KODAIRA EMBEDDING THEOREM

MIRKO MAURI

Abstract

The aim of this report is to prove Kodaira embedding theorem:

Theorem 0.1 (Kodaira Embedding Theorem). A compact Kähler manifold endowed with a positive line bundle admits a projective embedding.

The main idea is recasting local problems in global ones, with the help of a surgery technique called "blowing up", which means namely replacing a point of a complex manifold with a hypersurface. Despite the growth of complexity of the underlying complex manifold, one is then able to employ a codimension one machinery to tackle the problem. In fact Kodaira-Akizuki-Nakano vanishing theorem yields the result, which in turn is a clever combination of Kähler identities.

Contents

1. Ampleness of a line bundle 2
2. Holomorphic hermitian line bundles 4
3. Positivity of a line bundle 5
4. Positivity of the hyperplane bundle 6
5. Blowing up 7
6. Positivity of a line bundle on a blowing up 9
7. Canonical line bundle on a blowing up 11
8. Kodaira-Akizuki-Nakano vanishing theorem 12
9. Cohomological characterization of very ampleness 13
10. Kodaira Embedding Theorem: a proof 15
11. Applications of Kodaira Embedding Theorem 17
12. Chow's Theorem 20
Appendix: Hirzebruch-Riemann-Roch theorem 21
References 23

1. Ampleness of a line bundle

Let X be a complex manifold and $\xi: L \longrightarrow X$ holomorphic line bundle.

Definition 1.1. L has no base points or L is spanned if for all $x \in X$ there exits a section of $L, s \in H^{0}(X, L)$, such that $s(x) \neq 0$.
Remark. Let $\mathcal{U}=\left\{U_{\alpha}\right\}$ cover of open subsets of X trivializing the line bundle L and $\varphi_{\alpha}: \xi^{-1}\left(U_{\alpha}\right) \longrightarrow U_{\alpha} \times \mathbb{C}$. A section $s \in H^{0}(X, L)$ can be described as a collection of sections $s_{\alpha}:=\varphi_{\alpha} \circ s \in H^{0}\left(U_{\alpha},\left.L\right|_{U_{\alpha}}\right)=$ $\mathcal{O}\left(U_{\alpha}\right)$ satisfying the cocycle condition $s_{\alpha}(x)=g_{\alpha \beta}(x) s_{\beta}(x)$ in $U_{\alpha} \cap U_{\beta}$, where $g_{\alpha \beta} \in \mathcal{O}^{*}\left(U_{\alpha} \cap U_{\beta}\right)$ are transition functions of the line bundle L relative to the cover \mathcal{U}. Hence, the vanishing of a section is independent of the trivialization φ_{α} and the condition $s(x) \neq 0$ is thus meaningful.

Given a spanned line bundle, we can define a morphism

$$
\begin{aligned}
i_{L}: X & \longrightarrow \mathbb{P}\left(H^{0}(X, L)\right)^{*} \\
x & \longmapsto H_{x},
\end{aligned}
$$

where H_{x} is the hyperplane in $\mathbb{P}\left(H^{0}(X, L)\right)$ consisting of sections of the line bundle L vanishing at x.

We can describe the morphism i_{L} more explicitly as follow. Choose a basis s_{0}, \ldots, s_{n} of $H^{0}(X, L)$. In the notation of the remark, $s_{i}=\left(s_{i, \alpha}\right)$ with $s_{i, \alpha} \in \mathcal{O}\left(U_{\alpha}\right)$ such that $s_{i, \alpha}=g_{\alpha \beta} s_{i, \beta}$, for $i=0, \ldots, n$. Under the identification $\mathbb{P}\left(H^{0}(X, L)\right)^{*} \cong \mathbb{P}^{n}$ induced by the choice of the basis, the map is given by

$$
i_{L}(x)=\left[s_{0, \alpha}(x): \ldots: s_{n, \alpha}(x)\right] .
$$

(1) The map is independent of the trivialization. Indeed,

$$
\begin{aligned}
{\left[s_{0, \alpha}(x): \ldots: s_{n, \alpha}(x)\right] } & =\left[g_{\alpha \beta}(x) s_{0, \beta}(x): \ldots: g_{\alpha \beta}(x) s_{n, \beta}(x)\right] \\
& =\left[s_{0, \beta}(x): \ldots: s_{n, \beta}(x)\right],
\end{aligned}
$$

since $g_{\alpha \beta}(x) \neq 0$.
(2) The map is well-defined since the line bundle L is spanned and then $\left(s_{0, \alpha}(x), \ldots, s_{n, \alpha}(x)\right) \neq(0, \ldots, 0)$.
(3) i_{L} is holomorphic. In the affine open coordinate subsets of \mathbb{P}^{n}, $V_{i}=\left\{\left[z_{0}: \ldots: z_{n}\right] \in \mathbb{P}^{n} \mid z_{i} \neq 0\right\}$, the map is described by

$$
i_{L}^{-1}\left(V_{i}\right) \longrightarrow \mathbb{C}^{n}
$$

$$
x \longmapsto\left(\frac{s_{0, \alpha}(x)}{s_{i, \alpha}(x)}, \ldots, \widehat{s_{i, \alpha}(x)}, \ldots, \frac{s_{n, \alpha}(x)}{s_{i, \alpha}(x)}\right),
$$

and each $\frac{s_{j, \alpha}}{s_{i, \alpha}}$ is a holomorphic map outside the zero locus of $s_{i, \alpha}$ and in particular in $i_{L}^{-1}\left(V_{i}\right)$ (independent of the trivialization φ_{α}).
(4) The map is independent of the basis s_{0}, \ldots, s_{n} of $H^{0}(X, L)$ up to projective transformation.
(5) The pullback of the hyperplane section defined by the equation $\sum_{i=0}^{n} a_{i} z_{i}=0$ is the $\operatorname{divisor} \operatorname{div}(s)=\operatorname{div}\left(\sum_{i=0}^{n} a_{i} s_{i}\right)=L$. Hence,

$$
\begin{gathered}
i_{L}^{*}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)=L \\
i_{L}^{*} H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(1)\right)=H^{0}(X, L)
\end{gathered}
$$

Let X be a compact complex manifold
Definition 1.2. A line bundle L is very ample if $i_{L}: X \longrightarrow \mathbb{P}^{n}$ is an embedding.

Given a section $s \in H^{0}(X, L)$ of a very ample divisor, the divisor $D=\operatorname{div}(s)$ is a hyperplane section under a projective embedding.

The interest of this definition relies on the fact that a compact complex manifold endowed with a very ample line bundle enjoys the properties of a submanifold of a projective space.

Example 1.3. $\mathcal{O}_{\mathbb{P}^{n}}(1)$ is very ample by definition.
We report the argument provided by Robert Lazarsfeld [LAZ] to introduce the concept of ampleness besides that one of very ampleness:
[Very ampleness] turns out to be rather difficult to work with technically: already on curves it can be quite subtle to decide whether or not a given divisor is very ample. It is found to be much more convenient to focus instead on the condition that some positive multiple of D is very ample; in this case D is ample. This definition leads to a very satisfying theory, which was largely worked out in the fifties and in the sixties. The fundamental conclusion is that on a projective variety, amplitude can be characterized geometrically (which we take as the definition), cohomologically (theorem Cartan-SerreGrothendieck) or numerically (Nakai-Moishezon-Kleiman criterion).

Definition 1.4. L is ample if there exists $m>0$ such that $L^{\otimes m}$ is very ample.

Remark. A divisor D is very ample or ample if its corresponding line bundle $\mathcal{O}_{X}(D)$ is so.

Remark. A power of an ample divisor may have enough sections to define a projective embedding, but in general the divisor itself is not very ample. For instance, let X be a Riemann surface of genus 1 . One can show that a divisor of degree 3 is very ample (proposition 9.1). By Riemann-Roch theorem for curves, $\operatorname{dim} H^{0}(X, D)=\operatorname{dim} H^{1}(X, D)+$ $\operatorname{deg}(D)+1-g=3$, thus X is a hypersurface in \mathbb{P}^{2} and, since $\operatorname{deg}\left(i_{D}(X)\right)=$ $\operatorname{deg}(D), X$ can be realized as a smooth cubic in \mathbb{P}^{2}. All the hyperplane divisors are equivalent, in particular $D \sim 3 P$ where P is a flex of the cubic. Hence, $3 P$ is very ample but P is not (although it is by definition ample). Indeed, again by Riemann-Roch, $\operatorname{dim} H^{0}(X, P)=$ $\operatorname{dim} H^{1}(X, P)+\operatorname{deg}(P)+1-g=1$, hence i_{P} is not an embedding.

2. Holomorphic hermitian line bundles

Let (X, ω) be a compact Kähler manifold. Let (L, h) a holomorphic line bundle on X endowed with the hermitian metric h. We denote $D=D^{\prime}+D^{\prime \prime}$ its Chern connection, $\Theta(D) \in \Lambda^{1,1} T_{X}^{*}$ its curvature form ${ }^{1}$ and $c_{1}(L)=\left[\frac{i}{2 \pi} \Theta(D)\right]$ its first Chern class.

Let $\mathcal{U}=\left\{U_{\alpha}\right\}$ be a cover of open subsets of X trivializing the line bundle L and $\varphi_{\alpha}: \xi^{-1}\left(U_{\alpha}\right) \longrightarrow U_{\alpha} \times \mathbb{C}$. A hermitian metric h on L can be described as a collection of smooth (real) function $h_{\alpha} \in \mathcal{C}^{\infty}\left(U_{\alpha}\right)$, satisfying the cocycle condition $h_{\alpha}(x)=\left|g_{\alpha \beta}(x)\right|^{2} h_{\beta}(x)$ in $U_{\alpha} \cap U_{\beta}$, where $g_{\alpha \beta} \in \mathcal{O}^{*}\left(U_{\alpha} \cap U_{\beta}\right)$ are the transition functions of the line bundle L relative to the cover \mathcal{U}. Then, more explicitly,

$$
D^{\prime} \cong \varphi_{\alpha} \partial+\partial \log \left(h_{\alpha}\right) \wedge \cdot, \quad D^{\prime \prime}=\bar{\partial}, \quad \Theta(D)=\bar{\partial} \partial \log \left(h_{\alpha}\right) .
$$

Notice that $\Theta(D)$ is independent of the trivialization φ_{α}. Indeed,
$\bar{\partial} \partial \log \left(h_{\alpha}\right)=\bar{\partial} \partial \log \left(\left|g_{\alpha \beta}\right|^{2} h_{\beta}\right)=\bar{\partial} \partial \log \left|g_{\alpha \beta}\right|^{2}+\bar{\partial} \partial \log \left(h_{\beta}\right)=\bar{\partial} \partial \log \left(h_{\beta}\right)$, since the function $\log \left|g_{\alpha \beta}\right|^{2}$ is pluriharmonic. Hence,

$$
c_{1}(L)=\left[\frac{i}{2 \pi} \bar{\partial} \partial \log (h)\right] .
$$

Equivalently, if we define the differential operator $d^{c}=\frac{i}{4 \pi}(\bar{\partial}-\partial)$,

$$
c_{1}(L)=\left[-d d^{c} \log (h)\right] .
$$

[^0]
3. Positivity of a line bundle

Definition 3.1. A real $(1,1)$-form ω is positive if for all non zero v in the real tangent space of X

$$
\omega(v, J v)>0
$$

where J is the complex structure of X.
Definition 3.2. A line bundle L is positive if there exists a metric on L with positive curvature form.

The positivity of a line bundle of a compact Kähler manifold is a topological property.

Theorem 3.3. A line bundle L is positive if and only if its first Chern class may be represented by a positive form in $H_{d R}^{2}(X)$.

Proof. If L is positive, the statement holds because, even if $c_{1}(L)=$ $\left[\frac{i}{2 \pi} \Theta(D)\right]$, the first Chern class of a line bundle does not depend on the connection the line bundle is endowed with.

Indeed, in the notation of the previous remark, given any two hermitian metric h and h^{\prime} on L with curvature form respectively Θ and Θ^{\prime}, the quotient $\frac{h^{\prime}(z)}{h(z)}:=\frac{h_{\alpha}^{\prime}(z)}{h_{\alpha}^{\prime}(z)}$ is independent of the trivialization φ_{α} and thus it is a well defined positive function e^{ρ} for some real smooth function ρ. The formula $h^{\prime}=e^{\rho} h$ yields

$$
\Theta^{\prime}=\bar{\partial} \partial \rho+\Theta .
$$

In particular,

$$
\left[\frac{i}{2 \pi} \Theta^{\prime}\right]=\left[\frac{i}{2 \pi} \Theta\right] .
$$

Conversely, let $\frac{i}{2 \pi} \vartheta$ be a real positive (1,1)-form representing $c_{1}(L)$ in $H_{d R}^{2}(X)$ and Θ the curvature form of the Chern connection of any hermitian metric h on L. By $\bar{\partial} \partial$-lemma ${ }^{2}$ the equation

$$
\vartheta=\bar{\partial} \partial \rho+\Theta
$$

can be solved for a real smooth function ρ. It means that the hermitian metric $e^{\rho} h$ on L will have curvature ϑ.

[^1]
4. Positivity of the hyperplane bundle

The basic example of a positive line bundle is the hyperplane bundle $\mathcal{O}_{\mathbb{P}^{n}}(1)$. The tautological bundle $\mathcal{O}_{\mathbb{P}^{n}}(-1)$, the dual of the hyperplane bundle, is the bundle whose fibre over $\left[z_{0}: \ldots: z_{n}\right] \in \mathbb{P}^{n}$ is the complex line in $\mathbb{C}^{n} \backslash\{0\}$ through $\left(z_{0}, \ldots, z_{n}\right)$.

The standard hermitian metric in \mathbb{C}^{n} induces by restriction a hermitian metric on the tautological bundle. In the standard coordinates of $\mathbb{C}^{n},\left|\left(z_{0}, \ldots, z_{n}\right)\right|^{2}=\sum_{i=0}^{n}\left|z_{i}\right|^{2}$. In the trivialization

$$
\begin{aligned}
\varphi_{\alpha}: \mathcal{O}_{\mathbb{P}^{n}}(-1)_{\left[z_{0}: \ldots, z_{n}\right]} & \longrightarrow\left[z_{0}: \ldots: z_{n}\right] \times \mathbb{C} \\
\left(z_{0}, \ldots, z_{n}\right) & \longmapsto\left(\left[z_{0}: \ldots: z_{n}\right], z_{\alpha}\right),
\end{aligned}
$$

with $\alpha=0, \ldots, n$, the hermitian metric on the tautological bundle can be described by the collection of smooth (real) functions

$$
h_{\alpha}=\frac{1}{\left|z_{\alpha}\right|^{2}} \sum_{i=0}^{n}\left|z_{i}\right|^{2} .
$$

The curvature form Θ^{*} in $\mathcal{O}_{\mathbb{P}^{n}}(-1)$ is then

$$
\Theta^{*}=\bar{\partial} \partial \log \left(\frac{1}{\left|z_{\alpha}\right|^{2}} \sum_{i=0}^{n}\left|z_{i}\right|^{2}\right),
$$

or more intrinsically,

$$
\Theta^{*}=\bar{\partial} \partial \log \left(\sum_{i=0}^{n}\left|z_{i}\right|^{2}\right) .
$$

The curvature form Θ of the dual metric in $\mathcal{O}_{\mathbb{P}^{n}}(1)$ is $-\Theta^{*}$. Hence,

$$
c_{1}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)=-\frac{i}{2 \pi} \bar{\partial} \partial \log \left(\sum_{i=0}^{n}\left|z_{i}\right|^{2}\right)=d d^{c} \log \left(\sum_{i=0}^{n}\left|z_{i}\right|^{2}\right),
$$

which is just the fundamental $(1,1)$-form associated to the FubiniStudy metric in \mathbb{P}^{n} and hence positive.

In particular, any ample line bundle L can be endowed with a hermitian metric with positive curvature. Indeed, if $i_{L^{\otimes m}}$ is a projective embedding, the pullback of a positive hermitian metric on $\mathcal{O}_{\mathbb{P}^{n}}(1)$ gives rise to a positive hermitian metric on $L^{\otimes m}$ and its m-th root gives a positive metric on L. Conversely, Kodaira embedding theorem grants that any positive line bundle is ample.

5. Blowing up

Blowing up is a surgery tool which allows to replace a point with a divisor blowing up (i.e. magnifying) the local geometry of a neighbourhood of complex manifold.

Let U be a neighbourhood of 0 in \mathbb{C}^{n} with local coordinate z_{1}, \ldots, z_{n}. Define

$$
\begin{aligned}
\tilde{U} & =\left\{(z, l) \in U \times \mathbb{P}^{n-1} \mid z_{i} l_{j}=z_{j} l_{i} \text { for all } i, j=0, \ldots, n\right\} \\
& =\left\{(z, l) \in U \times \mathbb{P}^{n-1} \left\lvert\, \operatorname{rk}\left(\begin{array}{ccc}
z_{1} & \ldots & z_{n} \\
l_{1} & \ldots & l_{n}
\end{array}\right) \leq 1\right.\right\} \\
& =\left\{(z, l) \in U \times \mathbb{P}^{n-1} \mid z=\left(z_{1}, \ldots z_{n}\right) \in l=\left[l_{1}: \ldots: l_{n}\right] \text { complex line }\right\}
\end{aligned}
$$

and the map

$$
\begin{aligned}
\pi: \tilde{U} & \longrightarrow U \\
\quad(z, l) & \longmapsto z
\end{aligned}
$$

such that
(1) $\left.\pi\right|_{\tilde{U} \backslash \pi^{-1}(0)}: \tilde{U} \backslash \pi^{-1}(0) \longrightarrow U \backslash\{0\}$ is a biholomorphism;
(2) $E:=\pi^{-1}(0) \cong \mathbb{P}^{n-1}$, called exceptional divisor.

Morally, \tilde{U} consists of lines through the origin of \mathbb{C}^{n} made disjoint. We replace a point with the directions pointing out of 0 .

We can repeat the same construction for a neighbourhood of a point x of a complex manifold X of dimension n. Moreover, exploiting the fact that away from the exceptional divisor the map π is a biholomorphism, we can glue \tilde{U} and $X \backslash\{x\}$ to obtain a complex compact manifold called blowing up or blowup of X at x.

Remark. The construction is independent of the choice of coordinates. Choose $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)=\left(f_{1}(z), \ldots, f_{n}(z)\right)$ coordinates of U centred at x. Then the isomorphism

$$
f: \tilde{U} \backslash E \longrightarrow \tilde{U}^{\prime} \backslash E^{\prime}
$$

may be extended by setting $f(0, l)=\left(0, l^{\prime}\right)$, where

$$
l_{j}^{\prime}=\sum \frac{\partial f_{j}}{\partial z_{i}}(0) l_{i} .
$$

In particular, the identification

$$
\begin{aligned}
E & \longrightarrow \mathbb{P}\left(T_{1,0}(X)_{x}\right) \\
(0, l) & \longmapsto\left[\sum l_{i} \frac{\partial}{\partial z_{i}}\right]
\end{aligned}
$$

is independent of the choice of the coordinates. This identification formalizes the previous informal remark: we replace a point with the directions pointing out of 0 .

We describe the complex structure of a blowup providing explicit charts. In terms of coordinate z_{1}, \ldots, z_{n} in an open coordinate U of x, we have denoted $\tilde{U}=\left\{(z, l) \in U \times \mathbb{P}^{n-1} \mid z_{i} l_{j}=z_{j} l_{i}\right.$ for all $i, j=$ $0, \ldots, n\}$ and in addition we set $\tilde{U}_{i}=\tilde{U} \backslash\left\{\left(l_{i}=0\right)\right\}$.

We endow \tilde{U}_{i} with coordinates

$$
z(i)_{j}= \begin{cases}\frac{z_{j}}{z_{i}}=\frac{l_{j}}{l_{i}} & j \neq i ; \\ z_{i} & j=i .\end{cases}
$$

Hence, locally
(1) $\left.\pi\right|_{U_{i}}:\left(z(i)_{1}, \ldots, z(i)_{n}\right) \longrightarrow\left(z_{i} z(i)_{1}, \ldots, z_{i}, \ldots, z_{i} z(i)_{n}\right)$;
(2) $\left.E\right|_{U_{i}}=\left(z(i)_{i}\right)=\left(z_{i}\right)$;
(3) $\left(\tilde{U}_{i}, \varphi_{i}\right)$ is an open coordinate subset with the charts φ_{i} given by

$$
\varphi_{i}: \tilde{U}_{i} \longrightarrow \mathbb{C}^{n}
$$

$$
(z, l) \longmapsto\left(\frac{z_{1}}{z_{i}}, \ldots, z_{i}, \ldots, \frac{z_{n}}{z_{i}}\right)=\left(z(i)_{1}, \ldots, z(i)_{i}, \ldots, z(n)_{i}\right) .
$$

Without loss of generality suppose $i<j$. Then, the change of coordinates are given by

$$
\begin{aligned}
& \left.\varphi_{j} \circ \varphi_{i}^{-1}\right|_{U_{j} \cap U_{i}}\left(z(i)_{1}, \ldots, z(i)_{i}, \ldots, z(i)_{j}, \ldots, z(i)_{n}\right)= \\
& \quad=\left(\frac{z(i)_{1}}{z(i)_{j}} \ldots, \frac{1}{z(j)_{i}}, \ldots, z(i)_{i} z(i)_{j}, \ldots, \frac{z(i)_{n}}{z(i)_{j}}\right) .
\end{aligned}
$$

Since $\left.E\right|_{U_{i}}=\left(z_{i}\right)$, the transition functions of the line bundle $\mathcal{O}_{\tilde{X}}(E)$ are given by

$$
g_{i j}=z(j)_{i}=\frac{z_{i}}{z_{j}}=\frac{l_{i}}{l_{j}} \quad \text { in } \tilde{U}_{i} \cap \tilde{U}_{j}
$$

and so we can realize $\mathcal{O}_{\tilde{U}}(E)$ by identifying the fibre in (z, l) with the complex line in \mathbb{C}^{n} passing through $\left(l_{1}, \ldots, l_{n}\right)$,

$$
\begin{equation*}
\left.\mathcal{O}_{\tilde{U}}(E)\right|_{(z, l)}=\left\{\left(\lambda l_{1}, \ldots, \lambda l_{2}\right) \mid \lambda \in \mathbb{C}\right\} . \tag{1}
\end{equation*}
$$

In particular, the line bundle $\mathcal{O}_{E}(E)$ is just the tautological bundle $\mathcal{O}_{\mathbb{P}^{n-1}}(-1)$. Through the identification of E with $\mathbb{P}\left(T_{1,0}(X)_{x}\right)$, we obtain

$$
H^{0}(E,-E) \cong T^{1,0}(X)_{x} .
$$

Holomorphic functions vanishing at x in X correspond via the map π to holomorphic section of the line bundle $\mathcal{O}_{\tilde{X}}(-E)$. Hence, the differential
map $H^{0}\left(U, \mathcal{I}_{x}\right) \longrightarrow T^{1,0}(U)_{x}$ which sends $f \in \mathcal{O}(U)$ to $d_{x} f$ is induced by the restriction map $\mathcal{O}_{\tilde{U}}(-E) \longrightarrow \mathcal{O}_{\tilde{E}}(-E) \longrightarrow 0$. Equivalently, the following diagram commutes:

More precisely, after extending in series $f \in H^{0}\left(U, \mathcal{I}_{x}\right)$

$$
f=\sum \frac{\partial f}{\partial z_{j}} z_{j}+O(z)
$$

in the open coordinate subset $\left(\tilde{U}_{i}, \varphi_{i}\right)$ the map $\pi^{*} f \in H^{0}(\tilde{U},-E)$ can be described by

$$
\pi^{*} f=z_{i}\left(\sum \frac{\partial f}{\partial z_{j}} z(i)_{j}+O\left(z_{i}\right)\right)
$$

It means that the previous diagram commutes:

$$
\begin{aligned}
\sum \frac{\partial f}{\partial z_{j}} z(i)_{j}+O\left(z_{i}\right) \xrightarrow{\left.\right|_{E}} \sum \frac{\partial f}{\partial z_{j}} l_{j} \\
\pi^{*} \prod_{f} \xrightarrow{\|_{x}} \|_{\frac{\partial f}{\partial z_{j}}} l_{j}
\end{aligned}
$$

With Griffiths and Harris' words [GH],
This correspondence reflects a basic aspect of the local analytic character of blowups: the infinitesimal behaviour of functions, maps, or differential forms at the point x of X is transformed into global phenomena on \tilde{X}.

6. Positivity of a line bundle on a blowing up

In the following we will display some properties of blowing up that can be exploit to prove Kodaira embedding theorem.

First we discuss positivity of the line bundle $\mathcal{O}_{X}(E)$. We construct a hermitian metric h on $\mathcal{O}_{X}(E)$:
(1) Let h_{1} be the metric on $\mathcal{O}_{\tilde{U}}(E)$ restriction of the standard metric in \mathbb{C}^{n} onto the complex line in \mathbb{C}^{n} passing through $\left(l_{1}, \ldots, l_{n}\right)$ (cfr. identification (1)).
(2) Let h_{2} be the metric on $\mathcal{O}_{\tilde{X} \backslash E}(E)$ such that $h_{2}(\sigma) \equiv 1$, where $\sigma \in H^{0}(\tilde{X}, E)$ is a global section of $\mathcal{O}_{\tilde{X}}(E)$ with $(\sigma)=E$ (in the notation above $\sigma=\left(z_{i}\right)$).
(3) For $\epsilon>0, U_{\epsilon}:=\{z \in U \mid\|z\|<\epsilon\}$ and $\tilde{U}_{\epsilon}:=\pi^{-1}\left(U_{\epsilon}\right)$. Let ρ_{1}, ρ_{2} be a partion of unity relative to the cover $\left\{\tilde{U}_{2 \epsilon}, \tilde{X} \backslash \tilde{U}_{\epsilon}\right\}$ of \tilde{X} and h be a global hermitian metric given by

$$
h=\rho_{1} h_{1}+\rho_{2} h_{2} .
$$

We will compute the positivity of the first Chern class of the hermitian line bundle (E, h).
(1) On $\tilde{X} \backslash \tilde{U}_{2 \epsilon}, \rho_{2} \equiv 1$ so $h(\sigma) \equiv 1$, i.e. in the trivialization above $h_{\alpha}\left|\sigma_{\alpha}\right|^{2}=1$, and

$$
c_{1}(E)=-d d^{c} \log \frac{1}{|\sigma|^{2}}=0
$$

since $\log \frac{1}{|\sigma|^{2}}$ is a harmonic function.
(2) On $\tilde{X} \backslash \tilde{U}_{2 \epsilon}, \rho_{2} \equiv 0$ and denote

$$
\begin{aligned}
\pi^{\prime}: \tilde{U} & \longrightarrow \mathbb{P}^{n-1} \\
(z, l) & \longmapsto l .
\end{aligned}
$$

Then

$$
c_{1}(E)=-d d^{c} \log \|z\|^{2}=-\left(\pi^{\prime}\right)^{*} \omega_{F S}
$$

i.e. the pullback $\left(\pi^{\prime}\right)^{*} \omega_{F S}$ of the fundamental (1,1)-form associated to the Fubini-Study metric under the map π^{\prime}. Hence, $c_{1}(E)$ is semi-positive on $\tilde{U}_{\epsilon} \backslash E$.
(3) On $E,-\left.c_{1}(E)\right|_{E}=\omega>0$ by continuity from the previous remark or since $\left.h_{1}\right|_{E}$ is the hermitian metric induced by the standard metric in \mathbb{C}^{n} (section 4).
To sum up,

$$
c_{1}(-E)= \begin{cases}0 & \text { on } \tilde{X} \backslash \tilde{U}_{2 \epsilon} ; \\ \geq 0 & \text { on } \tilde{U}_{\epsilon} ; \\ >0 & \text { on } T_{1,0}(E)_{x} \subset T_{1,0}(\tilde{X})_{x} \quad \forall x \in E .\end{cases}
$$

Let $\left(L, h_{L}\right)$ a hermitian positive line bundle on \tilde{X}. Then

$$
c_{1}\left(\pi^{*} L\right)=\pi^{*} c_{1}(L)
$$

For any $x \in E$ and $v \in T(\tilde{X})_{x}$

$$
c_{1}\left(\pi^{*} L\right)(v, \bar{v})=c_{1}(L)\left(\pi_{*} v, \overline{\pi_{*} v}\right) \geq 0
$$

and equality holds if and only if $\pi^{*} v=0$. Hence,

$$
c_{1}\left(\pi^{*} L\right)= \begin{cases}\geq 0 & \text { everywhere; } \\ >0 & \text { on } \tilde{X} \backslash E ; \\ >0 & \text { on } T_{1,0}(\tilde{X})_{x} / T_{1,0}(E)_{x} \quad \forall x \in E .\end{cases}
$$

Finally, $c_{1}\left(\pi^{*} L^{k} \otimes(-E)\right)=k c_{1}\left(\pi^{*} L\right)-c_{1}(E)$ is positive on \tilde{U}_{ϵ} and on $\tilde{X} \backslash \tilde{U}_{2 \epsilon}$ for ϵ small enough. Since $\tilde{U}_{2 \epsilon} \backslash \tilde{U}_{\epsilon}$ is relatively compact, $-c_{1}(E)$ is bounded below and $c_{1}\left(\pi^{*} L\right)$ is strictly positive, then for k large enough $\pi^{*} L^{k} \otimes(-E)$ is a positive line bundle on \tilde{X}.

Therefore,
Proposition 6.1. If L is a positive line bundle on a compact complex line bundle X, for any multiple $n E$ of the exceptional divisor there exists $k>0$ such that $L^{k}-n E$ is a positive line bundle on the blowing up \tilde{X} (at a point).

7. Canonical Line bundle on a blowing up

Proposition 7.1. $K_{\tilde{X}}=\pi^{*} K_{X}+(n-1) E$.
Proof. We will just prove the statement in the case X admits a meromorphic n-form α (in the general case one has to compute explicitly the transition function of the canonical bundle). In terms of coordinate z_{1}, \ldots, z_{n} in an open coordinate U of x, meromorphic n-form α can be expressed as

$$
\alpha=\frac{f}{g} d z_{1} \wedge \cdots \wedge d z_{n},
$$

where $f, g \in \mathcal{O}(U)$.
In the open neighbourhood \tilde{U}_{i}, the map π is given by

$$
\left.\pi\right|_{U}:\left(z(i)_{1}, \ldots, z(i)_{n}\right) \longrightarrow\left(z_{i} z(i)_{1}, \ldots, z_{i}, \ldots, z_{i} z(i)_{n}\right)
$$

and

$$
\begin{aligned}
\pi^{*} \alpha & =\pi^{*}\left(\frac{f}{g}\right) d\left(z_{i} z(i)_{1}\right) \wedge \cdots \wedge d\left(z_{i}\right) \wedge \cdots \wedge d\left(z_{i} z(i)_{n}\right) \\
& =\pi^{*}\left(\frac{f}{g}\right) z_{i}^{n-1} d\left(z(i)_{1}\right) \wedge \cdots \wedge d\left(z_{i}\right) \wedge \cdots \wedge d\left(z(i)_{n}\right) .
\end{aligned}
$$

Writing $E:=\pi^{-1}(x)$ the exceptional divisor, we obtain $\operatorname{div}\left(\pi^{*} \alpha\right)=$ $\pi^{*} \operatorname{div}(\alpha)+(n-1) E$. Away from $E, \operatorname{div}\left(\pi^{*} \alpha\right)=\pi^{*} \operatorname{div}(\alpha)$ since $\left.\pi\right|_{\tilde{U} \backslash E}$ is a biholomorphism. The two arguments together yields the result.

8. Kodaira-Akizuki-Nakano vanishing theorem

Let (X, ω) be a Kähler manifold. Let (L, h) a holomorphic line bundle on X endowed with the hermitian metric h and $\Theta(L) \in \Lambda^{1,1} T_{X}^{*}$ the curvature form of the Chern connection of the hermitian line bundle (L, h). Let $\Delta^{\prime}:=D^{\prime} D^{* *}+D^{\prime *} D^{\prime}$ and $\Delta^{\prime \prime}:=D^{\prime \prime} D^{\prime *}+D^{\prime * *} D^{\prime \prime}$ be the (complex) Laplacian operators, $L:=\omega \wedge \cdot$ be the Lefschetz operator and $\Lambda:=L^{*}$ its adjoint.
Theorem 8.1 (Bochner-Kodaira-Nakano identity).

$$
\Delta^{\prime \prime}=\Delta^{\prime}+[i \Theta(L), \Lambda] .
$$

Proof. Kähler identities (for vector bundles) yield $D^{\prime \prime *}=-i\left[\Lambda, D^{\prime}\right]$. Hence,

$$
\Delta^{\prime \prime}=\left[D^{\prime \prime}, D^{\prime \prime *}\right]=-i\left[D^{\prime \prime},\left[\Lambda, D^{\prime}\right]\right] .
$$

Finally, graded Jacobi identity ${ }^{3}$ implies

$$
\left[D^{\prime \prime},\left[\Lambda, D^{\prime}\right]\right]=\left[\Lambda,\left[D^{\prime}, D^{\prime \prime}\right]\right]+\left[D^{\prime},\left[D^{\prime \prime}, \Lambda\right]\right]=[\Lambda, \Theta(L)]+i\left[D^{\prime}, D^{\prime *}\right],
$$

since $\left[D^{\prime}, D^{\prime \prime}\right]=D^{2}=\Theta(L)$.
Suppose that X is a compact Kähler manifold.
For any $u \in C^{\infty}\left(X, \Lambda^{p, q} T^{*} X \otimes L\right)$,

$$
\begin{aligned}
& \int_{X} h\left(\Delta^{\prime} u, u\right) d V=\left\|D^{\prime} u\right\|^{2}+\left\|D^{\prime *} u\right\|^{2} \geq 0 \\
& \int_{X} h\left(\Delta^{\prime \prime} u, u\right) d V=\left\|D^{\prime \prime} u\right\|^{2}+\left\|D^{\prime *} u\right\|^{2} \geq 0 .
\end{aligned}
$$

The previous relations combined with Bochner-Kodaira-Nakano identity yield

$$
\left\|D^{\prime \prime} u\right\|^{2}+\left\|D^{\prime \prime *} u\right\|^{2} \geq \int_{X} h([i \Theta(L), \Lambda] u, u) d V .
$$

If u is $\Delta^{\prime \prime}$-harmonic,

$$
0 \geq \int_{X} h([i \Theta(L), \Lambda] u, u) d V
$$

If the operator $h([i \Theta(L), \Lambda] \cdot, \cdot)$ is positive on each fibre of $\Lambda^{p, q} T^{*} X \otimes$ L, then $u \equiv 0$ and $H^{p, q}(X, L) \cong \mathcal{H}_{\Delta^{\prime \prime}}^{p, q}(X, L)=0$. Therefore, a positivity

[^2]assertion on the operator $[i \Theta(L), \Lambda]$ yields to vanishing theorems for cohomology.

Suppose for instance that $i \Theta(L)$ is a (real) positive (1,1)-form. We can endow X with the Kähler metric $\omega:=i \Theta(L)$. Since

$$
\left\{\frac{i}{2 \pi} \Theta(L), \Lambda,(\operatorname{deg}-n) \operatorname{Id}\right\}
$$

is an $\mathfrak{s l}_{2}$-triplet,

$$
h([i \Theta(L), \Lambda] u, u)=(p+q-n)|u|^{2} .
$$

Therefore,
Theorem 8.2 (Kodaira-Akizuki-Nakano vanishing theorem). If L is a positive line bundle on a complex compact manifold X, then

$$
H^{p, q}(X, L)=H^{q}\left(X, \Omega_{X}^{p} \otimes L\right)=0 \quad \text { for } p+q>n
$$

Corollary 1. If L is a positive line bundle on a complex compact manifold X, then $H^{q}\left(X, K_{X}+L\right)=0$ for $q>0$.

9. Cohomological characterization of very ampleness

To answer to the question whether a line bundle is very ample or not, we will recast the property of being an embedding for i_{L} in cohomological term, as follows:
(1) i_{L} is a well-defined morphism if L is spanned, i.e. for all $x \in X$ there exists a section of $L, s \in H^{0}(X, L)$, such that $s(x) \neq 0$, or equivalently the map

$$
H^{0}(X, L) \longrightarrow L_{x}
$$

is surjective. Notice that this map is sited in the long exact sequence induced by the short exact sequence of sheaves ${ }^{4}$

$$
0 \longrightarrow L \otimes \mathcal{I}_{x} \longrightarrow L \longrightarrow L_{x} \longrightarrow 0
$$

where $\mathcal{I}_{x} \in \mathcal{O}_{X}$ is the ideal sheaf of holomorphic functions vanishing at x and L_{x} the skyscraper sheaf centred in x with global sections ${ }^{5}$ the fiber of the line bundle L over x.

[^3](2) i_{L} is injective. This is the case if for all $x, y \in X, x \neq y$, there exists a section of $L, s \in H^{0}(X, L)$, vanishing at x but not at y (cfr. the intrinsic definition of the morphism $i_{L}: X \longrightarrow$ $\left.\mathbb{P}\left(H^{0}(X, L)\right)^{*}\right)$, or equivalently the map
$$
H^{0}(X, L) \longrightarrow L_{x} \oplus L_{y}
$$
is surjective. Notice that this map is sited in the long exact sequence induced by the short exact sequence
$$
0 \longrightarrow L \otimes \mathcal{I}_{x, y} \longrightarrow L \longrightarrow L_{x} \oplus L_{y} \longrightarrow 0 .
$$
(3) i_{L} is an immersion. We need to check the injectivity of $d_{x} i_{L}$ at any $x \in X$. Complete a basis $s_{1}, \ldots s_{n}$ of the hyperplane of sections in $H^{0}(X, L)$ vanishing at x, identified with $H^{0}(X, L \otimes$ $\left.\mathcal{I}_{x}\right) \subset H^{0}(X, L)$, to a basis $s_{0}, s_{1}, \ldots s_{n}$ of $H^{0}(X, L)$ (so that $s_{0}(x) \neq 0$ since L is spanned). In an open neighbourhood of x, the map i_{L} is given by
$$
x \longmapsto\left(\frac{s_{1}(x)}{s_{0}(x)}, \ldots, \frac{s_{n}(x)}{s_{0}(x)}\right) .
$$

Hence, $d_{x} i_{L}$ is injective if and only if $d\left(\frac{s_{1}}{s_{0}}\right), \ldots, d\left(\frac{s_{n}}{s_{0}}\right)$ span the holomorphic cotangent space $T^{1,0}(X)_{x}$. Equivalently, we require that the map

$$
\begin{aligned}
d_{x}: H^{0}\left(X, L \otimes \mathcal{I}_{x}\right) & \longrightarrow L_{x} \otimes T^{1,0}(X)_{x} \cong \operatorname{End}(T(X), L)_{x} \\
s_{x} & \longmapsto d_{x}\left(s_{\alpha}\right),
\end{aligned}
$$

is surjective. Notice that the map is well-defined since independent of the trivialization

$$
d_{x}\left(s_{\alpha}\right)=d_{x}\left(g_{\alpha \beta} s_{\beta}\right)=g_{\alpha \beta}(x) d_{x}\left(s_{\beta}\right),
$$

as $s_{\beta}(x)=0$. Again, this map is sited in the long exact sequence induced by the short exact sequence

$$
0 \longrightarrow L \otimes \mathcal{I}_{x}^{2} \longrightarrow L \otimes \mathcal{I}_{x} \longrightarrow L_{x} \otimes T^{1,0}(X)_{x} \longrightarrow 0 .
$$

Indeed, $\mathcal{I}_{x} / \mathcal{I}_{x}^{2} \cong T^{1,0}(X)_{x}$.
To prove that the previous maps are surjective, it would suffice to prove

$$
H^{1}\left(X, L \otimes \mathcal{I}_{x}^{2}\right)=H^{1}\left(X, L \otimes \mathcal{I}_{x}\right)=0 .
$$

Let X be a Riemann surface of genus g.
Proposition 9.1. If D is a divisor of degree $\geq 2 g+1$, then the line bundle $\mathcal{O}_{X}(D)$ is very ample.

Proof. By Kodaira-Akizuki-Nakano vanishing theorem
$H^{1}\left(X, L \otimes \mathcal{I}_{x}^{2}\right)=H^{1}(X, L-2[x])=H^{1}\left(X, K_{X}+\left(L-2[x]-K_{X}\right)\right)=0$.
In fact, notice that $\operatorname{deg}\left(L-2[x]-K_{X}\right)=\operatorname{deg}(L)-2-2 g+2 \geq 1$: the divisor $L-2[x]-K_{X}$ is, then, positive, since its first Chern class is a multiple of the fundamental class of X, which is positive (recall $\left.H^{1,1}(X, \mathbb{Z})=H^{2}(X, \mathbb{Z}) \cong \mathbb{Z}\right)$.

Analogously, $H^{1}\left(X, L \otimes \mathcal{I}_{x}\right)=0$.
However, unless X is a Riemann surface, the sheaves \mathcal{I}_{x}^{2} and \mathcal{I}_{x} are not invertible, which prevents us to exploit Kodaira-Akizuki-Nakano vanishing theorem. Then, one would replace x with a divisor by blowing up X at x.

10. Kodaira Embedding Theorem: a proof

Theorem 10.1 (Kodaira Embedding Theorem). If L is a compact Kähler manifold, a line bundle L is positive if and only if it is ample.

Proof. As we discuss in section 4, the difficult implication is proving that a positive line bundle is ample, i.e. we need to prove that there exist $k>0$ such that
(1) the restriction map

$$
\begin{equation*}
H^{0}\left(X, L^{k}\right) \longrightarrow L_{x}^{k} \oplus L_{y}^{k} \tag{2}
\end{equation*}
$$

is surjective for any $x, y \in X, x \neq y$;
(2) the differential map

$$
\begin{equation*}
d_{x}: H^{0}\left(X, L^{k} \otimes \mathcal{I}_{x}\right) \longrightarrow L_{x}^{k} \otimes T^{1,0}(X)_{x} \tag{3}
\end{equation*}
$$

is surjective for any $x \in X$.
Let $\pi: \tilde{X} \longrightarrow X$ be the blowing up of X at $x, y \in X, x \neq y$ with $E_{x}:=\pi^{-1}(x)$ and $E_{y}=\pi^{-1}(y)$ exceptional divisors and $E=E_{x}+E_{y}$ - if X is a Riemann surface, $\pi=i d_{X}$ and $E=\{x, y\}$. Consider the following commutative diagram:

$$
\begin{aligned}
& H^{0}\left(\tilde{X}, \pi^{*} L^{k}\right) \longrightarrow H^{0}\left(E, \pi^{*} L^{k}\right) \longrightarrow H^{1}\left(\tilde{X}, \pi^{*} L^{k}-E\right) \\
& \pi^{*} \uparrow \\
& H^{0}\left(X, L^{k}\right) \longrightarrow L_{x}^{k} \oplus L_{y}^{k}
\end{aligned}
$$

(1) $\pi^{*} L^{k}$ is trivial along E_{x} and E_{y}, i.e.

$$
\left.\pi^{*} L^{k}\right|_{E_{x}} \cong E_{x} \times\left. L_{x}^{k} \quad \pi^{*} L^{k}\right|_{E_{y}} \cong E_{y} \times L_{y}^{k}
$$

so that

$$
H^{0}\left(E, \pi^{*} L^{k}\right)=L_{x}^{k} \oplus L_{y}^{k} .
$$

(2) $\pi^{*}: H^{0}\left(X, L^{k}\right) \longrightarrow H^{0}\left(\tilde{X}, \pi^{*} L^{k}\right)$ is an isomorphism. Since π is a biholomorphism away from E, π^{*} is injective. By Hartogs' theorem, any holomorphic section of $\pi^{*} L^{k}$ on $\tilde{X} \backslash\left\{E_{x}, E_{y}\right\} \cong$ $X \backslash\{x, y\}$ extends to a holomorphic section of L^{k} on the whole X. Hence, π^{*} is surjective.
(3) Notice that the restriction map $H^{0}\left(\tilde{X}, \pi^{*} L^{k}\right) \longrightarrow H^{0}\left(E, \pi^{*} L^{k}\right)$ is sited in the long exact sequence induced by the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{\tilde{X}}\left(\pi^{*} L^{k}-E\right) \longrightarrow \mathcal{O}_{\tilde{X}}\left(\pi^{*} L^{k}\right) \longrightarrow \mathcal{O}_{E}\left(\pi^{*} L^{k}\right) \longrightarrow 0
$$

Hence, surjectivity of the map (2) follows from the vanishing of $H^{1}\left(\tilde{X}, \pi^{*} L^{k}-E\right)$ by Kodaira-Akizuki-Nakano vanishing theorem.

Indeed, by proposition 7.1,

$$
\begin{aligned}
\pi^{*} L^{k}-E & =\pi^{*} L^{k}-E+K_{\tilde{X}}-K_{\tilde{X}} \\
& =\pi^{*} L^{k}-E+K_{\tilde{X}}-\pi^{*} K_{X}-(n-1) E \\
& =K_{\tilde{X}}+\left(\pi^{*} L^{k_{1}}-n E\right)+\pi^{*}\left(L^{k_{2}}-K_{X}\right)
\end{aligned}
$$

for some $k>k_{1}+k_{2}$ suitably chosen such that both the line bundle $\pi^{*} L^{k_{1}}-n E$ and $-K_{X}+L^{k_{2}}$ are positive (cfr. proposition 6.1 and 7.1). In particular, $\left(\pi^{*} L^{k_{1}}-n E\right)+\pi^{*}\left(L^{k_{2}}-K_{X}\right)$ is positive since product of a positive line bundle and a semipositive line bundle. Finally, Kodaira-Akizuki-Nakano vanishing theorem applies.

Similarly, one can prove surjectivity of the differential map (3) Let $\pi: \tilde{X} \longrightarrow X$ blowing up of X at $x \in X$, with $E:=\pi^{-1}(x)$ exceptional divisors and E. Consider the following commutative diagram

(1) Since $\pi^{*} L^{k}$ is trivial along E,
$H^{0}\left(E, \pi^{*} L^{k}-E\right)=L_{x}^{k} \otimes H^{0}(E,-E) \cong L_{x}^{k} \otimes T^{1,0}(X)_{x}$,
where the first identity holds since by dimensional reasons the injection $H^{0}\left(E, \pi^{*} L^{k}\right) \otimes H^{0}(E,-E) \hookrightarrow H^{0}\left(E, \pi^{*} L^{k}-E\right)$ is a bijection.
(2) $\pi^{*}: H^{0}\left(X, L^{k} \otimes \mathcal{I}_{x}\right) \longrightarrow H^{0}\left(\tilde{X}, \pi^{*} L^{k}-E\right)$ is an isomorphism. Indeed, holomorphic sections of the line bundle L on X vanishing at x are in bijective correspondence with holomorphic sections of the line bundle $\pi^{*} L^{k}$ on \tilde{X} vanishing along E.
(3) Notice that the restriction map $H^{0}\left(\tilde{X}, \pi^{*} L^{k}-E\right) \longrightarrow H^{0}\left(E, \pi^{*} L^{k}-\right.$ $E)$ is sited in the long exact sequence induced by the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{\tilde{X}}\left(\pi^{*} L^{k}-2 E\right) \longrightarrow \mathcal{O}_{\tilde{X}}\left(\pi^{*} L^{k}-E\right) \longrightarrow \mathcal{O}_{E}\left(\pi^{*} L^{k}-E\right) \longrightarrow 0 .
$$

Hence, surjectivity of the map (3) follows from the vanishing of $H^{1}\left(\tilde{X}, \pi^{*} L^{k}-\right.$ $2 E)$ for some $k>0$ by Kodaira-Akizuki-Nakano vanishing theorem as before.

To conclude we exhibit a compactness argument to check that the choice of k is independent of the choice of $x, y \in X$ (cfr. [NOG]). More precisely, we have established the existence of a suitable $k=k(x)>0$ such that $i_{L^{k}}$ is defined at $x \in X$ and it separates tangents in x (i.e. $d_{x} i_{L^{k}}$ is injective). The same is true in a neighbourhood U_{x} of x. Since X is compact, X is covered by finitely many neighbourhoods U_{x}, with $x \in X$, and there exists a common k_{0}, sufficiently large, such that $i_{L^{k_{0}}}$ is a holomorphic immersion on the whole X.

Consider the product

$$
i_{L^{k}} \times i_{L^{k}}: X \times X \longrightarrow \mathbb{P}^{n} \times \mathbb{P}^{n}
$$

Since $i_{L^{k}}$ is an immersion, it is injective in a neighbourhood W of the diagonal $\{(x, y) \in X \times X \mid x=y\}$. For each $(x, y) \in X \times X \backslash W$ there exists a $k=k(x, y)$ such that $i_{L^{k}}(x) \neq i_{L^{k}}(y)$. However, since $X \times X \backslash W$ is compact, there exists a common k_{0} such that $i_{L^{k_{0}}}$ is an embedding.

11. Applications of Kodaira Embedding Theorem

Corollary 2. A compact complex manifold X is a projective algebraic submanifold if and only if it has a closed positive $(1,1)$-form ω whose cohomology class $[\omega]$ is rational.
Proof. A multiple of $[\omega]$ is an integer cohomology class. By Lefschetz $(1,1)$-theorem, there exists a line bundle L with first Chern class $c_{1}(L)=$ $k[\omega]$. Since the form is positive, the line bundle L is positive. By Kodaira embedding theorem X is a projective submanifold, and by Chow's theorem (section 12) it is algebraic.

Equivalently, the projectivity of a compact Kähler manifold can be read off the position of the Kähler cone $K_{X} \subset H^{1,1}(X) \cap H^{2}(X, \mathbb{R})$ with respect to the lattice $H^{2}(X, \mathbb{Z})$.
Definition 11.1. The Kähler cone $K_{X} \subset H^{1,1}(X) \cap H^{2}(X, \mathbb{R})$ is the cone in $H^{2}(X, \mathbb{R})$ generated by Kähler classes, i.e. cohomology classes which can be represented by a closed real positive (1,1)-form.

Lemma 11.2. The Kähler cone is an open convex cone in $H^{1,1}(X) \cap$ $H^{2}(X, \mathbb{R})$.
Proof. Since $t \alpha+(1-t) \beta$ is a Kähler class for $t \in[0,1]$ and for any $\alpha, \beta \in H^{1,1}(X) \cap H^{2}(X, \mathbb{R})$, the Kähler cone is convex.

Choose a basis $\left\{\beta_{i}\right\}$ of $H^{1,1}(X) \cap H^{2}(X, \mathbb{R})$. Then, the open neighbourhoods of the Kähler class α

$$
P_{n}=\left\{\alpha+\sum t_{i} \beta_{i} \left\lvert\, 0<t_{i}<\frac{1}{n}\right.\right\}
$$

are contained in the Kähler cone for n large enough. It suffices n greater than the ratio between the maximum value attained by the elements of the basis β_{i} on the unit sphere subbundle of $T_{1,0}(X)$ (with respect to any hermitian metric) and the minimum attained by α on the same unit sphere subbundle. Hence, the Kähler cone is open.

Corollary 3. A compact complex manifold X is a projective algebraic submanifold if and only if $K_{X} \cap H^{2}(X, \mathbb{Z}) \neq 0$.
Proof. X has a closed positive integer $(1,1)$-form.
Example 11.3. Any compact curve is projective (cfr. proposition 9.1).
Example 11.4. Every compact Kähler manifold with $H^{0,2}=0$ is projective. In that case, $H^{1,1}(X)=H^{2}(X, \mathbb{C})=H^{2}(X, \mathbb{Z}) \otimes \mathbb{C}$ and, since the Kähler cone, is open it has non-empty intersection with the lattice of integer cohomology classes.

In the following corollaries we exhibits general constructions of projective algebraic submanifolds.

Corollary 4. If X and Y are projective algebraic submanifolds, $X \times Y$ is a projective algebraic submanifold.

Proof. If ω_{X} and ω_{Y} are closed positive rational (1,1)-forms on X and Y respectively, $\pi_{X}^{*} \omega_{X}+\pi_{Y}^{*} \omega_{Y}$ is a closed positive rational (1,1)-form on $X \times Y$, where $\pi_{X}: X \times Y \longrightarrow X$ and $\pi_{Y}: X \times Y \longrightarrow Y$ are the projection maps.
Corollary 5. If X is a projective algebraic submanifold and $\pi: \tilde{X} \longrightarrow$ X is the blowing up of X at $x \in X$, then \tilde{X} is a projective algebraic submanifold.
Proof. By proposition $6.1 \tilde{X}$ carries a positive line bundle $\pi^{*} L^{k}-E$ for $k \gg 0$, with $E:=\pi^{-1}(x)$ exceptional divisor.

Corollary 6. If $\pi: \tilde{X} \longrightarrow X$ is a finite unbranched covering of a complex compact manifold, \tilde{X} is a projective algebraic submanifold if and only if X is a projective algebraic submanifold.

Proof. Clearly, if ω is a closed positive rational (1,1)-form on X, then $\pi^{*} \omega$ is a closed positive rational (1,1)-form on \tilde{X}.

Conversely, we provide a positive $(1,1)$-form $\omega^{\prime} \in H^{1,1}(X, \mathbb{Q})$ by averaging a positive $(1,1)$-form $\omega^{\prime} \in H^{1,1}(\tilde{X}, \mathbb{Q})$ along the fibre of π. Indeed, we define

$$
\omega^{\prime}(x)=\sum_{y \in \pi^{-1}(x)}\left(\pi^{-1}\right)^{*} \omega(y) \in H^{1,1}(\tilde{X}, \mathbb{Q})
$$

Notice that π^{-1} is locally well-defined since π is a local diffeomorphism. Moreover, ω^{\prime} is closed, positive and of type $(1,1)$ since ω is. Finally, [ω^{\prime}] is also rational. Indeed, since π is a local diffeomorphism (of degree $d)$, for any $\eta \in H^{2 n-2}(X, \mathbb{Q})$

$$
\int_{X} \omega^{\prime} \wedge \eta=\frac{1}{d} \int_{\tilde{X}} \omega \wedge \pi^{*} \eta \in \mathbb{Q} .
$$

As an application, we prove that any line bundle on a projective algebraic submanifold arises from a divisor.

Corollary 7. Let X be a complex compact manifold. If E is a line bundle on X and L a positive line bundle, there exists $k>0$ such that $L^{k} \otimes E$ is very ample.

Proof. Compactness implies that for a suitable k the line bundle $L^{k} \otimes E$ is positive. Adapt the proof of Kodaira embedding theorem to conclude.

Corollary 8. If X is a projective algebraic submanifold, the map from $\operatorname{Div}(X)$ to $\operatorname{Pic}(X)$ which sends a divisor D to its associated line bundle $\mathcal{O}_{X}(D)$ is surjective.

Proof. It suffices to prove that any line bundle E on a projective algebraic submanifold has a meromorphic section s so that $L=\mathcal{O}_{X}(\operatorname{div}(s))$.

Let L be a positive line bundle on X. Then for k large enough both the line bundle $L^{k} \otimes E$ and L^{k} are very ample and in particular effective. If $0 \neq s_{1} \in H^{0}\left(X, L^{k} \otimes E\right)$ and $0 \neq s_{2} \in H^{0}\left(X, L^{k}\right)$, then

$$
E=\operatorname{div}\left(\frac{s_{1}}{s_{2}}\right)
$$

12. Chow's Theorem

We first recall the following classical results.
Theorem 12.1. $\operatorname{Pic}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}$ and it is generated by the hyperplane bundle.

Let $S:=\mathbb{C}\left[z_{0}, \ldots, z_{n}\right]=\oplus_{d \geq 0} S_{d}$, where S_{d} is the set of homogeneous polynomials of degree d.

Theorem 12.2.

$$
H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(d)\right)= \begin{cases}S_{d} & d \geq 0 \\ 0 & d<0\end{cases}
$$

The content of the latter theorem is that the line bundle $\mathcal{O}_{\mathbb{P}^{n}}(d)$ does not carry other holomorphic sections different from the algebraic ones, i.e. homogeneous polynomials of degree d in the projective coordinates z_{0}, \ldots, z_{n}. The consequence is a sort of rigidity for projective analytic subvarieties, namely irreducible subsets of \mathbb{P}^{n} which are locally zero locus of a finite family of holomorphic functions.

Definition 12.3. A projective algebraic subvariety is the zero locus of a family of homogeneous polynomials in the projective coordinates z_{0}, \ldots, z_{n} in \mathbb{P}^{n}.

Theorem 12.4 (Chow's theorem). Any projective analytic subvariety X is algebraic.

Proof. Suppose that Y is a hypersurface or equivalently a prime divisor. By theorem 12.1 the line bundle $\mathcal{O}(Y)$ is of the form $\mathcal{O}_{\mathbb{P}^{n}}(d)$ for some d, and Y is the zero locus of some holomorphic section σ of $\mathcal{O}(Y)$, i.e. a homogeneous polynomial of degree d. Thus,

$$
\mathcal{O}(Y)=\operatorname{div}(\sigma)=\operatorname{div}\left(\sum_{|I|=d} a_{I} z^{I}\right)
$$

is algebraic.
In general, if $\operatorname{dim} Y=k$, for any $x \in \mathbb{P}^{n}$ not contained in Y we can find a $(k+1)$-plane such that the projection, say π_{x}, of Y along a ($n-k-2$)-plane disjoint from x is disjoint from the projection of x. It is sufficient to choose a $(n-k-1)$-plane in \mathbb{P}^{n} through x missing Y (which exists since otherwise Y would project surjectively onto \mathbb{P}^{k+1}).

Since the projection π_{x} is a closed map, $\pi_{x}(X)$ is a hypersurface in \mathbb{P}^{k+1}, hence it satisfies a homogeneous polynomial F, which separates $\pi_{x}(Y)$ and $\pi_{x}(x)$.

Completing a projective coordinate system z_{0}, \ldots, z_{k+1} of \mathbb{P}^{k+1} to a projective coordinate system $z_{0}, \ldots, z_{k+1}, \ldots z_{n}$ of \mathbb{P}^{n}, the homogeneous polynomial $F\left(z_{0}, \ldots, z_{n}\right):=F\left(z_{0}, \ldots, z_{k+1}\right) \in \mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ vanishes on X (on $\pi_{x}^{-1}(X)$), but not at x (on $\left.\pi_{x}^{-1}(x)\right)$.

Appendix: Hirzebruch-Riemann-Roch theorem

The celebrated Hirzebruch-Riemann-Roch theorem expresses the EulerPoincaré characteristic of a holomorphic vector bundle E on a complex compact manifold X

$$
\chi(X, E)=\sum_{i=0}^{\operatorname{dim}_{\mathbb{C}} X}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}(X, E)
$$

in terms of the Chern classes of E and X. Combined with various vanishing theorems, it can often effectively determine the dimension of $H^{0}(X, E)$. This turns out to be important in the study of the geometry of X. For instance, if L is an ample line bundle, for m large enough the line bundle $L^{m} \otimes K_{X}^{*}$ is positive and

$$
H^{q}\left(X, L^{m}\right)=H^{q}\left(X, K_{X} \otimes\left(L^{m} \otimes K_{X}^{*}\right)\right)=0, \quad q>0,
$$

by Kodaira-Akizuki-Nakano vanishing theorem. Hence,

$$
\chi\left(X, L^{m}\right)=H^{0}\left(X, L^{m}\right)
$$

and the Euler characteristic of E determines the dimension of the projective space in which X can be embedded.

Chern-Weil theory establishes a homomorphism between the adinvariant k-multilinear symmetric form on $\mathfrak{g l}(r, \mathbb{C})$ and the cohomology $H^{2 *}(X, \mathbb{C})$ of X with complex coefficients in even degree.

A k-multilinear form

$$
P: \mathfrak{g l}(r, \mathbb{C}) \times \ldots \times \mathfrak{g l}(r, \mathbb{C}) \longrightarrow \mathbb{C}
$$

is ad-invariant if for all $G \in \mathrm{GL}(r, \mathbb{C})$

$$
P\left(G B_{1} G^{-1}, \ldots, G B_{k} G^{-1}\right)=P\left(B_{1}, \ldots, B_{k}\right) .
$$

We will briefly describe how to associate a cohomology class in even degree to an ad-invariant k-multilinear symmetric form P on $\mathfrak{g l}(r, \mathbb{C})$. Indeed, an ad-invariant k-multilinear symmetric form P on $\mathfrak{g l}(r, \mathbb{C})$ induces a k-multilinear symmetric form

$$
P: \Lambda^{2}(M) \otimes \operatorname{End}(E) \times \ldots \times \Lambda^{2}(M) \otimes \operatorname{End}(E) \longrightarrow \Lambda_{\mathbb{C}}^{2 n}(X)
$$

defined by $P\left(\alpha_{1} \otimes t_{1}, \ldots, \alpha_{r} \otimes t_{r}\right)=\alpha_{1} \wedge \cdots \wedge \alpha_{r} P\left(t_{1}, \ldots, t_{r}\right)$ and a polarized form $\tilde{P}(\alpha \otimes t)=P(\alpha \otimes t, \ldots, \alpha \otimes t)$. For the time being, the complex vector bundle E does not need to be holomorphic. Let Θ be
the curvature of an arbitrary connection on the complex vector bundle E. The following facts hold:
(1) $P(\Theta)$ is a closed form (apply Bianchi identity and ad-invariance);
(2) $[P(\Theta)]$ is a cohomology class independent of the connection chosen.

Example 12.5. In the spirit of Chern-Weil homomorphism, we are led to select families of homogeneous polynomials to define families of cohomology classes, possibly describing some cohomological invariants.

Define the ad-invariant polynomials $\tilde{P}_{k}, \tilde{Q}_{k}, \tilde{R}_{k}$:
(1) $\operatorname{det}(\operatorname{Id}+t B)=\sum_{k=0} \tilde{P}_{k} t^{k}$;
(2) $\operatorname{tr}(\exp (t B))=\sum_{k=0} \tilde{Q}_{k} t^{k}$;
(3) $\operatorname{det}(t B) / \operatorname{det}\left(\operatorname{Id}-e^{-t B}\right)=\sum_{k=0} \tilde{R}_{k} t^{k}$.

Define the k-th Chern class, the k-th Chern character and the k-th Todd class respectively:
(1) $c_{k}(E)=\left[\tilde{P}_{k}\left(\frac{i}{2 \pi} \Theta\right)\right] \in H^{2 k}(X, \mathbb{C})$;
(2) $c h_{k}(E)=\left[\tilde{Q}_{k}\left(\frac{i}{2 \pi} \Theta\right)\right] \in H^{2 k}(X, \mathbb{C})$;
(3) $t d_{k}(E)=\left[\tilde{R}_{k}\left(\frac{i}{2 \pi} \Theta\right)\right] \in H^{2 k}(X, \mathbb{C})$.

Define the total Chern class, the total Chern character and the total Todd class respectively:
(1) $\mathrm{c}(E)=\sum c_{k}(E)=\left[\operatorname{det}\left(\operatorname{Id}+\frac{i}{2 \pi} \Theta\right)\right] \in H^{2 *}(X, \mathbb{C})$;
(2) $\left.\operatorname{ch}(E)=\sum c h_{k}(E)=\left[\operatorname{tr}\left(\exp \left(\frac{i}{2 \pi} \Theta\right)\right)\right] \in H^{2 *}(X, \mathbb{C})\right)$;
(3) $\operatorname{td}(E)=\sum t d_{k}(E)=\left[\operatorname{det}\left(\frac{i}{2 \pi} \Theta\right) / \operatorname{det}\left(\operatorname{Id}-e^{-\frac{i}{2 \pi} \Theta}\right)\right] \in H^{2 *}(X, \mathbb{C})$.

Define the Chern classes, the Chern characters and the Todd classes of X as the respective classes of its tangent bundle.

Let E be a holomorphic vector bundle on a complex compact manifold X of complex dimension n.

Theorem 12.6 (Hirzebruch-Riemann-Roch theorem).

$$
\chi(X, E)=\int_{X} \operatorname{ch}(\mathrm{E}) \operatorname{td}(\mathrm{X})
$$

Remark. Notice that $\operatorname{ch}(\mathrm{E}) \operatorname{td}(\mathrm{X})$ is not in general a top degree form. What it is meant by the integral is the evaluation of the top degree component $(\operatorname{ch}(E) \operatorname{td}(X))_{2 n}=\sum_{k=0}^{n} c h_{k}(E) t d_{n-k}(X)$.

If L is an ample line bundle,

$$
\begin{aligned}
\chi\left(X, L^{m}\right) & =\sum_{i=0}^{n} c h_{i}\left(L^{m}\right) t d_{n-i}(X) \\
& =\sum_{k=0}^{n}\left[\tilde{Q}_{k}\left(m \frac{i}{2 \pi} \Theta(L)\right)\right] t d_{n-k}(X) \\
& =\sum_{k=0}^{n} m^{k}\left(\left[\tilde{Q}_{k}\left(\frac{i}{2 \pi} \Theta(L)\right)\right] t d_{n-k}(X)\right) .
\end{aligned}
$$

$\chi\left(X, L^{m}\right)$ is called the Hilbert polynomial of the polarized manifold (X, L), i.e. L is an ample line bundle on X. The leading coefficient of the Hilbert polynomial is $c h_{n}(L)=c_{1}(L) \wedge \cdots \wedge c_{1}(L) \tilde{P}_{n}^{\prime}(i d)$.

In fact, recall that for any line bundle $L, \operatorname{End}(L)=L^{*} \otimes L \cong \mathcal{O}_{X}$, as a consequence of the group structure of $\operatorname{Pic}(X)$ (more concretely, we are left to check the transition functions of those line bundles). Since

$$
\operatorname{tr}\left(e^{t \mathrm{id}}\right)=\operatorname{tr}\left(\sum_{k=0}^{+\infty} \frac{t^{k}}{k!} \mathrm{id}^{k}\right)=\sum_{k=0}^{+\infty} \frac{t^{k}}{k!} .
$$

We conclude with an easier version of the asymptotic Riemann-Roch theorem.

Theorem 12.7. In the hypothesis above,

$$
H^{0}\left(X, L^{m}\right)=\chi\left(X, L^{m}\right)=\frac{\left(c_{1}(L)^{n}\right)}{n!} m^{n}+O\left(m^{n-1}\right)
$$

References

[DBIP] Demailly, Jean-Pierre and Bertini, Jos and Illusie, Luc and Peters, Chris, Introduction la théorie de Hodge, Société Mathématiques de France, 1996.
[GH] Griffits, Phillip and Harris, Joseph, Principles of Algebraic Geometry, WileyInterscience Publication, 1978.
[HYB] Huybrechts, Daniel. Complex Geometry. Springer, 2005.
[LAZ] Lazarsfeld, Robert, Positivity in Algebraic Geometry, Springer, 2004.
[NOG] Noguchi, Junjiro. Analytic Function Theory of Several Variables.
(Mirko Mauri) Département d’Enseignement de Mathématiques, Faculté des Sciences d'Orsay, Université Paris-Sud, F-91405 Orsay Cedex

E-mail address, M. Mauri: mirko.mauri1991@gmail.com

[^0]: ${ }^{1}$ If there is no ambiguity, we will simply denote $\Theta(L)$ the curvature form of the Chern connection of a hermitian line bundle (L, h).

[^1]: ${ }^{2}$ For a proof of $\bar{\partial} \partial$-lemma we refer the interested reader to Corollary 3.2.10, [HYB].

[^2]: ${ }^{3}$ Let A and B be endomorphisms of the graded module $C^{\infty}\left(\Lambda^{\cdot} \cdot T^{*} X \otimes L\right)$ of degree respectively a and b. The graded commutator is defined as

 $$
 [A, B]=A B-(-1)^{a b} B A
 $$

 If C is another endomorphism of degree c, then the graded Jacobi identity holds:

 $$
 (-1)^{c a}[A,[B, C]]+(-1)^{a b}[B,[C, A]]+(-1)^{b c}[C,[A, B]]=0 .
 $$

[^3]: ${ }^{4}$ Recall that any short exact sequence of sheaves

 $$
 0 \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow 0
 $$

 induces a long exact sequence in cohomology

 $$
 0 \rightarrow H^{0}(X, \mathcal{E}) \rightarrow H^{0}(X, \mathcal{F}) \rightarrow H^{0}(X, \mathcal{G}) \rightarrow H^{1}(X, \mathcal{E}) \rightarrow \cdots
 $$

 ${ }^{5}$ In the following we will use indistinctly the same notation for the skyscraper sheaf and for the set of its global sections.

