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“Advanced Probability” (Part III: Brownian motion)

Exercise sheet #III.1:

Construction of Brownian motion

Exercice 1. Let ξ be a Gaussian N (0, 1) random variable. Let x > 0.

(i) Prove that 1
(2π)1/2

( 1
x
− 1

x3
) e−x

2/2 ≤ P(ξ > x) ≤ 1
(2π)1/2

1
x

e−x
2/2.

(ii) Prove that1 P(ξ > x) ≤ e−x
2/2.

Solution. (i) We have

P(ξ > x) =
1√
2π

∫ ∞
x

e−u
2/2 du ≤ 1√

2π

1

x

∫ ∞
x

ue−u
2/2 du =

1√
2π

1

x
e−x

2/2,

giving the desired upper bound. For the lower bound, we note that by integration by parts,

P(ξ > x) =
1√
2π

∫ ∞
x

e−u
2/2 du =

[
− 1√

2π

1

u
e−u

2/2
]∞
x
− 1√

2π

∫ ∞
x

1

u2
e−u

2/2 du.

This yields the desired lower bound because
∫∞
x

1
u2

e−u
2/2 du ≤ 1

x3

∫∞
x
ue−u

2/2 du = 1
x3

.

(ii) By the Markov inequality, for any λ > 0,

P(ξ > x) ≤ e−λxE[eλξ] = e−λx+λ
2/2,

which yields the desired inequality by taking λ = x. �

Exercice 2. Let ξ be a Gaussian N (0, 1) random variable.

(i) Compute E(ξ4) and E(|ξ|).
(ii) Compute E(eaξ), E(ξeaξ) and E(eaξ

2
), with a ∈ R.

(iii) Let b ≥ 0. Let η be a Gaussian N (0, 1) random variable, independent of ξ. Prove

that E(ebξ
2
) = E(eλξη), where λ := (2b)1/2.

Solution. (i) We have E(ξ4) = 3, E(|ξ|) = ( 2
π
)1/2.

(ii) We have E(eaξ) = ea
2/2, E(ξeaξ) = aea

2/2. As for E(eaξ
2
), it is seen that E(eaξ

2
) =∞ if

a ≥ 1
2
, whereas E(eaξ

2
) = (1− 2a)−1/2 if a < 1

2
.

(iii) By conditioning on ξ, we habe, by (ii), E(eλξη | ξ) = eλ
2ξ2/2, which is nothing else but

ebξ
2
. Taking expectation on both sides gives the desired conclusion. �

1We will see that P(ξ > x) ≤ 1
2e−x

2/2.
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Exercice 3. Let ξ, ξ1, ξ2, · · · be real-valued random variables. Assume that for each n, ξn

is Gaussian N (µn, σ
2
n), with µn ∈ R and σn ≥ 0, and that ξn → ξ in law. Prove that ξ is

Gaussian.

Solution. For any random variable ξ, we denote its characteristic function by ϕξ. By assump-

tion, ϕξn(t) = exp(iµnt− σ2
n

2
t2) converges pointwise to ϕξ(t). So exp(−σ2

n

2
t2)→ |ϕξ(t)| for any

t ∈ R. As a consequence, σ2
n → σ2 ≥ 0 (the possibility that σ2

n → ∞ is excluded as 1{t=0} is

not a characteristic function, being discontinuous at point 0).

Suppose that (µn) is unbounded. Then there exists a subsequence (µnk) tending to +∞
(or to −∞, but the argument will be identical). Let a ∈ R. The distribution function Fξ of ξ

being non-decreasing, we can find b ≥ a which is a point of continuity of Fξ. Hence

Fξ(a) ≤ Fξ(b) = lim
k→∞

P(ξnk ≤ b) ≤ 1

2
,

as for large k, P(ξnk ≤ b) ≤ P(ξnk ≤ µnk) = 1
2
. So Fξ(a) ≤ 1

2
for all a ∈ R, which is absurd

because Fξ is a distribution function and its limit at +∞ is 1.

The sequence (µn) is thus bounded. Let µ ∈ R and ν ∈ R be limits along subsequences,

then eiµt = eiνt for all t ∈ R, which is possible only if µ = ν. So the sequence (µn) converges,

to a limit, denoted by µ ∈ R. Since σn → σ, we have ϕξ(t) = exp(iµt− σ2

2
t2). In other words,

ξ is Gaussian N (µ, σ2). �

Exercice 4. Let ξ, ξ1, ξ2, · · · be random variables. Assume that for any n, ξn is Gaussian

N (µn, σ
2
n), where µn ∈ R and σn ≥ 0, and that ξn → ξ in probability. Prove that ξn converges

in Lp, for all p ∈ [1, ∞).

Solution. We use what we have proved in the previous exercise. For a ∈ R, we have

E(eaξn) = exp
(
aµn +

a2σ2
n

2

)
.

Since e|x| ≤ ex+e−x, we have, for all a ≥ 0, supn E(ea|ξn|) <∞. A fortiori, supn E(|ξn|p+1) <∞;

hence supn E( |ξn − ξ|p+1) < ∞. This implies that (|ξn − ξ|p) is uniformly integrable. Since

|ξn − ξ|p → 0 in probability, the convergence takes place also in L1.

Exercice 5. Let (ξ, η, θ) be an R3-valued Gaussian random vector. Assume E(ξ) = E(η) =

E(ξη) = 0, σ2
ξ := E(ξ2) > 0 and σ2

η := E(η2) > 0.

(i) Prove that E(θ | ξ, η) = E(θ | ξ) + E(θ | η)− E(θ).

(ii) Prove that E(ξ | ξη) = 0.

(iii) Prove that E(θ | ξη) = E(θ).

Solution. (i) Let a ∈ R and b ∈ R. It is clear that (ξ, η, θ−aξ−bη), being a linear transform

of the Gaussian random variable (ξ, η, θ), is also a Gaussian random variable. So θ − aξ − bη
and (ξ, η) are independent if and only if Cov(θ − aξ − bη, ξ) = Cov(θ − aξ − bη, η) = 0.

2



We have Cov(θ−aξ− bη, ξ) = Cov(ξ, θ)−aσ2
ξ , and Cov(θ−aξ− bη, η) = Cov(η, θ)− bσ2

η.

Choosing from now on a := Cov(ξ, θ)/σ2
ξ and b := Cov(η, θ)/σ2

η, it is seen that θ − aξ − bη is

independent of (ξ, η). Accordingly,

E(θ | ξ, η) = E(θ − aξ − bη | ξ, η) + aξ + bη

= E(θ − aξ − bη) + aξ + bη = E(θ) + aξ + bη.

On the other hand, θ−aξ is independent of ξ: indeed, (ξ, θ−aξ) is a Gaussian random vector,

with Cov(ξ, θ − aξ) = 0; hence E(θ | ξ) = E(θ − aξ | ξ) + aξ = E(θ − aξ) + aξ = E(θ) + aξ.

Similarly, E(θ | η) = E(θ) + bη. As a consequence,

E(θ | ξ, η) = E(θ) + aξ + bη = E(θ | ξ) + E(θ | η)− E(θ).

(ii) Let A ∈ σ(ξη). By definition, there exists a Borel set B ⊂ R such that A = {ω :

ξ(ω)η(ω) ∈ B}. So 1A = 1B(ξη).

Since (ξ, η) is a centered Gaussian random vector, it is distributed as (−ξ, −η). Thus

E[ξ 1B(ξη)] = E[(−ξ)1B((−ξ)(−η))] = −E[ξ 1B(ξη)], i.e., E[ξ 1B(ξη)] = 0. In other words,

E(ξ 1A) = 0, ∀A ∈ σ(ξη), which means that E(ξ | ξη) = 0.

(iii) We have E(θ | ξη) = E(θ−aξ− bη | ξη) +aE(ξ | ξη) + bE(η | ξη). By (ii), E(ξ | ξη) = 0;

similarly, E(η | ξη) = 0. It follows that E(θ | ξη) = E(θ − aξ − bη | ξη). We have seen that

θ − aξ − bη is independent of (ξ, η); so E(θ − aξ − bη | ξη) = E(θ − aξ − bη) = E(θ), which

yields the desired identity. �

Exercice 6. Let (ξk, n, k ≥ 0, n ≥ 0) be a collection of i.i.d. Gaussian N (0, 1) random

variables. For all n ≥ 0, we define the process (Xn(t), t ∈ [0, 1]) with t 7→ Xn(t) being affine

on each of the intervals [ i
2n
, i+1

2n
], 0 ≤ i ≤ 2n−1, in the following way X0(0) := 0, X0(1) := ξ0, 0,

and by induction, for n ≥ 1,

Xn(
2i

2n
) := Xn−1(

2i

2n
), 0 ≤ i ≤ 2n−1,

Xn(
2j + 1

2n
) := Xn−1(

2j + 1

2n
) +

ξ2j+1,n

2(n+1)/2
, 0 ≤ j ≤ 2n−1 − 1.

Prove that for all n ≥ 0, (Xn( k
2n

), 0 ≤ k ≤ 2n) is a centered Gaussian vector such that

E[Xn( k
2n

)Xn( `
2n

)] = k
2n
∧ `

2n
, for 0 ≤ k, ` ≤ 2n.

Solution. We prove by induction in n. The case n = 0 is trivial. Assume that the desired

conclusion holds for n − 1. It is clear that (Xn( k
2n

), 0 ≤ k ≤ 2n) is a Gaussian random

vector (which is obviously centered), being a linear function of independent Gaussian vectors

(Xn−1(
k

2n−1 ), 0 ≤ k ≤ 2n−1) and (ξk,n, 0 ≤ k ≤ 2n). It remains to check the covariance. We

distinguish two possible situations.
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First situation: there is at least an even number among k and `, say k = 2k1. In this

case, Xn( k
2n

) = Xn−1(
k1

2n−1 ), and the desired identity Cov(Xn−1(
k
2n

), Xn−1(
`
2n

)) = k
2n
∧ `

2n
is

trivial by the induction hypothesis if ` is even; if, however, ` is odd, say ` = 2`1 + 1, then

Xn( `
2n

) = 1
2
Xn−1(

`1
2n−1 ) + 1

2
Xn−1(

`1+1
2n−1 ) +

ξ`,n
2(n+1)/2 ; since ξ`,n is independent of Xn−1(

k1
2n−1 ), we

obtain:

Cov
(
Xn(

k

2n
), Xn(

`

2n
)
)

=
1

2
Cov

(
Xn−1(

k1
2n−1

), Xn−1(
`1

2n−1
)
)

+
1

2
Cov

(
Xn−1(

k1
2n−1

), Xn−1(
`1 + 1

2n−1
)
)
,

which, by the induction hypothesis, is 1
2
( k1
2n−1 ∧ `1

2n−1 ) + 1
2
( k1
2n−1 ∧ `1+1

2n−1 ) = k
2n
∧ `

2n
as desired.

Second (and last) situation: both k and ` odd numbers, say k = 2k1 +1 and ` = 2`1 +1. In

this case, we have Xn( k
2n

) = 1
2
Xn−1(

k1
2n−1 )+ 1

2
Xn−1(

k1+1
2n−1 )+

ξk,n
2(n+1)/2 and Xn( `

2n
) = 1

2
Xn−1(

`1
2n−1 )+

1
2
Xn−1(

`1+1
2n−1 ) +

ξ`,n
2(n+1)/2 . Since ξk,n and ξ`,n are independent of (Xn−1(t), t ∈ [0, 1]), we have, by

the induction hypothesis,

Cov
(
Xn(

k

2n
), Xn(

`

2n
)
)

=
1

4
(
k1

2n−1
∧ `1

2n−1
) +

1

4
(
k1

2n−1
∧ `1 + 1

2n−1
) +

+
1

4
(
k1 + 1

2n−1
∧ `1

2n−1
) +

1

4
(
k1 + 1

2n−1
∧ `1 + 1

2n−1
) +

1

2n+1
Cov(ξk,n, ξ`,n).

It is then easily checked that the sum of the five terms on the right-hand side is indeed k
2n
∧ `

2n
.

By induction, we conclude that Cov[Xn( k
2n

)Xn( `
2n

)] = k
2n
∧ `

2n
. �

Exercice 7. Let (Bm
t , t ∈ [0, 1]), for m ≥ 0, be a sequence of independent Brownian motions

defined on [0, 1]. Let

Bt := B
btc
t−btc +

∑
0≤m<btc

Bm
1 , t ≥ 0.

Prove that (Bt, t ≥ 0) is Brownian motion.

Solution. Clearly, the trajectories of B are a.s. continuous. It is easily checked that B is a

centered Gaussian process with covariance Cov(Bt, Bs) = t ∧ s for all s ≥ 0 and t ≥ 0. �

Exercice 8. Prove that C (R+, R), the Borel σ-field of C(R+, R), coincides with σ(Xt, t ≥ 0),

the σ-field generated by the process of projections (Xt, t ≥ 0).

Solution. For all t ≥ 0, Xt is continuous, thus measurable with respect to C (R+,R). Conse-

quently, σ(Xt, t ≥ 0) ⊂ C (R+,R).

Conversely, for all w0 ∈ C(R+,R), δn(w,w0) = supt∈[0,n]∩Q |w(t) − w0(t)| is σ(Xt, t ≥ 0)-

measurable, and so is d(w,w0). Le F be a closed subset of C(R+,R), and let (wn) be a sequence

that is dense in F (because the space is separable), then

F = {w ∈ C(R+,R) : d(w, F ) = 0} = {w ∈ C(R+,R) : inf
n
d(w,wn) = 0},
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which is an element of σ(Xt, t ≥ 0). Hence, C (R+,R) ⊂ σ(Xt, t ≥ 0).

It is also possible to directly prove that all the open sets are σ(Xt, t ≥ 0)-measurable,

by means of the following property2: if a metric space is separable, then all opens sets are

countable unions of open balls. �

Exercice 9. Let T := inf{t ≥ 0 : Bt = 1} (with inf ∅ :=∞). Prove that3 P(T <∞) ≥ 1
2
.

Solution. Let t > 0. We have P(T < ∞) ≥ P(T ≤ t) ≥ P(Bt ≥ 1). Since P(Bt ≥ 1) → 1
2

when t→∞, we obtain: P(T <∞) ≥ 1
2
. �

Exercice 10. (i) Prove that (−Bt, t ≥ 0) is Brownian motion.

(ii) (Scaling) Prove that for any a > 0, ( 1
a1/2

Bat, t ≥ 0) is Brownian motion.

Solution. Both are centered Gaussian processes with covariance s∧ t and with a.s. continuous

trajectories. �

Exercice 11. (i) Let ξ :=
∫ 1

0
Bt dt. Determine the law of ξ.

(ii) Let η :=
∫ 2

0
Bt dt. Determine E(B1 | η).

(iii) Prove that B7 −B2 is independent of σ(Bs, s ∈ [0, 1]).

(iv) Let F1 := σ(Bs, s ∈ [0, 1]). Determine E(B5 |F1) and E(B2
5 |F1).

Solution. (i) By definition, ξ is the a.s. limit of ξn := 2−n
∑2n

i=1Bi/2n , and a fortiori, the

weak limit. For each n, ξn is Gaussian (because Brownian motion is a Gaussian process). By

Exercice 4, ξ is Gaussian, with E(ξ) = limn→∞ E(ξn) and Var(ξ) = limn→∞Var(ξn).

Since E(ξn) = 0, ∀n, we have E(ξ) = 0.

Since Var(ξn) = 2−2n
∑2n

i=1

∑2n

j=1(
i
2n
∧ j

2n
)→

∫ 1

0

∫ 1

0
(s ∧ t) ds dt = 1

3
, we have Var(ξ) = 1

3
.

Conclusion : ξ is Gaussian N (0, 1
3
).

(ii) Let a ∈ R and b ∈ R. Exactly as in (i), we see that aB1 + bη is Gaussian, and centered;

in other words, (B1, η) is a centered Gaussian random vector. Moreover, E(B1) = 0 = E(η),

E(B2
1) = 1, E(η2) = 8

3
, and E(B1η) is, by Fubini’s theorem (why?), =

∫ 2

0
E(B1Bt) dt =∫ 2

0
(1 ∧ t) dt = 3

2
. Hence (B1, η) has the Gaussian law N (

(
0
0

)
,

(
1 3

2
3
2

8
3

)
).

In particular, E(B1 | η) = E(B1η)
E(η2) η = 9

16
η.

(iii) Let n ≥ 1, and let (s1, · · · , sn) ∈ [0, 1]n. Then (B7 −B2, Bs1 , · · · , Bsn) is a centered

Gaussian random vector. Since Cov(B7−B2, Bsi) = Cov(B7, Bsi)−Cov(B2, Bsi) = si−si = 0

for all i ≤ n, an important property (which one?) of Gaussian random vectors tells us that

2Let G be an open set, and let D be a countable set that is dense, then for all x ∈ G, there exist xD ∈ D
and nx ≥ 1 sufficiently large such that x ∈ B(xD,

1
nx

) ⊂ G. Thus G = ∪x∈GB(xD,
1
nx

). The family

{B(xD,
1
nx

), x ∈ G} is countable, being a subset of {B(x, 1
n ), x ∈ D, n ≥ 1}.

3Later on, we will see that T <∞ a.s.
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B7 − B2 is independent of (Bs1 , · · · , Bsn). This implies that B7 − B2 is independent of

σ(Bs, s ∈ [0, 1]).

(iv) Exactly as in the previous question, we see that B5 − B1 is indepenfent of F1. In

particular, E(B5 |F1) = E(B5−B1 |F1)+E(B1 |F1) = E(B5−B1)+B1 = B1, et E(B2
5 |F1) =

E((B5 −B1)
2 |F1) + 2B1E(B5 |F1)−B2

1 = E((B5 −B1)
2) + 2B2

1 −B2
1 = 4 +B2

1 . �

Exercice 12. (i) Prove or disprove: for all t > 0,
∫ t
0
B2
s ds has the same distribution as

t2
∫ 1

0
B2
s ds.

(ii) Prove or disprove: the processes (
∫ t
0
B2
s ds, t ≥ 0) and (t2

∫ 1

0
B2
s ds, t ≥ 0) have the

same distribution.

Solution. (i) The answer is yes, by the scaling property.

(ii) The answer is no: the trajectories of the second process are a.s. C∞, whereas those of

the first are a.s. not C2. �

Exercice 13. Let T be a random variable having the exponential law of parameter 1,

independent of B. Determine the law of BT .

Solution. The measurability of BT is clear if we work in the canonical space of Brownian

motion. Let us compute its characteristic function.

Let x ∈ R. We have E[eixBT |T ] = e−x
2T/2, so E[eixBT ] = E[e−x

2T/2] = 2
2+x2

. In other words,

BT has density (1/
√

2 )e−
√
2 |x| (“two-sided exponential law” of parameter

√
2 ). �

Exercice 14. (i) Prove that
∫ 1

0
Bs
s

ds is a.s. well defined.

(ii) Let βt := Bt −
∫ t
0
Bs
s

ds. Prove that (βt, t ≥ 0) is Brownian motion.

Solution. (i) By Fubini–Tonelli, E(
∫ 1

0
|Bs
s
| ds) =

∫ 1

0
E( |Bs

s
| ) ds = c

∫ 1

0
s−1/2 ds < ∞, where

c := E(|B1|) <∞. A fortiori,
∫ 1

0
|Bs
s
| ds <∞ a.s. Consequently,

∫ 1

0
Bs
s

ds is a.s. well defined.

[One can also directly prove that
∫ 1

0
Bs
s

ds is a.s. well defined by means of the Hölder

continuity of B.]

(ii) Exactly as in (i), we see that for all t > 0, Xt :=
∫ t
0
Bs
s

ds is well defined a.s. So

a.s., the process (Xt, t ≥ 0) is well defined (why?), with continuous trajectories, and so is

(βt := Bt −Xt, t ≥ 0).

As in a previous exercise, we see that for all n and all real numbers a1, · · · , an,
∑n

i=1 aiβti
is centered Gaussian. As a consequence, β is a centered Gaussian process.

It remains to check the covariance. Let t ≥ s > 0. We have E(XtBs) = s+ s log( t
s
) (why?),

E(XsBt) = s and E(XsXt) = 2s+ s log( t
s
). Hence E(βtβs) = E(BtBs)−E(XtBs)−E(XsBt) +

E(XtXs) = s as desired. Consequently, β is Brownian motion. �

Exercice 15. Prove that
∫∞
0
|Bs| ds =∞ a.s.
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Solution. Let Xt :=
∫ t
0
|Bs| ds, t ≥ 0. By scaling, for all t > 0, Xt is distributed as t3/2X1.

For all x > 0, we have P{X∞ ≥ x} ≥ P{Xt ≥ x} = P{X1 ≥ x
t3/2
} which converges to

P{X1 > 0} = 1 when t→∞. Since this holds for all x > 0, we get X∞ =∞ a.s. �

Exercice 16. Let T := inf{t ≥ 0 : |Bt| = 1} (with inf ∅ :=∞).

(i) Prove that T <∞ a.s.

(ii) Prove that T and 1{BT=1} are independent.

Solution. (i) For all t > 0, we have P(T < ∞) ≥ P(T ≤ t) ≥ P({Bt ≥ 1} ∪ {Bt ≤ −1}) =

P(Bt ≥ 1) + P(Bt ≤ −1) = 2P(Bt ≥ 1). Since P(Bt ≥ 1) → 1
2

when t → ∞, we get

P(T <∞) ≥ 1. In other words, T <∞ a.s.

(ii) For bounded Borel function f : R+ → R and by symmetry of Brownian motion

(replacing B by −B), we have E[f(T ) 1{BT=1}] = E[f(T ) 1{BT=−1}]; hence

E[f(T ) 1{BT=1}] =
1

2
E[f(T )] = P(BT = 1)E[f(T )],

the last identity following from the fact that P(BT = 1) = 1
2

(taking f ≡ 1 in the previ-

ous identity). Similarly, E[f(T ) 1{BT=−1}] = P(T = −1)E[f(BT )]. This yields the desired

independence. �

Exercice 17. Let B := (Bt, t ∈ [0, 1]) be Brownian motion defined on [0, 1]. For all t ∈ [0, 1],

let

Ft := σ(Bs, s ∈ [0, t]),

Gt := Ft ∨ σ(B1) = σ({C; C ∈ Ft or C ∈ σ(B1)}).

(i) Let 0 ≤ s < t ≤ 1. Prove that

E[(Bt −Bs) |Gs] =
t− s
1− s

(B1 −Bs).

(ii) Consider the process β := (βt, t ∈ [0, 1]) defined by

βt := Bt −
∫ t

0

B1 −Bs

1− s
ds, t ∈ [0, 1].

Prove that for 0 ≤ s < t ≤ 1, E(βt |Gs) = βs a.s.

Solution. (i) Write

Bt −Bs =
t− s
1− s

(B1 −Bs) +
1− t
1− s

(Bt −Bs)−
t− s
1− s

(B1 −Bt).
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Clearly, t−s
1−s (B1−Bs) is Gs-measurable. We now prove that X := 1−t

1−s (Bt−Bs)− t−s
1−s (B1−Bt)

is independent of Gs. It suffices to prove that for all n and all 0 ≤ s1 < · · · < sn ≤ s, X is

independent of (Bs1 , · · · , Bsn , B1).

Since (X, Bs1 , · · · , Bsn , B1) is a Gaussian vector, it suffices to check that Cov(X, Bsi) =

Cov(X, B1) = 0, ∀i. We have Cov(X, Bsi) = 1−t
1−s (si−si)− t−s

1−s (si−si) = 0 and Cov(X, B1) =
1−t
1−s (t− s)− t−s

1−s (1− t) = 0, as desired.

So X is independent of Gs : we have E[X |Gs] = E[X] = 0. As a consequence, E[(Bt −
Bs) |Gs] = t−s

1−s (B1 −Bs).

(ii) [The integral
∫ 1

0
B1−Bs
1−s ds is a.s. well defined by the local Hölder continuity of Brownian

sample paths.]

Let 1 ≥ t > s ≥ 0. By (i), E[Bt |Gs] = Bs + t−s
1−s (B1 − Bs),and E[(B1 − Bu) |Gs] =

B1 − Bs − u−s
1−s (B1 − Bs) = 1−u

1−s (B1 − Bs) for u ≥ s. By Fubini’s theorem (of which the

application is easily justified),

E[βt |Gs] = E[Bt |Gs]−
∫ t

s

E[(B1 −Bu) |Gs]
1− u

du−
∫ s

0

B1 −Bu

1− u
du

= Bs +
t− s
1− s

(B1 −Bs)−
∫ t

s

1

1− u
1− u
1− s

(B1 −Bs) du−
∫ s

0

B1 −Bu

1− u
du,

which is nothing else but βs. �

Exercice 18. Let F1 := σ(Bs, s ∈ [0, 1]), and let a ∈ R. Let Q be the probability measure

on F1 defined by Q(A) := E(eaB1−a
2

2 1A), A ∈ F1. Define γt := Bt − at, t ∈ [0, 1]. Prove that

(γt, t ∈ [0, 1]) is Brownian motion under Q.

Solution. The trajectories of γ are P-continuous and thus also Q-continuous (the two prob-

abilities being equivalent on F1). It remains to check that for 0 := t0 < t1 < · · · < tn ≤ 1,

Btn − Btn−1 , · · · , Bt2 − Bt1 , Bt1 are independent Gaussian random variables under Q. We

consider the characteristic function. Let (x1, · · · , xn) ∈ Rn. Then

EQ[ei
∑n
k=1 xk(γtk−γtk−1

)] = E[eaB1−a
2

2
+i

∑n
k=1 xk(Btk−Btk−1

)]

= e−
a2

2
−ia

∑n
k=1 xk(tk−tk−1) E[ea(B1−Btn )+

∑n
k=1(ixk+a)(Btk−Btk−1

)] ,

which is

= e−
a2

2
−ia

∑n
k=1 xk(tk−tk−1) e

a2

2
(1−tn)+

∑n
k=1

(ixk+a)
2

2
(tk−tk−1) = e−

1
2

∑n
k=1 x

2
k(tk−tk−1) .

This implies (i) the desired independence under Q, and (ii) that the law of γtk − γtk−1
under

Q is Gaussian N (0, tk − tk−1). �
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Tsinghua University 2017–2018

“Advanced Probability” (Part III: Brownian motion)

Exercise sheet #III.2:

Brownian motion and the Markov property

Exercice 1. Let A1 ⊂ F , · · · , An ⊂ F be π-systems, satisfying Ω ∈ Ai, ∀i. Assume

P(A1 ∩ · · · ∩ An) = P(A1) · · ·P(An), ∀Ai ∈ Ai.

Then σ(A1), · · · , σ(An) are independent.

Solution. Fix A2 ∈ A2, · · · , An ∈ An. Consider

M1 := {C1 ∈ σ(A1) : P(C1 ∩ A2 ∩ · · · ∩ An) = P(C1)P(A2) · · ·P(An)}.

It is easily checked by definition that M1 is a λ-system4, whereas by assumption, A1 ⊂ M1,

et A1 is a π-system. So by the π-λ theorem, M1 = σ(A1); in other words,

P(C1 ∩ A2 ∩ · · · ∩ An) = P(C1)P(A2) · · ·P(An), ∀C1 ∈ σ(A1), ∀A2 ∈ A2, · · · , ∀An ∈ An.

To continue, let us fix C1 ∈ σ(A1), A3 ∈ A3, · · · , An ∈ An, and consider

M2 := {C2 ∈ σ(A2) : P(C1 ∩ C2 ∩ A3 ∩ · · · ∩ An) = P(C1)P(C2)P(A3) · · ·P(An)}.

Again, M2 is a λ-system, and we have proved in the previous step that it contains the π-system

A2. Hence M2 = σ(A2). Iterating the procedure, we arrive at:

P(C1 ∩ · · · ∩ Cn) = P(C1) · · ·P(Cn), ∀C1 ∈ σ(A1), · · · , ∀Cn ∈ σ(An),

which means that σ(A1), · · · , σ(An) are independent. �

Exercice 2. (i) (Time reversal) Fix a > 0. Prove that (Ba −Ba−t, t ∈ [0, a]) is Brownian

motion on [0, a].

(ii) (Time inversion) Prove that X := (Xt, t ≥ 0) defined by Xt := t B 1
t

(for t > 0) and

X0 := 0 is Brownian motion.

Solution. In both situations, it is easily checked that the process is centered Gaussian with

covariance s∧ t. For time reversal, the continuity of trajectories is obvious. For time inversion,

4The assumption Ω ∈ A1 is used here to guarantee Ω ∈M1.
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one may feel that there could be a continuity problem at 0: this however, does not cause

any trouble because X is, according to Kolmogorov’s criterion, undistinguishable to Brownian

motion. �

Exercice 3. Prove that there exists a constant a > 0 (that does not depend on ω) such that

inft∈[0, 2]Bt has the same distribution as a inft∈[0, 1]Bt.

Solution. By scaling, inft∈[0, 2]Bt has the same distribution as 21/2 inft∈[0, 1]Bt. �

Exercice 4. (Brownian bridge) Let bt = Bt − tB1, t ∈ [0, 1]. It is a centered Gaussian

process with a.s. continuous trajectories and with covariance (s∧ t)−st. We call b a Brownian

bridge.

(i) The process (bt, t ∈ [0, 1]) is independent of the random variable B1.

(ii) If b is a Brownian bridge, so is (b1−t, t ∈ [0, 1]).

(iii) If b is a Brownian bridge, then Bt = (1 + t)bt/(1+t), t ≥ 0, is Brownian motion. Note

that bt = (1− t)Bt/(1−t).

Solution. (i) Let 0 ≤ t1 < t2 < · · · < tn ≤ 1. Then (bt1 , · · · , btn , B1) is a Gaussian random

vector, with Cov(bti , B1) = Cov(Bti , B1) − Cov(tiB1, B1) = ti − ti = 0, ∀i. So a property of

Gaussian vectors tells us that (bt1 , · · · , btn) is independent of B1.

(ii)–(iii) By checking covariance. �

Exercice 5. Prove that

lim
t→∞

Bt

t
= 0, a.s.

Hint: Use time inversion.

Solution. By continuity, limt→0+Bt = 0, a.s., which yields the desired conclusion by time

inversion. �

Exercice 6. Let (tn)n≥1 be a sequence of positive real numbers decreasing towards 0. Prove

that a.s., Btn > 0 for infinitely many n, and Btn < 0 for infinitely many n.

Solution. Let An := {Btn > 0}. We have P(An) = 1
2
, ∀n, so P(lim supn→∞An) = limn→∞ ↓

P(∪k≥nAk) ≥ lim supn→∞ P(An) = 1
2
. On the other hand, by Blumenthal’s 0–1 law, we know

that P(lim supn→∞An) is either 0 or 1; so P(lim supn→∞An) = 1. In other words, a.s., Btn > 0

for infinitely many n.

By considering −B which is also Brownian motion, we see that a.s., Btn < 0 for infinitely

many n. �

Exercice 7. Prove that when t→∞, (
∫ t
0

eBs ds)1/t
1/2 → e|N | in law, where N is a Gaussian

N (0, 1) random variable.
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Solution. By scaling, for any fixed t > 0, (
∫ t
0

eBs ds)1/t
1/2

is distributed as(
t

∫ 1

0

et
1/2Bu du

)1/t1/2
= exp

( log t

t1/2
+

1

t1/2
log

∫ 1

0

et
1/2Bu du

)
.

The continuity of trajectories of B implies that 1
t1/2

log
∫ 1

0
et

1/2Bu du → supu∈[0,1]Bu a.s., so

exp( log t
t1/2

+ 1
t1/2

log
∫ 1

0
et

1/2Bu du)→ exp(supu∈[0,1]Bu) a.s.

As a consequence, (
∫ t
0

eBs ds)1/t
1/2 → exp(supu∈[0,1]Bu) in law; the limit is distributed as

e|N | (by the reflection principle). �

Exercice 8. (i) Prove that 0 < supt≥0(|Bt| − t) <∞ a.s. and that 0 < supt≥0
|Bt|
1+t

<∞ a.s.

(ii) Prove that supt≥0(|Bt| − t) and (supt≥0
|Bt|
1+t

)2 have the same distribution.

Hint: Use the scaling property.

(iii) Prove that for any p > 0, E{[supt≥0(|Bt| − t)]p} <∞.

(iv) Prove that there exists a constant C < ∞ such that for any non-negative random

variable T (not necessarily a stopping time!), E(|BT |) ≤ C [E(T )]1/2.

Hint: Write, for any a > 0, |BT | = (|BT | − aT ) + aT , and prove that E(|BT | − aT ) ≤
1
a
E[supt≥0(|Bt| − t)].

Solution. (i) It suffices to recall that Bt
t
→ 0 a.s. for t → ∞ and that lim supt→0

Bt
t1/2

= ∞
a.s..

(ii) Let x > 0. We have P{supt≥0(Bt − t) < x} = P{Bt − t < x, ∀t ≥ 0}. By scaling, the

probability is

= P{x1/2Bt/x − t < x, ∀t ≥ 0}

= P{x1/2Bs − sx < x, ∀s ≥ 0}

= P{ Bs

1 + s
< x1/2, ∀s ≥ 0} ,

from which the desired identity in law follows.

(iii) By (ii), it suffices to check E{[supt≥0
|Bt|
1+t

]2p} <∞.

By the reflection principle, E{[supt∈[0, 1]Bt]
2p} <∞. By symmetry, E{[supt∈[0, 1](−Bt)]

2p} <
∞. So E{[supt∈[0, 1] |Bt|]2p} <∞. A fortiori, E{[supt∈[0, 1]

|Bt|
1+t

]2p} <∞.

It remains to check E{[supt≥1
|Bt|
1+t

]2p} < ∞. We have seen that E{[supt∈[0, 1] |Bt|]2p} < ∞.

By inversion of time, this yields E{[supt≥1
|Bt|
t

]2p} <∞. A fortiori, E{[supt≥1
|Bt|
1+t

]2p} <∞.

(iv) We assume 0 < E(T ) <∞ (because otherwise, there is nothing to prove).

By scaling, E(|BT | − aT ) = E( 1
a
|Ba2T | − aT ) = 1

a
E(|Ba2T | − a2T ), which is obviously

bounded by 1
a
E[supt≥0(|Bt| − t)].

So E(|BT |) ≤ K
a

+ aE(T ), with K := E[supt≥0(|Bt| − t)] ∈ (0, ∞). Since this holds for all

a > 0, we take a := [ K
E(T ) ]

1/2 to see that E(|BT |) ≤ 2 [K E(T )]1/2. �
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Exercice 9. Let St := sups∈[0,t]Bs, t ≥ 0. Prove that S2 − S1 is distributed as max{|N | −
|Ñ |, 0}, where N and Ñ are independant Gaussian N (0, 1) random variables.

Solution. Put βs := Bs+1 − B1, s ≥ 0. By the Markov property, β is Brownian motion,

independent of F1, a fortiori of (S1, B1).

Write S̃t := sups∈[0,t] βs. Then sups∈[1,2]Bs = S̃1 + B1; hence S2 = max{S1, S̃1 + B1}. In

other words, S2 − S1 = max{0, S̃1 − (S1 − B1)}. Since S̃1 and S1 − B1 are independent (see

the previous paragraph), both having the law of |B1| (by the reflection principle, the desired

identity in law follows. �

Exercice 10. Let d1 := inf{t ≥ 1 : Bt = 0} and g1 := sup{t ≤ 1 : Bt = 0}.
(i) Is d1 a stopping time?

(ii) Determine the law of d1, and the law of g1.

Solution. (i) Fix t ≥ 0. Let us check {d1 ≤ t} ∈ Ft.

If t < 1, then {d1 ≤ t} = ∅ ∈ Ft. If t ≥ 1, we have

{d1 ≤ t} =
{

inf
s∈[1,t]∩Q

|Bs| = 0
}
∈ Ft.

Conclusion: d1 is a stopping time.

(ii) Let t ≥ 1. Applying the Markov property at time 1, we get

P{d1 ≤ t} =

∫ ∞
−∞

P{B1 ∈ dx}P{T−x ≤ t− 1}.

Let N and Ñ be independent Gaussian N (0, 1) random variables. We know that T−x is

distributed as x2

N2 . Hence

P{d1 ≤ t} = P
(Ñ2

N2
≤ t− 1

)
.

As consequence, (d1 − 1)1/2 has the standard Cauchy distribution. In other words,

P(d1 ∈ dt) =
1

π

1{t>1}

t(t− 1)1/2
dt.

Let us now study the law of g1. For all t ∈ [0, 1),

P(g1 ≤ t) =

∫ ∞
−∞

P{Bt ∈ dx}P{T−x > 1− t}

= P
(tÑ2

N2
> 1− t

)
= P

( 1

1 + (Ñ/N)2
< t
)
.
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Thus g1 is distributed as 1
1+C2 , where C is a standard Cauchy random variable. We have

P(g1 ∈ dt) =
1

π

1{0<t<1}

t(1− t)1/2
dt.

We say that g1 has the Arcsine law, because P(g1 ≤ t) = 2
π

arcsin(t1/2).

Observe that we could have determined the law of g1 from the law of d1 by means of the

scaling property: {g1 < t} = {dt > 1}, where dt := inf{s ≥ t : Bs = 0} has the same law as

td1. �

Exercice 11. Define T1 := inf{t > 0 : Bt = 1} and τ := inf{t ≥ T1 : Bt = 0}.
(i) Is τ a stopping time?

(ii) Determine the law of τ .

Solution. (i) Let us first prove that for any finite stopping time T ≥ 0, τ = inf{t ≥ T : Bt =

0} is a stopping time. This was proved in the previous exercise when T is a constant. If T

takes countably many values, say (tn), then

{τ ≤ t} =
⋃

n: tn≤t

{T = tn} ∩
{

inf
s∈[tn,t]∩Q

|Bs| = 0
}
∈ Ft ,

which means τ is a stopping time.

In the general case, for all n, let

Tn :=
∞∑
k=0

k + 1

2n
1{ k

2n
<T≤ k+1

2n
},

which is a non-increasing stopping times tending to T . By what we have just proved, τn :=

inf{t ≥ Tn : Bt = 0} is a stopping time; hence

{τ ≤ t} =
(
{T ≤ t} ∩ {BT = 0}

)
∪
(
{T ≤ t} ∩ {BT 6= 0} ∩

∞⋃
n=1

{τn ≤ t}
)
,

which is an element of Ft. As a conclusion, τ is a stopping time.

(ii) By the strong Markov property, τ is distributed as T1+T̃−1, where T̃−1 is an independent

copy of T1. So τ is distributed as T2, thus also as 4T1. The density of τ is

P(τ ∈ dt) = (
2

πt3
)1/2 exp

(
− 2

t

)
dt,

for t > 0. �

Exercice 12. (i) Study convergence in probability of
log(1+B2

t )

log t
(quand t→∞).

(ii) Study a.s. convergence of
log(1+B2

t )

log t
.
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Solution. (i) By scaling, for all fixed t ≥ 0, log(1 +B2
t ) has the same distribution as log(1 +

tB2
1). Since B1 6= 0 a.s., we have

log(1+tB2
1)

log t
→ 1 a.s. So

log(1+B2
t )

log t
→ 1 in law. The limit being a

constant, the convergence holds also in probability. Conclusion:
log(1+B2

t )

log t
→ 1 in probability.

(ii) If
log(1+B2

t )

log t
converged a.s., it would converge a.s. to 1. But {t : Bt = 0} is a.s.

unbounded, which makes it impossible to converge a.s. to 1. Conclusion:
log(1+B2

t )

log t
does not

converge a.s. �

Exercice 13. Prove, without using inversion of time (but using instead the law of large

numbers and the reflection principle), that Bt
t
→ 0 a.s. when t→∞.

Solution. By the strong law of large numbers, Bn
n
→ 0 a.s. for n → ∞. It remains to check

1
n

supt∈[n, n+1] |Bt −Bn| → 0 a.s.

Let ε > 0. Let An := {supt∈[n, n+1] |Bt − Bn| > nε}. We have P(An) = P(sups∈[0, 1] |Bs| >
nε) ≤ 2P(sups∈[0, 1]Bs > nε). By the reflection principle, sups∈[0, 1]Bs is distributed as |B1|.
So P(An) ≤ 2P(|B1| > nε) = 4P(B1 > nε) ≤ 2 exp(−n2ε

2
), which yields

∑
n P(An) <

∞. By the Borel–Cantelli lemma, lim supn→∞ n
−ε supt∈[n, n+1] |Bt − Bn| ≤ 1 a.s. A fortiori,

1
n

supt∈[n, n+1] |Bt −Bn| → 0 a.s. �

Exercice 14. The aim of this exercise is to prove T < ∞ a.s., where T := inf{t ≥ 0 : Bt =

(1 + t)1/2} (inf ∅ :=∞).

Ken says : Since T is F0+-measurable, we know from the Blumenthal 0–1 law that P{T <

∞} is either 0 or 1. But P{T <∞} ≥ P{B1 ≥ 21/2 } > 0, so T <∞ a.s.

What do you think of Ken’s argument?

Solution. Ken’s argument is wrong, because T is not F0+-measurable. As a matter of fact,

whenever t > 0, T is not Ft-measurable.

To prove T <∞ a.s., it suffices to recall that lim supt→∞
Bt
t1/2

=∞ a.s. �

Exercice 15. (i) Prove that
∫∞
0

sin2(Bt) dt =∞ a.s.

(ii) More generally, prove that if f : R → R is continuous which is not identically 0, then∫∞
0
f 2(Bt) dt =∞ a.s.

Solution. (i) We define inductively two sequences of stopping times (τi)i≥1 and (Ti)i≥1 as

follows: τ1 := 0, Ti := inf{t > τi : |Bt| = 1} and τi+1 := inf{t > Ti : Bt = 0} for i ≥
1. The strong Markov property tells us that

∫ Ti
τi

sin2(Bt) dt, i ≥ 1, are i.i.d. In particular,∑
i≥1
∫ Ti
τi

sin2(Bt) dt =∞ a.s. A fortiori,
∫∞
0
B2
t dt ≥

∑
i≥1
∫ Ti
τi

sin2(Bt) dt =∞ a.s.

(ii) Same argument as in (i), replacing inf{t > τi : |Bt| = 1} by inf{t > τi : |Bt| = a},
where a > 0 is such that f 2(x) ∈ (0, a). �

Exercice 16. (This exercise is not part of the examination program.) Let Z := {t ≥ 0 :

Bt = 0}. Prove that a.s., Z is closed, unbounded, with no isolated point.
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Solution. That Z is a closed set comes from the continuity of t 7→ Bt. We have also seen in

the class that Z is a.s. unbounded. It remains to show that Z has a.s. no isolated point.

For t ≥ 0, let τt := inf{s ≥ t : Bs = 0} which is a stopping time. Clearly, τt <∞ a.s., and

Bτt = 0. The strong Markov property telles us that τt is not an isolated zero point of B. So

a.s. for all r ∈ Q+, τr is not an isolated zero point.

Let t ∈ Z \{τr, r ∈ Q+}. It suffices to show that t is not an isolated zero point. Consider

a rational sequence (rn) ↑↑ t. Clearly, rn ≤ τrn < t. So τrn → t; thus t is not an isolated zero

point.5 �

Exercice 17. (i) Let [a, b] and [c, d] be disjoint intervals of R+. Prove that supt∈[a,b]Bs 6=
supt∈[c,d]Bs a.s.

(ii) Prove that a.s., each local maximum of B is a strict local maximum.

(iii) Prove that a.s., the set of times at which B realises local maxima is countable and

dense in R+.

Solution. (i) Let b < c. By the Markov property, supt∈[c,d]Bs − Bc is independent of

(Bc, supt∈[a,b]Bs), and is distributed as (d − c)1/2 |N |, with N denoting a standard Gaussian

N (0, 1) random variable. Since P(N = x) = 0 for all x ∈ R, we obtain the desired result.

(ii) By (i), a.s. for all non-negative rationals a < b < c < d, supt∈[a,b]Bs 6= supt∈[c,d]Bs. If

B had a non strict local maximum, there would be two disjoint closed intervals with rational

extremity points, on which B would have the same maximal value, which is impossible.

(iii) Let M denote the set of times at which B realises the local minima. Consider the

mapping:

[a, b] 7→ inf
{
t ≥ a : Bt = sup

s∈[a,b]
Bs

}
,

for all rationals 0 ≤ a < b. According to (i), the image of this mapping contains M a.s., so M

is a.s. countable.

Since a.s. there exists no interval on which B is monotone (because B is nowhere differen-

tiable), B admits a local maximum on each interval with rational extremity points: M is a.s.

dense. �

Exercice 18. (i) Let a > 0 and let Ta := inf{t ≥ 0 : Bt = a}. Recall that E[e−λTa ] =

e−a(2λ)
1/2

, ∀λ ≥ 0. Prove that P(Ta ≤ t) ≤ exp(−a2

2t
), for all t > 0.

(ii) Prove that if ξ is a Gaussian N (0, 1) random variable, then P(ξ ≥ x) ≤ 1
2
e−x

2/2,

∀x > 0.

Solution. (i) Let λ > 0. We have P(Ta ≤ t) = P(e−λTa ≥ e−λt) ≤ eλt E(e−λTa) = eλt−a(2λ)
1/2

.

5It is known in analysis (see page 72 of the book by Hewitt, E. and Stromberg, K.: Real and Abstract
Analysis. Springer, New York, 1969) that a closed set with no isolated point is uncountable. So Z is a.s.
uncountable.
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Choosing λ := a2

2t2
yields the desired inequality.

(ii) Let S1 := sups∈[0, 1]Bs. By (i), we have, for all a > 0, P(S1 ≥ a) = P(Ta ≤ 1) ≤ e−a
2/2.

According to the reflection principle, S1 has the law of the modulus of a standard Gaussian

random variable: the desired conclusion follows immediately. �

Exercice 19. (i) Prove that for all t > 0 and all ε > 0, P{sups∈[0, t] |Bs| ≤ ε} > 0.

(ii) Prove that there exists c ∈ (0, ∞) such that P{sups∈[0, 1] |Bs| ≤ ε} ≥ e−c/ε
2
, ∀ε ∈ (0, 1].

(iii) Prove that for all t > 0 and all x > 0, P{sups∈[0, t] |Bs| ≥ x} > 0.

Solution. (i) By scaling, P{sups∈[0, t] |Bs| ≤ ε} = P{sups∈[0, 4t
ε2

] |Bs| ≤ 2}. So it suffices to

check that for all a > 0, P{sups∈[0, a] |Bs| ≤ 2} > 0.

Let T ∗ := inf{t ≥ 0 : |Bt| = 1}. Let δ > 0 be such that p := P{T ∗ > δ} > 0. By symmetry,

P{T ∗ > δ, BT ∗ = 1} = P{T ∗ > δ, BT ∗ = −1} = p
2
> 0. It follows from the strong Markov

property that P{sups∈[0, a] |Bs| ≤ 2} ≥ (p
2
)N > 0, where N := da

δ
e.

(ii) Already proved in (i).

(iii) We have P{sups∈[0, t] |Bs| ≥ x} ≥ P{Bt ≥ x} = P{B1 ≥ x
t1/2
} > 0, as B1 is a standard

Gaussian random variable. �

Exercice 20. (Law of the iterated logarithm) (This exercise is not part of the examina-

tion program.) Let St := sups∈[0,t]Bs, and let h(t) := (2t log log t)1/2.

(i) Let ε > 0. Prove that
∑

n P{Stn+1 ≥ (1 + ε)h(tn)} < ∞, where tn = (1 + ε)n. Prove

that lim supt→∞
St
h(t)
≤ 1, a.s.

(ii) Prove that

lim sup
t→∞

sups∈[0,t] |Bs|
h(t)

≤ 1, a.s.

(iii) Let θ > 1, and let sn = θn. Prove that for all α ∈ (0, (1− 1
θ
)1/2), we have

∑
n P{Bsn −

Bsn−1 > αh(sn)} =∞. Prove that lim supt→∞
Bt
h(t)
≥ α− 2

θ1/2
, a.s.

(iv) Prove that

lim sup
t→∞

Bt

h(t)
= 1, a.s.

(v) Let X1(t) := |Bt|, X2(t) := St, and X3(t) := sups∈[0,t] |Bs|. What can you say about

lim supt→∞
Xi(t)
h(t)

for i = 1, 2, ou 3 ?

(vi) What can you say about lim inft→∞
Bt
h(t)

? And about lim supt→0
Bt

[2t log log(1/t)]1/2
?

Solution. (i) Let An := {Stn+1 ≥ (1 + ε)h(tn)}. We have

P(An) = P
(
|B1| ≥ [2(1 + ε) log log tn]1/2

)
≤ 2 exp

(
− (1 + ε) log log tn

)
,

as P(N ≥ x) ≤ e−x
2/2 for all x ≥ 0. Hence

∑
P(An) <∞. By the Borel–Cantelli lemma, there

exists A ∈ F with P(A) = 1 such that for all ω ∈ A, ∃n0 = n0(ω) <∞,

n ≥ n0 =⇒ Stn+1 < (1 + ε)(2tn log log tn)1/2.
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Therefore, for t ∈ [tn, tn+1],

St ≤ Stn+1 < (1 + ε)(2tn log log tn)1/2 ≤ (1 + ε)(2t log log t)1/2,

which implies lim supt→∞
St
h(t)
≤ 1 + ε, a.s. It suffices now to let ε → 0 along a sequence of

rational numbers to reach the desired conclusion.

(ii) Since −B is also Brownian motion, it follows from (i) that lim supt→∞
sups∈[0,t](−Bs)

h(t)
≤ 1,

a.s. The desired result follows.

(iii) Let En := {Bsn −Bsn−1 > αh(sn)}. The events (En) are independent. Furthermore,

P(En) = P
(
B1 > α(

2 log log sn
1− θ−1

)1/2
)

∼ 1

(2π)1/2
1

α[2(log log sn)/(1− θ−1)]1/2
exp

(
− α2 log log sn

1− θ−1
)
,

which yields
∑

n P(En) =∞ (because α < (1− θ−1)1/2). By the Borel–Cantelli lemma, there

exists E ∈ F with P(E) = 1 such that for all ω ∈ E,

Bsn −Bsn−1 > α(2sn log log sn)1/2, for infinitely many n.

On the other hand, by (ii), a.s. for all sufficiently large n,

|Bsn−1| ≤ 2(2sn−1 log log sn−1)
1/2 ≤ 2

θ1/2
(2sn log log sn)1/2 .

The desired inequality follows.

(iv) By (iii), lim supt→∞
Bt
h(t)
≥ 1 a.s., which, together with (i), implies the desired result.

(v) The “limsup” expression is 1 a.s. (for all i).

(vi) By symmetry, lim inft→∞
Bt
h(t)

= −1 a.s.

By inversion of time, lim supt→0
Bt

(2t log log(1/t))1/2
= 1 a.s. �

Exercice 21. Let (Pt)t≥0 denote the semi-group of Brownian motion. Prove that if f ∈ C0

(continuous function satisfying lim|x|→∞ f(x) = 0), then Ptf ∈ C0, ∀t ≥ 0, and limt↓0 Ptf = f

uniformly on R.

Solution. Let t > 0. We have

(Ptf)(x) =
1

(2π)1/2

∫
R
f(x+ t1/2z)e−z

2/2 dz.

By the dominated convergence theorem (because f is bounded and continuous), we have

Ptf ∈ C0.

Let us prove that limt↓0 Ptf = f uniformly on R. Write

(Ptf)(x)− f(x) =
1

(2π)1/2

∫
R

e−z
2/2[f(x+ t1/2z)− f(x)] dz.

9



(The dominated convergence theorem allows us immediately to see that Ptf → f pointwise.)

Let ε > 0. Since f is bounded, there exists M > 0 such that
∫
|z|>M e−z

2/2‖f‖∞ dz < ε. For

|z| ≤ M , as f is uniformly continuous on R, there exists δ > 0 such that for t ≤ δ, we have

sup|z|≤M |f(x + t1/2z) − f(x)| ≤ ε, ∀x ∈ R. Consequently, for all t ≤ δ, |Ptf(x) − f(x)| ≤
2ε

(2π)1/2
+ ε ≤ 2ε, ∀x ∈ R. �

Exercice 22. Prove that if f ∈ C2
c (C2 function with compact support), then

lim
t↓0

(Ptf)(x)− f(x)

t
=

1

2
f ′′(x), x ∈ R.

Solution. Write

(Ptf)(x)− f(x)

t
=

1

(2π)1/2

∫ ∞
0

f(x+ t1/2z) + f(x− t1/2z)− 2f(x)

t
e−z

2/2 dz.

We let t → 0. Since f ∈ C2, we have f(x+t1/2z)+f(x−t1/2z)−2f(x)
t

→ z2f ′′(x), and there exists a

constant K < ∞ such that for all t ≤ 1, f(x+t1/2z)+f(x−t1/2z)−2f(x)
t

≤ Kz2 (we use, moreover,

the assumption that f is of compact support). Since z2e−z
2/2 is integrable, it follows from the

dominated convergence theorem that (Ptf)(x)−f(x)
t

→ 1
(2π)1/2

∫∞
0
z2f ′′(x) e−z

2/2 dz = 1
2
f ′′(x). �

Exercice 23. Let f be a bounded Borel function on R, and let u(t, x) := (Ptf)(x) (for t ≥ 0

and x ∈ R). Prove that
∂u

∂t
=

1

2

∂2u

∂x2
, t > 0, x ∈ R.

Solution. Fix t > 0 and x ∈ R. We have

u(t, x) =
1

(2π)1/2

∫
R
f(r)

1

t1/2
exp

(
− (r − x)2

2t

)
dr.

Since f is bounded, we can use the dominated convergence theorem to take the partial deriva-

tive (with respect to t) under the integral sign:

∂u(t, x)

∂t
=

1

(2π)1/2

∫
R
f(r)

(
− 1

2t3/2
+

(r − x)2

2t5/2

)
exp

(
− (r − x)2

2t

)
dr.

Similarly, thanks again to the boundedness of f and to the dominated convergence theorem,

we can take the second partial derivative (with respect to x) under the integral sign, to see

that
∂2u(t, x)

∂x2
=

1

(2π)1/2

∫
R
f(r)

1

t1/2

(
− 1

t
+

(r − x)2

t2

)
exp

(
− (r − x)2

2t

)
dr.

It is readily observed that ∂u(t, x)
∂t

= 1
2
∂2u(t, x)
∂x2

. �
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Tsinghua University 2017–2018

“Advanced Probability” (Part III: Brownian motion)

Exercise sheet #III.3:

Brownian motion and martingales

Exercice 1. Let a > 0, and let T ∗a := inf{t ≥ 0 : |Bt| = a}. Prove that T ∗a has the same

distribution as a2

sups∈[0, 1]B
2
s
.

Solution. Let t > 0. Then P(Ta ≤ t) = P(sups∈[0, t] |Bs| ≥ a), which, by scaling, equals to

P(t1/2 supu∈[0, 1] |Bu| ≥ a). As such, Ta and a2

sups∈[0, 1]B
2
s

have the same distribution function:

they have the same law. �

Exercice 2. Let ξ and η be integrable random variables. Let G ⊂ F be a sigma-algebra.

(i) Prove that E(ξ |G ) ≤ E(η |G ), a.s., if and only if E(ξ 1A) ≤ E(η 1A) for all A ∈ G .

(ii) Prove that E(ξ |G ) = E(η |G ), a.s., if and only if E(ξ 1A) = E(η 1A) for all A ∈ G .

Solution. (i) Without loss of generality, we may assume ξ = 0 (otherwise, we replace η by

η + ξ). We need to prove that E(η |G ) ≥ 0 a.s. ⇔ E(η 1A) ≥ 0, ∀A ∈ G .

“⇒” Assume E(η |G ) ≥ 0 a.s. Then for all A ∈ G , we have, by the definition of condi-

tional expectation, E(η 1A) = E[ 1A E(η |G )], which is non-negative because by assumption,

E(η |G ) ≥ 0 a.s.

“⇐” Assume E(η 1A) ≥ 0, ∀A ∈ G .

Write θ := E(η |G ) which is G -mesurable. Let B := {ω : θ(ω) < 0} ∈ G . By assumption,

E(η 1B) ≥ 0. We observe that E(η 1B) = E[E(η 1B |G )] = E[ 1B E(η |G )] = E[ 1B θ] ; as such,

saying that E(η 1B) ≥ 0 is equivalent to saying that E[ 1B θ] ≥ 0. Since 1B θ ≤ 0, this is

possible only if 1B θ = 0 a.s., i.e., θ ≥ 0 a.s.

(ii) It is a consequence of (i), by considering the pair (−ξ, −η) in place of (−ξ, −η). �

Exercice 3. Let (Xn, n ≥ 0) be a sequence of real-valued random variables and let X∞ be

a real-valued random variable. Prove that Xn → X∞ in L1 (when n → ∞) if and only if

Xn → X∞ in probability and (Xn, n ≥ 0) is uniformly integrable.

Solution. “⇐” Without loss of generality, we may assume X∞ = 0 (otherwise, we consider

Xn −X∞ in place of Xt, by observing that (Xn −X∞, t ≥ 0) is also uniformly integrable).

Let ε > 0. We fix a > 0 sufficiently large such that E(|Xn|1{|Xn|>a}) < ε, ∀n ≥ 0. Then

E(|Xn|) = E(|Xn|1{ε≤|Xn|≤a}) + E(|Xn|1{|Xn|>a}) + E(|Xn|1{|Xn|<ε}) ≤ aP(|Xn| ≥ ε) + ε + ε.

1



Letting n → ∞, and since Xn → 0 in probability, we get lim supn→∞ E(|Xn|) ≤ 2ε, which

yields Xt → 0 in L1 because ε > 0 can be as small as possible.

“⇒” Assume that Xn → X∞ in L1.

Convergence in probability follows immediately from convergence in L1. To prove that

(Xn, n ≥ 0) is uniformly integrable, it suffices to check (a) supn≥1 E(|Xn|) < ∞ ; (b) for all

ε > 0, there exists δ > 0 such that ∀B ∈ F , P(B) < δ ⇒ supn≥1 E(|Xn|1B) < ε.

Condition (a) is a straightforward consequence of convergence in L1. Let us check condition

(b). Let B ∈ F . We have E(|Xn|1B) ≤ E(|X∞|1B) + E(|Xn −X∞|). Let ε > 0. There exists

n0 < ∞ such that E(|Xn − X∞|) < ε
2
, ∀n ≥ n0. On the other hand, there exists δ > 0

sufficiently small such that if P(B) < δ, then E(|X∞|1B) < ε
2
, and max0≤n≤n0 E(|Xn|1B) ≤ ε.

Hence supn≥0 E(|Xn|1B) ≤ ε for all B with P(B) < δ: condition (b) is satisfied. �

Exercice 4. Let (Xt, t ≥ 0) be a family of of real-valued random variables and let X∞ be

a real-valued random variable. Prove that if Xt → X∞ in probability (when t → ∞) and if

(Xt, t ≥ 0) is uniformly integrable, then Xt → X∞ in L1.

Prove that the converse is, in general, not true.

Solution. The first part is proved using exactly the same argument as in the previous,

replacing everywhere n by t.

To see the converse is not true in general, it suffices to consider an example of (Xt, t ∈ [0, 1])

that is not uniformly integrable, and let Xt := 0 for t > 1. Then Xt → 0 in L1 but (Xt, t ≥ 0)

is not uniformly integrable. �

Exercice 5. Let S and T be stopping times.

(i) Prove that FS ⊂ FT .

(ii) Prove that both S∧T and S∨T are stopping times, and FS∧T = FS ∩FT . Moreover,

{S ≤ T} ∈ FS∧T , {S = T} ∈ FS∧T , {S < T} ∈ FS∧T .

(iii) Prove that S + T is a stopping time. [Hint: both S and T are FS∨T -measurable.]

Solution. (i) Let A ∈ FS. Then A ∩ {T ≤ t} = (A ∩ {S ≤ t}) ∩ {T ≤ t} ∈ Ft.

(ii) We have {S ∧ T ≤ t} = {S ≤ t} ∪ {T ≤ t} ∈ Ft and {S ∨ T ≤ t} = {S ≤ t} ∩ {T ≤
t} ∈ Ft.

By (i), FS∧T ⊂ FS ∩FT . Conversely, if A ∈ FS ∩FT , then

A ∩ {S ∧ T ≤ t} = (A ∩ {S ≤ t}) ∪ (A ∩ {T ≤ t}) ∈ Ft ;

thus A ∈ FS∧T . Consequently, FS∧T = FS ∩FT .

Finally, {S ≤ T}∩ {T ≤ t} = {S ≤ t}∩ {T ≤ t}∩ {S ∧ t ≤ T ∧ t} ∈ Ft, because S ∧ t and

T ∧ t being FS∧t-measurable and FT∧t-measurable respectively, are Ft-measurable. Hence

2



{S ≤ T} is FT -measurable. Similarly, {S ≤ T} ∩ {S ≤ t} = {S ≤ t} ∩ {S ∧ t ≤ T ∧ t} ∈ Ft,

which yields {S ≤ T} ∈ FS. Therefore, {S ≤ T} ∈ FS ∩FT = FS∧T .

By exchanging S and T , we have, {T ≤ S} ∈ FS∧T . Hence {S = T} = {S ≤ T} ∩ {T ≤
S} ∈ FS∧T , and {S < T} = {S ≤ T}\{S = T} ∈ FS∧T .

(iii) Since S and T are FS∨T -measurable, so is S + T . We have {S + T ≤ t} = {S + T ≤
t} ∩ {S ∨ T ≤ t} ∈ Ft, because {S + T ≤ t} ∈ FS∨T . �

Exercice 6. Let T be a stopping time. Then

Tn :=
∞∑
k=0

k

2n
1{ k−1

2n
<T≤ k

2n
} + (+∞) 1{T=∞}

is a non-increasing sequence of stopping times such that Tn(ω) ↓ T (ω) for all ω ∈ Ω.

Solution. Clearly, (Tn) decreases pointwise to T . It suffices to check that each Tn is a stopping

time. Since Tn is FT -measurable, and since Tn ≥ T , we have {Tn ≤ t} = {Tn ≤ t} ∩ {T ≤
t} ∈ Ft, because {Tn ≤ t} ∈ FT . �

Exercice 7. Let T Be a stopping time. Let (Xt, t ≥ 0) is an Rd-valued adapted right-

continuous (or left-continuous) process.

(i) Let Y : Ω→ Rd. Prove that Y 1{T<∞} is FT -measurable if and only if ∀ t, Y 1{T≤t} is

Ft-measurable.

(ii) Prove that for any t, the mapping [0, t] × Ω → Rd defined by (s, ω) 7→ Xs(ω) is

B([0, t])⊗Ft-measurable, where B([0, t]) denotes the Borel σ-field of [0, t].

(iii) Prove that XT 1{T<∞} is FT -measurable.

Solution. (i) It suffices to observe that for all A ∈ B(Rd) with 0 /∈ A, {Y 1{T≤t} ∈ A} =

{Y ∈ A} ∩ {T ≤ t}.
(ii) We first assume that (Xs, s ≥ 0) is right-continuous. For any n ≥ 1, let

X(n)
s := X

t∧ (bns/tc+1)t
n

, s ∈ [0, t].

Then X
(n)
s (ω)→ Xs(ω) by the right-continuity of the trajectories. For any A ∈ B(Rd),{

(s, ω) : s ∈ [0, t], X(n)
s (ω) ∈ A

}
=

n⋃
k=1

(
[
(k − 1)t

n
,
kt

n
)× {X kt

n
∈ A}

)
∪
(
{t} × {Xt ∈ A}

)
∈ B([0, t])⊗Ft .

Hence (s, ω) 7→ Xs(ω) on [0, t]× Ω is B([0, t])⊗Ft-measurable.

The proof is similar if (Xs, s ≥ 0) is left-continuous; it suffices to consider instead X
(n)
s :=

X bns/tc t
n

.
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(iii) We apply (i) to Y = XT 1{T<∞}; so it suffices to check that for all t, Y 1{T≤t} =

XT∧t 1{T≤t} is Ft-measurable.

Note that XT∧t is the composition of the following two mappings:

(Ω, Ft) −→ ([0, t]× Ω, B([0, t])⊗Ft)

ω 7−→ (T (ω) ∧ t, ω)

and

([0, t]× Ω, B([0, t])⊗Ft) −→ (Rd, B(Rd))

(s, ω) 7−→ Xs(ω)

both of which are measurable. So XT∧t, as well as XT∧t 1{T≤t}, are Ft-measurable. �

Exercice 8. Let (Xt, t ≥ 0) be a submartingale. Prove that for all t ≥ 0, we have

sups∈[0,t] E(|Xs|) <∞.

Solution. Since (X+
t , t ≥ 0) is a submartingale, we have E(X+

s ) ≤ E(X+
t ) for s ≤ t. On the

other hand, E(Xs) ≥ E(X0), which implies sups∈[0,t] E(|Xs|) ≤ 2E(X+
t )− E(X0) <∞. �

Exercice 9. Let (Bt, t ≥ 0) be Brownian motion, and let (Ft) be its canonical filtration.

Then the following processes are martingales:

(i) (Bt, t ≥ 0).

(ii) (B2
t − t, t ≥ 0).

(iii) For any θ ∈ R, (eθBt−
θ2

2
t, t ≥ 0).

Solution. (i) For any t, E(|Bt|) <∞ and Bt is Ft-measurable. Let t > s ≥ 0. Since Bt −Bs

is independent of Fs, we have E(Bt −Bs |Fs) = E(Bt −Bs), which vanishes because Bt −Bs

has the Gaussian N (0, t− s) law. So E(Bt |Fs) = Bs a.s.

(ii) For any t, E(B2
t ) <∞ and B2

t is Ft-measurable. Let t > s, E(B2
t − t |Fs) = E[(Bt −

Bs +Bs)
2 |Fs)]− t, and for all x ∈ R, E[(Bt −Bs + x)2] = Var(Bt −Bs) + x2 = t− s+ x2, so

we get E(B2
t − t |Fs) = t− s+B2

s − t = B2
s − s a.s.

(iii) For any t, E(eθBt−
θ2

2
t) < ∞ and eθBt−

θ2

2
t is Ft-measurable. Let t > s. We have

E[eθBt−
θ2

2
t |Fs] = e

θ2

2
2(t−s)eθBs−

θ2

2
t = eθBs−

θ2

2
s. �

Exercice 10. Let (Xt, t ≥ 0) be a process with independent increments, and let (Ft) be its

canonical filtration.

(i) If for all t, E(|Xt|) <∞, then X̃t := Xt − E(Xt) is a martingale.

(ii) If for all t, E(X2
t ) <∞, then Yt := X̃2

t − E(X̃2
t ) is a martingale.

(iii) Let θ ∈ R. If E(eθXt) <∞ for all t ≥ 0, then (Zt := eθXt

E[eθXt ] , t ≥ 0) is a martingale.
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Solution. Similar to the solution to the previous exercise. �

Exercice 11. Let X := (Xt, t ≥ 0) be a martingale such that supt≥0 E(|Xt|) <∞.

(i) Prove that for all t ≥ 0, E(X+
n |Ft) converges (when n → ∞) a.s. to a real-valued

random variable, denoted by αt .

(ii) Prove that (αt, t ≥ 0) is a martingale.

(iii) Prove that X is the difference of two non-negative martingales.

Solution. (i) Fix t ≥ 0. Let ξn := E(X+
n |Ft).

For m > n ≥ t, ξn = E{ [E(Xm |Fn)]+ |Ft} ≤ E{E(X+
m |Fn) |Ft} = E{X+

m |Ft} = ξm.

So the sequence (ξn)n≥t is a.s. non-decreasing. In particular, it converges a.s., whose limit is

denoted by αt.

By the monotone convergence theorem, E(αt) = limn→∞ ↑ E(ξn). We observe that E(ξn) =

E(X+
n ) ≤ supt≥0 E(|Xt|), which implies E(αt) ≤ supt≥0 E(|Xt|) < ∞. In particular, αt < ∞

a.s.

(ii) We have seen that for any t, αt is integrable, and is clearly Ft-measurable (being the

pointwise limit of Ft-measurable random variables). Let us check the characteristic identity.

Let s < t, and let A ∈ Fs. Since αt is the limit of the non-decreasing sequence (ξn),

it follows from the monotone convergence theorem that E(αt 1A) = limn→∞ ↑ E(ξn 1A). For

n ≥ t, we have E(ξn 1A) = E(X+
n 1A), thus E(αt 1A) = limn→∞ ↑ E(X+

n 1A). Similarly,

E(αs 1A) = limn→∞ ↑ E(X+
n 1A). It follows that E(αt 1A) = E(αs 1A). Since A ∈ Fs is

arbitrary, we deduce that E(αt |Fs) = αs a.s.

[We note that for question (i) and (ii), it suffices to have a submartingale X satisfying

supt≥0 E(X+
t ) <∞.]

(iii) By considering −X in place of X, we see that E(X−n |Ft) converges a.s. (when n →
∞) to a limit, denoted by βt, and that (βt, t ≥ 0) is a non-negative martingale. We have

Xt = αt − βt, ∀t ≥ 0. �

Exercice 12. Let ξ be a real-valued random variable. Let Xt := P(ξ ≤ t |Ft). Prove that

(Xt, t ≥ 0) is a submartingale.

Solution. Let 0 ≤ s < t. Let us check that E(Xt |Fs) ≥ Xs a.s.

By definition, Xt ≥ P(ξ ≤ s |Ft); so E[Xt |Fs] ≥ E[P(ξ ≤ s |Ft) |Fs] = P(ξ ≤ s |Fs) =

Xs. �

Exercice 13. Let (Xt, t ≥ 0) be a submartingale. Prove that supt≥0 E(X+
t ) <∞ if and only

if supt≥0 E(|Xt|) <∞.

Solution. “⇐” Obvious.
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“⇒” Suppose supt≥0 E(X+
t ) < ∞. Since |Xt| = 2X+

t − Xt and E(Xt) ≥ E(X0), we have

supt≥0 E(|Xt|) ≤ 2 supt≥0 E(X+
t )− E(X0) <∞.

Exercice 14. Let (Xt, t ≥ 0) be a martingale. If there exists ξ ∈ L1(P) such that for all

t ≥ 0, E(ξ |Ft) = Xt a.s., we say that (Xt, t ≥ 0) is closed by ξ.

Prove that a right-continuous martingale is closed if and only if it is uniformly integrable.

Solution. If X is closed by ξ, then Xt = E(ξ |Ft) is uniformly integrable.

Conversely, we assume that X is right-continuous and uniformly integrable. Then Xt →
X∞ a.s. and in L1, with Xt = E(X∞ |Ft). By definition, this means X is closed by X∞. �

Exercice 15. (Discrete backwards submartingales) Let (Fn, n ≤ 0) be a sequence of

sub-σ-fields of F satisfying Fn ⊂ Fn+1 for all n ≤ 0. Let (Xn, n ≤ 0) be such that ∀n,

Xn is Fn-measurable et integrable, and that E(Xn+1 |Fn) ≥ Xn a.s. We call (Xn, n ≤ 0) a

backward submartingale.

(i) Let a < b. Let Un(X; a, b) be the number of up-crossings along [a, b] by Xn, · · · , X−1,
X0. Prove that E[Un(X; a, b)] ≤ E[(X0−a)+]

b−a .

(ii) Prove that Xn → X−∞ a.s. when n→ −∞.

(iii) Assume from now on that infn≤0 E(Xn) > −∞. Prove that Xn → X−∞ in L1.

Hint: Only uniform integrability needs proved. By considering Xn − E(X0 |Fn), you can

argue that Xn may be assumed to take values in (−∞, 0].

(iv) Prove that X−∞ ≤ E(X0 |F−∞) a.s., where F−∞ :=
⋂
n≤0 Fn.

(v) (P. Lévy) Let ξ be a real-valued random variable with E(|ξ|) < ∞. Prove that

E(ξ |Fn)→ E(ξ |F−∞) a.s. and in L1, as n→ −∞.

Solution. (i) It follows from the usual inequality for the number of up-crossings.

(ii) By (i) and the monotone convergence theorem, E[U∞(X; a, b)] ≤ E[(X0−a)+]
b−a , where

U∞(X; a, b) denotes the number of up-crossings along the interval [a, b] by (Xn, n ≤ 0). A

fortiori, U∞(X; a, b) <∞ a.s.; hence P(U∞(X; a, b) <∞, ∀a < b rationals) = 1. This yields

the a.s. existence of limn→−∞Xn.

(iii) In view of a.s. convergence proved in (ii), it only remains to prove that (Xn, n ≤ 0) is

uniformly integrable. Since (E[X0 |Fn], n ≤ 0) is uniformly integrable, it suffices, for the proof

of convergence in L1, to verify that the submartingale (Xn − E[X0 |Fn], n ≤ 0) is uniformly

integrable. As such, we can assume, without loss of generality, that Xn ≤ 0 for all n ≤ 0.

When n → −∞, E(Xn) → A = infn≤0 E(Xn) ∈ ]−∞, 0]. Let ε > 0. There exists N < ∞
such that E(X−N)−A ≤ ε, and a fortiori E(X−N)−E(Xn) ≤ ε, ∀n ≤ 0. Let a > 0. We have,
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for n ≤ −N ,

E[ |Xn|1{|Xn|>a} ] = −E[Xn 1{Xn<−a} ]

= −E(Xn) + E[Xn 1{Xn≥−a} ]

≤ −E(Xn) + E[X−N 1{Xn≥−a} ]

= −E(Xn) + E(X−N)− E[X−N 1{Xn<−a} ]

≤ ε+ E[ |X−N |1{|Xn|>a} ].

By the Markov inequality, P(|Xn| > a) ≤ −E(Xn)
a
≤ −A

a
= |A|

a
. Hence we can choose a so large

that E[ |X−N |1{|Xn|>a} ] ≤ ε. Then

sup
n≤−N

E[ |Xn|1{|Xn|>a} ] ≤ 2ε.

On the other hand, we can choose a sufficiently large such that E[ |Xn|1{|Xn|>a} ] ≤ ε for n = 0,

−1, · · · , −N . Consequently, (Xn, n ≤ 0) is uniformly integrable (and E(|X−∞|) <∞).

(iv) Since Xn ≤ E(X0 |Fn), we have, for all A ∈ F−∞ (A is, a fortiori, an element of Fn),

E[Xn 1A] ≤ E[X0 1A].

Since Xn → X−∞ in L1, by letting n→ −∞, we get E[X−∞ 1A] ≤ E[X0 1A]. Since X−∞ is Fn-

measurable (for all n ≤ 0) hence (F−∞)-measurable, this implies that X−∞ ≤ E(X0 |F−∞),

a.s.

(v) Let Xn := E(ξ |Fn), n ≤ 0, which is a backward martingale. By (ii) and (iii),

Xn → X−∞ a.s. and in L1, where

X−∞ = E[X0 |F−∞] = E[E(ξ |F0) |F−∞] = E[ξ |F−∞], a.s.,

as desired. �

Exercice 16. Let (Xt, t ≥ 0) be a continuous and non-negative martingale. Let T := inf{t ≥
0 : Xt = 0} (with inf ∅ :=∞). Prove that a.s. on {T <∞}, we have Xt = 0, ∀t ≥ T .

Solution. Fix n ≥ 1. We apply the optional sampling theorem to the uniformly inte-

grable martingale (Xt∧n, t ≥ 0) and to the pair of stopping times T and T + t, to see that

E(X(T+t)∧n |FT ) = XT∧n. Let n → ∞. By the conditional Fatou’s lemma, E(XT+t |FT ) ≤
XT , hence E(XT+t 1{T<∞} |FT ) ≤ XT 1{T<∞} = 0. This is possible only if XT+t 1{T<∞} = 0

a.s., i.e., XT+t = 0 a.s. on {T <∞}.
Summarizing: a.s. on {T <∞}, we have XT+t = 0, ∀t ∈ R+∩Q. The continuity of X tells

us that we can remove the restriction t ∈ Q. �
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Exercice 17. Let (Xt, t ≥ 0) be a right-continuous submartingale, and let S and T be

bounded stopping times. Prove that

E(XT |FS) ≥ XT∧S, a.s.

Solution. We have

E[XT |FS] = E[XT∧S 1{T≤S} |FS] + E[XT∨S 1{T>S} |FS]

= XT∧S 1{T≤S} + 1{T>S}E[XT∨S |FS]

≥ XT∧S 1{T≤S} + 1{T>S}XS = XT∧S,

as desired. �

Exercice 18. Let (Xt, t ≥ 0) be a right-continuous martingale. Let T be a stopping time.

(i) Prove that (XT∧t, t ≥ 0) is a right-continuous martingale.

(ii) Prove that if (Xt, t ≥ 0) is uniformly integrable, then so is (XT∧t, t ≥ 0).

Solution. (i) The right-continuity of the trajectories is obvious. Let us prove that (XT∧t, t ≥
0) is a martingale with respect to (Ft).

For t ≥ 0, it is clear that E(|XT∧t|) <∞ (a consequence of the optional sampling theorem)

and that XT∧t is Ft-measurable (being FT∧t-measurable). Let t > s ≥ 0. Applying the

previous exercise gives E(XT∧t |Fs) = X(T∧t)∧s, which is XT∧s.

(ii) If (Xt, t ≥ 0) is uniformly integrable, then the optional sampling theorem says that

XT∧t = E(X∞ |FT∧t), which yields the uniform integrability of (XT∧t, t ≥ 0) by recalling that

for any integrable random variable ξ, (E(ξ |G ), G ⊂ F σ-field) is uniformly integrable. �

Exercice 19. Let (Xt, t ≥ 0) be a non-negative and right-continuous supermartingale. Recall

that Xt → X∞ a.s. in this case. Prove that if E(X∞) = E(X0), then (Xt, t ≥ 0) is a uniformly

integrable martingale.

Solution. By the conditional Fatou’s lemma, E(X∞ |Ft) ≤ Xt a.s. Taking expectation on

both sides gives E(X∞) ≤ E(Xt) which is ≤ E(X0) because X is a supermartingale. By

assumption, E(X∞) = E(X0), which is possible only if E(X∞ |Ft) = Xt a.s., i.e., only if is a

uniformly integrable martingale. �

Exercice 20. Let X = (Xt, t ≥ 0) be a non-negative continuous submartingale. We write

St := sups∈[0, t]Xs, t ≥ 0.

(i) Prove that for all λ > 0 and all t ≥ 0, λP(St > 2λ) ≤ E[Xt 1{Xt>λ}].

We can use the following inequality: for all a > 0, aP(St > a) ≤ E[Xt 1{St>a}] (this fol-

lows from the maximal inequality for discrete-time submartingales and the continuity of the

trajectories).
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(ii) Prove that 1
2
E[St] ≤ 1 + E[Xt log+Xt ], wher log+ x := log max(x, 1).

(iii) Let (Yt, t ≥ 0) be a continuous and uniformly integrable martingale. We assume that

E[ |Y∞| log+ |Y∞| ] <∞. Prove that supt≥0 |Yt| is integrable.

Solution. (i) For all a > 0, aP(St ≥ a) ≤ E[Xt 1{St≥a}]. So

2λP(St ≥ 2λ) ≤ E[Xt 1{St≥2λ}] ≤ E[Xt 1{Xt>λ}] + E[Xt 1{Xt≤λ, St≥2λ}]

≤ E[Xt 1{Xt>λ}] + λP(St ≥ 2λ),

from which the desired inequality follows.

(ii) We have

1

2
E[St] =

∫ ∞
0

P(St ≥ 2λ) dλ ≤ 1 +

∫ ∞
1

P(St ≥ 2λ) dλ

≤ 1 +

∫ ∞
1

E[λ−1Xt 1{Xt>λ}] dλ.

By Fubini’s theorem, the last integral equals E[
∫ Xt
1
λ−1Xt 1{Xt≥1} dλ ] = E[Xt log+Xt ]. We

obtain the desired result.

(iii) By assumption, Yt = E(Y∞ |Ft). Since x 7→ |x| log+ |x| =: ϕ(x) is convex, Jensen’s

inequality says that ϕ(Yt) ≤ E[ϕ(Y∞) |Ft ]; hence supt≥0 E[ϕ(Yt) ] ≤ E[ϕ(Y∞) ] <∞. By (ii)

(applied to Xt := |Yt|, t ≥ 0, which is a non-negative submartingale), 1
2
E(sups∈[0, t] |Ys|) ≤

1 + E[ϕ(Yt) ] ≤ 1 + E[ϕ(Y∞) ]. It follows from the monotone convergence theorem that

E(supt≥0 |Yt|) ≤ 2 + 2E[ϕ(Y∞) ] <∞. �

Exercice 21. For any martingale X := (Xt, t ≥ 0), we say that it is square-integrable if

E(X2
t ) <∞, ∀t ≥ 0, and that it is bounded in L2 if supt≥0 E(X2

t ) <∞.

(i) Prove that if X is a right-continuous martingale and is bounded in L2, then it is

uniformly integrable, with E(supt≥0X
2
t ) <∞.

(ii) Let X and Y be right-continuous martingales that are bounded in L2. Let S and T be

stopping times. Prove that E(XSYT ) = E(XS∧TYS∧T ).

(iii) Let X and Y be right-continuous and square-integrable martingales. Let S and T be

bounded stopping times. Prove that E(XSYT ) = E(XS∧TYS∧T ).

Solution. (i) That E(supt≥0X
2
t ) < ∞ is a consequence of Doob’s inequality. In particular,

E(supt≥0 |Xt|) <∞ ; a fortiori, X is uniformly integrable.

(ii) Since |XS| ≤ supt≥0 |Xt|, we have E(X2
S) < ∞. Similarly, E(Y 2

T ) < ∞. Hence by the

Cauchy–Schwarz inequality, E(|XSYT |) <∞.

Applying the optional sampling theorem to the uniformly integral martingale Y gives

E(XSYT 1{S≤T} |FS) = XS 1{S≤T} E(YT∨S |FS)

= XS 1{S≤T} YS

= XS∧TYS∧T 1{S≤T},
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from which it follows that

E(XSYT 1{S≤T}) = E(XS∧TYS∧T 1{S≤T}).

On the other hand, XSYT 1{S>T} = XS∧TYS∧T 1{S>T}. Hence

E(XSYT 1{S>T}) = E(XS∧TYS∧T 1{S>T}).

Consequently, E(XSYT ) = E(XS∧TYS∧T ).

(iii) The same proof as in (ii), except in two places:

• to justify the integrability of XSYT , let a > 0 be such that S ≤ a, then E(X2
S) ≤

E(supu∈[0, a]X
2
u) ≤ 4E(X2

a) <∞, and similarly, E(Y 2
T ) <∞, so E(|XSYT |) <∞ ;

• to justify E(YT∨S |FS) = YS, we apply the optional sampling theorem to Y and to the

pair of bounded stopping times T ∨ S and S. �

Exercice 22. Let S ≤ T be bounded stopping times. Prove that E[(BT − BS)2] = E(B2
T )−

E(B2
S) = E(T − S).

Solution. Since S and T are bounded, Doob’s inequality implies that E(B2
s ) < ∞ and that

E(B2
T ) <∞. We have

E[(BT −BS)2] = E(B2
S) + E(B2

T )− 2E[E(BSBT |FS) ]

= E(B2
S) + E(B2

T )− 2E[BSE(BT |FS) ],

because BS is FS)-measurable. Applying the optional sample theorem to B and to the pair

of bounded stopping times S and T yields E(BT |FS) = BS, which, in turn, implies that

E[(BT −BS)2] = E(B2
S) + E(B2

T )− 2E[B2
S] = E(B2

T )− E(B2
S).

We now apply the optional sample theorem to (B2
t − t, t ≥ 0) and to the pair of bounded

stopping times T and 0, to see that E(B2
T − T ) = 0; thus E(B2

T ) = E(T ). Similarly, E(B2
S) =

E(S). Hence E(B2
T )− E(B2

S) = E(T − S). �

Exercice 23. (i) Let (Xt, t ≥ 0) be a non-negative and continuous martingale such that

Xt → 0, a.s. (t→∞). Prove that for all x > 0, P(supt≥0Xt ≥ x |F0) = 1 ∧ X0

x
, a.s.

(ii) Let B be Brownian motion. Determine the law of supt≥0(Bt − t).

Solution. (i) Let T := inf{t ≥ 0 : Xt ≥ x} which is a stopping time. Clearly, (Xt∧T , t ≥ 0)

is a continuous martingale, and is uniformly integrable (because |Xt∧T | ≤ x + X0), closed by

XT (with the notation X∞ := 0). By the optional sampling theorem, E(XT |F0) = X0. We

observe that

E[XT |F0] = E[XT 1{T<∞} |F0] + E[X∞ 1{T=∞} |F0]

= E[(x ∨X0) 1{T<∞} |F0]

= (x ∨X0)P[T <∞|F0],

10



which yields

P[T <∞|F0] =
X0

x ∨X0

= 1 ∧ X0

x
.

It suffices then to remark that {T <∞} = {supt≥0Xt ≥ x}.
(ii) Let Xt := e2(Bt−t) which is a continuous martingale. Since a.s. Bt

t
→ 0 (t → ∞), we

have Bt − t = (Bt
t
− 1)t→ −∞, a.s., and thus Xt → 0 a.s. By (i), P{supt≥0Xt ≥ x} = 1 ∧ 1

x
,

x > 0, which means P{supt≥0(Bt − t) ≥ a} = e−2a, a > 0. In other words, supt≥0(Bt − t) has

the exponential law of parameter 2 (i.e., with mean 1
2
). �

Exercice 24. Let γ 6= 0, a > 0 and b > 0. Let Tx := inf{t > 0 : Bt + γt = x}, x = −a or b.

Compute P(T−a > Tb).

Hint: You can use the martingale (e−2γ (Bt+γt), t ≥ 0).

Solution. Consider the martingale (Xt := e−2γBt−2γ
2t, t ≥ 0). Since e−2γBt∧Ta,b−2γ

2(t∧Ta,b) ≤
e2|γ|(a+b), we see that (XTa,b∧t, t ≥ 0) is a continuous and bounded martingale, closed by XTa,b .

Applying the optional sample theorem to this uniformly integrable martingale, we obtain:

1 = E[e−2γBTa,b−2γ
2Ta,b ]

= E[e2γa 1{T−a<Tb}] + E[e−2γb 1{T−a>Tb}]

= e2γa − e2γa P(T−a > Tb) + e−2γb P(T−a > Tb),

which yields6 P(T−a > Tb) = e2γa−1
e2γa−e−2γb . �

Exercice 25. (First Wald identity) Let T be a stopping time such that E(T ) <∞. Prove

that BT is integrable and that E(BT ) = 0.

Solution. Both (Bt∧T , t ≥ 0) and (B2
t∧T − t ∧ T, t ≥ 0) are continuous martingales, with

E(B2
t∧T ) = E(t ∧ T ) ≤ E(T ); hence supt E(B2

t∧T ) ≤ E(T ) <∞. Consequently, (Bt∧T , t ≥ 0) is

a uniformly integrable martingale, closed by BT (in particular, BT is integrable). Applying the

optional sampling theorem to this uniformly integrable martingale yields E(BT ) = E(B0∧T ) =

0. �

Exercice 26. (Second Wald identity) Let T be a stopping time such that E(T ) < ∞.

Prove that BT has a finite second moment and that E(B2
T ) = E(T ).

Solution. By Doob’s inequality,

E
[

sup
t≥0

B2
t∧T

]
≤ 4 sup

t≥0
E
[
B2
t∧T
]
≤ 4E(T ) <∞,

6Letting a → ∞, we see that P(Tb < ∞) is 1 if γ > 0, and is e2γb if γ < 0, which is in agreement with the
previous exercise, because P(Tb <∞) = P{supt≥0(Bt + γt) ≥ b}.
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so (B2
t∧T , t ≥ 0) is uniformly integrable. Since (t∧T, t ≥ 0) is also uniformly integrable (being

bounded by T ), (B2
t∧T − t ∧ T, t ≥ 0) is a continuous and uniformly integrable martingale,

closed by B2
T − T (in particular, BT has a finite second moment). Applying the optional

sampling theorem to this uniformly integrable martingale yields E(B2
T − T ) = 0. In other

words, E(B2
T ) = E(T ). �
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