"Advanced Probability" (Part III: Brownian motion)

Exercise sheet \#III.1:
Construction of Brownian motion

Exercice 1. Let ξ be a Gaussian $\mathscr{N}(0,1)$ random variable. Let $x>0$.
(i) Prove that $\frac{1}{(2 \pi)^{1 / 2}}\left(\frac{1}{x}-\frac{1}{x^{3}}\right) \mathrm{e}^{-x^{2} / 2} \leq \mathbb{P}(\xi>x) \leq \frac{1}{(2 \pi)^{1 / 2}} \frac{1}{x} \mathrm{e}^{-x^{2} / 2}$.
(ii) Prove that ${ }^{1} \mathbb{P}(\xi>x) \leq \mathrm{e}^{-x^{2} / 2}$.

Solution. (i) We have

$$
\mathbb{P}(\xi>x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u \leq \frac{1}{\sqrt{2 \pi}} \frac{1}{x} \int_{x}^{\infty} u \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u=\frac{1}{\sqrt{2 \pi}} \frac{1}{x} \mathrm{e}^{-x^{2} / 2}
$$

giving the desired upper bound. For the lower bound, we note that by integration by parts,

$$
\mathbb{P}(\xi>x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u=\left[-\frac{1}{\sqrt{2 \pi}} \frac{1}{u} \mathrm{e}^{-u^{2} / 2}\right]_{x}^{\infty}-\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \frac{1}{u^{2}} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u
$$

This yields the desired lower bound because $\int_{x}^{\infty} \frac{1}{u^{2}} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u \leq \frac{1}{x^{3}} \int_{x}^{\infty} u \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u=\frac{1}{x^{3}}$.
(ii) By the Markov inequality, for any $\lambda>0$,

$$
\mathbb{P}(\xi>x) \leq \mathrm{e}^{-\lambda x} \mathbb{E}\left[\mathrm{e}^{\lambda \xi}\right]=\mathrm{e}^{-\lambda x+\lambda^{2} / 2}
$$

which yields the desired inequality by taking $\lambda=x$.
Exercice 2. Let ξ be a Gaussian $\mathscr{N}(0,1)$ random variable.
(i) Compute $\mathbb{E}\left(\xi^{4}\right)$ and $\mathbb{E}(|\xi|)$.
(ii) Compute $\mathbb{E}\left(\mathrm{e}^{a \xi}\right), \mathbb{E}\left(\xi \mathrm{e}^{a \xi}\right)$ and $\mathbb{E}\left(\mathrm{e}^{a \xi^{2}}\right)$, with $a \in \mathbb{R}$.
(iii) Let $b \geq 0$. Let η be a Gaussian $\mathscr{N}(0,1)$ random variable, independent of ξ. Prove that $\mathbb{E}\left(\mathrm{e}^{b \xi^{2}}\right)=\mathbb{E}\left(\mathrm{e}^{\lambda \xi \eta}\right)$, where $\lambda:=(2 b)^{1 / 2}$.

Solution. (i) We have $\mathbb{E}\left(\xi^{4}\right)=3, \mathbb{E}(|\xi|)=\left(\frac{2}{\pi}\right)^{1 / 2}$.
(ii) We have $\mathbb{E}\left(\mathrm{e}^{a \xi}\right)=\mathrm{e}^{a^{2} / 2}, \mathbb{E}\left(\xi \mathrm{e}^{a \xi}\right)=a \mathrm{e}^{a^{2} / 2}$. As for $\mathbb{E}\left(\mathrm{e}^{a \xi^{2}}\right)$, it is seen that $\mathbb{E}\left(\mathrm{e}^{a \xi^{2}}\right)=\infty$ if $a \geq \frac{1}{2}$, whereas $\mathbb{E}\left(\mathrm{e}^{a \xi^{2}}\right)=(1-2 a)^{-1 / 2}$ if $a<\frac{1}{2}$.
(iii) By conditioning on ξ, we habe, by (ii), $\mathbb{E}\left(\mathrm{e}^{\lambda \xi \eta} \mid \xi\right)=\mathrm{e}^{\lambda^{2} \xi^{2} / 2}$, which is nothing else but $e^{b \xi^{2}}$. Taking expectation on both sides gives the desired conclusion.

[^0]Exercice 3. Let $\xi, \xi_{1}, \xi_{2}, \cdots$ be real-valued random variables. Assume that for each n, ξ_{n} is Gaussian $\mathscr{N}\left(\mu_{n}, \sigma_{n}^{2}\right)$, with $\mu_{n} \in \mathbb{R}$ and $\sigma_{n} \geq 0$, and that $\xi_{n} \rightarrow \xi$ in law. Prove that ξ is Gaussian.

Solution. For any random variable ξ, we denote its characteristic function by φ_{ξ}. By assumption, $\varphi_{\xi_{n}}(t)=\exp \left(i \mu_{n} t-\frac{\sigma_{n}^{2}}{2} t^{2}\right)$ converges pointwise to $\varphi_{\xi}(t)$. So $\exp \left(-\frac{\sigma_{n}^{2}}{2} t^{2}\right) \rightarrow\left|\varphi_{\xi}(t)\right|$ for any $t \in \mathbb{R}$. As a consequence, $\sigma_{n}^{2} \rightarrow \sigma^{2} \geq 0$ (the possibility that $\sigma_{n}^{2} \rightarrow \infty$ is excluded as $\mathbf{1}_{\{t=0\}}$ is not a characteristic function, being discontinuous at point 0).

Suppose that $\left(\mu_{n}\right)$ is unbounded. Then there exists a subsequence $\left(\mu_{n_{k}}\right)$ tending to $+\infty$ (or to $-\infty$, but the argument will be identical). Let $a \in \mathbb{R}$. The distribution function F_{ξ} of ξ being non-decreasing, we can find $b \geq a$ which is a point of continuity of F_{ξ}. Hence

$$
F_{\xi}(a) \leq F_{\xi}(b)=\lim _{k \rightarrow \infty} \mathbb{P}\left(\xi_{n_{k}} \leq b\right) \leq \frac{1}{2}
$$

as for large $k, \mathbb{P}\left(\xi_{n_{k}} \leq b\right) \leq \mathbb{P}\left(\xi_{n_{k}} \leq \mu_{n_{k}}\right)=\frac{1}{2}$. So $F_{\xi}(a) \leq \frac{1}{2}$ for all $a \in \mathbb{R}$, which is absurd because F_{ξ} is a distribution function and its limit at $+\infty$ is 1 .

The sequence $\left(\mu_{n}\right)$ is thus bounded. Let $\mu \in \mathbb{R}$ and $\nu \in \mathbb{R}$ be limits along subsequences, then $\mathrm{e}^{i \mu t}=\mathrm{e}^{i \nu t}$ for all $t \in \mathbb{R}$, which is possible only if $\mu=\nu$. So the sequence $\left(\mu_{n}\right)$ converges, to a limit, denoted by $\mu \in \mathbb{R}$. Since $\sigma_{n} \rightarrow \sigma$, we have $\varphi_{\xi}(t)=\exp \left(i \mu t-\frac{\sigma^{2}}{2} t^{2}\right)$. In other words, ξ is Gaussian $\mathscr{N}\left(\mu, \sigma^{2}\right)$.

Exercice 4. Let $\xi, \xi_{1}, \xi_{2}, \cdots$ be random variables. Assume that for any n, ξ_{n} is Gaussian $\mathscr{N}\left(\mu_{n}, \sigma_{n}^{2}\right)$, where $\mu_{n} \in \mathbb{R}$ and $\sigma_{n} \geq 0$, and that $\xi_{n} \rightarrow \xi$ in probability. Prove that ξ_{n} converges in L^{p}, for all $p \in[1, \infty)$.

Solution. We use what we have proved in the previous exercise. For $a \in \mathbb{R}$, we have

$$
\mathbb{E}\left(\mathrm{e}^{a \xi_{n}}\right)=\exp \left(a \mu_{n}+\frac{a^{2} \sigma_{n}^{2}}{2}\right)
$$

Since $\mathrm{e}^{|x|} \leq \mathrm{e}^{x}+\mathrm{e}^{-x}$, we have, for all $a \geq 0, \sup _{n} \mathbb{E}\left(\mathrm{e}^{a\left|\xi_{n}\right|}\right)<\infty$. A fortiori, $\sup _{n} \mathbb{E}\left(\left|\xi_{n}\right|^{p+1}\right)<\infty$; hence $\sup _{n} \mathbb{E}\left(\left|\xi_{n}-\xi\right|^{p+1}\right)<\infty$. This implies that $\left(\left|\xi_{n}-\xi\right|^{p}\right)$ is uniformly integrable. Since $\left|\xi_{n}-\xi\right|^{p} \rightarrow 0$ in probability, the convergence takes place also in L^{1}.

Exercice 5. Let (ξ, η, θ) be an \mathbb{R}^{3}-valued Gaussian random vector. Assume $\mathbb{E}(\xi)=\mathbb{E}(\eta)=$ $\mathbb{E}(\xi \eta)=0, \sigma_{\xi}^{2}:=\mathbb{E}\left(\xi^{2}\right)>0$ and $\sigma_{\eta}^{2}:=\mathbb{E}\left(\eta^{2}\right)>0$.
(i) Prove that $\mathbb{E}(\theta \mid \xi, \eta)=\mathbb{E}(\theta \mid \xi)+\mathbb{E}(\theta \mid \eta)-\mathbb{E}(\theta)$.
(ii) Prove that $\mathbb{E}(\xi \mid \xi \eta)=0$.
(iii) Prove that $\mathbb{E}(\theta \mid \xi \eta)=\mathbb{E}(\theta)$.

Solution. (i) Let $a \in \mathbb{R}$ and $b \in \mathbb{R}$. It is clear that ($\xi, \eta, \theta-a \xi-b \eta$), being a linear transform of the Gaussian random variable (ξ, η, θ), is also a Gaussian random variable. So $\theta-a \xi-b \eta$ and (ξ, η) are independent if and only if $\operatorname{Cov}(\theta-a \xi-b \eta, \xi)=\operatorname{Cov}(\theta-a \xi-b \eta, \eta)=0$.

We have $\operatorname{Cov}(\theta-a \xi-b \eta, \xi)=\operatorname{Cov}(\xi, \theta)-a \sigma_{\xi}^{2}$, and $\operatorname{Cov}(\theta-a \xi-b \eta, \eta)=\operatorname{Cov}(\eta, \theta)-b \sigma_{\eta}^{2}$. Choosing from now on $a:=\operatorname{Cov}(\xi, \theta) / \sigma_{\xi}^{2}$ and $b:=\operatorname{Cov}(\eta, \theta) / \sigma_{\eta}^{2}$, it is seen that $\theta-a \xi-b \eta$ is independent of (ξ, η). Accordingly,

$$
\begin{aligned}
\mathbb{E}(\theta \mid \xi, \eta) & =\mathbb{E}(\theta-a \xi-b \eta \mid \xi, \eta)+a \xi+b \eta \\
& =\mathbb{E}(\theta-a \xi-b \eta)+a \xi+b \eta=\mathbb{E}(\theta)+a \xi+b \eta
\end{aligned}
$$

On the other hand, $\theta-a \xi$ is independent of ξ : indeed, $(\xi, \theta-a \xi)$ is a Gaussian random vector, with $\operatorname{Cov}(\xi, \theta-a \xi)=0$; hence $\mathbb{E}(\theta \mid \xi)=\mathbb{E}(\theta-a \xi \mid \xi)+a \xi=\mathbb{E}(\theta-a \xi)+a \xi=\mathbb{E}(\theta)+a \xi$. Similarly, $\mathbb{E}(\theta \mid \eta)=\mathbb{E}(\theta)+b \eta$. As a consequence,

$$
\mathbb{E}(\theta \mid \xi, \eta)=\mathbb{E}(\theta)+a \xi+b \eta=\mathbb{E}(\theta \mid \xi)+\mathbb{E}(\theta \mid \eta)-\mathbb{E}(\theta)
$$

(ii) Let $A \in \sigma(\xi \eta)$. By definition, there exists a Borel set $B \subset \mathbb{R}$ such that $A=\{\omega$: $\xi(\omega) \eta(\omega) \in B\}$. So $\mathbf{1}_{A}=\mathbf{1}_{B}(\xi \eta)$.

Since (ξ, η) is a centered Gaussian random vector, it is distributed as $(-\xi,-\eta)$. Thus $\mathbb{E}\left[\xi \mathbf{1}_{B}(\xi \eta)\right]=\mathbb{E}\left[(-\xi) \mathbf{1}_{B}((-\xi)(-\eta))\right]=-\mathbb{E}\left[\xi \mathbf{1}_{B}(\xi \eta)\right]$, i.e., $\mathbb{E}\left[\xi \mathbf{1}_{B}(\xi \eta)\right]=0$. In other words, $\mathbb{E}\left(\xi \mathbf{1}_{A}\right)=0, \forall A \in \sigma(\xi \eta)$, which means that $\mathbb{E}(\xi \mid \xi \eta)=0$.
(iii) We have $\mathbb{E}(\theta \mid \xi \eta)=\mathbb{E}(\theta-a \xi-b \eta \mid \xi \eta)+a \mathbb{E}(\xi \mid \xi \eta)+b \mathbb{E}(\eta \mid \xi \eta)$. By (ii), $\mathbb{E}(\xi \mid \xi \eta)=0$; similarly, $\mathbb{E}(\eta \mid \xi \eta)=0$. It follows that $\mathbb{E}(\theta \mid \xi \eta)=\mathbb{E}(\theta-a \xi-b \eta \mid \xi \eta)$. We have seen that $\theta-a \xi-b \eta$ is independent of (ξ, η); so $\mathbb{E}(\theta-a \xi-b \eta \mid \xi \eta)=\mathbb{E}(\theta-a \xi-b \eta)=\mathbb{E}(\theta)$, which yields the desired identity.

Exercice 6. Let $\left(\xi_{k, n}, k \geq 0, n \geq 0\right)$ be a collection of i.i.d. Gaussian $\mathscr{N}(0,1)$ random variables. For all $n \geq 0$, we define the process $\left(X_{n}(t), t \in[0,1]\right)$ with $t \mapsto X_{n}(t)$ being affine on each of the intervals $\left[\frac{i}{2^{n}}, \frac{i+1}{2^{n}}\right], 0 \leq i \leq 2^{n}-1$, in the following way $X_{0}(0):=0, X_{0}(1):=\xi_{0,0}$, and by induction, for $n \geq 1$,

$$
\begin{aligned}
X_{n}\left(\frac{2 i}{2^{n}}\right) & :=X_{n-1}\left(\frac{2 i}{2^{n}}\right), \quad 0 \leq i \leq 2^{n-1}, \\
X_{n}\left(\frac{2 j+1}{2^{n}}\right) & :=X_{n-1}\left(\frac{2 j+1}{2^{n}}\right)+\frac{\xi_{2 j+1, n}}{2^{(n+1) / 2}}, \quad 0 \leq j \leq 2^{n-1}-1 .
\end{aligned}
$$

Prove that for all $n \geq 0,\left(X_{n}\left(\frac{k}{2^{n}}\right), 0 \leq k \leq 2^{n}\right)$ is a centered Gaussian vector such that $\mathbb{E}\left[X_{n}\left(\frac{k}{2^{n}}\right) X_{n}\left(\frac{\ell}{2^{n}}\right)\right]=\frac{k}{2^{n}} \wedge \frac{\ell}{2^{n}}$, for $0 \leq k, \ell \leq 2^{n}$.

Solution. We prove by induction in n. The case $n=0$ is trivial. Assume that the desired conclusion holds for $n-1$. It is clear that $\left(X_{n}\left(\frac{k}{2^{n}}\right), 0 \leq k \leq 2^{n}\right)$ is a Gaussian random vector (which is obviously centered), being a linear function of independent Gaussian vectors $\left(X_{n-1}\left(\frac{k}{2^{n-1}}\right), 0 \leq k \leq 2^{n-1}\right)$ and $\left(\xi_{k, n}, 0 \leq k \leq 2^{n}\right)$. It remains to check the covariance. We distinguish two possible situations.

First situation: there is at least an even number among k and ℓ, say $k=2 k_{1}$. In this case, $X_{n}\left(\frac{k}{2^{n}}\right)=X_{n-1}\left(\frac{k_{1}}{2^{n-1}}\right)$, and the desired identity $\operatorname{Cov}\left(X_{n-1}\left(\frac{k}{2^{n}}\right), X_{n-1}\left(\frac{\ell}{2^{n}}\right)\right)=\frac{k}{2^{n}} \wedge \frac{\ell}{2^{n}}$ is trivial by the induction hypothesis if ℓ is even; if, however, ℓ is odd, say $\ell=2 \ell_{1}+1$, then $X_{n}\left(\frac{\ell}{2^{n}}\right)=\frac{1}{2} X_{n-1}\left(\frac{\ell_{1}}{2^{n-1}}\right)+\frac{1}{2} X_{n-1}\left(\frac{\ell_{1}+1}{2^{n-1}}\right)+\frac{\xi_{\ell, n}}{2^{(n+1) / 2}} ;$ since $\xi_{\ell, n}$ is independent of $X_{n-1}\left(\frac{k_{1}}{2^{n-1}}\right)$, we obtain:

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{n}\left(\frac{k}{2^{n}}\right), X_{n}\left(\frac{\ell}{2^{n}}\right)\right) \\
= & \frac{1}{2} \operatorname{Cov}\left(X_{n-1}\left(\frac{k_{1}}{2^{n-1}}\right), X_{n-1}\left(\frac{\ell_{1}}{2^{n-1}}\right)\right)+\frac{1}{2} \operatorname{Cov}\left(X_{n-1}\left(\frac{k_{1}}{2^{n-1}}\right), X_{n-1}\left(\frac{\ell_{1}+1}{2^{n-1}}\right)\right),
\end{aligned}
$$

which, by the induction hypothesis, is $\frac{1}{2}\left(\frac{k_{1}}{2^{n-1}} \wedge \frac{\ell_{1}}{2^{n-1}}\right)+\frac{1}{2}\left(\frac{k_{1}}{2^{n-1}} \wedge \frac{\ell_{1}+1}{2^{n-1}}\right)=\frac{k}{2^{n}} \wedge \frac{\ell}{2^{n}}$ as desired.
Second (and last) situation: both k and ℓ odd numbers, say $k=2 k_{1}+1$ and $\ell=2 \ell_{1}+1$. In this case, we have $X_{n}\left(\frac{k}{2^{n}}\right)=\frac{1}{2} X_{n-1}\left(\frac{k_{1}}{2^{n-1}}\right)+\frac{1}{2} X_{n-1}\left(\frac{k_{1}+1}{2^{n-1}}\right)+\frac{\xi_{k, n}}{2^{(n+1) / 2}}$ and $X_{n}\left(\frac{\ell}{2^{n}}\right)=\frac{1}{2} X_{n-1}\left(\frac{\ell_{1}}{2^{n-1}}\right)+$ $\frac{1}{2} X_{n-1}\left(\frac{\ell_{1}+1}{2^{n-1}}\right)+\frac{\xi_{\ell, n}}{2^{(n+1) / 2}}$. Since $\xi_{k, n}$ and $\xi_{\ell, n}$ are independent of $\left(X_{n-1}(t), t \in[0,1]\right)$, we have, by the induction hypothesis,

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{n}\left(\frac{k}{2^{n}}\right), X_{n}\left(\frac{\ell}{2^{n}}\right)\right)=\frac{1}{4}\left(\frac{k_{1}}{2^{n-1}} \wedge \frac{\ell_{1}}{2^{n-1}}\right)+\frac{1}{4}\left(\frac{k_{1}}{2^{n-1}} \wedge \frac{\ell_{1}+1}{2^{n-1}}\right)+ \\
& \quad+\frac{1}{4}\left(\frac{k_{1}+1}{2^{n-1}} \wedge \frac{\ell_{1}}{2^{n-1}}\right)+\frac{1}{4}\left(\frac{k_{1}+1}{2^{n-1}} \wedge \frac{\ell_{1}+1}{2^{n-1}}\right)+\frac{1}{2^{n+1}} \operatorname{Cov}\left(\xi_{k, n}, \xi_{\ell, n}\right) .
\end{aligned}
$$

It is then easily checked that the sum of the five terms on the right-hand side is indeed $\frac{k}{2^{n}} \wedge \frac{\ell}{2^{n}}$.
By induction, we conclude that $\operatorname{Cov}\left[X_{n}\left(\frac{k}{2^{n}}\right) X_{n}\left(\frac{\ell}{2^{n}}\right)\right]=\frac{k}{2^{n}} \wedge \frac{\ell}{2^{n}}$.
Exercice 7. Let $\left(B_{t}^{m}, t \in[0,1]\right)$, for $m \geq 0$, be a sequence of independent Brownian motions defined on $[0,1]$. Let

$$
B_{t}:=B_{t-\lfloor t\rfloor}^{\lfloor t\rfloor}+\sum_{0 \leq m<\lfloor t\rfloor} B_{1}^{m}, \quad t \geq 0 .
$$

Prove that $\left(B_{t}, t \geq 0\right)$ is Brownian motion.
Solution. Clearly, the trajectories of B are a.s. continuous. It is easily checked that B is a centered Gaussian process with covariance $\operatorname{Cov}\left(B_{t}, B_{s}\right)=t \wedge s$ for all $s \geq 0$ and $t \geq 0$.

Exercice 8. Prove that $\mathscr{C}\left(\mathbb{R}_{+}, \mathbb{R}\right)$, the Borel σ-field of $C\left(\mathbb{R}_{+}, \mathbb{R}\right)$, coincides with $\sigma\left(X_{t}, t \geq 0\right)$, the σ-field generated by the process of projections $\left(X_{t}, t \geq 0\right)$.

Solution. For all $t \geq 0, X_{t}$ is continuous, thus measurable with respect to $\mathscr{C}\left(\mathbb{R}_{+}, \mathbb{R}\right)$. Consequently, $\sigma\left(X_{t}, t \geq 0\right) \subset \mathscr{C}\left(\mathbb{R}_{+}, \mathbb{R}\right)$.

Conversely, for all $\mathrm{w}_{0} \in C\left(\mathbb{R}_{+}, \mathbb{R}\right), \delta_{n}\left(\mathrm{w}, \mathrm{w}_{0}\right)=\sup _{t \in[0, n] \cap \mathbb{Q}}\left|\mathrm{w}(t)-\mathrm{w}_{0}(t)\right|$ is $\sigma\left(X_{t}, t \geq 0\right)$ measurable, and so is $d\left(\mathrm{w}, \mathrm{w}_{0}\right)$. Le F be a closed subset of $C\left(\mathbb{R}_{+}, \mathbb{R}\right)$, and let $\left(\mathrm{w}_{n}\right)$ be a sequence that is dense in F (because the space is separable), then

$$
F=\left\{\mathrm{w} \in C\left(\mathbb{R}_{+}, \mathbb{R}\right): d(\mathrm{w}, F)=0\right\}=\left\{\mathrm{w} \in C\left(\mathbb{R}_{+}, \mathbb{R}\right): \inf _{n} d\left(\mathrm{w}, \mathrm{w}_{n}\right)=0\right\}
$$

which is an element of $\sigma\left(X_{t}, t \geq 0\right)$. Hence, $\mathscr{C}\left(\mathbb{R}_{+}, \mathbb{R}\right) \subset \sigma\left(X_{t}, t \geq 0\right)$.
It is also possible to directly prove that all the open sets are $\sigma\left(X_{t}, t \geq 0\right)$-measurable, by means of the following property ${ }^{2}$: if a metric space is separable, then all opens sets are countable unions of open balls.

Exercice 9. Let $T:=\inf \left\{t \geq 0: B_{t}=1\right\}$ (with $\inf \varnothing:=\infty$). Prove that ${ }^{3} \mathbb{P}(T<\infty) \geq \frac{1}{2}$.
Solution. Let $t>0$. We have $\mathbb{P}(T<\infty) \geq \mathbb{P}(T \leq t) \geq \mathbb{P}\left(B_{t} \geq 1\right)$. Since $\mathbb{P}\left(B_{t} \geq 1\right) \rightarrow \frac{1}{2}$ when $t \rightarrow \infty$, we obtain: $\mathbb{P}(T<\infty) \geq \frac{1}{2}$.

Exercice 10. (i) Prove that $\left(-B_{t}, t \geq 0\right)$ is Brownian motion.
(ii) (Scaling) Prove that for any $a>0,\left(\frac{1}{a^{1 / 2}} B_{a t}, t \geq 0\right)$ is Brownian motion.

Solution. Both are centered Gaussian processes with covariance $s \wedge t$ and with a.s. continuous trajectories.

Exercice 11. (i) Let $\xi:=\int_{0}^{1} B_{t} \mathrm{~d} t$. Determine the law of ξ.
(ii) Let $\eta:=\int_{0}^{2} B_{t} \mathrm{~d} t$. Determine $\mathbb{E}\left(B_{1} \mid \eta\right)$.
(iii) Prove that $B_{7}-B_{2}$ is independent of $\sigma\left(B_{s}, s \in[0,1]\right)$.
(iv) Let $\mathscr{F}_{1}:=\sigma\left(B_{s}, s \in[0,1]\right)$. Determine $\mathbb{E}\left(B_{5} \mid \mathscr{F}_{1}\right)$ and $\mathbb{E}\left(B_{5}^{2} \mid \mathscr{F}_{1}\right)$.

Solution. (i) By definition, ξ is the a.s. limit of $\xi_{n}:=2^{-n} \sum_{i=1}^{2^{n}} B_{i / 2^{n}}$, and a fortiori, the weak limit. For each n, ξ_{n} is Gaussian (because Brownian motion is a Gaussian process). By Exercice $4, \xi$ is Gaussian, with $\mathbb{E}(\xi)=\lim _{n \rightarrow \infty} \mathbb{E}\left(\xi_{n}\right)$ and $\operatorname{Var}(\xi)=\lim _{n \rightarrow \infty} \operatorname{Var}\left(\xi_{n}\right)$.

Since $\mathbb{E}\left(\xi_{n}\right)=0, \forall n$, we have $\mathbb{E}(\xi)=0$.
Since $\operatorname{Var}\left(\xi_{n}\right)=2^{-2 n} \sum_{i=1}^{2^{n}} \sum_{j=1}^{2^{n}}\left(\frac{i}{2^{n}} \wedge \frac{j}{2^{n}}\right) \rightarrow \int_{0}^{1} \int_{0}^{1}(s \wedge t) \mathrm{d} s \mathrm{~d} t=\frac{1}{3}$, we have $\operatorname{Var}(\xi)=\frac{1}{3}$.
Conclusion : ξ is Gaussian $\mathscr{N}\left(0, \frac{1}{3}\right)$.
(ii) Let $a \in \mathbb{R}$ and $b \in \mathbb{R}$. Exactly as in (i), we see that $a B_{1}+b \eta$ is Gaussian, and centered; in other words, $\left(B_{1}, \eta\right)$ is a centered Gaussian random vector. Moreover, $\mathbb{E}\left(B_{1}\right)=0=\mathbb{E}(\eta)$, $\mathbb{E}\left(B_{1}^{2}\right)=1, \mathbb{E}\left(\eta^{2}\right)=\frac{8}{3}$, and $\mathbb{E}\left(B_{1} \eta\right)$ is, by Fubini's theorem (why?), $=\int_{0}^{2} \mathbb{E}\left(B_{1} B_{t}\right) \mathrm{d} t=$ $\int_{0}^{2}(1 \wedge t) \mathrm{d} t=\frac{3}{2}$. Hence $\left(B_{1}, \eta\right)$ has the Gaussian law $\mathscr{N}\left(\binom{0}{0},\left(\begin{array}{cc}1 & \frac{3}{2} \\ \frac{3}{2} & \frac{8}{3}\end{array}\right)\right)$.

In particular, $\mathbb{E}\left(B_{1} \mid \eta\right)=\frac{\mathbb{E}\left(B_{1} \eta\right)}{\mathbb{E}\left(\eta^{2}\right)} \eta=\frac{9}{16} \eta$.
(iii) Let $n \geq 1$, and let $\left(s_{1}, \cdots, s_{n}\right) \in[0,1]^{n}$. Then $\left(B_{7}-B_{2}, B_{s_{1}}, \cdots, B_{s_{n}}\right)$ is a centered Gaussian random vector. Since $\operatorname{Cov}\left(B_{7}-B_{2}, B_{s_{i}}\right)=\operatorname{Cov}\left(B_{7}, B_{s_{i}}\right)-\operatorname{Cov}\left(B_{2}, B_{s_{i}}\right)=s_{i}-s_{i}=0$ for all $i \leq n$, an important property (which one?) of Gaussian random vectors tells us that

[^1]$B_{7}-B_{2}$ is independent of $\left(B_{s_{1}}, \cdots, B_{s_{n}}\right)$. This implies that $B_{7}-B_{2}$ is independent of $\sigma\left(B_{s}, s \in[0,1]\right)$.
(iv) Exactly as in the previous question, we see that $B_{5}-B_{1}$ is indepenfent of \mathscr{F}_{1}. In particular, $\mathbb{E}\left(B_{5} \mid \mathscr{F}_{1}\right)=\mathbb{E}\left(B_{5}-B_{1} \mid \mathscr{F}_{1}\right)+\mathbb{E}\left(B_{1} \mid \mathscr{F}_{1}\right)=\mathbb{E}\left(B_{5}-B_{1}\right)+B_{1}=B_{1}$, et $\mathbb{E}\left(B_{5}^{2} \mid \mathscr{F}_{1}\right)=$ $\mathbb{E}\left(\left(B_{5}-B_{1}\right)^{2} \mid \mathscr{F}_{1}\right)+2 B_{1} \mathbb{E}\left(B_{5} \mid \mathscr{F}_{1}\right)-B_{1}^{2}=\mathbb{E}\left(\left(B_{5}-B_{1}\right)^{2}\right)+2 B_{1}^{2}-B_{1}^{2}=4+B_{1}^{2}$.

Exercice 12. (i) Prove or disprove: for all $t>0, \int_{0}^{t} B_{s}^{2} \mathrm{~d} s$ has the same distribution as $t^{2} \int_{0}^{1} B_{s}^{2} \mathrm{~d} s$.
(ii) Prove or disprove: the processes $\left(\int_{0}^{t} B_{s}^{2} \mathrm{~d} s, t \geq 0\right)$ and ($\left.t^{2} \int_{0}^{1} B_{s}^{2} \mathrm{~d} s, t \geq 0\right)$ have the same distribution.

Solution. (i) The answer is yes, by the scaling property.
(ii) The answer is no: the trajectories of the second process are a.s. C^{∞}, whereas those of the first are a.s. not C^{2}.

Exercice 13. Let T be a random variable having the exponential law of parameter 1, independent of B. Determine the law of B_{T}.

Solution. The measurability of B_{T} is clear if we work in the canonical space of Brownian motion. Let us compute its characteristic function.

Let $x \in \mathbb{R}$. We have $\mathbb{E}\left[\mathrm{e}^{i x B_{T}} \mid T\right]=\mathrm{e}^{-x^{2} T / 2}$, so $\mathbb{E}\left[\mathrm{e}^{i x B_{T}}\right]=\mathbb{E}\left[\mathrm{e}^{-x^{2} T / 2}\right]=\frac{2}{2+x^{2}}$. In other words, B_{T} has density $(1 / \sqrt{2}) \mathrm{e}^{-\sqrt{2}|x|}$ ("two-sided exponential law" of parameter $\sqrt{2}$).

Exercice 14. (i) Prove that $\int_{0}^{1} \frac{B_{s}}{s} \mathrm{~d} s$ is a.s. well defined.
(ii) Let $\beta_{t}:=B_{t}-\int_{0}^{t} \frac{B_{s}}{s} \mathrm{~d} s$. Prove that $\left(\beta_{t}, t \geq 0\right)$ is Brownian motion.

Solution. (i) By Fubini-Tonelli, $\mathbb{E}\left(\int_{0}^{1}\left|\frac{B_{s}}{s}\right| \mathrm{d} s\right)=\int_{0}^{1} \mathbb{E}\left(\left|\frac{B_{s}}{s}\right|\right) \mathrm{d} s=c \int_{0}^{1} s^{-1 / 2} \mathrm{~d} s<\infty$, where $c:=\mathbb{E}\left(\left|B_{1}\right|\right)<\infty$. A fortiori, $\int_{0}^{1}\left|\frac{B_{s}}{s}\right| \mathrm{d} s<\infty$ a.s. Consequently, $\int_{0}^{1} \frac{B_{s}}{s} \mathrm{~d} s$ is a.s. well defined.
[One can also directly prove that $\int_{0}^{1} \frac{B_{s}}{s} \mathrm{~d} s$ is a.s. well defined by means of the Hölder continuity of B.]
(ii) Exactly as in (i), we see that for all $t>0, X_{t}:=\int_{0}^{t} \frac{B_{s}}{s} \mathrm{~d} s$ is well defined a.s. So a.s., the process $\left(X_{t}, t \geq 0\right)$ is well defined (why?), with continuous trajectories, and so is $\left(\beta_{t}:=B_{t}-X_{t}, t \geq 0\right)$.

As in a previous exercise, we see that for all n and all real numbers $a_{1}, \cdots, a_{n}, \sum_{i=1}^{n} a_{i} \beta_{t_{i}}$ is centered Gaussian. As a consequence, β is a centered Gaussian process.

It remains to check the covariance. Let $t \geq s>0$. We have $\mathbb{E}\left(X_{t} B_{s}\right)=s+s \log \left(\frac{t}{s}\right)$ (why?), $\mathbb{E}\left(X_{s} B_{t}\right)=s$ and $\mathbb{E}\left(X_{s} X_{t}\right)=2 s+s \log \left(\frac{t}{s}\right)$. Hence $\mathbb{E}\left(\beta_{t} \beta_{s}\right)=\mathbb{E}\left(B_{t} B_{s}\right)-\mathbb{E}\left(X_{t} B_{s}\right)-\mathbb{E}\left(X_{s} B_{t}\right)+$ $\mathbb{E}\left(X_{t} X_{s}\right)=s$ as desired. Consequently, β is Brownian motion.

Exercice 15. Prove that $\int_{0}^{\infty}\left|B_{s}\right| \mathrm{d} s=\infty$ a.s.

Solution. Let $X_{t}:=\int_{0}^{t}\left|B_{s}\right| \mathrm{d} s, t \geq 0$. By scaling, for all $t>0, X_{t}$ is distributed as $t^{3 / 2} X_{1}$. For all $x>0$, we have $\mathbb{P}\left\{X_{\infty} \geq x\right\} \geq \mathbb{P}\left\{X_{t} \geq x\right\}=\mathbb{P}\left\{X_{1} \geq \frac{x}{t^{3 / 2}}\right\}$ which converges to $\mathbb{P}\left\{X_{1}>0\right\}=1$ when $t \rightarrow \infty$. Since this holds for all $x>0$, we get $X_{\infty}=\infty$ a.s.

Exercice 16. Let $T:=\inf \left\{t \geq 0:\left|B_{t}\right|=1\right\}$ (with $\inf \varnothing:=\infty$).
(i) Prove that $T<\infty$ a.s.
(ii) Prove that T and $\mathbf{1}_{\left\{B_{T}=1\right\}}$ are independent.

Solution. (i) For all $t>0$, we have $\mathbb{P}(T<\infty) \geq \mathbb{P}(T \leq t) \geq \mathbb{P}\left(\left\{B_{t} \geq 1\right\} \cup\left\{B_{t} \leq-1\right\}\right)=$ $\mathbb{P}\left(B_{t} \geq 1\right)+\mathbb{P}\left(B_{t} \leq-1\right)=2 \mathbb{P}\left(B_{t} \geq 1\right)$. Since $\mathbb{P}\left(B_{t} \geq 1\right) \rightarrow \frac{1}{2}$ when $t \rightarrow \infty$, we get $\mathbb{P}(T<\infty) \geq 1$. In other words, $T<\infty$ a.s.
(ii) For bounded Borel function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and by symmetry of Brownian motion (replacing B by $-B$), we have $\mathbb{E}\left[f(T) \boldsymbol{1}_{\left\{B_{T}=1\right\}}\right]=\mathbb{E}\left[f(T) \mathbf{1}_{\left\{B_{T}=-1\right\}}\right]$; hence

$$
\mathbb{E}\left[f(T) \mathbf{1}_{\left\{B_{T}=1\right\}}\right]=\frac{1}{2} \mathbb{E}[f(T)]=\mathbb{P}\left(B_{T}=1\right) \mathbb{E}[f(T)]
$$

the last identity following from the fact that $\mathbb{P}\left(B_{T}=1\right)=\frac{1}{2}$ (taking $f \equiv 1$ in the previous identity). Similarly, $\mathbb{E}\left[f(T) \mathbf{1}_{\left\{B_{T}=-1\right\}}\right]=\mathbb{P}(T=-1) \mathbb{E}\left[f\left(B_{T}\right)\right]$. This yields the desired independence.

Exercice 17. Let $B:=\left(B_{t}, t \in[0,1]\right)$ be Brownian motion defined on $[0,1]$. For all $t \in[0,1]$, let

$$
\begin{aligned}
\mathscr{F}_{t} & :=\sigma\left(B_{s}, s \in[0, t]\right), \\
\mathscr{G}_{t} & :=\mathscr{F}_{t} \vee \sigma\left(B_{1}\right)=\sigma\left(\left\{C ; C \in \mathscr{F}_{t} \text { or } C \in \sigma\left(B_{1}\right)\right\}\right) .
\end{aligned}
$$

(i) Let $0 \leq s<t \leq 1$. Prove that

$$
\mathbb{E}\left[\left(B_{t}-B_{s}\right) \mid \mathscr{G}_{s}\right]=\frac{t-s}{1-s}\left(B_{1}-B_{s}\right) .
$$

(ii) Consider the process $\beta:=\left(\beta_{t}, t \in[0,1]\right)$ defined by

$$
\beta_{t}:=B_{t}-\int_{0}^{t} \frac{B_{1}-B_{s}}{1-s} \mathrm{~d} s, \quad t \in[0,1] .
$$

Prove that for $0 \leq s<t \leq 1, \mathbb{E}\left(\beta_{t} \mid \mathscr{G}_{s}\right)=\beta_{s}$ a.s.
Solution. (i) Write

$$
B_{t}-B_{s}=\frac{t-s}{1-s}\left(B_{1}-B_{s}\right)+\frac{1-t}{1-s}\left(B_{t}-B_{s}\right)-\frac{t-s}{1-s}\left(B_{1}-B_{t}\right) .
$$

Clearly, $\frac{t-s}{1-s}\left(B_{1}-B_{s}\right)$ is \mathscr{G}_{s}-measurable. We now prove that $X:=\frac{1-t}{1-s}\left(B_{t}-B_{s}\right)-\frac{t-s}{1-s}\left(B_{1}-B_{t}\right)$ is independent of \mathscr{G}_{s}. It suffices to prove that for all n and all $0 \leq s_{1}<\cdots<s_{n} \leq s, X$ is independent of $\left(B_{s_{1}}, \cdots, B_{s_{n}}, B_{1}\right)$.

Since $\left(X, B_{s_{1}}, \cdots, B_{s_{n}}, B_{1}\right)$ is a Gaussian vector, it suffices to check that $\operatorname{Cov}\left(X, B_{s_{i}}\right)=$ $\operatorname{Cov}\left(X, B_{1}\right)=0, \forall i$. We have $\operatorname{Cov}\left(X, B_{s_{i}}\right)=\frac{1-t}{1-s}\left(s_{i}-s_{i}\right)-\frac{t-s}{1-s}\left(s_{i}-s_{i}\right)=0$ and $\operatorname{Cov}\left(X, B_{1}\right)=$ $\frac{1-t}{1-s}(t-s)-\frac{t-s}{1-s}(1-t)=0$, as desired.

So X is independent of \mathscr{G}_{s} : we have $\mathbb{E}\left[X \mid \mathscr{G}_{s}\right]=\mathbb{E}[X]=0$. As a consequence, $\mathbb{E}\left[\left(B_{t}-\right.\right.$ $\left.\left.B_{s}\right) \mid \mathscr{G}_{s}\right]=\frac{t-s}{1-s}\left(B_{1}-B_{s}\right)$.
(ii) [The integral $\int_{0}^{1} \frac{B_{1}-B_{s}}{1-s} \mathrm{~d} s$ is a.s. well defined by the local Hölder continuity of Brownian sample paths.]

Let $1 \geq t>s \geq 0$. By (i), $\mathbb{E}\left[B_{t} \mid \mathscr{G}_{s}\right]=B_{s}+\frac{t-s}{1-s}\left(B_{1}-B_{s}\right)$, and $\mathbb{E}\left[\left(B_{1}-B_{u}\right) \mid \mathscr{G}_{s}\right]=$ $B_{1}-B_{s}-\frac{u-s}{1-s}\left(B_{1}-B_{s}\right)=\frac{1-u}{1-s}\left(B_{1}-B_{s}\right)$ for $u \geq s$. By Fubini's theorem (of which the application is easily justified),

$$
\begin{aligned}
\mathbb{E}\left[\beta_{t} \mid \mathscr{G}_{s}\right] & =\mathbb{E}\left[B_{t} \mid \mathscr{G}_{s}\right]-\int_{s}^{t} \frac{\mathbb{E}\left[\left(B_{1}-B_{u}\right) \mid \mathscr{G}_{s}\right]}{1-u} \mathrm{~d} u-\int_{0}^{s} \frac{B_{1}-B_{u}}{1-u} \mathrm{~d} u \\
& =B_{s}+\frac{t-s}{1-s}\left(B_{1}-B_{s}\right)-\int_{s}^{t} \frac{1}{1-u} \frac{1-u}{1-s}\left(B_{1}-B_{s}\right) \mathrm{d} u-\int_{0}^{s} \frac{B_{1}-B_{u}}{1-u} \mathrm{~d} u
\end{aligned}
$$

which is nothing else but β_{s}.
Exercice 18. Let $\mathscr{F}_{1}:=\sigma\left(B_{s}, s \in[0,1]\right)$, and let $a \in \mathbb{R}$. Let \mathbb{Q} be the probability measure on \mathscr{F}_{1} defined by $\mathbb{Q}(A):=\mathbb{E}\left(\mathrm{e}^{a B_{1}-\frac{a^{2}}{2}} \mathbf{1}_{A}\right), A \in \mathscr{F}_{1}$. Define $\gamma_{t}:=B_{t}-a t, t \in[0,1]$. Prove that $\left(\gamma_{t}, t \in[0,1]\right)$ is Brownian motion under \mathbb{Q}.

Solution. The trajectories of γ are \mathbb{P}-continuous and thus also \mathbb{Q}-continuous (the two probabilities being equivalent on \mathscr{F}_{1}). It remains to check that for $0:=t_{0}<t_{1}<\cdots<t_{n} \leq 1$, $B_{t_{n}}-B_{t_{n-1}}, \cdots, B_{t_{2}}-B_{t_{1}}, B_{t_{1}}$ are independent Gaussian random variables under \mathbb{Q}. We consider the characteristic function. Let $\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$. Then

$$
\begin{aligned}
\mathbb{E}_{\mathbb{Q}}\left[\mathrm{e}^{i \sum_{k=1}^{n} x_{k}\left(\gamma_{t_{k}}-\gamma_{t_{k-1}}\right)}\right] & =\mathbb{E}\left[\mathrm{e}^{a B_{1}-\frac{a^{2}}{2}+i \sum_{k=1}^{n} x_{k}\left(B_{t_{k}}-B_{t_{k-1}}\right)}\right] \\
& =\mathrm{e}^{-\frac{a^{2}}{2}-i a \sum_{k=1}^{n} x_{k}\left(t_{k}-t_{k-1}\right)} \mathbb{E}\left[\mathrm{e}^{a\left(B_{1}-B_{t_{n}}\right)+\sum_{k=1}^{n}\left(i x_{k}+a\right)\left(B_{t_{k}}-B_{t_{k-1}}\right)}\right]
\end{aligned}
$$

which is

$$
=\mathrm{e}^{-\frac{a^{2}}{2}-i a \sum_{k=1}^{n} x_{k}\left(t_{k}-t_{k-1}\right)} \mathrm{e}^{\frac{a^{2}}{2}\left(1-t_{n}\right)+\sum_{k=1}^{n} \frac{\left(i x_{k}+a\right)^{2}}{2}\left(t_{k}-t_{k-1}\right)}=\mathrm{e}^{-\frac{1}{2} \sum_{k=1}^{n} x_{k}^{2}\left(t_{k}-t_{k-1}\right)} .
$$

This implies (i) the desired independence under \mathbb{Q}, and (ii) that the law of $\gamma_{t_{k}}-\gamma_{t_{k-1}}$ under \mathbb{Q} is Gaussian $\mathscr{N}\left(0, t_{k}-t_{k-1}\right)$.
"Advanced Probability" (Part III: Brownian motion)

Exercise sheet \#III.2:
Brownian motion and the Markov property

Exercice 1. Let $\mathscr{A}_{1} \subset \mathscr{F}, \cdots, \mathscr{A}_{n} \subset \mathscr{F}$ be π-systems, satisfying $\Omega \in \mathscr{A}_{i}$, $\forall i$. Assume

$$
\mathbb{P}\left(A_{1} \cap \cdots \cap A_{n}\right)=\mathbb{P}\left(A_{1}\right) \cdots \mathbb{P}\left(A_{n}\right), \quad \forall A_{i} \in \mathscr{A}_{i}
$$

Then $\sigma\left(\mathscr{A}_{1}\right), \cdots, \sigma\left(\mathscr{A}_{n}\right)$ are independent.
Solution. Fix $A_{2} \in \mathscr{A}_{2}, \cdots, A_{n} \in \mathscr{A}_{n}$. Consider

$$
\mathscr{M}_{1}:=\left\{C_{1} \in \sigma\left(\mathscr{A}_{1}\right): \mathbb{P}\left(C_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\mathbb{P}\left(C_{1}\right) \mathbb{P}\left(A_{2}\right) \cdots \mathbb{P}\left(A_{n}\right)\right\}
$$

It is easily checked by definition that \mathscr{M}_{1} is a λ-system ${ }^{4}$, whereas by assumption, $\mathscr{A}_{1} \subset \mathscr{M}_{1}$, et \mathscr{A}_{1} is a π-system. So by the π - λ theorem, $\mathscr{M}_{1}=\sigma\left(\mathscr{A}_{1}\right)$; in other words,

$$
\mathbb{P}\left(C_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\mathbb{P}\left(C_{1}\right) \mathbb{P}\left(A_{2}\right) \cdots \mathbb{P}\left(A_{n}\right), \quad \forall C_{1} \in \sigma\left(\mathscr{A}_{1}\right), \forall A_{2} \in \mathscr{A}_{2}, \cdots, \forall A_{n} \in \mathscr{A}_{n} .
$$

To continue, let us fix $C_{1} \in \sigma\left(\mathscr{A}_{1}\right), A_{3} \in \mathscr{A}_{3}, \cdots, A_{n} \in \mathscr{A}_{n}$, and consider

$$
\mathscr{M}_{2}:=\left\{C_{2} \in \sigma\left(\mathscr{A}_{2}\right): \mathbb{P}\left(C_{1} \cap C_{2} \cap A_{3} \cap \cdots \cap A_{n}\right)=\mathbb{P}\left(C_{1}\right) \mathbb{P}\left(C_{2}\right) \mathbb{P}\left(A_{3}\right) \cdots \mathbb{P}\left(A_{n}\right)\right\}
$$

Again, \mathscr{M}_{2} is a λ-system, and we have proved in the previous step that it contains the π-system \mathscr{A}_{2}. Hence $\mathscr{M}_{2}=\sigma\left(\mathscr{A}_{2}\right)$. Iterating the procedure, we arrive at:

$$
\mathbb{P}\left(C_{1} \cap \cdots \cap C_{n}\right)=\mathbb{P}\left(C_{1}\right) \cdots \mathbb{P}\left(C_{n}\right), \quad \forall C_{1} \in \sigma\left(\mathscr{A}_{1}\right), \cdots, \forall C_{n} \in \sigma\left(\mathscr{A}_{n}\right)
$$

which means that $\sigma\left(\mathscr{A}_{1}\right), \cdots, \sigma\left(\mathscr{A}_{n}\right)$ are independent.
Exercice 2. (i) (Time reversal) Fix $a>0$. Prove that $\left(B_{a}-B_{a-t}, t \in[0, a]\right)$ is Brownian motion on $[0, a]$.
(ii) (Time inversion) Prove that $X:=\left(X_{t}, t \geq 0\right)$ defined by $X_{t}:=t B_{\frac{1}{t}}($ for $t>0)$ and $X_{0}:=0$ is Brownian motion.

Solution. In both situations, it is easily checked that the process is centered Gaussian with covariance $s \wedge t$. For time reversal, the continuity of trajectories is obvious. For time inversion,

[^2]one may feel that there could be a continuity problem at 0 : this however, does not cause any trouble because X is, according to Kolmogorov's criterion, undistinguishable to Brownian motion.

Exercice 3. Prove that there exists a constant $a>0$ (that does not depend on ω) such that $\inf _{t \in[0,2]} B_{t}$ has the same distribution as $a \inf _{t \in[0,1]} B_{t}$.
Solution. By scaling, $\inf _{t \in[0,2]} B_{t}$ has the same distribution as $2^{1 / 2} \inf _{t \in[0,1]} B_{t}$.
Exercice 4. (Brownian bridge) Let $b_{t}=B_{t}-t B_{1}, t \in[0,1]$. It is a centered Gaussian process with a.s. continuous trajectories and with covariance $(s \wedge t)-s t$. We call b a Brownian bridge.
(i) The process $\left(b_{t}, t \in[0,1]\right)$ is independent of the random variable B_{1}.
(ii) If b is a Brownian bridge, so is $\left(b_{1-t}, t \in[0,1]\right)$.
(iii) If b is a Brownian bridge, then $B_{t}=(1+t) b_{t /(1+t)}, t \geq 0$, is Brownian motion. Note that $b_{t}=(1-t) B_{t /(1-t)}$.
Solution. (i) Let $0 \leq t_{1}<t_{2}<\cdots<t_{n} \leq 1$. Then ($b_{t_{1}}, \cdots, b_{t_{n}}, B_{1}$) is a Gaussian random vector, with $\operatorname{Cov}\left(b_{t_{i}}, B_{1}\right)=\operatorname{Cov}\left(B_{t_{i}}, B_{1}\right)-\operatorname{Cov}\left(t_{i} B_{1}, B_{1}\right)=t_{i}-t_{i}=0, \forall i$. So a property of Gaussian vectors tells us that $\left(b_{t_{1}}, \cdots, b_{t_{n}}\right)$ is independent of B_{1}.
(ii)-(iii) By checking covariance.

Exercice 5. Prove that

$$
\lim _{t \rightarrow \infty} \frac{B_{t}}{t}=0, \quad \text { a.s. }
$$

Hint: Use time inversion.
Solution. By continuity, $\lim _{t \rightarrow 0+} B_{t}=0$, a.s., which yields the desired conclusion by time inversion.

Exercice 6. Let $\left(t_{n}\right)_{n \geq 1}$ be a sequence of positive real numbers decreasing towards 0 . Prove that a.s., $B_{t_{n}}>0$ for infinitely many n, and $B_{t_{n}}<0$ for infinitely many n.

Solution. Let $A_{n}:=\left\{B_{t_{n}}>0\right\}$. We have $\mathbb{P}\left(A_{n}\right)=\frac{1}{2}, \forall n$, so $\mathbb{P}\left(\lim _{\sup _{n \rightarrow \infty}} A_{n}\right)=\lim _{n \rightarrow \infty} \downarrow$ $\mathbb{P}\left(\cup_{k \geq n} A_{k}\right) \geq \lim \sup _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=\frac{1}{2}$. On the other hand, by Blumenthal's $0-1$ law, we know that $\mathbb{P}\left(\lim \sup _{n \rightarrow \infty} A_{n}\right)$ is either 0 or 1 ; so $\mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=1$. In other words, a.s., $B_{t_{n}}>0$ for infinitely many n.

By considering $-B$ which is also Brownian motion, we see that a.s., $B_{t_{n}}<0$ for infinitely many n.

Exercice 7. Prove that when $t \rightarrow \infty,\left(\int_{0}^{t} \mathrm{e}^{B_{s}} \mathrm{~d} s\right)^{1 / t^{1 / 2}} \rightarrow \mathrm{e}^{|N|}$ in law, where N is a Gaussian $\mathscr{N}(0,1)$ random variable.

Solution. By scaling, for any fixed $t>0,\left(\int_{0}^{t} \mathrm{e}^{B_{s}} \mathrm{~d} s\right)^{1 / t^{1 / 2}}$ is distributed as

$$
\left(t \int_{0}^{1} \mathrm{e}^{\mathrm{t}^{1 / 2} B_{u}} \mathrm{~d} u\right)^{1 / t^{1 / 2}}=\exp \left(\frac{\log t}{t^{1 / 2}}+\frac{1}{t^{1 / 2}} \log \int_{0}^{1} \mathrm{e}^{t^{1 / 2} B_{u}} \mathrm{~d} u\right)
$$

The continuity of trajectories of B implies that $\frac{1}{t^{1 / 2}} \log \int_{0}^{1} \mathrm{e}^{t^{1 / 2} B_{u}} \mathrm{~d} u \rightarrow \sup _{u \in[0,1]} B_{u}$ a.s., so $\exp \left(\frac{\log t}{t^{1 / 2}}+\frac{1}{t^{1 / 2}} \log \int_{0}^{1} \mathrm{e}^{t^{1 / 2} B_{u}} \mathrm{~d} u\right) \rightarrow \exp \left(\sup _{u \in[0,1]} B_{u}\right)$ a.s.

As a consequence, $\left(\int_{0}^{t} \mathrm{e}^{B_{s}} \mathrm{~d} s\right)^{1 / t^{1 / 2}} \rightarrow \exp \left(\sup _{u \in[0,1]} B_{u}\right)$ in law; the limit is distributed as $\mathrm{e}^{|N|}$ (by the reflection principle).

Exercice 8. (i) Prove that $0<\sup _{t \geq 0}\left(\left|B_{t}\right|-t\right)<\infty$ a.s. and that $0<\sup _{t \geq 0} \frac{\left|B_{t}\right|}{1+t}<\infty$ a.s.
(ii) Prove that $\sup _{t \geq 0}\left(\left|B_{t}\right|-t\right)$ and $\left(\sup _{t \geq 0} \frac{\left|B_{t}\right|}{1+t}\right)^{2}$ have the same distribution.

Hint: Use the scaling property.
(iii) Prove that for any $p>0, \mathbb{E}\left\{\left[\sup _{t>0}\left(\left|B_{t}\right|-t\right)\right]^{p}\right\}<\infty$.
(iv) Prove that there exists a constant $C<\infty$ such that for any non-negative random variable T (not necessarily a stopping time!), $\mathbb{E}\left(\left|B_{T}\right|\right) \leq C[\mathbb{E}(T)]^{1 / 2}$.

Hint: Write, for any $a>0,\left|B_{T}\right|=\left(\left|B_{T}\right|-a T\right)+a T$, and prove that $\mathbb{E}\left(\left|B_{T}\right|-a T\right) \leq$ $\frac{1}{a} \mathbb{E}\left[\sup _{t \geq 0}\left(\left|B_{t}\right|-t\right)\right]$.

Solution. (i) It suffices to recall that $\frac{B_{t}}{t} \rightarrow 0$ a.s. for $t \rightarrow \infty$ and that $\lim \sup _{t \rightarrow 0} \frac{B_{t}}{t^{1 / 2}}=\infty$ a.s..
(ii) Let $x>0$. We have $\mathbb{P}\left\{\sup _{t \geq 0}\left(B_{t}-t\right)<x\right\}=\mathbb{P}\left\{B_{t}-t<x, \forall t \geq 0\right\}$. By scaling, the probability is

$$
\begin{aligned}
& =\mathbb{P}\left\{x^{1 / 2} B_{t / x}-t<x, \forall t \geq 0\right\} \\
& =\mathbb{P}\left\{x^{1 / 2} B_{s}-s x<x, \forall s \geq 0\right\} \\
& =\mathbb{P}\left\{\frac{B_{s}}{1+s}<x^{1 / 2}, \forall s \geq 0\right\}
\end{aligned}
$$

from which the desired identity in law follows.
(iii) By (ii), it suffices to check $\mathbb{E}\left\{\left[\sup _{t \geq 0} \frac{\left|B_{t}\right|}{1+t}\right]^{2 p}\right\}<\infty$.

By the reflection principle, $\mathbb{E}\left\{\left[\sup _{t \in[0,1]} B_{t}\right]^{2 p}\right\}<\infty$. By symmetry, $\mathbb{E}\left\{\left[\sup _{t \in[0,1]}\left(-B_{t}\right)\right]^{2 p}\right\}<$ ∞. So $\mathbb{E}\left\{\left[\sup _{t \in[0,1]}\left|B_{t}\right|\right]^{2 p}\right\}<\infty$. A fortiori, $\mathbb{E}\left\{\left[\sup _{t \in[0,1]} \frac{\left|B_{t}\right|}{1+t}\right]^{2 p}\right\}<\infty$.

It remains to check $\mathbb{E}\left\{\left[\sup _{t \geq 1} \frac{\left|B_{t}\right|}{1+t}\right]^{2 p}\right\}<\infty$. We have seen that $\mathbb{E}\left\{\left[\sup _{t \in[0,1]}\left|B_{t}\right|\right]^{2 p}\right\}<\infty$. By inversion of time, this yields $\mathbb{E}\left\{\left[\sup _{t \geq 1} \frac{\left|B_{t}\right|}{t}\right]^{2 p}\right\}<\infty$. A fortiori, $\mathbb{E}\left\{\left[\sup _{t \geq 1} \frac{\left|B_{t}\right|}{1+t}\right]^{2 p}\right\}<\infty$.
(iv) We assume $0<\mathbb{E}(T)<\infty$ (because otherwise, there is nothing to prove).

By scaling, $\mathbb{E}\left(\left|B_{T}\right|-a T\right)=\mathbb{E}\left(\frac{1}{a}\left|B_{a^{2} T}\right|-a T\right)=\frac{1}{a} \mathbb{E}\left(\left|B_{a^{2} T}\right|-a^{2} T\right)$, which is obviously bounded by $\frac{1}{a} \mathbb{E}\left[\sup _{t \geq 0}\left(\left|B_{t}\right|-t\right)\right]$.

So $\mathbb{E}\left(\left|B_{T}\right|\right) \leq \frac{K}{a}+a \mathbb{E}(T)$, with $K:=\mathbb{E}\left[\sup _{t \geq 0}\left(\left|B_{t}\right|-t\right)\right] \in(0, \infty)$. Since this holds for all $a>0$, we take $a:=\left[\frac{K}{\mathbb{E}(T)}\right]^{1 / 2}$ to see that $\mathbb{E}\left(\left|B_{T}\right|\right) \leq 2[K \mathbb{E}(T)]^{1 / 2}$.

Exercice 9. Let $S_{t}:=\sup _{s \in[0, t]} B_{s}, t \geq 0$. Prove that $S_{2}-S_{1}$ is distributed as max $\{|N|-$ $|\widetilde{N}|, 0\}$, where N and \widetilde{N} are independant Gaussian $\mathscr{N}(0,1)$ random variables.

Solution. Put $\beta_{s}:=B_{s+1}-B_{1}, s \geq 0$. By the Markov property, β is Brownian motion, independent of \mathscr{F}_{1}, a fortiori of $\left(S_{1}, B_{1}\right)$.

Write $\widetilde{S}_{t}:=\sup _{s \in[0, t]} \beta_{s}$. Then $\sup _{s \in[1,2]} B_{s}=\widetilde{S}_{1}+B_{1}$; hence $S_{2}=\max \left\{S_{1}, \widetilde{S}_{1}+B_{1}\right\}$. In other words, $S_{2}-S_{1}=\max \left\{0, \widetilde{S}_{1}-\left(S_{1}-B_{1}\right)\right\}$. Since \widetilde{S}_{1} and $S_{1}-B_{1}$ are independent (see the previous paragraph), both having the law of $\left|B_{1}\right|$ (by the reflection principle, the desired identity in law follows.

Exercice 10. Let $d_{1}:=\inf \left\{t \geq 1: B_{t}=0\right\}$ and $g_{1}:=\sup \left\{t \leq 1: B_{t}=0\right\}$.
(i) Is d_{1} a stopping time?
(ii) Determine the law of d_{1}, and the law of g_{1}.

Solution. (i) Fix $t \geq 0$. Let us check $\left\{d_{1} \leq t\right\} \in \mathscr{F}_{t}$.
If $t<1$, then $\left\{d_{1} \leq t\right\}=\varnothing \in \mathscr{F}_{t}$. If $t \geq 1$, we have

$$
\left\{d_{1} \leq t\right\}=\left\{\inf _{s \in[1, t] \cap \mathbb{Q}}\left|B_{s}\right|=0\right\} \in \mathscr{F}_{t} .
$$

Conclusion: d_{1} is a stopping time.
(ii) Let $t \geq 1$. Applying the Markov property at time 1 , we get

$$
\mathbb{P}\left\{d_{1} \leq t\right\}=\int_{-\infty}^{\infty} \mathbb{P}\left\{B_{1} \in \mathrm{~d} x\right\} \mathbb{P}\left\{T_{-x} \leq t-1\right\}
$$

Let N and \widetilde{N} be independent Gaussian $\mathscr{N}(0,1)$ random variables. We know that T_{-x} is distributed as $\frac{x^{2}}{N^{2}}$. Hence

$$
\mathbb{P}\left\{d_{1} \leq t\right\}=\mathbb{P}\left(\frac{\tilde{N}^{2}}{N^{2}} \leq t-1\right)
$$

As consequence, $\left(d_{1}-1\right)^{1 / 2}$ has the standard Cauchy distribution. In other words,

$$
\mathbb{P}\left(d_{1} \in \mathrm{~d} t\right)=\frac{1}{\pi} \frac{\mathbf{1}_{\{t>1\}}}{t(t-1)^{1 / 2}} \mathrm{~d} t
$$

Let us now study the law of g_{1}. For all $t \in[0,1)$,

$$
\begin{aligned}
\mathbb{P}\left(g_{1} \leq t\right) & =\int_{-\infty}^{\infty} \mathbb{P}\left\{B_{t} \in \mathrm{~d} x\right\} \mathbb{P}\left\{T_{-x}>1-t\right\} \\
& =\mathbb{P}\left(\frac{t \widetilde{N}^{2}}{N^{2}}>1-t\right) \\
& =\mathbb{P}\left(\frac{1}{1+(\widetilde{N} / N)^{2}}<t\right)
\end{aligned}
$$

Thus g_{1} is distributed as $\frac{1}{1+C^{2}}$, where C is a standard Cauchy random variable. We have

$$
\mathbb{P}\left(g_{1} \in \mathrm{~d} t\right)=\frac{1}{\pi} \frac{\mathbf{1}_{\{0<t<1\}}}{t(1-t)^{1 / 2}} \mathrm{~d} t .
$$

We say that g_{1} has the Arcsine law, because $\mathbb{P}\left(g_{1} \leq t\right)=\frac{2}{\pi} \arcsin \left(t^{1 / 2}\right)$.
Observe that we could have determined the law of g_{1} from the law of d_{1} by means of the scaling property: $\left\{g_{1}<t\right\}=\left\{d_{t}>1\right\}$, where $d_{t}:=\inf \left\{s \geq t: B_{s}=0\right\}$ has the same law as $t d_{1}$.

Exercice 11. Define $T_{1}:=\inf \left\{t>0: B_{t}=1\right\}$ and $\tau:=\inf \left\{t \geq T_{1}: B_{t}=0\right\}$.
(i) Is τ a stopping time?
(ii) Determine the law of τ.

Solution. (i) Let us first prove that for any finite stopping time $T \geq 0, \tau=\inf \left\{t \geq T: B_{t}=\right.$ $0\}$ is a stopping time. This was proved in the previous exercise when T is a constant. If T takes countably many values, say $\left(t_{n}\right)$, then

$$
\{\tau \leq t\}=\bigcup_{n: t_{n} \leq t}\left\{T=t_{n}\right\} \cap\left\{\inf _{s \in\left[t_{n}, t\right] \cap \mathbb{Q}}\left|B_{s}\right|=0\right\} \in \mathscr{F}_{t}
$$

which means τ is a stopping time.
In the general case, for all n, let

$$
T_{n}:=\sum_{k=0}^{\infty} \frac{k+1}{2^{n}} \mathbf{1}_{\left\{\frac{k}{2^{n}}<T \leq \frac{k+1}{\left.2^{n}\right\}}\right.},
$$

which is a non-increasing stopping times tending to T. By what we have just proved, $\tau_{n}:=$ $\inf \left\{t \geq T_{n}: B_{t}=0\right\}$ is a stopping time; hence

$$
\{\tau \leq t\}=\left(\{T \leq t\} \cap\left\{B_{T}=0\right\}\right) \cup\left(\{T \leq t\} \cap\left\{B_{T} \neq 0\right\} \cap \bigcup_{n=1}^{\infty}\left\{\tau_{n} \leq t\right\}\right)
$$

which is an element of \mathscr{F}_{t}. As a conclusion, τ is a stopping time.
(ii) By the strong Markov property, τ is distributed as $T_{1}+\widetilde{T}_{-1}$, where \widetilde{T}_{-1} is an independent copy of T_{1}. So τ is distributed as T_{2}, thus also as $4 T_{1}$. The density of τ is

$$
\mathbb{P}(\tau \in \mathrm{d} t)=\left(\frac{2}{\pi t^{3}}\right)^{1 / 2} \exp \left(-\frac{2}{t}\right) \mathrm{d} t
$$

for $t>0$.
Exercice 12. (i) Study convergence in probability of $\frac{\log \left(1+B_{t}^{2}\right)}{\log t}$ (quand $t \rightarrow \infty$).
(ii) Study a.s. convergence of $\frac{\log \left(1+B_{B}^{2}\right)}{\log t}$.

Solution. (i) By scaling, for all fixed $t \geq 0, \log \left(1+B_{t}^{2}\right)$ has the same distribution as $\log (1+$ $t B_{1}^{2}$). Since $B_{1} \neq 0$ a.s., we have $\frac{\log \left(1+t B_{1}^{2}\right)}{\log t} \rightarrow 1$ a.s. So $\frac{\log \left(1+B_{t}^{2}\right)}{\log t} \rightarrow 1$ in law. The limit being a constant, the convergence holds also in probability. Conclusion: $\frac{\log \left(1+B_{t}^{2}\right)}{\log t} \rightarrow 1$ in probability.
(ii) If $\frac{\log \left(1+B_{t}^{2}\right)}{\log t}$ converged a.s., it would converge a.s. to 1 . But $\left\{t: B_{t}=0\right\}$ is a.s. unbounded, which makes it impossible to converge a.s. to 1 . Conclusion: $\frac{\log \left(1+B_{t}^{2}\right)}{\log t}$ does not converge a.s.

Exercice 13. Prove, without using inversion of time (but using instead the law of large numbers and the reflection principle), that $\frac{B_{t}}{t} \rightarrow 0$ a.s. when $t \rightarrow \infty$.

Solution. By the strong law of large numbers, $\frac{B_{n}}{n} \rightarrow 0$ a.s. for $n \rightarrow \infty$. It remains to check $\frac{1}{n} \sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right| \rightarrow 0$ a.s.

Let $\varepsilon>0$. Let $A_{n}:=\left\{\sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right|>n^{\varepsilon}\right\}$. We have $\mathbb{P}\left(A_{n}\right)=\mathbb{P}\left(\sup _{s \in[0,1]}\left|B_{s}\right|>\right.$ $\left.n^{\varepsilon}\right) \leq 2 \mathbb{P}\left(\sup _{s \in[0,1]} B_{s}>n^{\varepsilon}\right)$. By the reflection principle, $\sup _{s \in[0,1]} B_{s}$ is distributed as $\left|B_{1}\right|$. So $\mathbb{P}\left(A_{n}\right) \leq 2 \mathbb{P}\left(\left|B_{1}\right|>n^{\varepsilon}\right)=4 \mathbb{P}\left(B_{1}>n^{\varepsilon}\right) \leq 2 \exp \left(-\frac{n^{2 \varepsilon}}{2}\right)$, which yields $\sum_{n} \mathbb{P}\left(A_{n}\right)<$ ∞. By the Borel-Cantelli lemma, $\limsup _{n \rightarrow \infty} n^{-\varepsilon} \sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right| \leq 1$ a.s. A fortiori, $\frac{1}{n} \sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right| \rightarrow 0$ a.s.

Exercice 14. The aim of this exercise is to prove $T<\infty$ a.s., where $T:=\inf \left\{t \geq 0: B_{t}=\right.$ $\left.(1+t)^{1 / 2}\right\}(\inf \varnothing:=\infty)$.

Ken says : Since T is \mathscr{F}_{0+}-measurable, we know from the Blumenthal $0-1$ law that $\mathbb{P}\{T<$ $\infty\}$ is either 0 or 1 . But $\mathbb{P}\{T<\infty\} \geq \mathbb{P}\left\{B_{1} \geq 2^{1 / 2}\right\}>0$, so $T<\infty$ a.s.

What do you think of Ken's argument?
Solution. Ken's argument is wrong, because T is not \mathscr{F}_{0+}-measurable. As a matter of fact, whenever $t>0, T$ is not \mathscr{F}_{t}-measurable.

To prove $T<\infty$ a.s., it suffices to recall that $\lim \sup _{t \rightarrow \infty} \frac{B_{t}}{t^{1 / 2}}=\infty$ a.s.
Exercice 15. (i) Prove that $\int_{0}^{\infty} \sin ^{2}\left(B_{t}\right) \mathrm{d} t=\infty$ a.s.
(ii) More generally, prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous which is not identically 0 , then $\int_{0}^{\infty} f^{2}\left(B_{t}\right) \mathrm{d} t=\infty$ a.s.
Solution. (i) We define inductively two sequences of stopping times $\left(\tau_{i}\right)_{i \geq 1}$ and $\left(T_{i}\right)_{i \geq 1}$ as follows: $\tau_{1}:=0, T_{i}:=\inf \left\{t>\tau_{i}:\left|B_{t}\right|=1\right\}$ and $\tau_{i+1}:=\inf \left\{t>T_{i}: B_{t}=0\right\}$ for $i \geq$ 1. The strong Markov property tells us that $\int_{\tau_{i}}^{T_{i}} \sin ^{2}\left(B_{t}\right) \mathrm{d} t, i \geq 1$, are i.i.d. In particular, $\sum_{i \geq 1} \int_{\tau_{i}}^{T_{i}} \sin ^{2}\left(B_{t}\right) \mathrm{d} t=\infty$ a.s. A fortiori, $\int_{0}^{\infty} B_{t}^{2} \mathrm{~d} t \geq \sum_{i \geq 1} \int_{\tau_{i}}^{T_{i}} \sin ^{2}\left(B_{t}\right) \mathrm{d} t=\infty$ a.s.
(ii) Same argument as in (i), replacing $\inf \left\{t>\tau_{i}:\left|B_{t}\right|=1\right\}$ by $\inf \left\{t>\tau_{i}:\left|B_{t}\right|=a\right\}$, where $a>0$ is such that $f^{2}(x) \in(0, a)$.

Exercice 16. (This exercise is not part of the examination program.) Let $\mathscr{Z}:=\{t \geq 0$: $\left.B_{t}=0\right\}$. Prove that a.s., \mathscr{Z} is closed, unbounded, with no isolated point.

Solution. That \mathscr{Z} is a closed set comes from the continuity of $t \mapsto B_{t}$. We have also seen in the class that \mathscr{Z} is a.s. unbounded. It remains to show that \mathscr{Z} has a.s. no isolated point.

For $t \geq 0$, let $\tau_{t}:=\inf \left\{s \geq t: B_{s}=0\right\}$ which is a stopping time. Clearly, $\tau_{t}<\infty$ a.s., and $B_{\tau_{t}}=0$. The strong Markov property telles us that τ_{t} is not an isolated zero point of B. So a.s. for all $r \in \mathbb{Q}_{+}, \tau_{r}$ is not an isolated zero point.

Let $t \in \mathscr{Z} \backslash\left\{\tau_{r}, r \in \mathbb{Q}_{+}\right\}$. It suffices to show that t is not an isolated zero point. Consider a rational sequence $\left(r_{n}\right) \uparrow \uparrow t$. Clearly, $r_{n} \leq \tau_{r_{n}}<t$. So $\tau_{r_{n}} \rightarrow t$; thus t is not an isolated zero point. ${ }^{5}$

Exercice 17. (i) Let $[a, b]$ and $[c, d]$ be disjoint intervals of \mathbb{R}_{+}. Prove that $\sup _{t \in[a, b]} B_{s} \neq$ $\sup _{t \in[c, d]} B_{s}$ a.s.
(ii) Prove that a.s., each local maximum of B is a strict local maximum.
(iii) Prove that a.s., the set of times at which B realises local maxima is countable and dense in \mathbb{R}_{+}.

Solution. (i) Let $b<c$. By the Markov property, $\sup _{t \in[c, d]} B_{s}-B_{c}$ is independent of $\left(B_{c}, \sup _{t \in[a, b]} B_{s}\right)$, and is distributed as $(d-c)^{1 / 2}|N|$, with N denoting a standard Gaussian $\mathscr{N}(0,1)$ random variable. Since $\mathbb{P}(N=x)=0$ for all $x \in \mathbb{R}$, we obtain the desired result.
(ii) By (i), a.s. for all non-negative rationals $a<b<c<d$, $\sup _{t \in[a, b]} B_{s} \neq \sup _{t \in[c, d]} B_{s}$. If B had a non strict local maximum, there would be two disjoint closed intervals with rational extremity points, on which B would have the same maximal value, which is impossible.
(iii) Let M denote the set of times at which B realises the local minima. Consider the mapping:

$$
[a, b] \mapsto \inf \left\{t \geq a: B_{t}=\sup _{s \in[a, b]} B_{s}\right\}
$$

for all rationals $0 \leq a<b$. According to (i), the image of this mapping contains M a.s., so M is a.s. countable.

Since a.s. there exists no interval on which B is monotone (because B is nowhere differentiable), B admits a local maximum on each interval with rational extremity points: M is a.s. dense.

Exercice 18. (i) Let $a>0$ and let $T_{a}:=\inf \left\{t \geq 0: B_{t}=a\right\}$. Recall that $\mathbb{E}\left[\mathrm{e}^{-\lambda T_{a}}\right]=$ $\mathrm{e}^{-a(2 \lambda)^{1 / 2}}, \forall \lambda \geq 0$. Prove that $\mathbb{P}\left(T_{a} \leq t\right) \leq \exp \left(-\frac{a^{2}}{2 t}\right)$, for all $t>0$.
(ii) Prove that if ξ is a Gaussian $\mathscr{N}(0,1)$ random variable, then $\mathbb{P}(\xi \geq x) \leq \frac{1}{2} \mathrm{e}^{-x^{2} / 2}$, $\forall x>0$.
Solution. (i) Let $\lambda>0$. We have $\mathbb{P}\left(T_{a} \leq t\right)=\mathbb{P}\left(\mathrm{e}^{-\lambda T_{a}} \geq \mathrm{e}^{-\lambda t}\right) \leq \mathrm{e}^{\lambda t} \mathbb{E}\left(\mathrm{e}^{-\lambda T_{a}}\right)=\mathrm{e}^{\lambda t-a(2 \lambda)^{1 / 2}}$.

[^3]Choosing $\lambda:=\frac{a^{2}}{2 t^{2}}$ yields the desired inequality.
(ii) Let $S_{1}:=\sup _{s \in[0,1]} B_{s}$. By (i), we have, for all $a>0, \mathbb{P}\left(S_{1} \geq a\right)=\mathbb{P}\left(T_{a} \leq 1\right) \leq \mathrm{e}^{-a^{2} / 2}$. According to the reflection principle, S_{1} has the law of the modulus of a standard Gaussian random variable: the desired conclusion follows immediately.

Exercice 19. (i) Prove that for all $t>0$ and all $\varepsilon>0, \mathbb{P}\left\{\sup _{s \in[0, t]}\left|B_{s}\right| \leq \varepsilon\right\}>0$.
(ii) Prove that there exists $c \in(0, \infty)$ such that $\mathbb{P}\left\{\sup _{s \in[0,1]}\left|B_{s}\right| \leq \varepsilon\right\} \geq \mathrm{e}^{-c / \varepsilon^{2}}, \forall \varepsilon \in(0,1]$.
(iii) Prove that for all $t>0$ and all $x>0, \mathbb{P}\left\{\sup _{s \in[0, t]}\left|B_{s}\right| \geq x\right\}>0$.

Solution. (i) By scaling, $\mathbb{P}\left\{\sup _{s \in[0, t]}\left|B_{s}\right| \leq \varepsilon\right\}=\mathbb{P}\left\{\sup _{s \in\left[0, \frac{4 t}{\left.\varepsilon^{2}\right]}\right.}\left|B_{s}\right| \leq 2\right\}$. So it suffices to check that for all $a>0, \mathbb{P}\left\{\sup _{s \in[0, a]}\left|B_{s}\right| \leq 2\right\}>0$.

Let $T^{*}:=\inf \left\{t \geq 0:\left|B_{t}\right|=1\right\}$. Let $\delta>0$ be such that $p:=\mathbb{P}\left\{T^{*}>\delta\right\}>0$. By symmetry, $\mathbb{P}\left\{T^{*}>\delta, B_{T^{*}}=1\right\}=\mathbb{P}\left\{T^{*}>\delta, B_{T^{*}}=-1\right\}=\frac{p}{2}>0$. It follows from the strong Markov property that $\mathbb{P}\left\{\sup _{s \in[0, a]}\left|B_{s}\right| \leq 2\right\} \geq\left(\frac{p}{2}\right)^{N}>0$, where $N:=\left\lceil\frac{a}{\delta}\right\rceil$.
(ii) Already proved in (i).
(iii) We have $\mathbb{P}\left\{\sup _{s \in[0, t]}\left|B_{s}\right| \geq x\right\} \geq \mathbb{P}\left\{B_{t} \geq x\right\}=\mathbb{P}\left\{B_{1} \geq \frac{x}{t^{1 / 2}}\right\}>0$, as B_{1} is a standard Gaussian random variable.

Exercice 20. (Law of the iterated logarithm) (This exercise is not part of the examination program.) Let $S_{t}:=\sup _{s \in[0, t]} B_{s}$, and let $h(t):=(2 t \log \log t)^{1 / 2}$.
(i) Let $\varepsilon>0$. Prove that $\sum_{n} \mathbb{P}\left\{S_{t_{n+1}} \geq(1+\varepsilon) h\left(t_{n}\right)\right\}<\infty$, where $t_{n}=(1+\varepsilon)^{n}$. Prove that $\lim \sup _{t \rightarrow \infty} \frac{S_{t}}{h(t)} \leq 1$, a.s.
(ii) Prove that

$$
\limsup _{t \rightarrow \infty} \frac{\sup _{s \in[0, t]}\left|B_{s}\right|}{h(t)} \leq 1, \quad \text { a.s. }
$$

(iii) Let $\theta>1$, and let $s_{n}=\theta^{n}$. Prove that for all $\alpha \in\left(0,\left(1-\frac{1}{\theta}\right)^{1 / 2}\right)$, we have $\sum_{n} \mathbb{P}\left\{B_{s_{n}}-\right.$ $\left.B_{s_{n-1}}>\alpha h\left(s_{n}\right)\right\}=\infty$. Prove that $\lim _{\sup _{t \rightarrow \infty}} \frac{B_{t}}{h(t)} \geq \alpha-\frac{2}{\theta^{1 / 2}}$, a.s.
(iv) Prove that

$$
\limsup _{t \rightarrow \infty} \frac{B_{t}}{h(t)}=1, \quad \text { a.s. }
$$

(v) Let $X_{1}(t):=\left|B_{t}\right|, X_{2}(t):=S_{t}$, and $X_{3}(t):=\sup _{s \in[0, t]}\left|B_{s}\right|$. What can you say about $\lim \sup _{t \rightarrow \infty} \frac{X_{i}(t)}{h(t)}$ for $i=1,2$, ou 3 ?
(vi) What can you say about $\lim \inf _{t \rightarrow \infty} \frac{B_{t}}{h(t)}$? And about $\lim \sup _{t \rightarrow 0} \frac{B_{t}}{[2 t \log \log (1 / t)]^{1 / 2}}$?

Solution. (i) Let $A_{n}:=\left\{S_{t_{n+1}} \geq(1+\varepsilon) h\left(t_{n}\right)\right\}$. We have

$$
\mathbb{P}\left(A_{n}\right)=\mathbb{P}\left(\left|B_{1}\right| \geq\left[2(1+\varepsilon) \log \log t_{n}\right]^{1 / 2}\right) \leq 2 \exp \left(-(1+\varepsilon) \log \log t_{n}\right)
$$

as $\mathbb{P}(N \geq x) \leq \mathrm{e}^{-x^{2} / 2}$ for all $x \geq 0$. Hence $\sum \mathbb{P}\left(A_{n}\right)<\infty$. By the Borel-Cantelli lemma, there exists $A \in \mathscr{F}$ with $\mathbb{P}(A)=1$ such that for all $\omega \in A, \exists n_{0}=n_{0}(\omega)<\infty$,

$$
n \geq n_{0} \Longrightarrow S_{t_{n+1}}<(1+\varepsilon)\left(2 t_{n} \log \log t_{n}\right)^{1 / 2}
$$

Therefore, for $t \in\left[t_{n}, t_{n+1}\right]$,

$$
S_{t} \leq S_{t_{n+1}}<(1+\varepsilon)\left(2 t_{n} \log \log t_{n}\right)^{1 / 2} \leq(1+\varepsilon)(2 t \log \log t)^{1 / 2}
$$

which implies $\lim \sup _{t \rightarrow \infty} \frac{S_{t}}{h(t)} \leq 1+\varepsilon$, a.s. It suffices now to let $\varepsilon \rightarrow 0$ along a sequence of rational numbers to reach the desired conclusion.
(ii) Since $-B$ is also Brownian motion, it follows from (i) that $\lim _{\sup }^{t \rightarrow \infty}$ $\frac{\sup _{s \in[0, t]}\left(-B_{s}\right)}{h(t)} \leq 1$, a.s. The desired result follows.
(iii) Let $E_{n}:=\left\{B_{s_{n}}-B_{s_{n-1}}>\alpha h\left(s_{n}\right)\right\}$. The events $\left(E_{n}\right)$ are independent. Furthermore,

$$
\begin{aligned}
\mathbb{P}\left(E_{n}\right) & =\mathbb{P}\left(B_{1}>\alpha\left(\frac{2 \log \log s_{n}}{1-\theta^{-1}}\right)^{1 / 2}\right) \\
& \sim \frac{1}{(2 \pi)^{1 / 2}} \frac{1}{\alpha\left[2\left(\log \log s_{n}\right) /\left(1-\theta^{-1}\right)\right]^{1 / 2}} \exp \left(-\frac{\alpha^{2} \log \log s_{n}}{1-\theta^{-1}}\right),
\end{aligned}
$$

which yields $\sum_{n} \mathbb{P}\left(E_{n}\right)=\infty$ (because $\alpha<\left(1-\theta^{-1}\right)^{1 / 2}$). By the Borel-Cantelli lemma, there exists $E \in \mathscr{F}$ with $\mathbb{P}(E)=1$ such that for all $\omega \in E$,

$$
B_{s_{n}}-B_{s_{n-1}}>\alpha\left(2 s_{n} \log \log s_{n}\right)^{1 / 2}, \quad \text { for infinitely many } n
$$

On the other hand, by (ii), a.s. for all sufficiently large n,

$$
\left|B_{s_{n-1}}\right| \leq 2\left(2 s_{n-1} \log \log s_{n-1}\right)^{1 / 2} \leq \frac{2}{\theta^{1 / 2}}\left(2 s_{n} \log \log s_{n}\right)^{1 / 2}
$$

The desired inequality follows.
(iv) By (iii), $\limsup _{t \rightarrow \infty} \frac{B_{t}}{h(t)} \geq 1$ a.s., which, together with (i), implies the desired result.
(v) The "limsup" expression is 1 a.s. (for all i).

By inversion of time, $\lim \sup _{t \rightarrow 0} \frac{B_{t}}{(2 t \log \log (1 / t))^{1 / 2}}=1$ a.s.
Exercice 21. Let $\left(P_{t}\right)_{t \geq 0}$ denote the semi-group of Brownian motion. Prove that if $f \in C_{0}$ (continuous function satisfying $\lim _{|x| \rightarrow \infty} f(x)=0$), then $P_{t} f \in C_{0}, \forall t \geq 0$, and $\lim _{t \downarrow 0} P_{t} f=f$ uniformly on \mathbb{R}.

Solution. Let $t>0$. We have

$$
\left(P_{t} f\right)(x)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} f\left(x+t^{1 / 2} z\right) \mathrm{e}^{-z^{2} / 2} \mathrm{~d} z
$$

By the dominated convergence theorem (because f is bounded and continuous), we have $P_{t} f \in C_{0}$.

Let us prove that $\lim _{t \downarrow 0} P_{t} f=f$ uniformly on \mathbb{R}. Write

$$
\left(P_{t} f\right)(x)-f(x)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} \mathrm{e}^{-z^{2} / 2}\left[f\left(x+t^{1 / 2} z\right)-f(x)\right] \mathrm{d} z
$$

(The dominated convergence theorem allows us immediately to see that $P_{t} f \rightarrow f$ pointwise.) Let $\varepsilon>0$. Since f is bounded, there exists $M>0$ such that $\int_{|z|>M} \mathrm{e}^{-z^{2} / 2}\|f\|_{\infty} \mathrm{d} z<\varepsilon$. For $|z| \leq M$, as f is uniformly continuous on \mathbb{R}, there exists $\delta>0$ such that for $t \leq \delta$, we have $\sup _{|z| \leq M}\left|f\left(x+t^{1 / 2} z\right)-f(x)\right| \leq \varepsilon, \forall x \in \mathbb{R}$. Consequently, for all $t \leq \delta,\left|P_{t} f(x)-f(x)\right| \leq$ $\frac{2 \varepsilon}{(2 \pi)^{1 / 2}}+\varepsilon \leq 2 \varepsilon, \forall x \in \mathbb{R}$.

Exercice 22. Prove that if $f \in C_{c}^{2}$ (C^{2} function with compact support), then

$$
\lim _{t \downarrow 0} \frac{\left(P_{t} f\right)(x)-f(x)}{t}=\frac{1}{2} f^{\prime \prime}(x), \quad x \in \mathbb{R}
$$

Solution. Write

$$
\frac{\left(P_{t} f\right)(x)-f(x)}{t}=\frac{1}{(2 \pi)^{1 / 2}} \int_{0}^{\infty} \frac{f\left(x+t^{1 / 2} z\right)+f\left(x-t^{1 / 2} z\right)-2 f(x)}{t} \mathrm{e}^{-z^{2} / 2} \mathrm{~d} z
$$

We let $t \rightarrow 0$. Since $f \in C^{2}$, we have $\frac{f\left(x+t^{1 / 2} z\right)+f\left(x-t^{1 / 2} z\right)-2 f(x)}{t} \rightarrow z^{2} f^{\prime \prime}(x)$, and there exists a constant $K<\infty$ such that for all $t \leq 1, \frac{f\left(x+t^{1 / 2} z\right)+f\left(x-t^{1 / 2} z\right)-2 f(x)}{t} \leq K z^{2}$ (we use, moreover, the assumption that f is of compact support). Since $z^{2} \mathrm{e}^{-z^{2} / 2}$ is integrable, it follows from the dominated convergence theorem that $\frac{\left(P_{t} f\right)(x)-f(x)}{t} \rightarrow \frac{1}{(2 \pi)^{1 / 2}} \int_{0}^{\infty} z^{2} f^{\prime \prime}(x) \mathrm{e}^{-z^{2} / 2} \mathrm{~d} z=\frac{1}{2} f^{\prime \prime}(x)$.

Exercice 23. Let f be a bounded Borel function on \mathbb{R}, and let $u(t, x):=\left(P_{t} f\right)(x)$ (for $t \geq 0$ and $x \in \mathbb{R}$). Prove that

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad t>0, x \in \mathbb{R}
$$

Solution. Fix $t>0$ and $x \in \mathbb{R}$. We have

$$
u(t, x)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} f(r) \frac{1}{t^{1 / 2}} \exp \left(-\frac{(r-x)^{2}}{2 t}\right) \mathrm{d} r
$$

Since f is bounded, we can use the dominated convergence theorem to take the partial derivative (with respect to t) under the integral sign:

$$
\frac{\partial u(t, x)}{\partial t}=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} f(r)\left(-\frac{1}{2 t^{3 / 2}}+\frac{(r-x)^{2}}{2 t^{5 / 2}}\right) \exp \left(-\frac{(r-x)^{2}}{2 t}\right) \mathrm{d} r
$$

Similarly, thanks again to the boundedness of f and to the dominated convergence theorem, we can take the second partial derivative (with respect to x) under the integral sign, to see that

$$
\frac{\partial^{2} u(t, x)}{\partial x^{2}}=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} f(r) \frac{1}{t^{1 / 2}}\left(-\frac{1}{t}+\frac{(r-x)^{2}}{t^{2}}\right) \exp \left(-\frac{(r-x)^{2}}{2 t}\right) \mathrm{d} r
$$

It is readily observed that $\frac{\partial u(t, x)}{\partial t}=\frac{1}{2} \frac{\partial^{2} u(t, x)}{\partial x^{2}}$.
"Advanced Probability" (Part III: Brownian motion)

Exercise sheet \#III.3:
Brownian motion and martingales

Exercice 1. Let $a>0$, and let $T_{a}^{*}:=\inf \left\{t \geq 0:\left|B_{t}\right|=a\right\}$. Prove that T_{a}^{*} has the same distribution as $\frac{a^{2}}{\sup _{s \in[0,1]} B_{s}^{2}}$.
Solution. Let $t>0$. Then $\mathbb{P}\left(T_{a} \leq t\right)=\mathbb{P}\left(\sup _{s \in[0, t]}\left|B_{s}\right| \geq a\right)$, which, by scaling, equals to $\mathbb{P}\left(t^{1 / 2} \sup _{u \in[0,1]}\left|B_{u}\right| \geq a\right)$. As such, T_{a} and $\frac{a^{2}}{\sup _{s \in[0,1]} B_{s}^{2}}$ have the same distribution function: they have the same law.

Exercice 2. Let ξ and η be integrable random variables. Let $\mathscr{G} \subset \mathscr{F}$ be a sigma-algebra.
(i) Prove that $\mathbb{E}(\xi \mid \mathscr{G}) \leq \mathbb{E}(\eta \mid \mathscr{G})$, a.s., if and only if $\mathbb{E}\left(\xi \mathbf{1}_{A}\right) \leq \mathbb{E}\left(\eta \mathbf{1}_{A}\right)$ for all $A \in \mathscr{G}$.
(ii) Prove that $\mathbb{E}(\xi \mid \mathscr{G})=\mathbb{E}(\eta \mid \mathscr{G})$, a.s., if and only if $\mathbb{E}\left(\xi \mathbf{1}_{A}\right)=\mathbb{E}\left(\eta \mathbf{1}_{A}\right)$ for all $A \in \mathscr{G}$.

Solution. (i) Without loss of generality, we may assume $\xi=0$ (otherwise, we replace η by $\eta+\xi)$. We need to prove that $\mathbb{E}(\eta \mid \mathscr{G}) \geq 0$ a.s. $\Leftrightarrow \mathbb{E}\left(\eta \mathbf{1}_{A}\right) \geq 0, \forall A \in \mathscr{G}$.
$" \Rightarrow$ " Assume $\mathbb{E}(\eta \mid \mathscr{G}) \geq 0$ a.s. Then for all $A \in \mathscr{G}$, we have, by the definition of conditional expectation, $\mathbb{E}\left(\eta \mathbf{1}_{A}\right)=\mathbb{E}\left[\mathbf{1}_{A} \mathbb{E}(\eta \mid \mathscr{G})\right]$, which is non-negative because by assumption, $\mathbb{E}(\eta \mid \mathscr{G}) \geq 0$ a.s.
$" \Leftarrow "$ Assume $\mathbb{E}\left(\eta \mathbf{1}_{A}\right) \geq 0, \forall A \in \mathscr{G}$.
Write $\theta:=\mathbb{E}(\eta \mid \mathscr{G})$ which is \mathscr{G}-mesurable. Let $B:=\{\omega: \theta(\omega)<0\} \in \mathscr{G}$. By assumption, $\mathbb{E}\left(\eta \mathbf{1}_{B}\right) \geq 0$. We observe that $\mathbb{E}\left(\eta \mathbf{1}_{B}\right)=\mathbb{E}\left[\mathbb{E}\left(\eta \mathbf{1}_{B} \mid \mathscr{G}\right)\right]=\mathbb{E}\left[\mathbf{1}_{B} \mathbb{E}(\eta \mid \mathscr{G})\right]=\mathbb{E}\left[\mathbf{1}_{B} \theta\right]$; as such, saying that $\mathbb{E}\left(\eta \mathbf{1}_{B}\right) \geq 0$ is equivalent to saying that $\mathbb{E}\left[\mathbf{1}_{B} \theta\right] \geq 0$. Since $\mathbf{1}_{B} \theta \leq 0$, this is possible only if $\mathbf{1}_{B} \theta=0$ a.s., i.e., $\theta \geq 0$ a.s.
(ii) It is a consequence of (i), by considering the pair $(-\xi,-\eta)$ in place of $(-\xi,-\eta)$.

Exercice 3. Let $\left(X_{n}, n \geq 0\right)$ be a sequence of real-valued random variables and let X_{∞} be a real-valued random variable. Prove that $X_{n} \rightarrow X_{\infty}$ in L^{1} (when $n \rightarrow \infty$) if and only if $X_{n} \rightarrow X_{\infty}$ in probability and ($X_{n}, n \geq 0$) is uniformly integrable.

Solution. " \Leftarrow " Without loss of generality, we may assume $X_{\infty}=0$ (otherwise, we consider $X_{n}-X_{\infty}$ in place of X_{t}, by observing that ($X_{n}-X_{\infty}, t \geq 0$) is also uniformly integrable).

Let $\varepsilon>0$. We fix $a>0$ sufficiently large such that $\mathbb{E}\left(\left|X_{n}\right| \mathbf{1}_{\left\{\left|X_{n}\right|>a\right\}}\right)<\varepsilon, \forall n \geq 0$. Then $\mathbb{E}\left(\left|X_{n}\right|\right)=\mathbb{E}\left(\left|X_{n}\right| \mathbf{1}_{\left\{\varepsilon \leq\left|X_{n}\right| \leq a\right\}}\right)+\mathbb{E}\left(\left|X_{n}\right| \mathbf{1}_{\left\{\left|X_{n}\right|>a\right\}}\right)+\mathbb{E}\left(\left|X_{n}\right| \mathbf{1}_{\left\{\left|X_{n}\right|<\varepsilon\right\}}\right) \leq a \mathbb{P}\left(\left|X_{n}\right| \geq \varepsilon\right)+\varepsilon+\varepsilon$.

Letting $n \rightarrow \infty$, and since $X_{n} \rightarrow 0$ in probability, we get $\lim _{\sup }^{n \rightarrow \infty} \boldsymbol{E}\left(\left|X_{n}\right|\right) \leq 2 \varepsilon$, which yields $X_{t} \rightarrow 0$ in L^{1} because $\varepsilon>0$ can be as small as possible.
$" \Rightarrow$ " Assume that $X_{n} \rightarrow X_{\infty}$ in L^{1}.
Convergence in probability follows immediately from convergence in L^{1}. To prove that $\left(X_{n}, n \geq 0\right)$ is uniformly integrable, it suffices to check $(a) \sup _{n \geq 1} \mathbb{E}\left(\left|X_{n}\right|\right)<\infty ;(b)$ for all $\varepsilon>0$, there exists $\delta>0$ such that $\forall B \in \mathscr{F}, \mathbb{P}(B)<\delta \Rightarrow \sup _{n \geq 1} \mathbb{E}\left(\left|X_{n}\right| \mathbf{1}_{B}\right)<\varepsilon$.

Condition (a) is a straightforward consequence of convergence in L^{1}. Let us check condition (b). Let $B \in \mathscr{F}$. We have $\mathbb{E}\left(\left|X_{n}\right| \mathbf{1}_{B}\right) \leq \mathbb{E}\left(\left|X_{\infty}\right| \mathbf{1}_{B}\right)+\mathbb{E}\left(\left|X_{n}-X_{\infty}\right|\right)$. Let $\varepsilon>0$. There exists $n_{0}<\infty$ such that $\mathbb{E}\left(\left|X_{n}-X_{\infty}\right|\right)<\frac{\varepsilon}{2}, \forall n \geq n_{0}$. On the other hand, there exists $\delta>0$ sufficiently small such that if $\mathbb{P}(B)<\delta$, then $\mathbb{E}\left(\left|X_{\infty}\right| \mathbf{1}_{B}\right)<\frac{\varepsilon}{2}$, and $\max _{0 \leq n \leq n_{0}} \mathbb{E}\left(\left|X_{n}\right| \mathbf{1}_{B}\right) \leq \varepsilon$. Hence $\sup _{n \geq 0} \mathbb{E}\left(\left|X_{n}\right| \mathbf{1}_{B}\right) \leq \varepsilon$ for all B with $\mathbb{P}(B)<\delta$: condition (b) is satisfied.

Exercice 4. Let $\left(X_{t}, t \geq 0\right)$ be a family of of real-valued random variables and let X_{∞} be a real-valued random variable. Prove that if $X_{t} \rightarrow X_{\infty}$ in probability (when $t \rightarrow \infty$) and if $\left(X_{t}, t \geq 0\right)$ is uniformly integrable, then $X_{t} \rightarrow X_{\infty}$ in L^{1}.

Prove that the converse is, in general, not true.
Solution. The first part is proved using exactly the same argument as in the previous, replacing everywhere n by t.

To see the converse is not true in general, it suffices to consider an example of ($X_{t}, t \in[0,1]$) that is not uniformly integrable, and let $X_{t}:=0$ for $t>1$. Then $X_{t} \rightarrow 0$ in L^{1} but $\left(X_{t}, t \geq 0\right)$ is not uniformly integrable.

Exercice 5. Let S and T be stopping times.
(i) Prove that $\mathscr{F}_{S} \subset \mathscr{F}_{T}$.
(ii) Prove that both $S \wedge T$ and $S \vee T$ are stopping times, and $\mathscr{F}_{S \wedge T}=\mathscr{F}_{S} \cap \mathscr{F}_{T}$. Moreover, $\{S \leq T\} \in \mathscr{F}_{S \wedge T},\{S=T\} \in \mathscr{F}_{S \wedge T},\{S<T\} \in \mathscr{F}_{S \wedge T}$.
(iii) Prove that $S+T$ is a stopping time. [Hint: both S and T are $\mathscr{F}_{S V T \text {-measurable.] }}$

Solution. (i) Let $A \in \mathscr{F}_{S}$. Then $A \cap\{T \leq t\}=(A \cap\{S \leq t\}) \cap\{T \leq t\} \in \mathscr{F}_{\text {. }}$.
(ii) We have $\{S \wedge T \leq t\}=\{S \leq t\} \cup\{T \leq t\} \in \mathscr{F}_{t}$ and $\{S \vee T \leq t\}=\{S \leq t\} \cap\{T \leq$ $t\} \in \mathscr{F}_{t}$.

By (i), $\mathscr{F}_{S \wedge T} \subset \mathscr{F}_{S} \cap \mathscr{F}_{T}$. Conversely, if $A \in \mathscr{F}_{S} \cap \mathscr{F}_{T}$, then

$$
A \cap\{S \wedge T \leq t\}=(A \cap\{S \leq t\}) \cup(A \cap\{T \leq t\}) \in \mathscr{F}_{t}
$$

thus $A \in \mathscr{F}_{S \wedge T}$. Consequently, $\mathscr{F}_{S \wedge T}=\mathscr{F}_{S} \cap \mathscr{F}_{T}$.
Finally, $\{S \leq T\} \cap\{T \leq t\}=\{S \leq t\} \cap\{T \leq t\} \cap\{S \wedge t \leq T \wedge t\} \in \mathscr{F}_{t}$, because $S \wedge t$ and $T \wedge t$ being $\mathscr{F}_{S \wedge t}$-measurable and $\mathscr{F}_{T \wedge t}$-measurable respectively, are \mathscr{F}_{t}-measurable. Hence
$\{S \leq T\}$ is \mathscr{F}_{T}-measurable. Similarly, $\{S \leq T\} \cap\{S \leq t\}=\{S \leq t\} \cap\{S \wedge t \leq T \wedge t\} \in \mathscr{F}_{t}$, which yields $\{S \leq T\} \in \mathscr{F}_{S}$. Therefore, $\{S \leq T\} \in \mathscr{F}_{S} \cap \mathscr{F}_{T}=\mathscr{F}_{S \wedge T}$.

By exchanging S and T, we have, $\{T \leq S\} \in \mathscr{F}_{S \wedge T}$. Hence $\{S=T\}=\{S \leq T\} \cap\{T \leq$ $S\} \in \mathscr{F}_{S \wedge T}$, and $\{S<T\}=\{S \leq T\} \backslash\{S=T\} \in \mathscr{F}_{S \wedge T}$.
(iii) Since S and T are $\mathscr{F}_{S \vee T}$-measurable, so is $S+T$. We have $\{S+T \leq t\}=\{S+T \leq$ $t\} \cap\{S \vee T \leq t\} \in \mathscr{F}_{t}$, because $\{S+T \leq t\} \in \mathscr{F}_{S \vee T}$.

Exercice 6. Let T be a stopping time. Then

$$
T_{n}:=\sum_{k=0}^{\infty} \frac{k}{2^{n}} \mathbf{1}_{\left\{\frac{k-1}{2^{n}}<T \leq \frac{k}{2^{n}}\right\}}+(+\infty) \mathbf{1}_{\{T=\infty\}}
$$

is a non-increasing sequence of stopping times such that $T_{n}(\omega) \downarrow T(\omega)$ for all $\omega \in \Omega$.
Solution. Clearly, $\left(T_{n}\right)$ decreases pointwise to T. It suffices to check that each T_{n} is a stopping time. Since T_{n} is \mathscr{F}_{T}-measurable, and since $T_{n} \geq T$, we have $\left\{T_{n} \leq t\right\}=\left\{T_{n} \leq t\right\} \cap\{T \leq$ $t\} \in \mathscr{F}_{t}$, because $\left\{T_{n} \leq t\right\} \in \mathscr{F}_{T}$.

Exercice 7. Let T Be a stopping time. Let $\left(X_{t}, t \geq 0\right)$ is an \mathbb{R}^{d}-valued adapted rightcontinuous (or left-continuous) process.
(i) Let $Y: \Omega \rightarrow \mathbb{R}^{d}$. Prove that $Y 1_{\{T<\infty\}}$ is $\mathscr{F}_{T^{-}}$-measurable if and only if $\forall t, Y \mathbf{1}_{\{T \leq t\}}$ is \mathscr{F}_{t}-measurable.
(ii) Prove that for any t, the mapping $[0, t] \times \Omega \rightarrow \mathbb{R}^{d}$ defined by $(s, \omega) \mapsto X_{s}(\omega)$ is $\mathscr{B}([0, t]) \otimes \mathscr{F}_{t}$-measurable, where $\mathscr{B}([0, t])$ denotes the Borel σ-field of $[0, t]$.
(iii) Prove that $X_{T} \mathbf{1}_{\{T<\infty\}}$ is \mathscr{F}_{T}-measurable.

Solution. (i) It suffices to observe that for all $A \in \mathscr{B}\left(\mathbb{R}^{d}\right)$ with $0 \notin A,\left\{Y \mathbf{1}_{\{T \leq t\}} \in A\right\}=$ $\{Y \in A\} \cap\{T \leq t\}$.
(ii) We first assume that $\left(X_{s}, s \geq 0\right)$ is right-continuous. For any $n \geq 1$, let

$$
X_{s}^{(n)}:=X_{t \wedge \frac{(\lfloor n s / t\rfloor+1) t}{n}}, \quad s \in[0, t] .
$$

Then $X_{s}^{(n)}(\omega) \rightarrow X_{s}(\omega)$ by the right-continuity of the trajectories. For any $A \in \mathscr{B}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
& \left\{(s, \omega): s \in[0, t], X_{s}^{(n)}(\omega) \in A\right\} \\
& \quad=\bigcup_{k=1}^{n}\left(\left[\frac{(k-1) t}{n}, \frac{k t}{n}\right) \times\left\{X_{\frac{k t}{n}} \in A\right\}\right) \cup\left(\{t\} \times\left\{X_{t} \in A\right\}\right) \\
& \quad \in \mathscr{B}([0, t]) \otimes \mathscr{F}_{t} .
\end{aligned}
$$

Hence $(s, \omega) \mapsto X_{s}(\omega)$ on $[0, t] \times \Omega$ is $\mathscr{B}([0, t]) \otimes \mathscr{F}_{t}$-measurable.
The proof is similar if $\left(X_{s}, s \geq 0\right)$ is left-continuous; it suffices to consider instead $X_{s}^{(n)}:=$ $X_{\frac{\lfloor n s / t\rfloor t}{n}}$.
(iii) We apply (i) to $Y=X_{T} \mathbf{1}_{\{T<\infty\}}$; so it suffices to check that for all $t, Y \mathbf{1}_{\{T \leq t\}}=$ $X_{T \wedge t} \mathbf{1}_{\{T \leq t\}}$ is \mathscr{F}_{t}-measurable.

Note that $X_{T \wedge t}$ is the composition of the following two mappings:

$$
\begin{aligned}
\left(\Omega, \mathscr{F}_{t}\right) & \longrightarrow\left([0, t] \times \Omega, \mathscr{B}([0, t]) \otimes \mathscr{F}_{t}\right) \\
\omega & \longmapsto(T(\omega) \wedge t, \omega)
\end{aligned}
$$

and

$$
\begin{aligned}
\left([0, t] \times \Omega, \mathscr{B}([0, t]) \otimes \mathscr{F}_{t}\right) & \longrightarrow\left(\mathbb{R}^{d}, \mathscr{B}\left(\mathbb{R}^{d}\right)\right) \\
(s, \omega) & \longmapsto X_{s}(\omega)
\end{aligned}
$$

both of which are measurable. So $X_{T \wedge t}$, as well as $X_{T \wedge t} \mathbf{1}_{\{T \leq t\}}$, are \mathscr{F}_{t}-measurable.
Exercice 8. Let $\left(X_{t}, t \geq 0\right)$ be a submartingale. Prove that for all $t \geq 0$, we have $\sup _{s \in[0, t]} \mathbb{E}\left(\left|X_{s}\right|\right)<\infty$.
Solution. Since $\left(X_{t}^{+}, t \geq 0\right)$ is a submartingale, we have $\mathbb{E}\left(X_{s}^{+}\right) \leq \mathbb{E}\left(X_{t}^{+}\right)$for $s \leq t$. On the other hand, $\mathbb{E}\left(X_{s}\right) \geq \mathbb{E}\left(X_{0}\right)$, which implies $\sup _{s \in[0, t]} \mathbb{E}\left(\left|X_{s}\right|\right) \leq 2 \mathbb{E}\left(X_{t}^{+}\right)-\mathbb{E}\left(X_{0}\right)<\infty$.

Exercice 9. Let $\left(B_{t}, t \geq 0\right)$ be Brownian motion, and let $\left(\mathscr{F}_{t}\right)$ be its canonical filtration. Then the following processes are martingales:
(i) $\left(B_{t}, t \geq 0\right)$.
(ii) $\left(B_{t}^{2}-t, t \geq 0\right)$.
(iii) For any $\theta \in \mathbb{R},\left(\mathrm{e}^{\theta B_{t}-\frac{\theta^{2}}{2} t}, t \geq 0\right)$.

Solution. (i) For any $t, \mathbb{E}\left(\left|B_{t}\right|\right)<\infty$ and B_{t} is \mathscr{F}_{t}-measurable. Let $t>s \geq 0$. Since $B_{t}-B_{s}$ is independent of \mathscr{F}_{s}, we have $\mathbb{E}\left(B_{t}-B_{s} \mid \mathscr{F}_{s}\right)=\mathbb{E}\left(B_{t}-B_{s}\right)$, which vanishes because $B_{t}-B_{s}$ has the Gaussian $\mathscr{N}(0, t-s)$ law. So $\mathbb{E}\left(B_{t} \mid \mathscr{F}_{s}\right)=B_{s}$ a.s.
(ii) For any $t, \mathbb{E}\left(B_{t}^{2}\right)<\infty$ and B_{t}^{2} is \mathscr{F}_{t}-measurable. Let $t>s, \mathbb{E}\left(B_{t}^{2}-t \mid \mathscr{F}_{s}\right)=\mathbb{E}\left[\left(B_{t}-\right.\right.$ $\left.\left.\left.B_{s}+B_{s}\right)^{2} \mid \mathscr{F}_{s}\right)\right]-t$, and for all $x \in \mathbb{R}, \mathbb{E}\left[\left(B_{t}-B_{s}+x\right)^{2}\right]=\operatorname{Var}\left(B_{t}-B_{s}\right)+x^{2}=t-s+x^{2}$, so we get $\mathbb{E}\left(B_{t}^{2}-t \mid \mathscr{F}_{s}\right)=t-s+B_{s}^{2}-t=B_{s}^{2}-s$ a.s.
(iii) For any $t, \mathbb{E}\left(\mathrm{e}^{\theta B_{t}-\frac{\theta^{2}}{2} t}\right)<\infty$ and $\mathrm{e}^{\theta B_{t}-\frac{\theta^{2}}{2} t}$ is \mathscr{F}_{t}-measurable. Let $t>s$. We have $\mathbb{E}\left[\left.\mathrm{e}^{\theta B_{t}-\frac{\theta^{2}}{2} t} \right\rvert\, \mathscr{F}_{s}\right]=\mathrm{e}^{\frac{\theta^{2}}{2} 2(t-s)} \mathrm{e}^{\theta B_{s}-\frac{\theta^{2}}{2} t}=\mathrm{e}^{\theta B_{s}-\frac{\theta^{2}}{2} s}$.

Exercice 10. Let $\left(X_{t}, t \geq 0\right)$ be a process with independent increments, and let $\left(\mathscr{F}_{t}\right)$ be its canonical filtration.
(i) If for all $t, \mathbb{E}\left(\left|X_{t}\right|\right)<\infty$, then $\widetilde{X}_{t}:=X_{t}-\mathbb{E}\left(X_{t}\right)$ is a martingale.
(ii) If for all $t, \mathbb{E}\left(X_{t}^{2}\right)<\infty$, then $Y_{t}:=\widetilde{X}_{t}^{2}-\mathbb{E}\left(\widetilde{X}_{t}^{2}\right)$ is a martingale.
(iii) Let $\theta \in \mathbb{R}$. If $\mathbb{E}\left(\mathrm{e}^{\theta X_{t}}\right)<\infty$ for all $t \geq 0$, then $\left(Z_{t}:=\frac{\mathrm{e}^{\theta X_{t}}}{\mathbb{E}\left[e^{\left.\theta X_{t}\right]}\right.}, t \geq 0\right)$ is a martingale.

Solution. Similar to the solution to the previous exercise.
Exercice 11. Let $X:=\left(X_{t}, t \geq 0\right)$ be a martingale such that $\sup _{t \geq 0} \mathbb{E}\left(\left|X_{t}\right|\right)<\infty$.
(i) Prove that for all $t \geq 0, \mathbb{E}\left(X_{n}^{+} \mid \mathscr{F}_{t}\right)$ converges (when $n \rightarrow \infty$) a.s. to a real-valued random variable, denoted by α_{t}.
(ii) Prove that $\left(\alpha_{t}, t \geq 0\right)$ is a martingale.
(iii) Prove that X is the difference of two non-negative martingales.

Solution. (i) Fix $t \geq 0$. Let $\xi_{n}:=\mathbb{E}\left(X_{n}^{+} \mid \mathscr{F}_{t}\right)$.
For $m>n \geq t, \xi_{n}=\mathbb{E}\left\{\left[\mathbb{E}\left(X_{m} \mid \mathscr{F}_{n}\right)\right]^{+} \mid \mathscr{F}_{t}\right\} \leq \mathbb{E}\left\{\mathbb{E}\left(X_{m}^{+} \mid \mathscr{F}_{n}\right) \mid \mathscr{F}_{t}\right\}=\mathbb{E}\left\{X_{m}^{+} \mid \mathscr{F}_{t}\right\}=\xi_{m}$. So the sequence $\left(\xi_{n}\right)_{n \geq t}$ is a.s. non-decreasing. In particular, it converges a.s., whose limit is denoted by α_{t}.

By the monotone convergence theorem, $\mathbb{E}\left(\alpha_{t}\right)=\lim _{n \rightarrow \infty} \uparrow \mathbb{E}\left(\xi_{n}\right)$. We observe that $\mathbb{E}\left(\xi_{n}\right)=$ $\mathbb{E}\left(X_{n}^{+}\right) \leq \sup _{t \geq 0} \mathbb{E}\left(\left|X_{t}\right|\right)$, which implies $\mathbb{E}\left(\alpha_{t}\right) \leq \sup _{t \geq 0} \mathbb{E}\left(\left|X_{t}\right|\right)<\infty$. In particular, $\alpha_{t}<\infty$ a.s.
(ii) We have seen that for any t, α_{t} is integrable, and is clearly \mathscr{F}_{t}-measurable (being the pointwise limit of \mathscr{F}_{t}-measurable random variables). Let us check the characteristic identity.

Let $s<t$, and let $A \in \mathscr{F}_{s}$. Since α_{t} is the limit of the non-decreasing sequence $\left(\xi_{n}\right)$, it follows from the monotone convergence theorem that $\mathbb{E}\left(\alpha_{t} \mathbf{1}_{A}\right)=\lim _{n \rightarrow \infty} \uparrow \mathbb{E}\left(\xi_{n} \mathbf{1}_{A}\right)$. For $n \geq t$, we have $\mathbb{E}\left(\xi_{n} \mathbf{1}_{A}\right)=\mathbb{E}\left(X_{n}^{+} \mathbf{1}_{A}\right)$, thus $\mathbb{E}\left(\alpha_{t} \mathbf{1}_{A}\right)=\lim _{n \rightarrow \infty} \uparrow \mathbb{E}\left(X_{n}^{+} \mathbf{1}_{A}\right)$. Similarly, $\mathbb{E}\left(\alpha_{s} \mathbf{1}_{A}\right)=\lim _{n \rightarrow \infty} \uparrow \mathbb{E}\left(X_{n}^{+} \mathbf{1}_{A}\right)$. It follows that $\mathbb{E}\left(\alpha_{t} \mathbf{1}_{A}\right)=\mathbb{E}\left(\alpha_{s} \mathbf{1}_{A}\right)$. Since $A \in \mathscr{F}_{s}$ is arbitrary, we deduce that $\mathbb{E}\left(\alpha_{t} \mid \mathscr{F}_{s}\right)=\alpha_{s}$ a.s.
[We note that for question (i) and (ii), it suffices to have a submartingale X satisfying $\sup _{t \geq 0} \mathbb{E}\left(X_{t}^{+}\right)<\infty$.]
(iii) By considering $-X$ in place of X, we see that $\mathbb{E}\left(X_{n}^{-} \mid \mathscr{F}_{t}\right)$ converges a.s. (when $n \rightarrow$ $\infty)$ to a limit, denoted by β_{t}, and that $\left(\beta_{t}, t \geq 0\right)$ is a non-negative martingale. We have $X_{t}=\alpha_{t}-\beta_{t}, \forall t \geq 0$.

Exercice 12. Let ξ be a real-valued random variable. Let $X_{t}:=\mathbb{P}\left(\xi \leq t \mid \mathscr{F}_{t}\right)$. Prove that $\left(X_{t}, t \geq 0\right)$ is a submartingale.

Solution. Let $0 \leq s<t$. Let us check that $\mathbb{E}\left(X_{t} \mid \mathscr{F}_{s}\right) \geq X_{s}$ a.s.
By definition, $X_{t} \geq \mathbb{P}\left(\xi \leq s \mid \mathscr{F}_{t}\right)$; so $\mathbb{E}\left[X_{t} \mid \mathscr{F}_{s}\right] \geq \mathbb{E}\left[\mathbb{P}\left(\xi \leq s \mid \mathscr{F}_{t}\right) \mid \mathscr{F}_{s}\right]=\mathbb{P}\left(\xi \leq s \mid \mathscr{F}_{s}\right)=$ X_{s} 。

Exercice 13. Let $\left(X_{t}, t \geq 0\right)$ be a submartingale. Prove that $\sup _{t \geq 0} \mathbb{E}\left(X_{t}^{+}\right)<\infty$ if and only if $\sup _{t \geq 0} \mathbb{E}\left(\left|X_{t}\right|\right)<\infty$.

Solution. " \Leftarrow " Obvious.
$" \Rightarrow$ " Suppose $\sup _{t \geq 0} \mathbb{E}\left(X_{t}^{+}\right)<\infty$. Since $\left|X_{t}\right|=2 X_{t}^{+}-X_{t}$ and $\mathbb{E}\left(X_{t}\right) \geq \mathbb{E}\left(X_{0}\right)$, we have $\sup _{t \geq 0} \mathbb{E}\left(\left|X_{t}\right|\right) \leq 2 \sup _{t \geq 0} \mathbb{E}\left(X_{t}^{+}\right)-\mathbb{E}\left(X_{0}\right)<\infty$.

Exercice 14. Let $\left(X_{t}, t \geq 0\right)$ be a martingale. If there exists $\xi \in L^{1}(\mathbb{P})$ such that for all $t \geq 0, \mathbb{E}\left(\xi \mid \mathscr{F}_{t}\right)=X_{t}$ a.s., we say that $\left(X_{t}, t \geq 0\right)$ is closed by ξ.

Prove that a right-continuous martingale is closed if and only if it is uniformly integrable.
Solution. If X is closed by ξ, then $X_{t}=\mathbb{E}\left(\xi \mid \mathscr{F}_{t}\right)$ is uniformly integrable.
Conversely, we assume that X is right-continuous and uniformly integrable. Then $X_{t} \rightarrow$ X_{∞} a.s. and in L^{1}, with $X_{t}=\mathbb{E}\left(X_{\infty} \mid \mathscr{F}_{t}\right)$. By definition, this means X is closed by X_{∞}.

Exercice 15. (Discrete backwards submartingales) Let $\left(\mathscr{F}_{n}, n \leq 0\right)$ be a sequence of sub- σ-fields of \mathscr{F} satisfying $\mathscr{F}_{n} \subset \mathscr{F}_{n+1}$ for all $n \leq 0$. Let $\left(X_{n}, n \leq 0\right)$ be such that $\forall n$, X_{n} is \mathscr{F}_{n}-measurable et integrable, and that $\mathbb{E}\left(X_{n+1} \mid \mathscr{F}_{n}\right) \geq X_{n}$ a.s. We call $\left(X_{n}, n \leq 0\right)$ a backward submartingale.
(i) Let $a<b$. Let $U_{n}(X ; a, b)$ be the number of up-crossings along $[a, b]$ by X_{n}, \cdots, X_{-1}, X_{0}. Prove that $\mathbb{E}\left[U_{n}(X ; a, b)\right] \leq \frac{\mathbb{E}\left[\left(X_{0}-a\right)^{+}\right]}{b-a}$.
(ii) Prove that $X_{n} \rightarrow X_{-\infty}$ a.s. when $n \rightarrow-\infty$.
(iii) Assume from now on that $\inf _{n \leq 0} \mathbb{E}\left(X_{n}\right)>-\infty$. Prove that $X_{n} \rightarrow X_{-\infty}$ in L^{1}.

Hint: Only uniform integrability needs proved. By considering $X_{n}-\mathbb{E}\left(X_{0} \mid \mathscr{F}_{n}\right)$, you can argue that X_{n} may be assumed to take values in $(-\infty, 0]$.
(iv) Prove that $X_{-\infty} \leq \mathbb{E}\left(X_{0} \mid \mathscr{F}_{-\infty}\right)$ a.s., where $\mathscr{F}_{-\infty}:=\bigcap_{n \leq 0} \mathscr{F}_{n}$.
(v) (P. Lévy) Let ξ be a real-valued random variable with $\mathbb{E}(|\xi|)<\infty$. Prove that $\mathbb{E}\left(\xi \mid \mathscr{F}_{n}\right) \rightarrow \mathbb{E}\left(\xi \mid \mathscr{F}_{-\infty}\right)$ a.s. and in L^{1}, as $n \rightarrow-\infty$.

Solution. (i) It follows from the usual inequality for the number of up-crossings.
(ii) By (i) and the monotone convergence theorem, $\mathbb{E}\left[U_{\infty}(X ; a, b)\right] \leq \frac{\mathbb{E}\left[\left(X_{0}-a\right)^{+}\right]}{b-a}$, where $U_{\infty}(X ; a, b)$ denotes the number of up-crossings along the interval $[a, b]$ by $\left(X_{n}, n \leq 0\right)$. A fortiori, $U_{\infty}(X ; a, b)<\infty$ a.s.; hence $\mathbb{P}\left(U_{\infty}(X ; a, b)<\infty, \forall a<b\right.$ rationals $)=1$. This yields the a.s. existence of $\lim _{n \rightarrow-\infty} X_{n}$.
(iii) In view of a.s. convergence proved in (ii), it only remains to prove that ($X_{n}, n \leq 0$) is uniformly integrable. Since $\left(\mathbb{E}\left[X_{0} \mid \mathscr{F}_{n}\right], n \leq 0\right)$ is uniformly integrable, it suffices, for the proof of convergence in L^{1}, to verify that the submartingale $\left(X_{n}-\mathbb{E}\left[X_{0} \mid \mathscr{F}_{n}\right], n \leq 0\right)$ is uniformly integrable. As such, we can assume, without loss of generality, that $X_{n} \leq 0$ for all $n \leq 0$.

When $\left.\left.n \rightarrow-\infty, \mathbb{E}\left(X_{n}\right) \rightarrow A=\inf _{n \leq 0} \mathbb{E}\left(X_{n}\right) \in\right]-\infty, 0\right]$. Let $\varepsilon>0$. There exists $N<\infty$ such that $\mathbb{E}\left(X_{-N}\right)-A \leq \varepsilon$, and a fortiori $\mathbb{E}\left(X_{-N}\right)-\mathbb{E}\left(X_{n}\right) \leq \varepsilon, \forall n \leq 0$. Let $a>0$. We have,
for $n \leq-N$,

$$
\begin{aligned}
\mathbb{E}\left[\left|X_{n}\right| \mathbf{1}_{\left\{\left|X_{n}\right|>a\right\}}\right] & =-\mathbb{E}\left[X_{n} \mathbf{1}_{\left\{X_{n}<-a\right\}}\right] \\
& =-\mathbb{E}\left(X_{n}\right)+\mathbb{E}\left[X_{n} \mathbf{1}_{\left\{X_{n} \geq-a\right\}}\right] \\
& \leq-\mathbb{E}\left(X_{n}\right)+\mathbb{E}\left[X_{-N} \mathbf{1}_{\left\{X_{n} \geq-a\right\}}\right] \\
& =-\mathbb{E}\left(X_{n}\right)+\mathbb{E}\left(X_{-N}\right)-\mathbb{E}\left[X_{-N} \mathbf{1}_{\left\{X_{n}<-a\right\}}\right] \\
& \leq \varepsilon+\mathbb{E}\left[\left|X_{-N}\right| \mathbf{1}_{\left\{\left|X_{n}\right|>a\right\}}\right] .
\end{aligned}
$$

By the Markov inequality, $\mathbb{P}\left(\left|X_{n}\right|>a\right) \leq \frac{-\mathbb{E}\left(X_{n}\right)}{a} \leq \frac{-A}{a}=\frac{|A|}{a}$. Hence we can choose a so large that $\mathbb{E}\left[\left|X_{-N}\right| \mathbf{1}_{\left\{\left|X_{n}\right|>a\right\}}\right] \leq \varepsilon$. Then

$$
\sup _{n \leq-N} \mathbb{E}\left[\left|X_{n}\right| \mathbf{1}_{\left\{\left|X_{n}\right|>a\right\}}\right] \leq 2 \varepsilon
$$

On the other hand, we can choose a sufficiently large such that $\mathbb{E}\left[\left|X_{n}\right| \mathbf{1}_{\left\{\left|X_{n}\right|>a\right\}}\right] \leq \varepsilon$ for $n=0$, $-1, \cdots,-N$. Consequently, $\left(X_{n}, n \leq 0\right)$ is uniformly integrable (and $\mathbb{E}\left(\left|X_{-\infty}\right|\right)<\infty$).
(iv) Since $X_{n} \leq \mathbb{E}\left(X_{0} \mid \mathscr{F}_{n}\right)$, we have, for all $A \in \mathscr{F}_{-\infty}\left(A\right.$ is, a fortiori, an element of $\left.\mathscr{F}_{n}\right)$,

$$
\mathbb{E}\left[X_{n} \mathbf{1}_{A}\right] \leq \mathbb{E}\left[X_{0} \mathbf{1}_{A}\right]
$$

Since $X_{n} \rightarrow X_{-\infty}$ in L^{1}, by letting $n \rightarrow-\infty$, we get $\mathbb{E}\left[X_{-\infty} \mathbf{1}_{A}\right] \leq \mathbb{E}\left[X_{0} \mathbf{1}_{A}\right]$. Since $X_{-\infty}$ is $\mathscr{F}_{n^{-}}$ measurable (for all $n \leq 0$) hence $\left(\mathscr{F}_{-\infty}\right)$-measurable, this implies that $X_{-\infty} \leq \mathbb{E}\left(X_{0} \mid \mathscr{F}_{-\infty}\right)$, a.s.
(v) Let $X_{n}:=\mathbb{E}\left(\xi \mid \mathscr{F}_{n}\right), n \leq 0$, which is a backward martingale. By (ii) and (iii), $X_{n} \rightarrow X_{-\infty}$ a.s. and in L^{1}, where

$$
X_{-\infty}=\mathbb{E}\left[X_{0} \mid \mathscr{F}_{-\infty}\right]=\mathbb{E}\left[\mathbb{E}\left(\xi \mid \mathscr{F}_{0}\right) \mid \mathscr{F}_{-\infty}\right]=\mathbb{E}\left[\xi \mid \mathscr{F}_{-\infty}\right], \quad \text { a.s. }
$$

as desired.

Exercice 16. Let $\left(X_{t}, t \geq 0\right)$ be a continuous and non-negative martingale. Let $T:=\inf \{t \geq$ $\left.0: X_{t}=0\right\}$ (with $\inf \varnothing:=\infty$). Prove that a.s. on $\{T<\infty\}$, we have $X_{t}=0, \forall t \geq T$.

Solution. Fix $n \geq 1$. We apply the optional sampling theorem to the uniformly integrable martingale $\left(X_{t \wedge n}, t \geq 0\right)$ and to the pair of stopping times T and $T+t$, to see that $\mathbb{E}\left(X_{(T+t) \wedge n} \mid \mathscr{F}_{T}\right)=X_{T \wedge n}$. Let $n \rightarrow \infty$. By the conditional Fatou's lemma, $\mathbb{E}\left(X_{T+t} \mid \mathscr{F}_{T}\right) \leq$ X_{T}, hence $\mathbb{E}\left(X_{T+t} \mathbf{1}_{\{T<\infty\}} \mid \mathscr{F}_{T}\right) \leq X_{T} \mathbf{1}_{\{T<\infty\}}=0$. This is possible only if $X_{T+t} \mathbf{1}_{\{T<\infty\}}=0$ a.s., i.e., $X_{T+t}=0$ a.s. on $\{T<\infty\}$.

Summarizing: a.s. on $\{T<\infty\}$, we have $X_{T+t}=0, \forall t \in \mathbb{R}_{+} \cap \mathbb{Q}$. The continuity of X tells us that we can remove the restriction $t \in \mathbb{Q}$.

Exercice 17. Let $\left(X_{t}, t \geq 0\right)$ be a right-continuous submartingale, and let S and T be bounded stopping times. Prove that

$$
\mathbb{E}\left(X_{T} \mid \mathscr{F}_{S}\right) \geq X_{T \wedge S}, \quad \text { a.s. }
$$

Solution. We have

$$
\begin{aligned}
\mathbb{E}\left[X_{T} \mid \mathscr{F}_{S}\right] & =\mathbb{E}\left[X_{T \wedge S} \mathbf{1}_{\{T \leq S\}} \mid \mathscr{F}_{S}\right]+\mathbb{E}\left[X_{T \vee S} \mathbf{1}_{\{T>S\}} \mid \mathscr{F}_{S}\right] \\
& =X_{T \wedge S} \mathbf{1}_{\{T \leq S\}}+\mathbf{1}_{\{T>S\}} \mathbb{E}\left[X_{T \vee S} \mid \mathscr{F}_{S}\right] \\
& \geq X_{T \wedge S} \mathbf{1}_{\{T \leq S\}}+\mathbf{1}_{\{T>S\}} X_{S}=X_{T \wedge S},
\end{aligned}
$$

as desired.
Exercice 18. Let $\left(X_{t}, t \geq 0\right)$ be a right-continuous martingale. Let T be a stopping time.
(i) Prove that $\left(X_{T \wedge t}, t \geq 0\right)$ is a right-continuous martingale.
(ii) Prove that if $\left(X_{t}, t \geq 0\right)$ is uniformly integrable, then so is $\left(X_{T \wedge t}, t \geq 0\right)$.

Solution. (i) The right-continuity of the trajectories is obvious. Let us prove that ($X_{T \wedge t}, t \geq$ $0)$ is a martingale with respect to $\left(\mathscr{F}_{t}\right)$.

For $t \geq 0$, it is clear that $\mathbb{E}\left(\left|X_{T \wedge t}\right|\right)<\infty$ (a consequence of the optional sampling theorem) and that $X_{T \wedge t}$ is \mathscr{F}_{t}-measurable (being $\mathscr{F}_{T \wedge t}$-measurable). Let $t>s \geq 0$. Applying the previous exercise gives $\mathbb{E}\left(X_{T \wedge t} \mid \mathscr{F}_{s}\right)=X_{(T \wedge t) \wedge s}$, which is $X_{T \wedge s}$.
(ii) If $\left(X_{t}, t \geq 0\right)$ is uniformly integrable, then the optional sampling theorem says that $X_{T \wedge t}=\mathbb{E}\left(X_{\infty} \mid \mathscr{F}_{T \wedge t}\right)$, which yields the uniform integrability of $\left(X_{T \wedge t}, t \geq 0\right)$ by recalling that for any integrable random variable $\xi,(\mathbb{E}(\xi \mid \mathscr{G}), \mathscr{G} \subset \mathscr{F} \sigma$-field $)$ is uniformly integrable.

Exercice 19. Let $\left(X_{t}, t \geq 0\right)$ be a non-negative and right-continuous supermartingale. Recall that $X_{t} \rightarrow X_{\infty}$ a.s. in this case. Prove that if $\mathbb{E}\left(X_{\infty}\right)=\mathbb{E}\left(X_{0}\right)$, then $\left(X_{t}, t \geq 0\right)$ is a uniformly integrable martingale.

Solution. By the conditional Fatou's lemma, $\mathbb{E}\left(X_{\infty} \mid \mathscr{F}_{t}\right) \leq X_{t}$ a.s. Taking expectation on both sides gives $\mathbb{E}\left(X_{\infty}\right) \leq \mathbb{E}\left(X_{t}\right)$ which is $\leq \mathbb{E}\left(X_{0}\right)$ because X is a supermartingale. By assumption, $\mathbb{E}\left(X_{\infty}\right)=\mathbb{E}\left(X_{0}\right)$, which is possible only if $\mathbb{E}\left(X_{\infty} \mid \mathscr{F}_{t}\right)=X_{t}$ a.s., i.e., only if is a uniformly integrable martingale.

Exercice 20. Let $X=\left(X_{t}, t \geq 0\right)$ be a non-negative continuous submartingale. We write $S_{t}:=\sup _{s \in[0, t]} X_{s}, t \geq 0$.
(i) Prove that for all $\lambda>0$ and all $t \geq 0, \lambda \mathbb{P}\left(S_{t}>2 \lambda\right) \leq \mathbb{E}\left[X_{t} \mathbf{1}_{\left\{X_{t}>\lambda\right\}}\right]$.

We can use the following inequality: for all $a>0, a \mathbb{P}\left(S_{t}>a\right) \leq \mathbb{E}\left[X_{t} \mathbf{1}_{\left\{S_{t}>a\right\}}\right]$ (this follows from the maximal inequality for discrete-time submartingales and the continuity of the trajectories).
(ii) Prove that $\frac{1}{2} \mathbb{E}\left[S_{t}\right] \leq 1+\mathbb{E}\left[X_{t} \log _{+} X_{t}\right]$, wher $\log _{+} x:=\log \max (x, 1)$.
(iii) Let $\left(Y_{t}, t \geq 0\right)$ be a continuous and uniformly integrable martingale. We assume that $\mathbb{E}\left[\left|Y_{\infty}\right| \log _{+}\left|Y_{\infty}\right|\right]<\infty$. Prove that $\sup _{t \geq 0}\left|Y_{t}\right|$ is integrable.

Solution. (i) For all $a>0, a \mathbb{P}\left(S_{t} \geq a\right) \leq \mathbb{E}\left[X_{t} \mathbf{1}_{\left\{S_{t} \geq a\right\}}\right]$. So

$$
\begin{aligned}
2 \lambda \mathbb{P}\left(S_{t} \geq 2 \lambda\right) & \leq \mathbb{E}\left[X_{t} \mathbf{1}_{\left\{S_{t} \geq 2 \lambda\right\}}\right] \leq \mathbb{E}\left[X_{t} \mathbf{1}_{\left\{X_{t}>\lambda\right\}}\right]+\mathbb{E}\left[X_{t} \mathbf{1}_{\left\{X_{t} \leq \lambda, S_{t} \geq 2 \lambda\right\}}\right] \\
& \leq \mathbb{E}\left[X_{t} \mathbf{1}_{\left\{X_{t}>\lambda\right\}}\right]+\lambda \mathbb{P}\left(S_{t} \geq 2 \lambda\right),
\end{aligned}
$$

from which the desired inequality follows.
(ii) We have

$$
\begin{aligned}
\frac{1}{2} \mathbb{E}\left[S_{t}\right] & =\int_{0}^{\infty} \mathbb{P}\left(S_{t} \geq 2 \lambda\right) \mathrm{d} \lambda \leq 1+\int_{1}^{\infty} \mathbb{P}\left(S_{t} \geq 2 \lambda\right) \mathrm{d} \lambda \\
& \leq 1+\int_{1}^{\infty} \mathbb{E}\left[\lambda^{-1} X_{t} \mathbf{1}_{\left\{X_{t}>\lambda\right\}}\right] \mathrm{d} \lambda
\end{aligned}
$$

By Fubini's theorem, the last integral equals $\mathbb{E}\left[\int_{1}^{X_{t}} \lambda^{-1} X_{t} \mathbf{1}_{\left\{X_{t} \geq 1\right\}} \mathrm{d} \lambda\right]=\mathbb{E}\left[X_{t} \log _{+} X_{t}\right]$. We obtain the desired result.
(iii) By assumption, $Y_{t}=\mathbb{E}\left(Y_{\infty} \mid \mathscr{F}_{t}\right)$. Since $x \mapsto|x| \log _{+}|x|=: \varphi(x)$ is convex, Jensen's inequality says that $\varphi\left(Y_{t}\right) \leq \mathbb{E}\left[\varphi\left(Y_{\infty}\right) \mid \mathscr{F}_{t}\right]$; hence $\sup _{t \geq 0} \mathbb{E}\left[\varphi\left(Y_{t}\right)\right] \leq \mathbb{E}\left[\varphi\left(Y_{\infty}\right)\right]<\infty$. By (ii) (applied to $X_{t}:=\left|Y_{t}\right|, t \geq 0$, which is a non-negative submartingale), $\frac{1}{2} \mathbb{E}\left(\sup _{s \in[0, t]}\left|Y_{s}\right|\right) \leq$ $1+\mathbb{E}\left[\varphi\left(Y_{t}\right)\right] \leq 1+\mathbb{E}\left[\varphi\left(Y_{\infty}\right)\right]$. It follows from the monotone convergence theorem that $\mathbb{E}\left(\sup _{t \geq 0}\left|Y_{t}\right|\right) \leq 2+2 \mathbb{E}\left[\varphi\left(Y_{\infty}\right)\right]<\infty$.

Exercice 21. For any martingale $X:=\left(X_{t}, t \geq 0\right)$, we say that it is square-integrable if $\mathbb{E}\left(X_{t}^{2}\right)<\infty, \forall t \geq 0$, and that it is bounded in L^{2} if $\sup _{t \geq 0} \mathbb{E}\left(X_{t}^{2}\right)<\infty$.
(i) Prove that if X is a right-continuous martingale and is bounded in L^{2}, then it is uniformly integrable, with $\mathbb{E}\left(\sup _{t \geq 0} X_{t}^{2}\right)<\infty$.
(ii) Let X and Y be right-continuous martingales that are bounded in L^{2}. Let S and T be stopping times. Prove that $\mathbb{E}\left(X_{S} Y_{T}\right)=\mathbb{E}\left(X_{S \wedge T} Y_{S \wedge T}\right)$.
(iii) Let X and Y be right-continuous and square-integrable martingales. Let S and T be bounded stopping times. Prove that $\mathbb{E}\left(X_{S} Y_{T}\right)=\mathbb{E}\left(X_{S \wedge T} Y_{S \wedge T}\right)$.

Solution. (i) That $\mathbb{E}\left(\sup _{t \geq 0} X_{t}^{2}\right)<\infty$ is a consequence of Doob's inequality. In particular, $\mathbb{E}\left(\sup _{t \geq 0}\left|X_{t}\right|\right)<\infty$; a fortiori, X is uniformly integrable.
(ii) Since $\left|X_{S}\right| \leq \sup _{t \geq 0}\left|X_{t}\right|$, we have $\mathbb{E}\left(X_{S}^{2}\right)<\infty$. Similarly, $\mathbb{E}\left(Y_{T}^{2}\right)<\infty$. Hence by the Cauchy-Schwarz inequality, $\mathbb{E}\left(\left|X_{S} Y_{T}\right|\right)<\infty$.

Applying the optional sampling theorem to the uniformly integral martingale Y gives

$$
\begin{aligned}
\mathbb{E}\left(X_{S} Y_{T} \mathbf{1}_{\{S \leq T\}} \mid \mathscr{F}_{S}\right) & =X_{S} \mathbf{1}_{\{S \leq T\}} \mathbb{E}\left(Y_{T \vee S} \mid \mathscr{F}_{S}\right) \\
& =X_{S} \mathbf{1}_{\{S \leq T\}} Y_{S} \\
& =X_{S \wedge T} Y_{S \wedge T} \mathbf{1}_{\{S \leq T\}},
\end{aligned}
$$

from which it follows that

$$
\mathbb{E}\left(X_{S} Y_{T} \mathbf{1}_{\{S \leq T\}}\right)=\mathbb{E}\left(X_{S \wedge T} Y_{S \wedge T} \mathbf{1}_{\{S \leq T\}}\right) .
$$

On the other hand, $X_{S} Y_{T} \mathbf{1}_{\{S>T\}}=X_{S \wedge T} Y_{S \wedge T} \mathbf{1}_{\{S>T\}}$. Hence

$$
\mathbb{E}\left(X_{S} Y_{T} \mathbf{1}_{\{S>T\}}\right)=\mathbb{E}\left(X_{S \wedge T} Y_{S \wedge T} \mathbf{1}_{\{S>T\}}\right)
$$

Consequently, $\mathbb{E}\left(X_{S} Y_{T}\right)=\mathbb{E}\left(X_{S \wedge T} Y_{S \wedge T}\right)$.
(iii) The same proof as in (ii), except in two places:

- to justify the integrability of $X_{S} Y_{T}$, let $a>0$ be such that $S \leq a$, then $\mathbb{E}\left(X_{S}^{2}\right) \leq$ $\mathbb{E}\left(\sup _{u \in[0, a]} X_{u}^{2}\right) \leq 4 \mathbb{E}\left(X_{a}^{2}\right)<\infty$, and similarly, $\mathbb{E}\left(Y_{T}^{2}\right)<\infty$, so $\mathbb{E}\left(\left|X_{S} Y_{T}\right|\right)<\infty$;
- to justify $\mathbb{E}\left(Y_{T \vee S} \mid \mathscr{F}_{S}\right)=Y_{S}$, we apply the optional sampling theorem to Y and to the pair of bounded stopping times $T \vee S$ and S.

Exercice 22. Let $S \leq T$ be bounded stopping times. Prove that $\mathbb{E}\left[\left(B_{T}-B_{S}\right)^{2}\right]=\mathbb{E}\left(B_{T}^{2}\right)-$ $\mathbb{E}\left(B_{S}^{2}\right)=\mathbb{E}(T-S)$.

Solution. Since S and T are bounded, Doob's inequality implies that $\mathbb{E}\left(B_{s}^{2}\right)<\infty$ and that $\mathbb{E}\left(B_{T}^{2}\right)<\infty$. We have

$$
\begin{aligned}
\mathbb{E}\left[\left(B_{T}-B_{S}\right)^{2}\right] & =\mathbb{E}\left(B_{S}^{2}\right)+\mathbb{E}\left(B_{T}^{2}\right)-2 \mathbb{E}\left[\mathbb{E}\left(B_{S} B_{T} \mid \mathscr{F}_{S}\right)\right] \\
& =\mathbb{E}\left(B_{S}^{2}\right)+\mathbb{E}\left(B_{T}^{2}\right)-2 \mathbb{E}\left[B_{S} \mathbb{E}\left(B_{T} \mid \mathscr{F}_{S}\right)\right]
\end{aligned}
$$

because B_{S} is \mathscr{F}_{S})-measurable. Applying the optional sample theorem to B and to the pair of bounded stopping times S and T yields $\mathbb{E}\left(B_{T} \mid \mathscr{F}_{S}\right)=B_{S}$, which, in turn, implies that

$$
\mathbb{E}\left[\left(B_{T}-B_{S}\right)^{2}\right]=\mathbb{E}\left(B_{S}^{2}\right)+\mathbb{E}\left(B_{T}^{2}\right)-2 \mathbb{E}\left[B_{S}^{2}\right]=\mathbb{E}\left(B_{T}^{2}\right)-\mathbb{E}\left(B_{S}^{2}\right)
$$

We now apply the optional sample theorem to $\left(B_{t}^{2}-t, t \geq 0\right)$ and to the pair of bounded stopping times T and 0 , to see that $\mathbb{E}\left(B_{T}^{2}-T\right)=0$; thus $\mathbb{E}\left(B_{T}^{2}\right)=\mathbb{E}(T)$. Similarly, $\mathbb{E}\left(B_{S}^{2}\right)=$ $\mathbb{E}(S)$. Hence $\mathbb{E}\left(B_{T}^{2}\right)-\mathbb{E}\left(B_{S}^{2}\right)=\mathbb{E}(T-S)$.

Exercice 23. (i) Let $\left(X_{t}, t \geq 0\right)$ be a non-negative and continuous martingale such that $X_{t} \rightarrow 0$, a.s. $(t \rightarrow \infty)$. Prove that for all $x>0, \mathbb{P}\left(\sup _{t \geq 0} X_{t} \geq x \mid \mathscr{F}_{0}\right)=1 \wedge \frac{X_{0}}{x}$, a.s.
(ii) Let B be Brownian motion. Determine the law of $\sup _{t \geq 0}\left(B_{t}-t\right)$.

Solution. (i) Let $T:=\inf \left\{t \geq 0: X_{t} \geq x\right\}$ which is a stopping time. Clearly, $\left(X_{t \wedge T}, t \geq 0\right)$ is a continuous martingale, and is uniformly integrable (because $\left|X_{t \wedge T}\right| \leq x+X_{0}$), closed by X_{T} (with the notation $X_{\infty}:=0$). By the optional sampling theorem, $\mathbb{E}\left(X_{T} \mid \mathscr{F}_{0}\right)=X_{0}$. We observe that

$$
\begin{aligned}
\mathbb{E}\left[X_{T} \mid \mathscr{F}_{0}\right] & =\mathbb{E}\left[X_{T} \mathbf{1}_{\{T<\infty\}} \mid \mathscr{F}_{0}\right]+\mathbb{E}\left[X_{\infty} \mathbf{1}_{\{T=\infty\}} \mid \mathscr{F}_{0}\right] \\
& =\mathbb{E}\left[\left(x \vee X_{0}\right) \mathbf{1}_{\{T<\infty\}} \mid \mathscr{F}_{0}\right] \\
& =\left(x \vee X_{0}\right) \mathbb{P}\left[T<\infty \mid \mathscr{F}_{0}\right],
\end{aligned}
$$

which yields

$$
\mathbb{P}\left[T<\infty \mid \mathscr{F}_{0}\right]=\frac{X_{0}}{x \vee X_{0}}=1 \wedge \frac{X_{0}}{x}
$$

It suffices then to remark that $\{T<\infty\}=\left\{\sup _{t \geq 0} X_{t} \geq x\right\}$.
(ii) Let $X_{t}:=\mathrm{e}^{2\left(B_{t}-t\right)}$ which is a continuous martingale. Since a.s. $\frac{B_{t}}{t} \rightarrow 0(t \rightarrow \infty)$, we have $B_{t}-t=\left(\frac{B_{t}}{t}-1\right) t \rightarrow-\infty$, a.s., and thus $X_{t} \rightarrow 0$ a.s. By (i), $\mathbb{P}\left\{\sup _{t \geq 0} X_{t} \geq x\right\}=1 \wedge \frac{1}{x}$, $x>0$, which means $\mathbb{P}\left\{\sup _{t \geq 0}\left(B_{t}-t\right) \geq a\right\}=\mathrm{e}^{-2 a}, a>0$. In other words, $\sup _{t \geq 0}\left(B_{t}-t\right)$ has the exponential law of parameter 2 (i.e., with mean $\frac{1}{2}$).

Exercice 24. Let $\gamma \neq 0, a>0$ and $b>0$. Let $T_{x}:=\inf \left\{t>0: B_{t}+\gamma t=x\right\}, x=-a$ or b. Compute $\mathbb{P}\left(T_{-a}>T_{b}\right)$.

Hint: You can use the martingale ($\left.\mathrm{e}^{-2 \gamma\left(B_{t}+\gamma t\right)}, t \geq 0\right)$.
Solution. Consider the martingale $\left(X_{t}:=\mathrm{e}^{-2 \gamma B_{t}-2 \gamma^{2} t}, t \geq 0\right)$. Since $\mathrm{e}^{-2 \gamma B_{t \wedge T_{a, b}}-2 \gamma^{2}\left(t \wedge T_{a, b}\right)} \leq$ $\mathrm{e}^{2|\gamma|(a+b)}$, we see that $\left(X_{T_{a, b} \wedge t}, t \geq 0\right)$ is a continuous and bounded martingale, closed by $X_{T_{a, b}}$. Applying the optional sample theorem to this uniformly integrable martingale, we obtain:

$$
\begin{aligned}
1 & =\mathbb{E}\left[\mathrm{e}^{-2 \gamma B_{T_{a, b}}-2 \gamma^{2} T_{a, b}}\right] \\
& =\mathbb{E}\left[\mathrm{e}^{2 \gamma a} \mathbf{1}_{\left\{T_{-a}<T_{b}\right\}}\right]+\mathbb{E}\left[\mathrm{e}^{-2 \gamma b} \mathbf{1}_{\left\{T_{-a}>T_{b}\right\}}\right] \\
& =\mathrm{e}^{2 \gamma a}-\mathrm{e}^{2 \gamma a} \mathbb{P}\left(T_{-a}>T_{b}\right)+\mathrm{e}^{-2 \gamma b} \mathbb{P}\left(T_{-a}>T_{b}\right),
\end{aligned}
$$

which yields ${ }^{6} \mathbb{P}\left(T_{-a}>T_{b}\right)=\frac{\mathrm{e}^{2 \gamma a}-1}{\mathrm{e}^{2 \gamma a}-\mathrm{e}^{-2 \gamma b}}$.
Exercice 25. (First Wald identity) Let T be a stopping time such that $\mathbb{E}(T)<\infty$. Prove that B_{T} is integrable and that $\mathbb{E}\left(B_{T}\right)=0$.

Solution. Both $\left(B_{t \wedge T}, t \geq 0\right)$ and $\left(B_{t \wedge T}^{2}-t \wedge T, t \geq 0\right)$ are continuous martingales, with $\mathbb{E}\left(B_{t \wedge T}^{2}\right)=\mathbb{E}(t \wedge T) \leq \mathbb{E}(T) ;$ hence $\sup _{t} \mathbb{E}\left(B_{t \wedge T}^{2}\right) \leq \mathbb{E}(T)<\infty$. Consequently, $\left(B_{t \wedge T}, t \geq 0\right)$ is a uniformly integrable martingale, closed by B_{T} (in particular, B_{T} is integrable). Applying the optional sampling theorem to this uniformly integrable martingale yields $\mathbb{E}\left(B_{T}\right)=\mathbb{E}\left(B_{0 \wedge T}\right)=$ 0.

Exercice 26. (Second Wald identity) Let T be a stopping time such that $\mathbb{E}(T)<\infty$. Prove that B_{T} has a finite second moment and that $\mathbb{E}\left(B_{T}^{2}\right)=\mathbb{E}(T)$.

Solution. By Doob's inequality,

$$
\mathbb{E}\left[\sup _{t \geq 0} B_{t \wedge T}^{2}\right] \leq 4 \sup _{t \geq 0} \mathbb{E}\left[B_{t \wedge T}^{2}\right] \leq 4 \mathbb{E}(T)<\infty
$$

[^4]so ($\left.B_{t \wedge T}^{2}, t \geq 0\right)$ is uniformly integrable. Since $(t \wedge T, t \geq 0)$ is also uniformly integrable (being bounded by $T),\left(B_{t \wedge T}^{2}-t \wedge T, t \geq 0\right)$ is a continuous and uniformly integrable martingale, closed by $B_{T}^{2}-T$ (in particular, B_{T} has a finite second moment). Applying the optional sampling theorem to this uniformly integrable martingale yields $\mathbb{E}\left(B_{T}^{2}-T\right)=0$. In other words, $\mathbb{E}\left(B_{T}^{2}\right)=\mathbb{E}(T)$.

[^0]: ${ }^{1}$ We will see that $\mathbb{P}(\xi>x) \leq \frac{1}{2} \mathrm{e}^{-x^{2} / 2}$.

[^1]: ${ }^{2}$ Let G be an open set, and let D be a countable set that is dense, then for all $x \in G$, there exist $x_{D} \in D$ and $n_{x} \geq 1$ sufficiently large such that $x \in B\left(x_{D}, \frac{1}{n_{x}}\right) \subset G$. Thus $G=\cup_{x \in G} B\left(x_{D}, \frac{1}{n_{x}}\right)$. The family $\left\{B\left(x_{D}, \frac{1}{n_{x}}\right), x \in G\right\}$ is countable, being a subset of $\left\{B\left(x, \frac{1}{n}\right), x \in D, n \geq 1\right\}$.
 ${ }^{3}$ Later on, we will see that $T<\infty$ a.s.

[^2]: ${ }^{4}$ The assumption $\Omega \in \mathscr{A}_{1}$ is used here to guarantee $\Omega \in \mathscr{M}_{1}$.

[^3]: ${ }^{5}$ It is known in analysis (see page 72 of the book by Hewitt, E. and Stromberg, K.: Real and Abstract Analysis. Springer, New York, 1969) that a closed set with no isolated point is uncountable. So \mathscr{Z} is a.s. uncountable.

[^4]: ${ }^{6}$ Letting $a \rightarrow \infty$, we see that $\mathbb{P}\left(T_{b}<\infty\right)$ is 1 if $\gamma>0$, and is $\mathrm{e}^{2 \gamma b}$ if $\gamma<0$, which is in agreement with the previous exercise, because $\mathbb{P}\left(T_{b}<\infty\right)=\mathbb{P}\left\{\sup _{t \geq 0}\left(B_{t}+\gamma t\right) \geq b\right\}$.

