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Abstract

We construct families of two-dimensional Sinai billiards whose transfer operators have Ruelle
resonances arbitrarily close to 1. Our method involves taking a large enough cover of an initial
billiard table, and relating the transfer operator of the covering table to twisted transfer operators
of the initial table. We also study the distribution of these resonances which are close to 1.

Convex billiards tables are one of the classical models of chaotic dynamics, dating back to
Sinai [15]. Over the years, many of their statistical properties have been proved, starting with their
ergodicity [15], and up to the Central Limit Theorem, the exponential decay of correlations [18, 5]
and large deviations for the collision map [14, 11].

In the last few years, the approach via the study of the spectral properties of the transfer op-
erator bore fruits, with M. Demers and H.-K. Zhang constructing Banach spaces B on which the
transfer operator acts quasi-compactly [7, 8]. This implies the previous results, and led to a finer
understanding of the statistical properties of the billiard flow using Dolgopyat-type arguments [2].

Since the transfer operator acting on a suitable Banach space is quasi-compact, one can define
Ruelle resonances, that is, eigenvalues of the transfer operator. There is at least one such eigenvalue
(1, corresponding to constant functions). A question, asked by V. Baladi, was whether one could
find billiard tables with non-trivial Ruelle resonances.

There are relatively few examples for which we are able to describe explicitly the spectrum of the
transfer operator ; one such instance is given by the work of O. Bandtlow, W. Just and J. Slipantschuk
on Blaschke products [4, 16]. A generic Anosov diffeomorphism of the 2-torus also admits non-trivial
Ruelle resonances [1].

We prove that, for a suitable choice of billiard tables, the transfer operator admits non-trivial
Ruelle resonances. In a nutshell, we fix an initial billiard table, and relate the transfer operator
on Abelian covers of the billiard table to twisted transfer operators for this initial table. Then the
eigenvalues of a twisted transfer operator appear as Ruelle resonances of the transfer operator on a
corresponding cover. A perturbative argument finally shows that, if the cover is large enough, there
must exist such resonances close to 1 (Theorem 1.1).

While we found it independently, our method is very close to the one used by D. Jakobson,
F. Naud and L. Soares [10] to prove the existence of Ruelle resonances for geodesic flows on convex-
cocompact surfaces of constant negative curvature. The main difference is that, for the geodesic
flow in constant curvature, an approach via dynamical zeta functions is available, which simplifies
many arguments (in particular those relying on the time-reversal symmetry). This approach is not
available in the context of billiards, so we provide more elementary, and more robust, arguments.

As in [10], we also show that those resonances which are close to 1 are real, and study their
distribution for families of large covers (Propositions 1.3 and 1.4).

While we expect this method to work as well with the billiard flow, some groundwork is necessary
to be able to deal with the Banach spaces constructed in [2]. As a consequence, we only discuss the
collision map.
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The necessary background and our results are exposed in Section 1. We prove the existence of
resonances in Section 2, and study their distribution in Section 3.
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1 Context and results

1.1 Sinai billiards and Ruelle spectrum

A planar Sinai billiard with finite horizon is given by a finite number of non-overlapping closed convex
regions (Γk)1≤k≤d of the torus T2, whose boundaries (γk)1≤k≤d are C3 with non-vanishing curvature,
and such that any line in the torus meets the interior of one of the Γk’s (the so-called finite horizon
condition).

The billiard table is Q = T2\
⋃d
k=1 Γ̊k. We consider the dynamics of a point particle moving at unit

speed inQ, with specular reflection at the obstacles. The state space for this flow is three-dimensional,
and there is a natural Poincaré section: the set M :=

⋃d
k=1 γk × [−π/2, π/2] of outward-facing unit

vectors at the boundaries of the obstacles. The finite horizon condition implies that the return time
to this Poincaré section is bounded. Let T : M → M be the first return map to M , which is also
called the collision map.

Figure 1: A trajectory in a finite horizon Sinai billiard table, with a marked outward-facing unit
vector at each collision.

The map T is hyperbolic with codimension 1 singularities (which correspond to grazing trajec-
tories on the billiard table), and a finite number of domains of continuity. It preserves a symplectic
form on M , and thus the associated Liouville measure µ = cos(θ)

2
∑d

k=1 |γk|
d`dθ on M .

The collision map T is one of the most prominent examples of chaotic maps ; for instance, it
exhibits exponential decay of correlations against Hölder observables. More precisely, for any η > 0,
there exist constants C > 0 and λ > 1 such that∣∣∣∣∫

M

ϕ · ψ ◦ T n dµ−
∫
M

ϕ dµ

∫
M

ψ dµ

∣∣∣∣ ≤ Cλ−n ‖ϕ‖η ‖ψ‖η , (1.1)
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where ‖·‖η is the η-Hölder norm. Equation (1.1) can be seen as a consequence of spectral properties
of the composition operator h 7→ h ◦ T , or its dual, the transfer operator P . The transfer operator
P acts on L1(M,µ) by:

P (h) = h ◦ T−1 ∀h ∈ L1(M,µ).

The operator P also acts on various function or distribution spaces; of interest to us will be the
Banach spaces of anisotropic distributions B constructed by M. Demers and H.-K. Zhang [7, 8].

The anisotropic distributions on M constructed by M. Demers and H.-K. Zhang are regular in
the unstable direction, and dual of regular in the stable direction. By [7, Lemma 2.1],

C1/3(M)→ B → C1/3(T−nWs)∗,

where Cγ is the space of γ-Hölder functions, Ws is a space of stable curves, and the inclusions are
continuous and injective. In addition, the injection C1(M) ⊂ B has a dense image.

The operator P acts continuously on B. By [7, Proposition 2.3], its action is quasi-compact:
1 belongs to the spectrum of P (since 1 ∈ B and P (1) = 1), and the essential spectral radius
ρess(P y B) of P acting on B is strictly smaller than 1. More precisely, there exists a constant
ρ0 > 0, depending only on the minimal travel time between obstacles and the minimal curvature
of the obstacles, such that ρess(P y B) ≤ ρ0 < 1. The spectrum of P in B(0, ρ0)c is discrete,
contained in B(0, 1), and consists in (at most) countably many eigenvalues of finite multiplicity.
Such eigenvalues are Ruelle resonances of the transfer operator.

In addition, when acting on B, the operator P has a spectral gap: its resonance 1 is simple and is
the only resonance of modulus 1. Hence, P is the sum of the rank 1 projection h 7→

∫
M
h dµ · 1 and

of an operator of spectral radius strictly smaller than 1. The exponential decay of correlations (1.1)
follows.

1ρ00

Figure 2: Spectrum of the operator P acting on B. The set of Ruelle resonances is represented by
the black dots, and may be as small as {1}. The essential spectrum is inside the gray disk. The
spectrum is symmetric with respect to the real line because P is real.

If the obstacles are close or the minimal curvature of the obstacles is small, then the estimate on
the essential spectral radius becomes worse, which makes it harder to find resonances. The strategy
we adopt let us work with those constants being fixed, avoiding this difficulty.

1.2 Coverings of billiard tables

A Sinai billiard table admits a Z2 covering, that is, a Z2-periodic billiard table Q̃ ⊂ R2 such that the
natural projection of Q̃ on T2 is Q. In what follows, we denote with a tilde all objects related to this
Z2-cover.
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By choosing an origin and making Z2 act on Q̃, the obstacles of Q̃ can be indexed by Z2: we get
R2 \ Q̃ =

⋃d
k=1

⋃
p∈Z2 Γ̊k,p, where Γk,p = Γk,0 + p, whence M̃ =

⋃
p∈Z2 M × Z2.

The Liouville measure µ also lifts to a T̃ -invariant measure µ̃, such that any restriction of µ̃ to a
fundamental domain equals µ.

The collision map T̃ for Q̃ is a Z2 extension of the collision map for Q. Given (x, p) ∈ M̃ = M×Z2,
we have T̃ (x, p) =: (T (x), q), and q − p depend only on x. Writing q − p =: F (x), we get a function
F : M → Z2 such that:

T̃ (x, p) = (T (x), p+ F (x))

The value F (x) stays the same as long as (x, 0) and T̃ (x, 0) belong to the same two obstacles. As
a consequence, F is constant on the domains of continuity of T . By the finite horizon condition, T
admits finitely many domains of continuity, so that F is bounded.

The billiard map is time-reversible. The involution ι(`, θ) := (`,−θ) on M has the following
properties:

ι ◦ T = T−1 ◦ ι,
F ◦ ι = −F ◦ T−1,

and ι preserves µ. It follows that
∫
M
F dµ = 0.

The same construction can be used on any covering of Q. In particular, given any rank 2 lattice
Λ ⊂ Z2, we get a billiard table QΛ, to which we associate a probability-preserving dynamical system
(MΛ, µΛ, TΛ). Writing G := Z2/Λ, we have:

MΛ = M ×G,

µΛ =
1

|G|
∑
g∈G

µ× δg,

TΛ(x, g) = (T (x), g + F (x)[Λ]).

Figure 3: The Z2-covering Q̃ of Q, and an intermediate covering QΛ with Λ = 2Z⊕ 3Z.

We denote by PΛ the transfer operator associated with (MΛ, µΛ, TΛ), and BΛ the Banach space
as constructed in [7] for the system (MΛ, µΛ, TΛ). By construction, for any h ∈ BΛ,

‖h‖BΛ
= max

g∈G

∥∥h1M×{g}∥∥B .
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1.3 Results

We shall prove that, when Λ is large enough, the Sinai billiard on the table QΛ has non-trivial Ruelle
resonances. More precisely,

Theorem 1.1. There exists δ > 0 such that Sp(PΛ y BΛ) ⊂ B(0, 1− δ)∪ [1− δ, 1] for all lattices Λ.
In addition, there exist positive constants c < C such that:

c|G| < |{Ruelle resonances in [1− δ, 1], with multiplicities}| < C|G|

In particular, whenever Λ is sparse enough, PΛ admits non-trivial Ruelle resonances.

11− δρ00

Figure 4: Spectrum of the operator PΛ acting on BΛ for a sparse enough lattice Λ. The spectrum is
still symmetric with respect to the real line. The resonances on the segment [1− δ, 1] are guaranteed
to exist; the others may or may not exist.

Now, let us focus on the distribution of these resonances. Let ρ0 be the upper bound on ρess(P y
B) given by [7, Proposition 2.3]. For Λ < Z2 a rank 2 lattice, define the spectral measure of PΛ as:

νΛ :=
1

|G|
∑

λ resonance of PΛ
|λ|>1−ρ0

δλ,

where the sum is taken with multiplicity. Then ρess(PΛ y BΛ) ≤ ρ0, so that νΛ is a Radon measure
on B(0, ρ0)c. Our next proposition, which is a variant of [10, Theorem 1.3], states that, for any
sequence (ΛN) of lattices, the sequence (νΛN

) of spectral measures admits a converging subsequence.

Proposition 1.2. For any sequence of rank 2 lattices ΛN < Z2, there exists a subsequence (ΛNk
)k≥0

and a Radon measure ν such that νΛNk
→ ν for the vague topology, i.e.

lim
k→+∞

∫
B(0,ρ0)c

f dνΛNk
=

∫
B(0,ρ0)c

f dν

for all f ∈ Cc(B(0, ρ0)c,C).

For specific choices of a sequence of lattices (ΛN), we can express explicitly the limit of (νΛN
)

near 1, similarly to what was done in [10, Section 3.2]. Let Λ
(1)
N := NZ× Z and Λ

(2)
N := (NZ)2. We

write ν(1)
N := ν

Λ
(1)
N

and likewise ν(2)
N := ν

Λ
(2)
N
. For the sequence of lattices (Λ

(1)
N ), we get the following

statement:
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Proposition 1.3. Let δ be as in Theorem 1.1. There exists δ0 ∈ (0, δ] and a finite measure ν(1)
|[1−δ0,1]

on [1− δ0, 1] such that:
lim

N→+∞
ν

(1)
N |[1−δ0,1] = ν

(1)
|[1−δ0,1],

where the convergence is in C([1− δ0, 1],C)∗. Moreover,

dν
(1)
|[1−δ0,1]

dx
∼x→1−

1

π
√

2Σ11

· 1√
1− x

. (1.2)

In Equation (1.2), the constant Σ11 is the upper-left coefficient of the covariance matrix Σ associ-
ated with the diffusion of the billiard on the table Q̃ (see Equation (2.2)). Replacing Λ

(1)
N by Z×NZ

only changes the constant in Equation (1.2), where Σ11 becomes Σ22.

We get an analogous statement for the sequence (Λ
(2)
N ):

Proposition 1.4. Let δ be as in Theorem 1.1. There exists δ0 ∈ (0, δ] and a finite measure ν(2)
|[1−δ0,1]

on [1− δ0, 1] such that:
lim

N→+∞
ν

(2)
N |[1−δ0,1] = ν

(2)
|[1−δ0,1],

where the convergence is in C([1− δ0, 1],C)∗. Moreover,

lim
x→1−

dν
(2)
|[1−δ0,1]

dx
=

1

2π
√

det(Σ)
. (1.3)

2 Existence of resonances
In this section, we prove a weaker version of Theorem 1.1:

Proposition 2.1. Let (M,µ, T ) be a finite horizon Sinai billiard. Let U be a neighborhood of 1 in
C. There exists a constant c(U) > 0 such that, for any rank 2 lattice Λ < Z2, the spectrum of PΛ

acting on BΛ admits at least c(U)|G| Ruelle resonances (with multiplicities) in U .
In particular, if Λ is sparse enough, then PΛ admits non-trivial Ruelle resonances in U .

Theorem 1.1 shall follow from Proposition 2.1 and some additional results on the localization of
Ruelle resonances proved in Section 3.

2.1 Spectral decomposition of BΛ

The map MΛ →M is a Galois covering, the deck transformations being translations τg : MΛ →MΛ

given by τg(x, g
′) = (x, g′ + g), for all g ∈ G. All these translations are measure-preserving and

commute with TΛ:

τg ◦ TΛ(x, g′) = (T (x), g′ + F (x) + g[Λ]) = TΛ ◦ τg(x, g′).

As a consequence, G acts on BΛ by pre-composition:

(τghΛ)(ϕ) := hΛ(ϕ ◦ τ−g)

for all hΛ ∈ BΛ and ϕ ∈ C1(MΛ,C), and this action commutes with PΛ.
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Let g ∈ G. Since τg and PΛ commute, the eigenspaces of τg are PΛ-invariant. As this holds for all
g ∈ τg, the intersections of the eigenspaces for (τg)g∈G are PΛ-invariant. But these eigenspaces are
given by the characters of G:

BΛ,χ := {h⊗ χ : h ∈ BΛ, χ ∈ Ĝ},
where (h ⊗ χ)(ϕΛ) =

∑
g∈G χ(g)h(ϕΛ(·, g)) for all ϕΛ ∈ C1(MΛ,C). Note that we can define maps

ΠΛ,χ : BΛ → B by:
ΠΛ,χ(hΛ)(ϕ) := |G|−1hΛ(ϕ⊗ χ) ∀ϕ ∈ C1(M,C),

and the space BΛ,χ can be written as:

BΛ,χ =
⋂
χ∈Ĝ
χ′ 6=χ

Ker(ΠΛ,χ′).

In particular, the spaces BΛ,χ are closed, and there is a PΛ-invariant splitting:

BΛ =
⊕
χ∈Ĝ

BΛ,χ.

2.2 Spectrum of PΛ

Each subspace BΛ,χ is isomorphic to B, for instance via ΠΛ,χ and its right inverse h 7→ h ⊗ χ. The
action of PΛ on BΛ,χ is thus conjugated with the action of some operator PΛ,χ on B, which can be
made explicit. For all h ∈ B and ϕ ∈ C1(M,C),

PΛ,χ(h)(ϕ) = [Πλ,χPΛ(h⊗ χ)](ϕ)

=
1

|G|
[PΛ(h⊗ χ)](ϕ⊗ χ)

=
1

|G|
(h⊗ χ)(ϕ⊗ χ ◦ TΛ)

=
1

|G|
(h⊗ χ)[(χ(F ) · ϕ ◦ T )⊗ χ]

= h(χ(−F ) · ϕ ◦ T )

= [P (χ(−F )h)](ϕ).

Hence, PΛ,χ(h) = P (χ(−F )h). More intuitively, for h ∈ C0(M,C), we have PΛ,χ(h⊗χ) = (h⊗χ)◦T−1
Λ ,

with:
T−1

Λ (x, p) = (T−1(x), p− F ◦ T−1(x)),

from which the same result follows. As a consequence,

Sp(PΛ y BΛ) =
⋃
χ∈Ĝ

Sp(PΛ,χ y B), (2.1)

where the union is taken with multiplicities.
Note that the estimate given in [7, Proposition 2.3] on the essential spectral radius of P also holds

for PΛ, for all Λ. There are two ways to prove this theorem:

• That bound only depends on the minimal curvature of the obstacles, the minimal free path
length of the bouncing particle, and on the choice of ε0. These quantities are the same for the
billiard table M and for all its covers MΛ.

• The estimates on the essential spectral radius of [7, Proposition 2.3] generalize to the weighted
operators PΛ,χ, with no dependence on the character χ. Equation (2.1) yields the claim.
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2.3 Perturbations of transfer operators

The function F : M → Z2 satisfies the assumptions of [8, Lemma 5.4]. Hence, the family of twisted
transfer operators:

Pw(h) := P (ei〈w,F 〉h),

acting on B, depends analytically on w ∈ 2πT2.
As 1 is an isolated eigenvalue of P with eigenfunction 1, there exists a neighbourhood U of 0 in

2πT2 and analytic functions w 7→ λw ∈ C, and w 7→ gw ∈ B defined on U such that gw(1) = 1 and
Pw(h) = λwgw.

By a classical computation, appearing for instance in the Nagaev-Guivarc’h proof of the Central
Limit Theorem for Markov chains [12, 13, 9],

λw = 1− Σ(w,w)

2
+O(|w|3) (2.2)

near 0, where Σ is a bilinear form. As Σ is the matrix of covariance for the central limit theorem for
(
∑n−1

k=0 F ◦T k) and such a central limit theorem for a finite horizon Sinai billiard has a non-degenerate
limit law, F is not a coboundary and Σ is positive definite. In particular, up to taking a smaller
neighborhood U , we shall assume that |λw| < 1 for w 6= 0.

2.4 Ruelle resonances for Sinai billiards

We now prove Proposition 2.1.

Proposition 2.1. Let U be a neighborhood of 1 in C. Let V be a neighborhood of 0 in 2πT2 on which
the main eigenvalue λw of Pw is well-defined and belongs to U . Let W be a neighborhood of 0 such
that W −W ⊂ V . Let Λ < Z2. Note that Ĝ = ̂(Z2/Λ) < Ẑ2 = 2πT2. Then:

|G|Vol(W ) =

∫
2πT2

∑
χ∈Ĝ

1χ+W d Vol ≤ 4π2 max
2πT2

∑
χ∈Ĝ

1χ+W . (2.3)

In addition, for all χ′ ∈ 2πT2, ∑
χ∈Ĝ

1χ+W (χ′) = |Ĝ ∩ (χ′ −W )|.

Assume that Ĝ ∩ (χ′ − W ) is non-empty, and let χ0 be one of its elements. The function χ 7→
|Ĝ ∩ (χ − W )| is Ĝ-invariant, so |Ĝ ∩ (χ′ − W )| = |Ĝ ∩ (χ′ − χ0 − W )|. But χ0 ∈ χ′ − W , so
χ′ − χ0 ∈ W and χ′ − χ0 −W ⊂ W −W ⊂ V . Hence, |Ĝ ∩ (χ′ −W )| ≤ |Ĝ ∩ V |. This inequality is
also true if Ĝ ∩ (χ′ −W ) is empty, so Equation (2.3) implies:

|G|Vol(W ) ≤ 4π2|Ĝ ∩ V |. (2.4)

Finally, given any χ = ei〈w,·〉 ∈ Ĝ ∩ V , the operator Pw = PΛ,χ admits λw as a Ruelle resonance. By
construction, λw ∈ U , and λw is also a resonance of PΛ by Equation (2.1). Hence, PΛ admits at least
|Ĝ ∩ V | ≥ Vol(W )

4π2 |G| Ruelle resonances in U (with multiplicities).
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3 Distribution of resonances
We now focus on the properties of the non-trivial resonances constructed in Section 2. We shall
finish the proof of Theorem 1.1 in Subsections 3.1 and 3.2, where we describe more precisely the
main eigenvalue λw of the twisted transfer operator Pw. We shall prove Propositions 1.2, 1.3 and 1.4
in Subsection 3.3.

3.1 Aperiodicity of the Sinai billiard

As a step-stone to Theorem 1.1, we shall prove that Sinai billiards are aperiodic. While this is already
known [17], the following argument is reasonably short. We write characters in exponential form:
χ = ei〈w,·〉. Let H := {(ρ, w) ∈ S1 × 2πT2| ρ ∈ Sp(Pw y B)}. We claim:

Lemma 3.1. The set H is a subgroup of S1 × 2πT2.

Proof. Note that, by considering H ∩ (S1 × {0}), this lemma implies that the peripheral spectrum
of P is a subgroup of S1, which is well-known [7, Lemma 5.2]. The proof of Lemma 3.1 mimics the
proof of the later fact.

Up to straightforward modifications, the proof of [7, Lemma 5.1] can be generalized to prove that,
for any (ρ, w) ∈ H, the corresponding Jordan block is trivial and any associated eigendistribution
belongs to L∞(M,µ) ·dµ. In addition, whenever k is an eigendistribution associated with (ρ, w) ∈ H,

Pw(k dµ) = ei〈w,F 〉◦T
−1

k ◦ T−1 dµ = ρk dµ,

and thus
ρk = ei〈w,F 〉◦T

−1

k ◦ T−1. (3.1)

Taking absolute values in Equation (3.1), we get |k| ◦ T−1 = |k|; as the Sinai billiard is ergodic,
|k| is constant, and k does not vanish.

Taking the complex conjugate in Equation (3.1), we get ρk = ei〈−w,F 〉◦T
−1
k ◦ T−1, so k dµ is an

eigendistribution for P−w for the eigenvalue ρ. In addition, k dµ ∈ B. Hence, (ρ,−w) ∈ H.
Let k1 dµ, k2 dµ be two eigendistributions corresponding to (ρ1, w1), (ρ2, w2) ∈ H respectively.

Then, again using Equation (3.1),

ei〈w1+w2,F 〉◦T−1

(k1k2) ◦ T−1 = ei〈w1,F 〉◦T−1

k1 ◦ T−1 · ei〈w2,F 〉◦T−1

k2 ◦ T−1 = ρ1k1ρ2k2 = (ρ1ρ2)k1k2.

As neither k1 not k2 vanish, their product k1k2 does not vanish either, so k1k2 is an eigendistribution
for the eigenvalue ρ1ρ2 of Pw1+w2 . In addition, by the argument of [6, Lemma 5.5], k1k2 dµ ∈ B.
Hence, (ρ1ρ2, w1 + w2) ∈ H.

All the arguments above are standard (they only use properties of the action of Pw on B), and
apply to a much wider class of dynamical systems. For Sinai billiards, Lemma 3.1 can be strengthened:

Lemma 3.2. For a finite horizon Sinai billiard, H = {(1, 0)}.

Proof. By the discussion in Subsection 2.1, there exists a neighborhood V of 0 in 2πT2 and a
neighborhood U of 1 in C such that, for all w ∈ V , we have Sp(Pw y B) ∩ U = {λw}. Since
λw = 1 − Σ(w,w)

2
+ O(|w|3), if w ∈ V \ {0}, then Pw has no eigenvalue of modulus 1 in U . Hence,

(1, 0) is isolated in H. The group H is discrete, and thus finite.
Assume that H is not trivial, and let (ρ, w) ∈ H \ {(1, 0)}. Since H is finite, (ρ, w) has finite

order. Hence, there exists a rank 2 lattice Λ < Z2 such that w ∈ Ĝ. Then ρ ∈ Sp(PΛ,χ y B) for
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χ = e−i〈w,·〉 ∈ Ĝ, so ρ ∈ Sp(PΛ y BΛ). Then the transfer operator PΛ for the Sinai billiard QΛ has
non-trivial peripheral spectrum. If ρ = 1, then 1 ∈ Sp(PΛ y BΛ) has multiplicity at least 2, which
contradicts the ergodicity of Sinai billiards. If ρ 6= 1, then ρ is a non-trivial root of the unit, which
contradicts the fact that Sinai billiards are mixing.

The Ruelle spectrum of w 7→ Pw depends continuously on w. By Lemma 3.2, there exists δ > 0
and a neighborhood V of 0 in 2πT2 such that Pw has a resonance of modulus larger than 1− δ if and
only if w ∈ V , and under this condition the resonance is λw.

By Equation (2.1), the spectrum of PΛ acting on BΛ is the union of the spectra of the operators
Pw for w ∈ Ĝ. Hence, for this value of δ > 0 and all rank 2 lattices Λ < Z2:

Sp(PΛ y BΛ) ⊂ B(0, 1− δ) ∪ {λw : w ∈ V }. (3.2)

A further consequence is that PΛ admits at most |G| resonances (with multiplicities) in B(0, 1− δ)c.
With Proposition 2.1, this implies that the number of Ruelle resonances in the annulus {1 − δ <
|z| ≤ 1} is a Θ(|G|).

3.2 Realness of the resonances

Let δ > 0 be small enough that Equation (3.2) holds. Let V := {w ∈ 2πT2 : |λw| > 1 − δ}. Up to
taking a smaller value of δ, we may assume that λ· is continuous on V . Let w ∈ V , and hw ∈ B an
eigendistribution for Pw. Since the operator P is real,

P−w(hw) = P (e−i〈w,F 〉hw) = P (ei〈w,F 〉hw) = λwhw,

so λw ∈ Sp(P−w y B). But |λw| > 1− δ and the only eigenvalue of P−w of modulus larger than 1− δ
is λ−w. Hence, λ−w = λw for all w ∈ V .

We recall that the billiard map is time-reversible. The involution ι(`, θ) = (`,−θ) satifies:

ι ◦ T = T−1 ◦ ι,
F ◦ ι = −F ◦ T−1,

Let B∗ be the dual of B. Informally, the space B∗ contains distributions which are regular in
the direction of the stable cones of T , and irregular in the unstable cones. Then Sp(P ∗w y B∗) =
Sp(Pw y B). In addition, for all ϕ, ψ ∈ C1(M,C):∫

M

P ∗w(ϕ) · ψ dµ =

∫
M

ϕ · Pw(ψ) dµ =

∫
M

ei〈w,F 〉ϕ ◦ T · ψ dµ. (3.3)

Let B̃ be the image of B under precomposition by the involution ι. Again, informally, B̃ contains
distributions which are regular in the direction of the stable cones of T , and irregular in the unstable
cones. Let us define P̃w(ϕ) := (Pw(ϕ ◦ ι)) ◦ ι, and extend this operator by continuity to B̃. Then
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Sp(P̃w y B̃) = Sp(Pw y B). In addition, for all ϕ, ψ ∈ C1(M,C):∫
M

P̃w(ϕ) · ψ dµ =

∫
M

Pw(ϕ ◦ ι) · ψ ◦ ι dµ

=

∫
M

ei〈w,F 〉ϕ ◦ ι · ψ ◦ ι ◦ T dµ

=

∫
M

ei〈w,−F◦T
−1◦ι〉ϕ ◦ ι · ψ ◦ T−1 ◦ ι dµ

=

∫
M

e−i〈w,F◦T
−1〉ϕ · ψ ◦ T−1 dµ

=

∫
M

e−i〈w,F 〉ϕ ◦ T · ψ dµ. (3.4)

To sum up:

Sp(P ∗−w y B∗) = Sp(P−w y B),

Sp(P̃w y B̃) = Sp(Pw y B),

and the operators P ∗−w and P̃w coincide on C1 functions by Equations (3.3) and (3.4).
We would like to show that the spectra of P ∗−w and P̃w coincide, at least outside of B(0, ρ0).

Unfortunately, a result such as [3, Lemma A.1] is not directly applicable, because we don’t know
whether C1(M,C) is dense in B∗. We use instead an ad hoc argument, and show the weaker result
λw = λ−w.

The space B̃ is defined as the completion of C1(M,C) for the norm ‖·‖B̃. Hence, C1(M,C) is dense
for the strong topology on B̃. In addition, by [7, Lemma 3.9], C1(M,C) maps continuously into B∗,
and this map is injective (since there is an injective embedding Cγ ↪→ B).

Let Π−w be the (rank 1) spectral projection of P−w onto the eigenspace corresponding to the
eigenvalue λε, and Q−w := P−w − λwΠ−w. The spectral radius of Q−w is no larger than 1− δ, so let
δ′ < δ with |λ−w| > 1− δ′. Then, for all ϕ, ψ ∈ C1(M,C),∫

M

ϕ · P n
−w(ψ) dµ = λn−wΠ−w(ψ)(ϕ) +O ((1− δ′)n ‖ϕ‖C1 ‖ψ‖C1) .

By density, there exists a C1 function ψ such that Π−w(ψ) 6= 0 in B. Following the construction in [8,
Lemma 3.8], and noticing that the test function can be chosen smooth (for instance by mollification),
we get a function ϕ ∈ C1 such that Π−w(ψ)(ϕ) 6= 0.

In addition, for the functions ϕ and ψ constructed above,∫
M

ϕ · P n
−w(ψ) dµ =

∫
M

(P ∗−w)n(ϕ) · ψ dµ

=

∫
M

P̃ n
w(ϕ) · ψ dµ

= λnwΠ̃w(ψ)(ϕ) +O ((1− δ′)n ‖ϕ‖C1 ‖ψ‖C1) ,

where Π̃w is the eigenprojection of P̃w corresponding to the eigenvalue λw. Hence, Π−w(ψ)(ϕ) =

Π̃w(ϕ)(ψ) 6= 0 and λw = λ−w.
The function w 7→ λw is even on a neighborhood of zero, and since λw = λ−w = λw, it is also

real-valued. As a consequence, for the same value δ > 0, for all Λ:

Sp(PΛ y BΛ) ⊂ B(0, 1− δ) ∪ [1− δ, 1].

This finishes the proof of Theorem 1.1.
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Remark 3.3 (Real eigendistributions). The eigenvalues λw ∈ [1− δ, 1] are real, and the correspond-
ing eigenspaces are 2-dimensional. These eigenspaces are spanned by pairs of eigendistributions
{h<Λ,χ, h=Λ,χ}, which are real (in that h<Λ,w(ϕ) and h=Λ,w(ϕ) are both real for any real test function ϕ)
and can be chosen as:

h<Λ,χ := <(hw ⊗ χ)
h=Λ,χ := =(hw ⊗ χ),

where χ = ei〈w,·〉 and hw is an eigendistribution for Pw.

3.3 Distribution of the resonances

Now, we shall discuss the convergence of the spectral densities and prove Propositions 1.2, 1.3 and 1.4.

Proof of Proposition 1.2. Let ρ0 be the upper bound on ρess(P y B) given by [7, Proposition 2.3].
Since w 7→ (Pw)w∈2πT2 is a continuous family of transfer operators with ρess(Pw y B) ≤ ρ0, by
continuity of the spectrum, for any compact K ⊂ B(0, ρ0)c, the function w 7→ νw(K) is bounded,
where:

νw =
∑

λ resonance of Pw
|λ|>1−ρ0

δλ,

and where the resonances are counted with multiplicity.
The spectral decomposition yields, for any rank 2 lattice Λ,

νΛ =
1

|G|
∑
w∈Ĝ

νw,

whence Λ 7→ νΛ(K) is also bounded uniformly in Λ. Compactness of subprobability measures on
K yields the existence of limit distributions of (νΛN

) on any compact K, and a diagonal argument
yields Proposition 1.2.

Propositions 1.3 and 1.4 follow from the discussion after [10, Theorem 3.1], with some care to
make the constants explicit.

Proof of Proposition 1.3. Recall that Λ
(1)
N = NZ⊗Z. By the aforementioned discussion, there exists

δ0 > 0 such that, for all f ∈ C(R,C) supported on [1− δ0, 1],

lim
N→+∞

∫ 1

1−δ0
f dν

(1)
N =

1

2π

∫
R
f(λte1) dt,

with e1 = (1, 0). The constant 2π comes from the different parametrization we use for t. By the
Morse lemma, there exists a C1 diffeomorphism of the real line Ψ such that Ψ′(0) = 1 and:

1

2π

∫
R
f(λte1) dt =

1

2π

∫
R
f

(
1− Σ11t

2

2

)
|Ψ′(t)| dt.

Let ε > 0. If f is supported on a small enough neighborhood of 1,∣∣∣∣ 1

2π

∫
R
f(λte1) dt− 1

2π

∫
R
f

(
1− Σ11t

2

2

)
dt

∣∣∣∣ ≤ ε ‖f‖∞ ,

and:
1

2π

∫
R
f

(
1− Σ11t

2

2

)
dt =

1

π

∫ +∞

0

f

(
1− Σ11t

2

2

)
dt =

∫ +∞

0

f(1− u)
1

π
√

2Σ11u
du,

finishing the proof of Proposition 1.3.

Proposition 1.4 follows from the same kind of computations.
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