
KODAIRA EMBEDDING THEOREM

MIRKO MAURI

Abstract. The aim of this report is to prove Kodaira embedding
theorem:

Theorem 0.1 (Kodaira Embedding Theorem). A compact Kähler
manifold endowed with a positive line bundle admits a projective
embedding.

The main idea is recasting local problems in global ones, with
the help of a surgery technique called “blowing up”, which means
namely replacing a point of a complex manifold with a hypersur-
face. Despite the growth of complexity of the underlying complex
manifold, one is then able to employ a codimension one machinery
to tackle the problem. In fact Kodaira-Akizuki-Nakano vanishing
theorem yields the result, which in turn is a clever combination of
Kähler identities.
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1. Ampleness of a line bundle

Let X be a complex manifold and ξ : L −→ X holomorphic line
bundle.

Definition 1.1. L has no base points or L is spanned if for all
x ∈ X there exits a section of L, s ∈ H0(X,L), such that s(x) 6= 0.

Remark. Let U = {Uα} cover of open subsets of X trivializing the line
bundle L and ϕα : ξ−1(Uα) −→ Uα × C. A section s ∈ H0(X,L) can
be described as a collection of sections sα := ϕα ◦ s ∈ H0(Uα, L|Uα) =
O(Uα) satisfying the cocycle condition sα(x) = gαβ(x)sβ(x) in Uα∩Uβ,
where gαβ ∈ O∗(Uα ∩ Uβ) are transition functions of the line bundle L
relative to the cover U . Hence, the vanishing of a section is independent
of the trivialization ϕα and the condition s(x) 6= 0 is thus meaningful.

Given a spanned line bundle, we can define a morphism

iL : X −→ P
(
H0(X,L)

)∗
x 7−→ Hx,

where Hx is the hyperplane in P
(
H0(X,L)

)
consisting of sections of

the line bundle L vanishing at x.
We can describe the morphism iL more explicitly as follow. Choose a

basis s0, . . . , sn of H0(X,L). In the notation of the remark, si = (si,α)
with si,α ∈ O(Uα) such that si,α = gαβsi,β, for i = 0, . . . , n. Under the
identification P(H0(X,L))∗ ∼= Pn induced by the choice of the basis,
the map is given by

iL(x) = [s0,α(x) : . . . : sn,α(x)].

(1) The map is independent of the trivialization. Indeed,

[s0,α(x) : . . . : sn,α(x)] = [gαβ(x)s0,β(x) : . . . : gαβ(x)sn,β(x)]

= [s0,β(x) : . . . : sn,β(x)],

since gαβ(x) 6= 0.

(2) The map is well-defined since the line bundle L is spanned and
then (s0,α(x), . . . , sn,α(x)) 6= (0, . . . , 0).

(3) iL is holomorphic. In the affine open coordinate subsets of Pn,
Vi = {[z0 : . . . : zn] ∈ Pn| zi 6= 0}, the map is described by

i−1
L (Vi) −→ Cn

x 7−→
(
s0,α(x)

si,α(x)
, . . . , ŝi,α(x), . . . ,

sn,α(x)

si,α(x)

)
,
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and each
sj,α
si,α

is a holomorphic map outside the zero locus of si,α

and in particular in i−1
L (Vi) (independent of the trivialization

ϕα).
(4) The map is independent of the basis s0, . . . , sn of H0(X,L) up

to projective transformation.
(5) The pullback of the hyperplane section defined by the equa-

tion
∑n

i=0 aizi = 0 is the divisor div(s) = div(
∑n

i=0 aisi) = L.
Hence,

i∗L
(
OPn(1)

)
= L

i∗LH
0
(
Pn,O(1)

)
= H0(X,L).

Let X be a compact complex manifold

Definition 1.2. A line bundle L is very ample if iL : X −→ Pn is an
embedding.

Given a section s ∈ H0(X,L) of a very ample divisor, the divisor
D = div(s) is a hyperplane section under a projective embedding.

The interest of this definition relies on the fact that a compact com-
plex manifold endowed with a very ample line bundle enjoys the prop-
erties of a submanifold of a projective space.

Example 1.3. OPn(1) is very ample by definition.

We report the argument provided by Robert Lazarsfeld [LAZ] to
introduce the concept of ampleness besides that one of very ampleness:

[Very ampleness] turns out to be rather difficult to work
with technically: already on curves it can be quite subtle
to decide whether or not a given divisor is very ample. It
is found to be much more convenient to focus instead on
the condition that some positive multiple of D is very
ample; in this case D is ample. This definition leads
to a very satisfying theory, which was largely worked
out in the fifties and in the sixties. The fundamen-
tal conclusion is that on a projective variety, amplitude
can be characterized geometrically (which we take as
the definition), cohomologically (theorem Cartan-Serre-
Grothendieck) or numerically (Nakai-Moishezon-Kleiman
criterion).

Definition 1.4. L is ample if there exists m > 0 such that L⊗m is
very ample.

Remark. A divisor D is very ample or ample if its corresponding line
bundle OX(D) is so.



4 MIRKO MAURI

Remark. A power of an ample divisor may have enough sections to
define a projective embedding, but in general the divisor itself is not
very ample. For instance, let X be a Riemann surface of genus 1. One
can show that a divisor of degree 3 is very ample (proposition 9.1). By
Riemann-Roch theorem for curves, dimH0(X,D) = dimH1(X,D) +
deg(D)+1−g = 3, thusX is a hypersurface in P2 and, since deg(iD(X)) =
deg(D), X can be realized as a smooth cubic in P2. All the hyperplane
divisors are equivalent, in particular D ∼ 3P where P is a flex of
the cubic. Hence, 3P is very ample but P is not (although it is by
definition ample). Indeed, again by Riemann-Roch, dimH0(X,P ) =
dimH1(X,P ) + deg(P ) + 1− g = 1, hence iP is not an embedding.

2. Holomorphic hermitian line bundles

Let (X,ω) be a compact Kähler manifold. Let (L, h) a holomorphic
line bundle on X endowed with the hermitian metric h. We denote
D = D′+D′′ its Chern connection, Θ(D) ∈ Λ1,1T ∗X its curvature form1

and c1(L) =
[
i

2π
Θ(D)

]
its first Chern class.

Let U = {Uα} be a cover of open subsets of X trivializing the line
bundle L and ϕα : ξ−1(Uα) −→ Uα×C. A hermitian metric h on L can
be described as a collection of smooth (real) function hα ∈ C∞(Uα),
satisfying the cocycle condition hα(x) = |gαβ(x)|2hβ(x) in Uα ∩ Uβ,
where gαβ ∈ O∗(Uα∩Uβ) are the transition functions of the line bundle
L relative to the cover U . Then, more explicitly,

D′ ∼=ϕα ∂ + ∂ log(hα) ∧ ·, D′′ = ∂, Θ(D) = ∂∂ log(hα).

Notice that Θ(D) is independent of the trivialization ϕα. Indeed,

∂∂ log(hα) = ∂∂ log(|gαβ|2hβ) = ∂∂ log |gαβ|2+∂∂ log(hβ) = ∂∂ log(hβ),

since the function log |gαβ|2 is pluriharmonic. Hence,

c1(L) =

[
i

2π
∂∂ log(h)

]
.

Equivalently, if we define the differential operator dc = i
4π

(∂ − ∂),

c1(L) = [−ddc log(h)] .

1If there is no ambiguity, we will simply denote Θ(L) the curvature form of the
Chern connection of a hermitian line bundle (L, h).
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3. Positivity of a line bundle

Definition 3.1. A real (1, 1)-form ω is positive if for all non zero v
in the real tangent space of X

ω(v, Jv) > 0

where J is the complex structure of X.

Definition 3.2. A line bundle L is positive if there exists a metric
on L with positive curvature form.

The positivity of a line bundle of a compact Kähler manifold is a
topological property.

Theorem 3.3. A line bundle L is positive if and only if its first Chern
class may be represented by a positive form in H2

dR(X).

Proof. If L is positive, the statement holds because, even if c1(L) =[
i

2π
Θ(D)

]
, the first Chern class of a line bundle does not depend on

the connection the line bundle is endowed with.
Indeed, in the notation of the previous remark, given any two her-

mitian metric h and h′ on L with curvature form respectively Θ and

Θ′, the quotient h′(z)
h(z)

:= h′α(z)
h′α(z)

is independent of the trivialization ϕα
and thus it is a well defined positive function eρ for some real smooth
function ρ. The formula h′ = eρh yields

Θ′ = ∂∂ρ+ Θ.

In particular, [
i

2π
Θ′
]

=

[
i

2π
Θ

]
.

Conversely, let i
2π
ϑ be a real positive (1, 1)-form representing c1(L)

in H2
dR(X) and Θ the curvature form of the Chern connection of any

hermitian metric h on L. By ∂∂-lemma2 the equation

ϑ = ∂∂ρ+ Θ

can be solved for a real smooth function ρ. It means that the hermitian
metric eρh on L will have curvature ϑ. �

2For a proof of ∂∂-lemma we refer the interested reader to Corollary 3.2.10,
[HYB].
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4. Positivity of the hyperplane bundle

The basic example of a positive line bundle is the hyperplane bundle
OPn(1). The tautological bundle OPn(−1), the dual of the hyperplane
bundle, is the bundle whose fibre over [z0 : . . . : zn] ∈ Pn is the complex
line in Cn \ {0} through (z0, . . . , zn).

The standard hermitian metric in Cn induces by restriction a her-
mitian metric on the tautological bundle. In the standard coordinates
of Cn, |(z0, . . . , zn)|2 =

∑n
i=0 |zi|2. In the trivialization

ϕα : OPn(−1)[z0:...:zn] −→ [z0 : . . . : zn]× C
(z0, . . . , zn) 7−→ ([z0 : . . . : zn], zα),

with α = 0, . . . , n, the hermitian metric on the tautological bundle can
be described by the collection of smooth (real) functions

hα =
1

|zα|2
n∑
i=0

|zi|2.

The curvature form Θ∗ in OPn(−1) is then

Θ∗ = ∂∂ log

(
1

|zα|2
n∑
i=0

|zi|2
)
,

or more intrinsically,

Θ∗ = ∂∂ log

(
n∑
i=0

|zi|2
)
.

The curvature form Θ of the dual metric in OPn(1) is −Θ∗. Hence,

c1(OPn(1)) = − i

2π
∂∂ log

(
n∑
i=0

|zi|2
)

= ddc log

(
n∑
i=0

|zi|2
)
,

which is just the fundamental (1, 1)-form associated to the Fubini-
Study metric in Pn and hence positive.

In particular, any ample line bundle L can be endowed with a her-
mitian metric with positive curvature. Indeed, if iL⊗m is a projective
embedding, the pullback of a positive hermitian metric on OPn(1) gives
rise to a positive hermitian metric on L⊗m and its m-th root gives a
positive metric on L. Conversely, Kodaira embedding theorem grants
that any positive line bundle is ample.
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5. Blowing up

Blowing up is a surgery tool which allows to replace a point with a
divisor blowing up (i.e. magnifying) the local geometry of a neighbour-
hood of complex manifold.

Let U be a neighbourhood of 0 in Cn with local coordinate z1, . . . , zn.
Define

Ũ = {(z, l) ∈ U × Pn−1| zilj = zjli for all i, j = 0, . . . , n}

= {(z, l) ∈ U × Pn−1| rk

(
z1 . . . zn
l1 . . . ln

)
≤ 1}

= {(z, l) ∈ U × Pn−1| z = (z1, . . . zn) ∈ l = [l1 : . . . : ln] complex line}

and the map

π : Ũ −→ U

(z, l) 7−→ z,

such that

(1) π|Ũ\π−1(0) : Ũ \ π−1(0) −→ U \ {0} is a biholomorphism;

(2) E := π−1(0) ∼= Pn−1, called exceptional divisor.

Morally, Ũ consists of lines through the origin of Cn made disjoint.
We replace a point with the directions pointing out of 0.

We can repeat the same construction for a neighbourhood of a point x
of a complex manifold X of dimension n. Moreover, exploiting the fact
that away from the exceptional divisor the map π is a biholomorphism,
we can glue Ũ and X\{x} to obtain a complex compact manifold called
blowing up or blowup of X at x.

Remark. The construction is independent of the choice of coordinates.
Choose z′ = (z′1, . . . , z

′
n) =

(
f1(z), . . . , fn(z)

)
coordinates of U centred

at x. Then the isomorphism

f : Ũ \ E −→ Ũ ′ \ E ′

may be extended by setting f(0, l) = (0, l′), where

l′j =
∑ ∂fj

∂zi
(0)li.

In particular, the identification

E −→ P (T1,0(X)x)

(0, l) 7−→
[∑

li
∂

∂zi

]



8 MIRKO MAURI

is independent of the choice of the coordinates. This identification
formalizes the previous informal remark: we replace a point with the
directions pointing out of 0.

We describe the complex structure of a blowup providing explicit
charts. In terms of coordinate z1, . . . , zn in an open coordinate U of
x, we have denoted Ũ = {(z, l) ∈ U × Pn−1| zilj = zjli for all i, j =

0, . . . , n} and in addition we set Ũi = Ũ \ {(li = 0)}.
We endow Ũi with coordinates

z(i)j =

{
zj
zi

=
lj
li

j 6= i;

zi j = i.

Hence, locally

(1) π|Ui : (z(i)1, . . . , z(i)n) −→ (ziz(i)1, . . . , zi, . . . , ziz(i)n);
(2) E|Ui = (z(i)i) = (zi);

(3) (Ũi, ϕi) is an open coordinate subset with the charts ϕi given
by

ϕi : Ũi −→ Cn

(z, l) 7−→
(
z1

zi
, . . . , zi, . . . ,

zn
zi

)
= (z(i)1, . . . , z(i)i, . . . , z(n)i).

Without loss of generality suppose i < j. Then, the change of
coordinates are given by

ϕj ◦ ϕ−1
i |Uj∩Ui(z(i)1, . . . , z(i)i, . . . , z(i)j, . . . , z(i)n) =

=

(
z(i)1

z(i)j
. . . ,

1

z(j)i
, . . . , z(i)iz(i)j, . . . ,

z(i)n
z(i)j

)
.

Since E|Ui = (zi), the transition functions of the line bundle OX̃(E)
are given by

gij = z(j)i =
zi
zj

=
li
lj

in Ũi ∩ Ũj

and so we can realize OŨ(E) by identifying the fibre in (z, l) with the
complex line in Cn passing through (l1, . . . , ln),

OŨ(E)|(z,l) = {(λl1, . . . , λl2)|λ ∈ C}. (1)

In particular, the line bundle OE(E) is just the tautological bundle
OPn−1(−1). Through the identification of E with P(T1,0(X)x), we ob-
tain

H0(E,−E) ∼= T 1,0(X)x.

Holomorphic functions vanishing at x in X correspond via the map π to
holomorphic section of the line bundle OX̃(−E). Hence, the differential
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map H0(U, Ix) −→ T 1,0(U)x which sends f ∈ O(U) to dxf is induced
by the restriction map OŨ(−E) −→ OẼ(−E) −→ 0. Equivalently, the
following diagram commutes:

H0(Ũ ,−E)
|E
// H0(E,−E)

H0(U, Ix)

π∗
OO

dx
// T 1,0(U)x

More precisely, after extending in series f ∈ H0(U, Ix)

f =
∑ ∂f

∂zj
zj +O(z),

in the open coordinate subset (Ũi, ϕi) the map π∗f ∈ H0(Ũ ,−E) can
be described by

π∗f = zi

(∑ ∂f

∂zj
z(i)j +O(zi)

)
.

It means that the previous diagram commutes:

∑ ∂f
∂zj
z(i)j +O(zi)

|E
//
∑ ∂f

∂zj
lj

f

π∗
OO

dx
//
∑ ∂f

∂zj
lj

With Griffiths and Harris’ words [GH],

This correspondence reflects a basic aspect of the lo-
cal analytic character of blowups: the infinitesimal be-
haviour of functions, maps, or differential forms at the
point x of X is transformed into global phenomena on
X̃.

6. Positivity of a line bundle on a blowing up

In the following we will display some properties of blowing up that
can be exploit to prove Kodaira embedding theorem.

First we discuss positivity of the line bundle OX(E). We construct
a hermitian metric h on OX(E):

(1) Let h1 be the metric onOŨ(E) restriction of the standard metric
in Cn onto the complex line in Cn passing through (l1, . . . , ln)
(cfr. identification (1)).
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(2) Let h2 be the metric on OX̃\E(E) such that h2(σ) ≡ 1, where

σ ∈ H0(X̃, E) is a global section of OX̃(E) with (σ) = E (in
the notation above σ = (zi)).

(3) For ε > 0, Uε := {z ∈ U | ‖z‖ < ε} and Ũε := π−1(Uε). Let ρ1, ρ2

be a partion of unity relative to the cover {Ũ2ε, X̃ \ Ũε} of X̃
and h be a global hermitian metric given by

h = ρ1h1 + ρ2h2.

We will compute the positivity of the first Chern class of the hermit-
ian line bundle (E, h).

(1) On X̃ \ Ũ2ε, ρ2 ≡ 1 so h(σ) ≡ 1, i.e. in the trivialization above
hα|σα|2 = 1, and

c1(E) = −ddc log
1

|σ|2
= 0

since log 1
|σ|2 is a harmonic function.

(2) On X̃ \ Ũ2ε, ρ2 ≡ 0 and denote

π′ : Ũ −→ Pn−1

(z, l) 7−→ l.

Then

c1(E) = −ddc log ‖z‖2 = −(π′)∗ωFS,

i.e. the pullback (π′)∗ωFS of the fundamental (1, 1)-form asso-
ciated to the Fubini-Study metric under the map π′. Hence,
c1(E) is semi-positive on Ũε \ E.

(3) On E, −c1(E)|E = ω > 0 by continuity from the previous
remark or since h1|E is the hermitian metric induced by the
standard metric in Cn (section 4).

To sum up,

c1(−E) =


0 on X̃ \ Ũ2ε;

≥ 0 on Ũε;

> 0 on T1,0(E)x ⊂ T1,0(X̃)x ∀x ∈ E.

Let (L, hL) a hermitian positive line bundle on X̃. Then

c1(π∗L) = π∗c1(L).

For any x ∈ E and v ∈ T (X̃)x

c1(π∗L)(v, v) = c1(L)(π∗v, π∗v) ≥ 0
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and equality holds if and only if π∗v = 0. Hence,

c1(π∗L) =


≥ 0 everywhere;

> 0 on X̃ \ E;

> 0 on T1,0(X̃)x/T1,0(E)x ∀x ∈ E.

Finally, c1(π∗Lk ⊗ (−E)) = kc1(π∗L) − c1(E) is positive on Ũε and
on X̃ \ Ũ2ε for ε small enough. Since Ũ2ε \ Ũε is relatively compact,
−c1(E) is bounded below and c1(π∗L) is strictly positive, then for k
large enough π∗Lk ⊗ (−E) is a positive line bundle on X̃.

Therefore,

Proposition 6.1. If L is a positive line bundle on a compact complex
line bundle X, for any multiple nE of the exceptional divisor there
exists k > 0 such that Lk − nE is a positive line bundle on the blowing
up X̃ (at a point).

7. Canonical line bundle on a blowing up

Proposition 7.1. KX̃ = π∗KX + (n− 1)E.

Proof. We will just prove the statement in the case X admits a mero-
morphic n-form α (in the general case one has to compute explicitly
the transition function of the canonical bundle). In terms of coordinate
z1, . . . , zn in an open coordinate U of x, meromorphic n-form α can be
expressed as

α =
f

g
dz1 ∧ · · · ∧ dzn,

where f, g ∈ O(U).
In the open neighbourhood Ũi, the map π is given by

π|U : (z(i)1, . . . , z(i)n) −→ (ziz(i)1, . . . , zi, . . . , ziz(i)n)

and

π∗α = π∗
(
f

g

)
d(ziz(i)1) ∧ · · · ∧ d(zi) ∧ · · · ∧ d(ziz(i)n)

= π∗
(
f

g

)
zn−1
i d(z(i)1) ∧ · · · ∧ d(zi) ∧ · · · ∧ d(z(i)n).

Writing E := π−1(x) the exceptional divisor, we obtain div(π∗α) =
π∗div(α)+(n−1)E. Away from E, div(π∗α) = π∗div(α) since π|Ũ\E is
a biholomorphism. The two arguments together yields the result. �
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8. Kodaira-Akizuki-Nakano vanishing theorem

Let (X,ω) be a Kähler manifold. Let (L, h) a holomorphic line bun-
dle on X endowed with the hermitian metric h and Θ(L) ∈ Λ1,1T ∗X the
curvature form of the Chern connection of the hermitian line bundle
(L, h). Let ∆′ := D′D′∗ + D′∗D′ and ∆′′ := D′′D′′∗ + D′′∗D′′ be the
(complex) Laplacian operators, L := ω ∧ · be the Lefschetz operator
and Λ := L∗ its adjoint.

Theorem 8.1 (Bochner-Kodaira-Nakano identity).

∆′′ = ∆′ + [iΘ(L),Λ].

Proof. Kähler identities (for vector bundles) yield D′′∗ = −i[Λ, D′].
Hence,

∆′′ = [D′′, D′′∗] = −i[D′′, [Λ, D′]].
Finally, graded Jacobi identity3 implies

[D′′, [Λ, D′]] = [Λ, [D′, D′′]] + [D′, [D′′,Λ]] = [Λ,Θ(L)] + i[D′, D′∗],

since [D′, D′′] = D2 = Θ(L). �

Suppose that X is a compact Kähler manifold.
For any u ∈ C∞(X,Λp,qT ∗X ⊗ L),∫

X

h(∆′u, u)dV = ‖D′u‖2 + ‖D′∗u‖2 ≥ 0∫
X

h(∆′′u, u)dV = ‖D′′u‖2 + ‖D′′∗u‖2 ≥ 0.

The previous relations combined with Bochner-Kodaira-Nakano iden-
tity yield

‖D′′u‖2 + ‖D′′∗u‖2 ≥
∫
X

h([iΘ(L),Λ]u, u) dV.

If u is ∆′′−harmonic,

0 ≥
∫
X

h([iΘ(L),Λ]u, u) dV.

If the operator h([iΘ(L),Λ]·, ·) is positive on each fibre of Λp,qT ∗X⊗
L, then u ≡ 0 and Hp,q(X,L) ∼= Hp,q

∆′′(X,L) = 0. Therefore, a positivity

3Let A and B be endomorphisms of the graded module C∞(Λ·,·T ∗X ⊗ L) of
degree respectively a and b. The graded commutator is defined as

[A,B] = AB − (−1)abBA.

If C is another endomorphism of degree c, then the graded Jacobi identity holds:

(−1)ca[A, [B,C]] + (−1)ab[B, [C,A]] + (−1)bc[C, [A,B]] = 0.
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assertion on the operator [iΘ(L),Λ] yields to vanishing theorems for
cohomology.

Suppose for instance that iΘ(L) is a (real) positive (1, 1)-form. We
can endow X with the Kähler metric ω := iΘ(L). Since{ i

2π
Θ(L),Λ, (deg−n) Id

}
is an sl2-triplet,

h([iΘ(L),Λ]u, u) = (p+ q − n)|u|2.
Therefore,

Theorem 8.2 (Kodaira-Akizuki-Nakano vanishing theorem). If L is
a positive line bundle on a complex compact manifold X, then

Hp,q(X,L) = Hq(X,Ωp
X ⊗ L) = 0 for p+ q > n.

Corollary 1. If L is a positive line bundle on a complex compact man-
ifold X, then Hq(X,KX + L) = 0 for q > 0.

9. Cohomological characterization of very ampleness

To answer to the question whether a line bundle is very ample or
not, we will recast the property of being an embedding for iL in coho-
mological term, as follows:

(1) iL is a well-defined morphism if L is spanned, i.e. for all x ∈ X
there exists a section of L, s ∈ H0(X,L), such that s(x) 6= 0,
or equivalently the map

H0(X,L) −→ Lx

is surjective. Notice that this map is sited in the long exact
sequence induced by the short exact sequence of sheaves4

0 −→ L⊗ Ix −→ L −→ Lx −→ 0.

where Ix ∈ OX is the ideal sheaf of holomorphic functions van-
ishing at x and Lx the skyscraper sheaf centred in x with global
sections5 the fiber of the line bundle L over x.

4Recall that any short exact sequence of sheaves

0→ E → F → G → 0

induces a long exact sequence in cohomology

0→ H0(X, E)→ H0(X,F)→ H0(X,G)→ H1(X, E)→ · · · .

5In the following we will use indistinctly the same notation for the skyscraper
sheaf and for the set of its global sections.
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(2) iL is injective. This is the case if for all x, y ∈ X, x 6= y, there
exists a section of L, s ∈ H0(X,L), vanishing at x but not
at y (cfr. the intrinsic definition of the morphism iL : X −→
P(H0(X,L))∗), or equivalently the map

H0(X,L) −→ Lx ⊕ Ly
is surjective. Notice that this map is sited in the long exact
sequence induced by the short exact sequence

0 −→ L⊗ Ix,y −→ L −→ Lx ⊕ Ly −→ 0.

(3) iL is an immersion. We need to check the injectivity of dxiL
at any x ∈ X. Complete a basis s1, . . . sn of the hyperplane of
sections in H0(X,L) vanishing at x, identified with H0(X,L⊗
Ix) ⊂ H0(X,L), to a basis s0, s1, . . . sn of H0(X,L) (so that
s0(x) 6= 0 since L is spanned). In an open neighbourhood of x,
the map iL is given by

x 7−→
(
s1(x)

s0(x)
, . . . ,

sn(x)

s0(x)

)
.

Hence, dxiL is injective if and only if d( s1
s0

), . . . , d( sn
s0

) span the

holomorphic cotangent space T 1,0(X)x. Equivalently, we re-
quire that the map

dx : H0(X,L⊗ Ix) −→ Lx ⊗ T 1,0(X)x ∼= End
(
T (X), L

)
x

sx 7−→ dx(sα),

is surjective. Notice that the map is well-defined since indepen-
dent of the trivialization

dx(sα) = dx(gαβsβ) = gαβ(x)dx(sβ),

as sβ(x) = 0. Again, this map is sited in the long exact sequence
induced by the short exact sequence

0 −→ L⊗ I2
x −→ L⊗ Ix −→ Lx ⊗ T 1,0(X)x −→ 0.

Indeed, Ix/I2
x
∼= T 1,0(X)x.

To prove that the previous maps are surjective, it would suffice to
prove

H1(X,L⊗ I2
x) = H1(X,L⊗ Ix) = 0.

Let X be a Riemann surface of genus g.

Proposition 9.1. If D is a divisor of degree ≥ 2g + 1, then the line
bundle OX(D) is very ample.
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Proof. By Kodaira-Akizuki-Nakano vanishing theorem

H1(X,L⊗I2
x) = H1(X,L− 2[x]) = H1(X,KX + (L− 2[x]−KX)) = 0.

In fact, notice that deg(L − 2[x] − KX) = deg(L) − 2 − 2g + 2 ≥ 1:
the divisor L − 2[x] −KX is, then, positive, since its first Chern class
is a multiple of the fundamental class of X, which is positive (recall
H1,1(X,Z) = H2(X,Z) ∼= Z).

Analogously, H1(X,L⊗ Ix) = 0. �

However, unless X is a Riemann surface, the sheaves I2
x and Ix are

not invertible, which prevents us to exploit Kodaira-Akizuki-Nakano
vanishing theorem. Then, one would replace x with a divisor by blowing
up X at x.

10. Kodaira Embedding Theorem: a proof

Theorem 10.1 (Kodaira Embedding Theorem). If L is a compact
Kähler manifold, a line bundle L is positive if and only if it is ample.

Proof. As we discuss in section 4, the difficult implication is proving
that a positive line bundle is ample, i.e. we need to prove that there
exist k > 0 such that

(1) the restriction map

H0(X,Lk) −→ Lkx ⊕ Lky (2)

is surjective for any x, y ∈ X, x 6= y;
(2) the differential map

dx : H0(X,Lk ⊗ Ix) −→ Lkx ⊗ T 1,0(X)x (3)

is surjective for any x ∈ X.

Let π : X̃ −→ X be the blowing up of X at x, y ∈ X, x 6= y with
Ex := π−1(x) and Ey = π−1(y) exceptional divisors and E = Ex + Ey
- if X is a Riemann surface, π = idX and E = {x, y}. Consider the
following commutative diagram:

H0(X̃, π∗Lk) // H0(E, π∗Lk) // H1(X̃, π∗Lk − E)

H0(X,Lk)

π∗
OO

// Lkx ⊕ Lky

(1) π∗Lk is trivial along Ex and Ey, i.e.

π∗Lk|Ex ∼= Ex × Lkx π∗Lk|Ey ∼= Ey × Lky,
so that

H0(E, π∗Lk) = Lkx ⊕ Lky.
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(2) π∗ : H0(X,Lk) −→ H0(X̃, π∗Lk) is an isomorphism. Since π
is a biholomorphism away from E, π∗ is injective. By Hartogs’
theorem, any holomorphic section of π∗Lk on X̃ \ {Ex, Ey} ∼=
X \ {x, y} extends to a holomorphic section of Lk on the whole
X. Hence, π∗ is surjective.

(3) Notice that the restriction map H0(X̃, π∗Lk) −→ H0(E, π∗Lk)
is sited in the long exact sequence induced by the short exact
sequence

0 −→ OX̃(π∗Lk − E) −→ OX̃(π∗Lk) −→ OE(π∗Lk) −→ 0.

Hence, surjectivity of the map (2) follows from the vanishing of
H1(X̃, π∗Lk − E) by Kodaira-Akizuki-Nakano vanishing theorem.

Indeed, by proposition 7.1,

π∗Lk − E = π∗Lk − E +KX̃ −KX̃

= π∗Lk − E +KX̃ − π
∗KX − (n− 1)E

= KX̃ + (π∗Lk1 − nE) + π∗(Lk2 −KX)

for some k > k1 + k2 suitably chosen such that both the line bundle
π∗Lk1 −nE and −KX +Lk2 are positive (cfr. proposition 6.1 and 7.1).
In particular, (π∗Lk1−nE) +π∗(Lk2−KX) is positive since product of
a positive line bundle and a semipositive line bundle. Finally, Kodaira-
Akizuki-Nakano vanishing theorem applies.

Similarly, one can prove surjectivity of the differential map (3) Let
π : X̃ −→ X blowing up of X at x ∈ X, with E := π−1(x) exceptional
divisors and E. Consider the following commutative diagram

H0(X̃, π∗Lk − E) // H0(E, π∗Lk − E) // H1(X̃, π∗Lk − 2E)

H0(X,Lk ⊗ Ix)

π∗
OO

// Lkx ⊗ T 1,0(X)x

(1) Since π∗Lk is trivial along E,

H0(E, π∗Lk − E) = Lkx ⊗H0(E,−E) ∼= Lkx ⊗ T 1,0(X)x,

where the first identity holds since by dimensional reasons the
injection H0(E, π∗Lk) ⊗ H0(E,−E) ↪→ H0(E, π∗Lk − E) is a
bijection.

(2) π∗ : H0(X,Lk ⊗ Ix) −→ H0(X̃, π∗Lk − E) is an isomorphism.
Indeed, holomorphic sections of the line bundle L on X van-
ishing at x are in bijective correspondence with holomorphic
sections of the line bundle π∗Lk on X̃ vanishing along E.
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(3) Notice that the restriction mapH0(X̃, π∗Lk−E) −→ H0(E, π∗Lk−
E) is sited in the long exact sequence induced by the short exact
sequence

0 −→ OX̃(π∗Lk − 2E) −→ OX̃(π∗Lk − E) −→ OE(π∗Lk − E) −→ 0.

Hence, surjectivity of the map (3) follows from the vanishing ofH1(X̃, π∗Lk−
2E) for some k > 0 by Kodaira-Akizuki-Nakano vanishing theorem as
before.

To conclude we exhibit a compactness argument to check that the
choice of k is independent of the choice of x, y ∈ X (cfr. [NOG]). More
precisely, we have established the existence of a suitable k = k(x) > 0
such that iLk is defined at x ∈ X and it separates tangents in x (i.e.
dxiLk is injective). The same is true in a neighbourhood Ux of x. Since
X is compact, X is covered by finitely many neighbourhoods Ux, with
x ∈ X, and there exists a common k0, sufficiently large, such that iLk0
is a holomorphic immersion on the whole X.

Consider the product

iLk × iLk : X ×X −→ Pn × Pn.
Since iLk is an immersion, it is injective in a neighbourhood W of the
diagonal {(x, y) ∈ X × X|x = y}. For each (x, y) ∈ X × X \ W
there exists a k = k(x, y) such that iLk(x) 6= iLk(y). However, since
X ×X \W is compact, there exists a common k0 such that iLk0 is an
embedding.

�

11. Applications of Kodaira Embedding Theorem

Corollary 2. A compact complex manifold X is a projective algebraic
submanifold if and only if it has a closed positive (1, 1)-form ω whose
cohomology class [ω] is rational.

Proof. A multiple of [ω] is an integer cohomology class. By Lefschetz
(1, 1)-theorem, there exists a line bundle L with first Chern class c1(L) =
k[ω]. Since the form is positive, the line bundle L is positive. By Ko-
daira embedding theorem X is a projective submanifold, and by Chow’s
theorem (section 12) it is algebraic. �

Equivalently, the projectivity of a compact Kähler manifold can be
read off the position of the Kähler cone KX ⊂ H1,1(X) ∩ H2(X,R)
with respect to the lattice H2(X,Z).

Definition 11.1. The Kähler cone KX ⊂ H1,1(X) ∩ H2(X,R) is the
cone in H2(X,R) generated by Kähler classes, i.e. cohomology classes
which can be represented by a closed real positive (1, 1)-form.
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Lemma 11.2. The Kähler cone is an open convex cone in H1,1(X) ∩
H2(X,R).

Proof. Since tα + (1 − t)β is a Kähler class for t ∈ [0, 1] and for any
α, β ∈ H1,1(X) ∩H2(X,R), the Kähler cone is convex.

Choose a basis {βi} of H1,1(X) ∩H2(X,R). Then, the open neigh-
bourhoods of the Kähler class α

Pn =
{
α +

∑
tiβi| 0 < ti <

1

n

}
are contained in the Kähler cone for n large enough. It suffices n greater
than the ratio between the maximum value attained by the elements
of the basis βi on the unit sphere subbundle of T1,0(X) (with respect
to any hermitian metric) and the minimum attained by α on the same
unit sphere subbundle. Hence, the Kähler cone is open. �

Corollary 3. A compact complex manifold X is a projective algebraic
submanifold if and only if KX ∩H2(X,Z) 6= 0.

Proof. X has a closed positive integer (1, 1)-form. �

Example 11.3. Any compact curve is projective (cfr. proposition 9.1).

Example 11.4. Every compact Kähler manifold with H0,2 = 0 is
projective. In that case, H1,1(X) = H2(X,C) = H2(X,Z) ⊗ C and,
since the Kähler cone, is open it has non-empty intersection with the
lattice of integer cohomology classes.

In the following corollaries we exhibits general constructions of pro-
jective algebraic submanifolds.

Corollary 4. If X and Y are projective algebraic submanifolds, X×Y
is a projective algebraic submanifold.

Proof. If ωX and ωY are closed positive rational (1, 1)-forms on X and
Y respectively, π∗XωX + π∗Y ωY is a closed positive rational (1, 1)-form
on X × Y , where πX : X × Y −→ X and πY : X × Y −→ Y are the
projection maps. �

Corollary 5. If X is a projective algebraic submanifold and π : X̃ −→
X is the blowing up of X at x ∈ X, then X̃ is a projective algebraic
submanifold.

Proof. By proposition 6.1 X̃ carries a positive line bundle π∗Lk−E for
k >> 0, with E := π−1(x) exceptional divisor. �

Corollary 6. If π : X̃ −→ X is a finite unbranched covering of a
complex compact manifold, X̃ is a projective algebraic submanifold if
and only if X is a projective algebraic submanifold.
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Proof. Clearly, if ω is a closed positive rational (1, 1)-form on X, then
π∗ω is a closed positive rational (1, 1)-form on X̃.

Conversely, we provide a positive (1, 1)-form ω′ ∈ H1,1(X,Q) by
averaging a positive (1, 1)-form ω′ ∈ H1,1(X̃,Q) along the fibre of π.
Indeed, we define

ω′(x) =
∑

y∈π−1(x)

(π−1)∗ω(y) ∈ H1,1(X̃,Q).

Notice that π−1 is locally well-defined since π is a local diffeomorphism.
Moreover, ω′ is closed, positive and of type (1, 1) since ω is. Finally,
[ω′] is also rational. Indeed, since π is a local diffeomorphism (of degree
d), for any η ∈ H2n−2(X,Q)∫

X

ω′ ∧ η =
1

d

∫
X̃

ω ∧ π∗η ∈ Q.

�

As an application, we prove that any line bundle on a projective
algebraic submanifold arises from a divisor.

Corollary 7. Let X be a complex compact manifold. If E is a line
bundle on X and L a positive line bundle, there exists k > 0 such that
Lk ⊗ E is very ample.

Proof. Compactness implies that for a suitable k the line bundle Lk⊗E
is positive. Adapt the proof of Kodaira embedding theorem to con-
clude. �

Corollary 8. If X is a projective algebraic submanifold, the map from
Div(X) to Pic(X) which sends a divisor D to its associated line bundle
OX(D) is surjective.

Proof. It suffices to prove that any line bundle E on a projective alge-
braic submanifold has a meromorphic section s so that L = OX(div(s)).

Let L be a positive line bundle on X. Then for k large enough both
the line bundle Lk⊗E and Lk are very ample and in particular effective.
If 0 6= s1 ∈ H0(X,Lk ⊗ E) and 0 6= s2 ∈ H0(X,Lk), then

E = div

(
s1

s2

)
.

�
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12. Chow’s Theorem

We first recall the following classical results.

Theorem 12.1. Pic(Pn) ∼= Z and it is generated by the hyperplane
bundle.

Let S := C[z0, . . . , zn] = ⊕d≥0Sd, where Sd is the set of homogeneous
polynomials of degree d.

Theorem 12.2.

H0(Pn,OPn(d)) =

{
Sd d ≥ 0

0 d < 0.

The content of the latter theorem is that the line bundle OPn(d) does
not carry other holomorphic sections different from the algebraic ones,
i.e. homogeneous polynomials of degree d in the projective coordinates
z0, . . . , zn. The consequence is a sort of rigidity for projective analytic
subvarieties, namely irreducible subsets of Pn which are locally zero
locus of a finite family of holomorphic functions.

Definition 12.3. A projective algebraic subvariety is the zero locus
of a family of homogeneous polynomials in the projective coordinates
z0, . . . , zn in Pn.

Theorem 12.4 (Chow’s theorem). Any projective analytic subvariety
X is algebraic.

Proof. Suppose that Y is a hypersurface or equivalently a prime divisor.
By theorem 12.1 the line bundle O(Y ) is of the form OPn(d) for some
d, and Y is the zero locus of some holomorphic section σ of O(Y ), i.e.
a homogeneous polynomial of degree d. Thus,

O(Y ) = div(σ) = div

∑
|I|=d

aIz
I


is algebraic.

In general, if dimY = k, for any x ∈ Pn not contained in Y we
can find a (k + 1)-plane such that the projection, say πx, of Y along a
(n − k − 2)-plane disjoint from x is disjoint from the projection of x.
It is sufficient to choose a (n− k− 1)-plane in Pn through x missing Y
(which exists since otherwise Y would project surjectively onto Pk+1).

Since the projection πx is a closed map, πx(X) is a hypersurface in
Pk+1, hence it satisfies a homogeneous polynomial F , which separates
πx(Y ) and πx(x).
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Completing a projective coordinate system z0, . . . , zk+1 of Pk+1 to a
projective coordinate system z0, . . . , zk+1, . . . zn of Pn, the homogeneous
polynomial F (z0, . . . , zn) := F (z0, . . . , zk+1) ∈ C[z0, . . . , zn] vanishes on
X (on π−1

x (X)), but not at x (on π−1
x (x)). �

Appendix: Hirzebruch-Riemann-Roch theorem

The celebrated Hirzebruch-Riemann-Roch theorem expresses the Euler-
Poincaré characteristic of a holomorphic vector bundle E on a complex
compact manifold X

χ(X,E) =

dimCX∑
i=0

(−1)i dimCH
i(X,E)

in terms of the Chern classes of E and X. Combined with various
vanishing theorems, it can often effectively determine the dimension of
H0(X,E). This turns out to be important in the study of the geometry
of X. For instance, if L is an ample line bundle, for m large enough
the line bundle Lm ⊗K∗X is positive and

Hq(X,Lm) = Hq
(
X,KX ⊗ (Lm ⊗K∗X)

)
= 0, q > 0,

by Kodaira-Akizuki-Nakano vanishing theorem. Hence,

χ(X,Lm) = H0(X,Lm)

and the Euler characteristic of E determines the dimension of the pro-
jective space in which X can be embedded.

Chern-Weil theory establishes a homomorphism between the ad-
invariant k-multilinear symmetric form on gl(r,C) and the cohomology
H2∗(X,C) of X with complex coefficients in even degree.

A k-multilinear form

P : gl(r,C)× . . .× gl(r,C) −→ C
is ad-invariant if for all G ∈ GL(r,C)

P (GB1G
−1, . . . , GBkG

−1) = P (B1, . . . , Bk).

We will briefly describe how to associate a cohomology class in even
degree to an ad-invariant k-multilinear symmetric form P on gl(r,C).
Indeed, an ad-invariant k-multilinear symmetric form P on gl(r,C)
induces a k-multilinear symmetric form

P : Λ2(M)⊗ End(E)× . . .× Λ2(M)⊗ End(E) −→ Λ2n
C (X)

defined by P (α1 ⊗ t1, . . . , αr ⊗ tr) = α1 ∧ · · · ∧ αrP (t1, . . . , tr) and a
polarized form P̃ (α⊗ t) = P (α⊗ t, . . . , α⊗ t). For the time being, the
complex vector bundle E does not need to be holomorphic. Let Θ be
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the curvature of an arbitrary connection on the complex vector bundle
E. The following facts hold:

(1) P (Θ) is a closed form (apply Bianchi identity and ad-invariance);
(2) [P (Θ)] is a cohomology class independent of the connection

chosen.

Example 12.5. In the spirit of Chern-Weil homomorphism, we are
led to select families of homogeneous polynomials to define families of
cohomology classes, possibly describing some cohomological invariants.

Define the ad-invariant polynomials P̃k, Q̃k, R̃k:

(1) det(Id +tB) =
∑

k=0 P̃kt
k;

(2) tr(exp(tB)) =
∑

k=0 Q̃kt
k;

(3) det(tB)/ det(Id−e−tB) =
∑

k=0 R̃kt
k.

Define the k-th Chern class, the k-th Chern character and the k-th
Todd class respectively:

(1) ck(E) =
[
P̃k
(
i

2π
Θ
)]
∈ H2k(X,C);

(2) chk(E) =
[
Q̃k

(
i

2π
Θ
)]
∈ H2k(X,C);

(3) tdk(E) =
[
R̃k

(
i

2π
Θ
)]
∈ H2k(X,C).

Define the total Chern class, the total Chern character and the total
Todd class respectively:

(1) c(E) =
∑
ck(E) =

[
det(Id + i

2π
Θ)
]
∈ H2∗(X,C);

(2) ch(E) =
∑
chk(E) =

[
tr(exp( i

2π
Θ))
]
∈ H2∗(X,C));

(3) td(E) =
∑
tdk(E) =

[
det( i

2π
Θ)/ det(Id−e− i

2π
Θ)
]
∈ H2∗(X,C).

Define the Chern classes, the Chern characters and the Todd classes
of X as the respective classes of its tangent bundle.

Let E be a holomorphic vector bundle on a complex compact mani-
fold X of complex dimension n.

Theorem 12.6 (Hirzebruch-Riemann-Roch theorem).

χ(X,E) =

∫
X

ch(E)td(X).

Remark. Notice that ch(E)td(X) is not in general a top degree form.
What it is meant by the integral is the evaluation of the top degree
component (ch(E)td(X))2n =

∑n
k=0 chk(E)tdn−k(X).
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If L is an ample line bundle,

χ(X,Lm) =
n∑
i=0

chi(L
m)tdn−i(X)

=
n∑
k=0

[
Q̃k

(
m

i

2π
Θ(L)

)]
tdn−k(X)

=
n∑
k=0

mk

([
Q̃k

(
i

2π
Θ(L)

)]
tdn−k(X)

)
.

χ(X,Lm) is called the Hilbert polynomial of the polarized manifold
(X,L), i.e. L is an ample line bundle on X. The leading coefficient of
the Hilbert polynomial is chn(L) = c1(L) ∧ · · · ∧ c1(L)P̃ ′n(id).

In fact, recall that for any line bundle L, End(L) = L∗⊗L ∼= OX , as
a consequence of the group structure of Pic(X) (more concretely, we
are left to check the transition functions of those line bundles). Since

tr(et id) = tr

(
+∞∑
k=0

tk

k!
idk

)
=

+∞∑
k=0

tk

k!
.

We conclude with an easier version of the asymptotic Riemann-Roch
theorem.

Theorem 12.7. In the hypothesis above,

H0(X,Lm) = χ(X,Lm) =
(c1(L)n)

n!
mn +O(mn−1).
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