^*L^k - E) \longrightarrow H^0(E, \pi^*L^k - E)$ is sited in the long exact sequence induced by the short exact sequence

$$0 \longrightarrow \mathcal{O}_{\tilde{X}}(\pi^* L^k - 2E) \longrightarrow \mathcal{O}_{\tilde{X}}(\pi^* L^k - E) \longrightarrow \mathcal{O}_E(\pi^* L^k - E) \longrightarrow 0.$$

Hence, surjectivity of the map (3) follows from the vanishing of $H^1(\tilde{X}, \pi^*L^k - 2E)$ for some k > 0 by Kodaira-Akizuki-Nakano vanishing theorem as before.

To conclude we exhibit a compactness argument to check that the choice of k is independent of the choice of $x, y \in X$ (cfr. [NOG]). More precisely, we have established the existence of a suitable k = k(x) > 0 such that i_{L^k} is defined at $x \in X$ and it separates tangents in x (i.e. $d_x i_{L^k}$ is injective). The same is true in a neighbourhood U_x of x. Since X is compact, X is covered by finitely many neighbourhoods U_x , with $x \in X$, and there exists a common k_0 , sufficiently large, such that $i_{L^{k_0}}$ is a holomorphic immersion on the whole X.

Consider the product

$$i_{L^k} \times i_{L^k} : X \times X \longrightarrow \mathbb{P}^n \times \mathbb{P}^n.$$

Since i_{L^k} is an immersion, it is injective in a neighbourhood W of the diagonal $\{(x, y) \in X \times X | x = y\}$. For each $(x, y) \in X \times X \setminus W$ there exists a k = k(x, y) such that $i_{L^k}(x) \neq i_{L^k}(y)$. However, since $X \times X \setminus W$ is compact, there exists a common k_0 such that $i_{L^{k_0}}$ is an embedding.

11. Applications of Kodaira Embedding Theorem

Corollary 2. A compact complex manifold X is a projective algebraic submanifold if and only if it has a closed positive (1,1)-form ω whose cohomology class $[\omega]$ is rational.

Proof. A multiple of $[\omega]$ is an integer cohomology class. By Lefschetz (1, 1)-theorem, there exists a line bundle L with first Chern class $c_1(L) = k[\omega]$. Since the form is positive, the line bundle L is positive. By Ko-daira embedding theorem X is a projective submanifold, and by Chow's theorem (section 12) it is algebraic. \Box

Equivalently, the projectivity of a compact Kähler manifold can be read off the position of the Kähler cone $K_X \subset H^{1,1}(X) \cap H^2(X,\mathbb{R})$ with respect to the lattice $H^2(X,\mathbb{Z})$.

Definition 11.1. The Kähler cone $K_X \subset H^{1,1}(X) \cap H^2(X, \mathbb{R})$ is the cone in $H^2(X, \mathbb{R})$ generated by Kähler classes, i.e. cohomology classes which can be represented by a closed real positive (1, 1)-form.

Lemma 11.2. The Kähler cone is an open convex cone in $H^{1,1}(X) \cap H^2(X, \mathbb{R})$.

Proof. Since $t\alpha + (1-t)\beta$ is a Kähler class for $t \in [0,1]$ and for any $\alpha, \beta \in H^{1,1}(X) \cap H^2(X, \mathbb{R})$, the Kähler cone is convex.

Choose a basis $\{\beta_i\}$ of $H^{1,1}(X) \cap H^2(X, \mathbb{R})$. Then, the open neighbourhoods of the Kähler class α

$$P_n = \left\{ \alpha + \sum t_i \beta_i | \, 0 < t_i < \frac{1}{n} \right\}$$

are contained in the Kähler cone for n large enough. It suffices n greater than the ratio between the maximum value attained by the elements of the basis β_i on the unit sphere subbundle of $T_{1,0}(X)$ (with respect to any hermitian metric) and the minimum attained by α on the same unit sphere subbundle. Hence, the Kähler cone is open.

Corollary 3. A compact complex manifold X is a projective algebraic submanifold if and only if $K_X \cap H^2(X, \mathbb{Z}) \neq 0$.

Proof. X has a closed positive integer (1, 1)-form.

Example 11.3. Any compact curve is projective (cfr. proposition 9.1).

 \square

Example 11.4. Every compact Kähler manifold with $H^{0,2} = 0$ is projective. In that case, $H^{1,1}(X) = H^2(X, \mathbb{C}) = H^2(X, \mathbb{Z}) \otimes \mathbb{C}$ and, since the Kähler cone, is open it has non-empty intersection with the lattice of integer cohomology classes.

In the following corollaries we exhibits general constructions of projective algebraic submanifolds.

Corollary 4. If X and Y are projective algebraic submanifolds, $X \times Y$ is a projective algebraic submanifold.

Proof. If ω_X and ω_Y are closed positive rational (1, 1)-forms on X and Y respectively, $\pi_X^* \omega_X + \pi_Y^* \omega_Y$ is a closed positive rational (1, 1)-form on $X \times Y$, where $\pi_X : X \times Y \longrightarrow X$ and $\pi_Y : X \times Y \longrightarrow Y$ are the projection maps.

Corollary 5. If X is a projective algebraic submanifold and $\pi : \tilde{X} \longrightarrow X$ is the blowing up of X at $x \in X$, then \tilde{X} is a projective algebraic submanifold.

Proof. By proposition 6.1 \tilde{X} carries a positive line bundle $\pi^* L^k - E$ for k >> 0, with $E := \pi^{-1}(x)$ exceptional divisor.

Corollary 6. If $\pi : \tilde{X} \longrightarrow X$ is a finite unbranched covering of a complex compact manifold, \tilde{X} is a projective algebraic submanifold if and only if X is a projective algebraic submanifold.

Proof. Clearly, if ω is a closed positive rational (1, 1)-form on X, then $\pi^*\omega$ is a closed positive rational (1, 1)-form on \tilde{X} .

Conversely, we provide a positive (1,1)-form $\omega' \in H^{1,1}(X,\mathbb{Q})$ by averaging a positive (1,1)-form $\omega' \in H^{1,1}(\tilde{X},\mathbb{Q})$ along the fibre of π . Indeed, we define

$$\omega'(x) = \sum_{y \in \pi^{-1}(x)} (\pi^{-1})^* \omega(y) \in H^{1,1}(\tilde{X}, \mathbb{Q}).$$

Notice that π^{-1} is locally well-defined since π is a local diffeomorphism. Moreover, ω' is closed, positive and of type (1, 1) since ω is. Finally, $[\omega']$ is also rational. Indeed, since π is a local diffeomorphism (of degree d), for any $\eta \in H^{2n-2}(X, \mathbb{Q})$

$$\int_X \omega' \wedge \eta = \frac{1}{d} \int_{\tilde{X}} \omega \wedge \pi^* \eta \in \mathbb{Q}.$$

As an application, we prove that any line bundle on a projective algebraic submanifold arises from a divisor.

Corollary 7. Let X be a complex compact manifold. If E is a line bundle on X and L a positive line bundle, there exists k > 0 such that $L^k \otimes E$ is very ample.

Proof. Compactness implies that for a suitable k the line bundle $L^k \otimes E$ is positive. Adapt the proof of Kodaira embedding theorem to conclude.

Corollary 8. If X is a projective algebraic submanifold, the map from Div(X) to Pic(X) which sends a divisor D to its associated line bundle $\mathcal{O}_X(D)$ is surjective.

Proof. It suffices to prove that any line bundle E on a projective algebraic submanifold has a meromorphic section s so that $L = \mathcal{O}_X(\operatorname{div}(s))$.

Let L be a positive line bundle on X. Then for k large enough both the line bundle $L^k \otimes E$ and L^k are very ample and in particular effective. If $0 \neq s_1 \in H^0(X, L^k \otimes E)$ and $0 \neq s_2 \in H^0(X, L^k)$, then

$$E = \operatorname{div}\left(\frac{s_1}{s_2}\right).$$

12. CHOW'S THEOREM

We first recall the following classical results.

Theorem 12.1. $\operatorname{Pic}(\mathbb{P}^n) \cong \mathbb{Z}$ and it is generated by the hyperplane bundle.

Let $S := \mathbb{C}[z_0, \ldots, z_n] = \bigoplus_{d \ge 0} S_d$, where S_d is the set of homogeneous polynomials of degree d.

Theorem 12.2.

$$H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d)) = \begin{cases} S_d & d \ge 0\\ 0 & d < 0. \end{cases}$$

The content of the latter theorem is that the line bundle $\mathcal{O}_{\mathbb{P}^n}(d)$ does not carry other holomorphic sections different from the algebraic ones, i.e. homogeneous polynomials of degree d in the projective coordinates z_0, \ldots, z_n . The consequence is a sort of rigidity for projective analytic subvarieties, namely irreducible subsets of \mathbb{P}^n which are locally zero locus of a finite family of holomorphic functions.

Definition 12.3. A projective algebraic subvariety is the zero locus of a family of homogeneous polynomials in the projective coordinates z_0, \ldots, z_n in \mathbb{P}^n .

Theorem 12.4 (Chow's theorem). Any projective analytic subvariety X is algebraic.

Proof. Suppose that Y is a hypersurface or equivalently a prime divisor. By theorem 12.1 the line bundle $\mathcal{O}(Y)$ is of the form $\mathcal{O}_{\mathbb{P}^n}(d)$ for some d, and Y is the zero locus of some holomorphic section σ of $\mathcal{O}(Y)$, i.e. a homogeneous polynomial of degree d. Thus,

$$\mathcal{O}(Y) = \operatorname{div}(\sigma) = \operatorname{div}\left(\sum_{|I|=d} a_I z^I\right)$$

is algebraic.

In general, if dim Y = k, for any $x \in \mathbb{P}^n$ not contained in Y we can find a (k+1)-plane such that the projection, say π_x , of Y along a (n-k-2)-plane disjoint from x is disjoint from the projection of x. It is sufficient to choose a (n-k-1)-plane in \mathbb{P}^n through x missing Y (which exists since otherwise Y would project surjectively onto \mathbb{P}^{k+1}).

Since the projection π_x is a closed map, $\pi_x(X)$ is a hypersurface in \mathbb{P}^{k+1} , hence it satisfies a homogeneous polynomial F, which separates $\pi_x(Y)$ and $\pi_x(x)$.

Completing a projective coordinate system z_0, \ldots, z_{k+1} of \mathbb{P}^{k+1} to a projective coordinate system $z_0, \ldots, z_{k+1}, \ldots z_n$ of \mathbb{P}^n , the homogeneous polynomial $F(z_0, \ldots, z_n) := F(z_0, \ldots, z_{k+1}) \in \mathbb{C}[z_0, \ldots, z_n]$ vanishes on X (on $\pi_x^{-1}(X)$), but not at x (on $\pi_x^{-1}(X)$).

APPENDIX: HIRZEBRUCH-RIEMANN-ROCH THEOREM

The celebrated Hirzebruch-Riemann-Roch theorem expresses the Euler-Poincaré characteristic of a holomorphic vector bundle E on a complex compact manifold X

$$\chi(X, E) = \sum_{i=0}^{\dim_{\mathbb{C}} X} (-1)^i \dim_{\mathbb{C}} H^i(X, E)$$

in terms of the Chern classes of E and X. Combined with various vanishing theorems, it can often effectively determine the dimension of $H^0(X, E)$. This turns out to be important in the study of the geometry of X. For instance, if L is an ample line bundle, for m large enough the line bundle $L^m \otimes K_X^*$ is positive and

$$H^q(X, L^m) = H^q(X, K_X \otimes (L^m \otimes K_X^*)) = 0, \quad q > 0,$$

by Kodaira-Akizuki-Nakano vanishing theorem. Hence,

$$\chi(X, L^m) = H^0(X, L^m)$$

and the Euler characteristic of E determines the dimension of the projective space in which X can be embedded.

Chern-Weil theory establishes a homomorphism between the adinvariant k-multilinear symmetric form on $\mathfrak{gl}(r, \mathbb{C})$ and the cohomology $H^{2*}(X, \mathbb{C})$ of X with complex coefficients in even degree.

A k-multilinear form

$$P:\mathfrak{gl}(r,\mathbb{C})\times\ldots\times\mathfrak{gl}(r,\mathbb{C})\longrightarrow\mathbb{C}$$

is ad-invariant if for all $G \in GL(r, \mathbb{C})$

$$P(GB_1G^{-1},\ldots,GB_kG^{-1}) = P(B_1,\ldots,B_k).$$

We will briefly describe how to associate a cohomology class in even degree to an ad-invariant k-multilinear symmetric form P on $\mathfrak{gl}(r, \mathbb{C})$. Indeed, an ad-invariant k-multilinear symmetric form P on $\mathfrak{gl}(r, \mathbb{C})$ induces a k-multilinear symmetric form

$$P: \Lambda^{2}(M) \otimes \operatorname{End}(E) \times \ldots \times \Lambda^{2}(M) \otimes \operatorname{End}(E) \longrightarrow \Lambda^{2n}_{\mathbb{C}}(X)$$

defined by $P(\alpha_1 \otimes t_1, \ldots, \alpha_r \otimes t_r) = \alpha_1 \wedge \cdots \wedge \alpha_r P(t_1, \ldots, t_r)$ and a polarized form $\tilde{P}(\alpha \otimes t) = P(\alpha \otimes t, \ldots, \alpha \otimes t)$. For the time being, the complex vector bundle E does not need to be holomorphic. Let Θ be

the curvature of an arbitrary connection on the complex vector bundle E. The following facts hold:

- (1) $P(\Theta)$ is a closed form (apply Bianchi identity and ad-invariance);
- (2) $[P(\Theta)]$ is a cohomology class independent of the connection chosen.

Example 12.5. In the spirit of Chern-Weil homomorphism, we are led to select families of homogeneous polynomials to define families of cohomology classes, possibly describing some cohomological invariants.

Define the ad-invariant polynomials \tilde{P}_k , \tilde{Q}_k , \tilde{R}_k :

- (1) det(Id +tB) = $\sum_{k=0} \tilde{P}_k t^k$; (2) tr(exp(tB)) = $\sum_{k=0} \tilde{Q}_k t^k$; (3) det(tB)/det(Id -e^{-tB}) = $\sum_{k=0} \tilde{R}_k t^k$.

Define the k-th Chern class, the k-th Chern character and the k-th Todd class respectively:

(1) $c_k(E) = \left[\tilde{P}_k\left(\frac{i}{2\pi}\Theta\right)\right] \in H^{2k}(X,\mathbb{C});$ (2) $ch_k(E) = \left[\tilde{Q}_k\left(\frac{i}{2\pi}\Theta\right)\right] \in H^{2k}(X,\mathbb{C});$

(3)
$$td_k(E) = \left[\tilde{R}_k\left(\frac{i}{2\pi}\Theta\right)\right] \in H^{2k}(X,\mathbb{C}).$$

Define the total Chern class, the total Chern character and the total Todd class respectively:

(1)
$$c(E) = \sum c_k(E) = \left[\det(\operatorname{Id} + \frac{i}{2\pi}\Theta)\right] \in H^{2*}(X, \mathbb{C});$$

(2) $ch(E) = \sum ch_k(E) = \left[tr(\exp(\frac{i}{2\pi}\Theta))\right] \in H^{2*}(X, \mathbb{C}));$
(3) $td(E) = \sum td_k(E) = \left[\det(\frac{i}{2\pi}\Theta)/\det(\operatorname{Id} - e^{-\frac{i}{2\pi}\Theta})\right] \in H^{2*}(X, \mathbb{C}).$

Define the Chern classes, the Chern characters and the Todd classes of X as the respective classes of its tangent bundle.

Let E be a holomorphic vector bundle on a complex compact manifold X of complex dimension n.

Theorem 12.6 (Hirzebruch-Riemann-Roch theorem).

$$\chi(X, E) = \int_X \operatorname{ch}(E) \operatorname{td}(X).$$

Remark. Notice that ch(E)td(X) is not in general a top degree form. What it is meant by the integral is the evaluation of the top degree component $(\operatorname{ch}(E)\operatorname{td}(X))_{2n} = \sum_{k=0}^{n} \operatorname{ch}_{k}(E)td_{n-k}(X).$

If L is an ample line bundle,

$$\chi(X, L^m) = \sum_{i=0}^n ch_i(L^m) t d_{n-i}(X)$$
$$= \sum_{k=0}^n \left[\tilde{Q}_k \left(m \frac{i}{2\pi} \Theta(L) \right) \right] t d_{n-k}(X)$$
$$= \sum_{k=0}^n m^k \left(\left[\tilde{Q}_k \left(\frac{i}{2\pi} \Theta(L) \right) \right] t d_{n-k}(X) \right)$$

 $\chi(X, L^m)$ is called the Hilbert polynomial of the polarized manifold (X, L), i.e. L is an ample line bundle on X. The leading coefficient of the Hilbert polynomial is $ch_n(L) = c_1(L) \wedge \cdots \wedge c_1(L)\tilde{P}'_n(id)$.

In fact, recall that for any line bundle L, $\operatorname{End}(L) = L^* \otimes L \cong \mathcal{O}_X$, as a consequence of the group structure of $\operatorname{Pic}(X)$ (more concretely, we are left to check the transition functions of those line bundles). Since

$$\operatorname{tr}(e^{t \operatorname{id}}) = \operatorname{tr}\left(\sum_{k=0}^{+\infty} \frac{t^k}{k!} \operatorname{id}^k\right) = \sum_{k=0}^{+\infty} \frac{t^k}{k!}.$$

We conclude with an easier version of the asymptotic Riemann-Roch theorem.

Theorem 12.7. In the hypothesis above,

$$H^{0}(X, L^{m}) = \chi(X, L^{m}) = \frac{(c_{1}(L)^{n})}{n!}m^{n} + O(m^{n-1}).$$

References

[DBIP] Demailly, Jean-Pierre and Bertini, Jos and Illusie, Luc and Peters, Chris, Introduction la théorie de Hodge, Société Mathématiques de France, 1996.

- [GH] Griffits, Phillip and Harris, Joseph, Principles of Algebraic Geometry, Wiley-Interscience Publication, 1978.
- [HYB] Huybrechts, Daniel. Complex Geometry. Springer, 2005.
- [LAZ] Lazarsfeld, Robert, Positivity in Algebraic Geometry, Springer, 2004.

[NOG] Noguchi, Junjiro. Analytic Function Theory of Several Variables.

(Mirko Mauri) DÉPARTEMENT D'ENSEIGNEMENT DE MATHÉMATIQUES, FAC-ULTÉ DES SCIENCES D'ORSAY, UNIVERSITÉ PARIS-SUD, F-91405 ORSAY CEDEX *E-mail address*, M. Mauri: mirko.mauri1991@gmail.com