
Throughout the exercises, unless stated otherwise, S is a countable space, (Xn) is the

canonical Markov chain with transition kernel p, and Green function G. Notation for natural

numbers: N := {0, 1, 2, · · · }, and N
∗ := {1, 2, · · · }.

Exercise 1. Let ξ be a real-valued random variable with E(|ξ|) < ∞. Let X be an S-valued

random variable. Let h : S → R be a mapping. Prove that

E(ξ |X) = h(X), a.s. ⇔ E(ξ |X = x) = h(x), ∀x ∈ S such that P (X = x) > 0.

Solution. “⇒” Let x be such that P (X = x) > 0. Since E[ξ 1{X=x} |X ] = 1{X=x}E[ξ |X ] =

1{X=x} h(X), we have E[ξ 1{X=x}] = E[1{X=x} h(X)] = h(x)P (X = x). Therefore,

E(ξ |X = x) =
E[ξ 1{X=x}]

P (X = x)
=

h(x)P (X = x)

P (X = x)
= h(x).

“⇐” For any x ∈ S, |h(x)| ≤ E[ |ξ| |X = x], so that E(|h(X)|) =
∑

x∈S |h(x)|P (X =

x) ≤ E(|ξ|) < ∞. Since h(X) is σ(X)-measurable, it remains to check that for anyA ∈ σ(X),

we have E(h(X) 1A) = E(ξ 1A).

By definition, there exists B ⊂ S such that A = X−1(B). So 1A = 1B(X). Thus

E(h(X) 1A) = E(h(X) 1B(X)) =
∑

x∈B h(x)P (X = x) =
∑

x∈B E(ξ 1{X=x}), which is =

E(ξ 1B(X)) = E(ξ 1A). �

Exercise 2. Let n ≥ 1 and f : S → R+ := [0, ∞). Let {i1, · · · , ik} ⊂ {0, 1, · · · , n − 1}.

Prove that

E[f(Xn+1) |Xi1, · · · , Xik , Xn] = E[f(Xn+1) |Xn].

Solution. For any x ∈ S,

P [Xn+1 = y |X0, X1, · · · , Xn] = p(Xn, y) = P [Xn+1 = y |Xn].

Therefore,

E[f(Xn+1) |X0, X1, · · · , Xn] =
∑

y∈S

f(y) p(Xn, y) = E[f(Xn+1) |Xn].

If {i1, · · · , ik} ⊂ {0, 1, · · · , n− 1}, then

E[f(Xn+1) |Xi1, · · · , Xik , Xn] = E{E[f(Xn+1) |X0, X1, · · · , Xn] |Xi1, · · · , Xik , Xn}

= E{E[f(Xn+1) |Xn] |Xi1, · · · , Xik , Xn},
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which is E[f(Xn+1) |Xn], being itself σ(Xi1, · · · , Xik , Xn)-measurable. �

Exercise 3. Prove that there exists a probability space (Ω, F , P ) on which one can define

(Un, n ≥ 1), a sequence of i.i.d. uniform (0, 1) random variables.

Solution. Let Ω := [0, 1), endowed with the Borel σ-field and with the Lebesgue measure.

For any ω ∈ Ω = [0, 1) and integer n ≥ 1, let

Yn(ω) := ⌊2nω⌋ − 2 ⌊2n−1ω⌋ ∈ {0, 1}.

Then we have the (proper) dyadic development

ω =
∞
∑

n=1

Yn(ω)

2n
, ∀ω ∈ Ω,

as ω −
∑n

k=1
Yk(ω)
2k

= 2nω−⌊2nω⌋
2n

∈ [0, 1
2n
[ , ∀n.

For any p and any i1, · · · , ip ∈ {0, 1},

{Y1 = i1, · · · , Yp = ip} =
[

p
∑

j=1

ij
2j
,

p
∑

j=1

ij
2j

+
1

2p

)

,

so that

P (Y1 = i1, · · · , Yp = ip) =
1

2p
.

Summing over possible values of Y1, we get P (Y2 = i2, · · · , Yp = ip) =
1

2p−1 , and by induction,

P (Yp = ip) =
1
2
. So

P (Y1 = i1, · · · , Yp = ip) = P (Y1 = i1) · · ·P (Yp = ip).

In other wods, (Yn, n ≥ 1) is a sequence of i.i.d. random variables such that P (Yn = 0) =
1
2
= P (Yn = 1).

Let ϕ : N∗ ×N
∗ → N

∗ be injective. Then (ξi,j := Yϕ(i, j), i, j ≥ 1) is again a collection of

i.i.d. random variables. We set

Ui :=
∞
∑

j=1

ξi,j
2j

, i ≥ 1.

It is clear that (Ui, i ≥ 0) is a sequence of i.i.d. random variables. For any m ≥ 1,
∑m

j=1
ξi,j
2j

has the same distribution as
∑m

n=1
Yn

2n
; letting m → ∞ yields that each Ui has the uniform

distribution on (0, 1). �
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Exercise 4. Prove that in the proof of the Markov property, we only need to check that

Ex[(1A ◦ θn) 1B] = Ex[1B PXn(A)],

for B := {ω ∈ Ω : X0(ω) = y0, X1(ω) = y1, · · · , Xn(ω) = yn} (for y0, y1, · · · , yn ∈ S) and

any cylinder set A.

Solution. The Markov property is equivalent to the following: if Y : Ω → R+ is measurable

and n ≥ 0, then Ex[(Y ◦ θn) 1B] = Ex[1B EXn(Y )] for any B ∈ Fn.

By a usual argument (from indicator functions to simple functions, and then to non-

negative functions by means of the monotone convergence theorem), it suffices to prove the

theorem for Y = 1A, where A ∈ F .

By the π-λ theorem, it suffice to prove the theorem for A of the form (for some m ∈ N

and x0, x1, · · · , xm ∈ S)

A = {x0} × {x1} × · · · × {xm} × S × S × · · ·

= {ω ∈ Ω : X0(ω) = x0, X1(ω) = x1, · · · , Xm(ω) = xm},

because the family of all such sets A is a π-system (i.e., stable by finite intersections) and

generates F , whereas the family of all sets A such that Y = 1A satisfies the desired identity

is a λ-system.

Another application of the π-λ theorem then tells us that we only need to check the

identity for the set B given in the exercise. �

Exercise 5. Let (Zn, n ≥ 1) be a sequence of i.i.d. random variables defined on a certain

probability space, taking values in a measurable space (E, E ). Let Φ : S × E → S be a

measurable mapping. Let y ∈ S. We define (Yn, n ∈ N) by Y0 := y and Yn+1 := Φ(Yn, Zn+1)

(for n ∈ N). Prove that (Yn, n ∈ N) is a Markov chain, and determine its transition

probability.

Solution. Let n ∈ N and x0, x1, · · · , xn ∈ S. We have

P{Y0 = x0, · · · , Yn = xn}

= P{Y0 = x0, Φ(x0, Z1) = x1, Φ(x1, Z2) = x2, · · · , Φ(xn−1, Zn) = xn}

= 1{x0=y}P{Φ(x0, Z1) = x1}P{Φ(x1, Z1) = x2} · · ·P{Φ(xn−1, Z1) = xn}.

By taking q(u, v) := P{Φ(u, Z1) = v} for u, v ∈ S, we have

P{Y0 = x0, · · · , Yn = xn} = 1{x0=y} q(x0, x1) q(x1, x2) · · · q(xn−1, xn),
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which means (Yn, n ∈ N) is a Markov chain with transition probability q. �

Exercise 6. Let A ⊂ S. Let τA := inf{n ≥ 0 : Xn ∈ A} (inf∅ := ∞). Let Yn := Xn∧τA ,

n ∈ N. Prove that (Yn, n ∈ N) is a Markov chain, and determine its transition kernel.

Solution. By admitting that (Yn, n ∈ N) is a Markov chain, let us determine its transition

probability q: for x, y ∈ S,

q(x, y) = Px{Y1 = y} = Px{X1∧τA = y}.

If x ∈ A, then τA = 0, so Px{X1∧τA = y} = Px{X0 = y} = 1{y=x}. If x ∈ Ac, then τA ≥ 1, so

Px{X1∧τA = y} = Px{X1 = y} = p(x, y). Therefore, the transition kernel of (Yn, n ∈ N) is

q(x, y) = 1{x∈A} 1{y=x} + 1{x∈Ac} p(x, y).

It remains to check that (Yn, n ∈ N) is indeed a Markov chain. We have, for x, y0, · · · ,

yn, y ∈ S such that Px(Bn) > 0 with Bn := {Y0 = y0, · · · , Yn = yn},

Px{Yn+1 = y |Bn} = Px{Yn+1 = y, Yn ∈ A |Bn}+ Px{Yn+1 = y, Yn ∈ Ac |Bn}.

On the set {Yn ∈ A}, we have τA ≤ n, so that Yn+1 = Yn, and thus Px{Yn+1 = y, Yn ∈

A |Bn} = 1{y=yn} 1{yn∈A}. On the set {Yn ∈ Ac}, we have τA ≥ n + 1, so Yn = Xn

and Yn+1 = Xn+1, which implies Px{Yn+1 = y, Yn ∈ Ac |Fn} = 1{yn∈Ac} p(yn, y). As a

consequence,

Px{Yn+1 = y | Y0 = y0, · · · , Yn = yn} = 1{y=yn} 1{yn∈A} + 1{yn∈Ac} p(yn, y) = q(yn, y),

proving that (Yn, n ∈ N) is a Markov chain with transition kernel q. �

Exercise 7. To each probability α on {2, 3, · · · }, we associate a Markov chain (Xn, n ≥ 0)

taking values in {0, 1, 2, · · · }, with initial distribution δ0 (Dirac measure on 0) and transition

probability p defined by

p(0, i) = α(i+ 1) , p(i, i− 1) = 1 , i ≥ 1 .

Let T := inf{n ≥ 1 : Xn = 0} (inf∅ := ∞). What is the law of T ?

Solution. The only possible way for the chain (Xn) to come back to 0 in k steps is to move

from 0 to k − 1 at the first step, and to move from k − 1 to k − 2, and from k − 2 to k − 3,
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· · · , and from 1 to 0 in the next k − 1 steps. As such, the event {T = k} is identical to

{X1 = k − 1}. We have P (T = k) = P (X1 = k − 1) = α(k).

[So, all probability measure on {2, 3, · · · } can be considered as the law of the first return

time to the initial state for a certain Markov chain.] �

Exercise 8 (Transition kernel and Doob’s h-transform).

Question A. Let h : S → R+ be a bounded mapping such that for any x ∈ S,

(h(Xn), n ∈ N) under Px is a martingale with respect to the canonical filtration. For any x,

y ∈ Sh := {z ∈ S : h(z) > 0}, we define

ph(x, y) :=
h(y)

h(x)
p(x, y).

Prove that ph is a transition kernel on Sh, and is called the h-transform of p.

Question B. We consider the example of simple random walk on Z, i.e., under Px,

(Xn, n ∈ N) is a simple random walk on Z with Px(X0 = x) = 1. Let Ti := inf{n ∈ N :

Xn = i} for i ∈ Z. For N ≥ 1 and 1 ≤ k ≤ N − 1, we write

P
(N)
k := Pk( · | TN < T0).

(B1) Prove that for N ≥ 1 and 1 ≤ k ≤ N − 1,

Pk(TN < T0) =
k

N
.

(B2) Prove that under P
(N)
k , (Xn∧TN

, n ∈ N) is a Markov chain taking values in

{1, 2, · · · , N}. Determine its transition kernel.

(B3) Find a function h : {0, 1, 2, · · · , N} → R+ such that the transition kernel of

(Xn∧TN
, n ∈ N) under P

(N)
k is the h-transform of the transition kernel of (Xn∧T0∧TN

, n ∈ N)

under Pk.

Solution. (A) Let x ∈ Sh. Under Px, (h(Xn), n ∈ N) is a martingale, thus

h(x) = Ex[h(X1)] =
∑

y∈S

h(y) p(x, y) =
∑

y∈Sh

h(y) p(x, y),

which is equivalent to saying that
∑

y∈Sh ph(x, y) = 1. Since ph(x, y) ≥ 0, this shows that

ph is a transition kernel on Sh.

(B1) Write ak := Pk(TN < T0), for 0 ≤ k ≤ N . Of course, a0 = 0 and aN = 1. By the

Markov property, ak = 1
2
ak+1 +

1
2
ak−1 for 1 ≤ k ≤ N − 1.
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It is easy to solve this system of linear equations: writing bk := ak − ak−1, 1 ≤ k ≤ N ,

we have bk+1 = bk, ∀1 ≤ k ≤ N − 1. Since
∑N

k=1 bk = aN − a0 = 1, this yields bk = 1
N
,

∀1 ≤ k ≤ N , i.e., ak − ak−1 =
1
N
, ∀1 ≤ k ≤ N . Consequently, ak = k

N
, 0 ≤ k ≤ N .

(B2) Let Yn := Xn∧TN
, which, under P

(N)
k , takes values in {1, 2, · · · , N}. Let us compute

P
(N)
k {Y0 = y0, · · · , Yn = yn} =

N

k
Pk{Y0 = y0, · · · , Yn = yn, TN < T0},

for yi ∈ {1, 2, · · · , N} satisfying:(a) y0 = k, (b) |yi+1 − yi| = 1 if yi < N , (c) if yi = N ,

then yj = N , ∀j ≥ i. [If either of the conditions are violated, the probability in question

vanishes.]

We distinguish two situations.

First situation: yi < N , ∀i ≤ n. Then on the event {{Y0 = y0, · · · , Yn = yn}, we have

TN > n, so 1{TN<T0} = 1{TN<T0} ◦ θn. By the Markov property,

Pk{Y0 = y0, · · · , Yn = yn, TN < T0} = Ek[1{X0=y0, ··· ,Xn=yn}Pyn(TN < T0)]

=
yn
N

Pk{X0 = y0, · · · , Xn = yn}

=
yn
N

1

2n
.

Therefore, in this case,

P
(N)
k {Y0 = y0, · · · , Yn = yn} =

yn
k

12n =
y1
2k

y2
2y1

· · ·
yn

2yn−1
.

Second situation: yℓ = N for some ℓ (while yℓ−1 < N) and thus yi = N , ∀i ≥ ℓ. On

the event {{Y0 = y0, · · · , Yn = yn}, we have TN = ℓ, which is indeed smaller than T0.

Accordingly,

Pk{Y0 = y0, · · · , Yn = yn, TN < T0} = Pk{X0 = y0, · · · , Xℓ = yℓ} =
1

2ℓ
,

so that in this situation,

P
(N)
k {Y0 = y0, · · · , Yn = yn} =

N

2ℓ k
=

y1
2k

y2
2y1

· · ·
yℓ

2yℓ−1
× 1× · · · × 1.

Conclusion: under P
(N)
k , (Yn, n ∈ N) is a Markov chain with transition probability

q(x, x+ 1) =
x+ 1

2x
, 1 ≤ x ≤ N − 1,

q(x, x− 1) =
x− 1

2x
, 2 ≤ x ≤ N − 1,

q(N, N) = 1,

q(x, y) = 0, otherwise.
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(B3) It is seen that (Xn∧T0∧TN
, n ∈ N) is a Markov chain, taking values in {0, 1, · · · , N},

with transition kernel

p(x, x+ 1) =
1

2
, 1 ≤ x ≤ N − 1,

p(x, x− 1) =
1

2
, 1 ≤ x ≤ N − 1,

p(N, N) = 1,

p(0, 0) = 1,

p(x, y) = 0, otherwise.

In view of the kernels p on {0, 1, · · · , N} and q on {1, 2, · · · , N}, let us define the function

h : {0, 1, · · · , N} → R+ by h(x) := x for x ∈ {0, 1, · · · , N}. Since (Xn∧T0∧TN
, n ∈ N)

under Pk is a martingale (being a martingale stopped at a stopping time), it is immediate

that q is the h-transform of p. �

Exercise 9 (Markov chains and martingales). Let H := {f : S → R bounded}. Prove

that there exists a mapping A : H → H such that for any f ∈ H ,

f(Xn)−

n−1
∑

i=0

Af(Xi), (

−1
∑

i=0

:= 0)

is a martingale with respect to the canonical filtration.

Solution. Assuming that such a mapping exists, what should it look like?

Let Yn := f(Xn)−
∑n−1

i=0 Af(Xi), n ∈ N. Saying that (Yn, n ∈ N) is an (Fn)-martingale

means that Yn is integrable, Fn-measurable, an E(Yn+1 |Fn) = Yn. Since

E(Yn+1 |Fn) = E[f(Xn+1) |Fn]−
n
∑

i=0

Af(Xi)

= E[f(Xn+1) |Xn]−

n
∑

i=0

Af(Xi)

=
∑

y∈S

p(Xn, y)f(y)−
n
∑

i=0

Af(Xi)

= Yn +
∑

y∈S

p(Xn, y)f(y)− f(Xn)− Af(Xn),

this gives Af(Xn) =
∑

y∈S p(Xn, y)f(y)− f(Xn).
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So, by defining A : H → H by Af(x) :=
∑

y∈S p(x, y)f(y) − f(x), ∀x ∈ S, we

immediately see that Yn is integrable and Fn-measurable, and by the computations done

above, E(Yn+1 |Fn) = Yn. In other words, (Yn, n ∈ N) is a martingale. �

Exercise 10 (Simple random walk on Z). For any x ∈ Z, let Px denote the probability

on the canonical space, under which (Xn, n ∈ N) is a simple random walk on Z with

Px(X0 = x) = 1.

For a ∈ N, we define τa := inf{n ∈ N : Xn −X0 = a} (with inf ∅ := ∞).

(i) Prove that for any x ∈ Z, Px{τa < ∞, ∀a ∈ N} = 1.

(ii) Prove that (τa+1 − τa, a ∈ N) under P0 is a sequence of i.i.d. random variables.

Solution. (i) Under P0, simple random walk on Z is sum of i.i.d. Bernoulli(1
2
) random

variables. By central limit theorem (why?), lim supn→∞
Xn

n1/2 = ∞ P0-a.s., and a fortiori,

lim supn→∞Xn = ∞ P0-a.s. By symmetry, lim infn→∞Xn = −∞ P0-a.s. Thus P0-a.s.,

τa < ∞ for any a ∈ N.

For x ∈ Z, we note that Px{τa < ∞, ∀a ∈ N} = P0{τa < ∞, ∀a ∈ N} = 1.

(ii) We work under P0. For any a ≥ 1, τa+1 − τa = τ1 ◦ θτa . An application of the strong

Markov property at stopping time τa tells us that τa+1 − τa is independent of Fτa , and has

the law of τ1.

For any n ≥ 1, by an induction argument in n, we see that τa+1− τa, 0 ≤ a ≤ n, are i.i.d.

random variables. �

Exercise 11. Let f : S → R+.

(i) Let u(x) :=
∑

y∈S G(x, y)f(y), x ∈ S. Prove that

u(x) = f(x) +
∑

y∈S

p(x, y)u(y).

(ii) Let v : S → R+ ∪ {∞} be such that

v(x) = f(x) +
∑

y∈S

p(x, y)v(y), ∀x ∈ S.

Prove that u(x) ≤ v(x), ∀x ∈ S.

Solution. (i) It suffices to use G(x, y) =
∑∞

n=0 p
n(x, y) and Fubini–Tonelli.
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(ii) Let us check that v(x) ≥
∑n

i=0

∑

y∈S p
i(x, y)f(y), ∀n ≥ 0. It is holds trivially for

n = 0 because v(x) ≥ f(x) by definition. Assume this holds for n. Then

v(x) = f(x) +
∑

y∈S

p(x, y)v(y)

≥ f(x) +
∑

y∈S

p(x, y)
n
∑

i=0

∑

z∈S

pi(y, z)f(z)

= f(x) +
∑

z∈S

pn+1(x, z)f(z),

so the inequality holds for n + 1 as well. By induction, it holds for all n ≥ 0. By letting

n → ∞, we obtain v(x) ≥
∑∞

i=0

∑

y∈S p
i(x, y)f(y) =

∑

y∈S G(x, y)f(y) = u(x). �

Exercise 12. (i) Let x ∈ S. Let y be a recurrent state such that G(x, y) > 0. Is it true

that Px{N(y) = ∞} = 1?

(ii) Give an example of x, y ∈ S such that G(x, y) > 0, but G(y, x) = 0.

(iii) If G(x, y) = ∞, is y necessarily recurrent?

(iv) If y is recurrent, is G(x, y) necessarily infinite?

(v) Is it possible to have 0 < G(x, y) < ∞ for a recurrent state y?

(vi) If G(x, y) = ∞, what are possible values for G(y, x)?

(vii) Assume that for all x ∈ S, the set Bx := {y ∈ S : G(x, y) > 0} is finite. Prove

that there are recurrent states.

Solution. (i) Not necessarily. Let y 6= x. We only have Px{Ty < ∞} > 0; so, on the set

{Ty = ∞} which can have positive Px-probability, we have N(y) = 0.

(ii) Any chain such that y is absorbing and that G(x, y) > 0. For example, a branching

process such that µ(0) > 0, with x = 1 and y = 0.

(iii) We know that G(x, y) ≤ G(y, y). So G(x, y) = ∞ implies G(y, y) = ∞, which

means y is recurrent.

(iv) If Px{Ty = ∞} = 1 (which is possible if x is transient), then G(x, y) = 0.

(v) If x = y, then saying that y is recurrent is equivalent to saying that G(y, y) = ∞, so

it is not possible to have 0 < G(x, y) < ∞ in this case.

If x 6= y, then G(x, y) = G(y, y)Px{Ty < ∞}, with G(y, y) = ∞, which implies that

G(x, y) is either 0 (if Px{Ty < ∞} = 0) or ∞ (if Px{Ty < ∞} > 0). In any case, it is not

possible to have 0 < G(x, y) < ∞.

(vi) By (iii), G(x, y) = ∞ implies that y is recurrent, so G(y, x) = ∞ if x is recurrent

and in the same recurrence class as y and G(y, x) = 0 otherwise.
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(vii) Let x ∈ S. Under Px, the chain lies a.s. in Bx, so that for any n ∈ N,

∑

y∈Bx

pn(x, y) =
∑

y∈S

pn(x, y) = 1.

By summing over all n ∈ N, we get

∑

n∈N

∑

y∈Bx

pn(x, y) = ∞.

However, on the left-hand side,
∑

n∈N

∑

y∈Bx
pn(x, y) =

∑

y∈Bx

∑

n∈N p
n(x, y), which is

∑

y∈Bx
G(x, y). Since #Bx < ∞, there exists y ∈ Bx such that G(x, y) = ∞, which

implies (see (iii)) that y is recurrent. �

Exercise 13. Let x, y, z ∈ S.

(i) Prove that Ex(1{Ty<∞}

∑∞
n=Ty

1{Xn=z}) = Px(Ty < ∞)G(y, z).

(ii)Assume y is a transient state. Prove thatEx(1{Ty<∞}

∑∞
n=Ty

1{Xn=z}) =
G(x, y)
G(y, y)

G(y, z).

Solution. (i) By the strong Markov property,

Ex

(

1{Ty<∞}

∞
∑

n=Ty

1{Xn=z}

)

= Ex

(

1{Ty<∞}

(

∞
∑

n=0

1{Xn=z}

)

◦ θTy

)

= Ex

(

1{Ty<∞}EXTy
(Nz)

)

= Px(Ty < ∞)G(y, z) ,

as desired.

(ii) Follows from (i) by recalling that in the class, we have proved that G(x, y) = Px(Ty <

∞)G(y, y). �

Exercise 14 (A criterion for recurrence). Assume there exists w ∈ S such that for all

x ∈ S, G(w, x) > 0 and Px{Tw < ∞} = 1. Prove that the chain is irreducible and recurrent.

Solution. Since Pw{Tw < ∞} = 1, w is by definition recurrent. For any x ∈ S, since

G(w, x) > 0, x is also recurrent, and is in the same recurrence class as w: there is thus only

one recurrence class. �

Exercise 15. Let (Yn, n ≥ 1) be an i.i.d. sequence of Bernoulli random variables of param-

eter 0 < p < 1. Let X0 := 0 and Xn := Y1 + · · ·+ Yn for n ≥ 1. We observe that Xn+1 ≥ Xn

a.s. for all n. Let Ty := inf{n ≥ 0 : Xn = y} (inf∅ := ∞) for all y ∈ {0, 1, 2, · · · }.
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(i) Prove that limn→∞Xn = ∞ a.s. and that P0(Ty < ∞) = 1 for all y ∈ {0, 1, 2, · · · }.

(ii) Prove that Mn := Xn − np, n ≥ 0, is an (Fn)-martingale, where for any n, Fn :=

σ(Xi, 0 ≤ i ≤ n).

(iii) By considering (Mn∧Ty), compute E0(Ty).

(iv) Let N(y) :=
∑∞

k=0 1{Xk=y}. Compute 1{Xk=y} for k < Ty, Ty ≤ k < Ty+1 and

k ≥ Ty+1, respectively.

(v) Prove that N(y) = Ty+1 − Ty a.s. Compute E0[N(y)].

We notice that (Xn) is a random walk with transition probability p given by p(x, x) =

1− p, p(x, x+ 1) = p, x ∈ {0, 1, 2, · · · } (you are not asked to prove this).

(vi) Compute the law of Xn (for given n). Compute the law of T1.

(vii) Prove that N(y) has the same law as T1.

(viii) Compute the law of Ty.

Solution. (i) The sequence of random variables (Yn) being i.i.d. and Y1 ∈ L1 with E0(Y1) = p,

it follows from Kolmogorov’s law of large numbers that limn→∞
Xn

n
= p > 0 a.s.; a fortiori,

limn→∞Xn = ∞ a.s. Since Xn −Xn−1 ∈ {0, 1} for all n, X0 = 0 and limn→∞Xn = ∞ a.s.,

we see that (Xn) visits all sites y ∈ {0, 1, 2, · · · } and thus Ty < ∞ a.s.

(ii) The sequence Mn := Xn − np =
∑n

i=1(Yi − p), n ≥ 1, is a martingale, because

(Yi − p, i ≥ 1) is a sequence of i.i.d. mean-zero random variables.

(iii) Since n ∧ Ty is a bounded stopping time, we have E0(Mn∧Ty) = E(M0) = 0, thus

E0(n∧Ty) = E0(Xn∧Ty)/p. Since Ty < ∞ and |Xn∧Ty | ≤ y a.s., it follows from the dominated

convergence theorem that limn→∞E0(Xn∧Ty) = E0(XTy) = y. By monotone convergence,

this yields limn→∞E0(n ∧ Ty) = E0(Ty). So E0(Ty) = y
p
.

(iv) Since Xn+1 ≥ Xn a.s. for all n, we have

1{Xk=y} = 0, if k < Ty or k ≥ Ty+1,

and

1{Xk=y} = 1, if Ty ≤ k < Ty+1.

(v) It follows from (iv) that N(y) =
∑Ty+1−1

i=Ty
1 = Ty+1 − Ty, which yields

E0[N(y)] = E0(Ty+1 − Ty) =
y + 1

p
−

y

p
=

1

p
.

(vi) It is clear that for any n, Xn is a binomial random variable of parameter (n, p). To

determine the law of T1, we note that for n ≥ 1,

P0(T1 = k) = P0(X1 = · · · = Xk−1 = 0, Xk = 1) = P0(Y1 = · · · = Yk−1 = 0, Yk = 1)

= (1− p)k−1 p .
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In words, T1 has the geometric distribution of parameter p.

(vii) Let us compute P0(N(y) = k). By (iv),

N(y) = Ty+1 − Ty = Ty+1 ◦ θTy .

Applying the strong Markov property gives that

P0(N(y) = k) = P0(Ty+1 ◦ θTy = k)

= E0(PXTy
(Ty+1 = k))

= Py(Ty+1 = k) = P0(T1 = k) .

(viii) Let y ≥ 2 and k ≥ y. We have

P0(Ty = k) = P0(Xk−1 = y − 1, Xk = y) = P0(Xk−1 = y − 1, Yk = 1) ,

which is

(

k − 1
y − 1

)

py(1− p)k−y. �

Exercise 16 (Second moment for hitting numbers). The aim of this exercise is to find

an explicit formula for the second moment of N(y) in terms of the Green function. Assume

that the chain is irreducible and that G(x, y) < ∞, ∀x, y ∈ S.

(i) For any mapping f : S → R+, we define Gf : S → R+ by

Gf(x) :=
∑

y∈S

G(x, y)f(y), (∞× 0 := 0)

Prove that for any x ∈ S and any f : S → R+,

Ex

[

∞
∑

n=0

∞
∑

m=n

f(Xn) f(Xm)
]

= Gg(x),

where g(y) := f(y)Gf(y), y ∈ S.

(ii) Prove that for any x ∈ S and any f : S → R+,

Ex

[(

∞
∑

n=0

f(Xn)
)2 ]

= 2Gg(x)−Gh(x),

where h(y) := f(y)2, y ∈ S.

(iii) Prove that for any x, y ∈ S,

Ex[N(y)2] = G(x, y) [2G(y, y)− 1].
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Solution. (i) It follows from the Fubini–Tonelli theorem that Ex[
∑∞

n=0

∑∞
m=n f(Xn) f(Xm)] =

∑∞
n=0

∑∞
m=n Ex[f(Xn) f(Xm)]. For m ≥ n, the Markov property gives

Ex[f(Xn) f(Xm)] = Ex{f(Xn)EXn [f(Xm−n)]}.

Therefore, by Fubini–Tonelli again,

Ex

[

∞
∑

n=0

∞
∑

m=n

f(Xn) f(Xm)
]

=

∞
∑

n=0

Ex

{

f(Xn)EXn

[

∞
∑

m=n

f(Xm−n)
]}

=

∞
∑

n=0

Ex{f(Xn)Gf(Xn)},

which is =
∑∞

n=0Ex{g(Xn)} = Gg(x).

(ii) We have

Ex

[(

∞
∑

n=0

f(Xn)
)2 ]

= 2Ex

[

∞
∑

n=0

∞
∑

m=n

f(Xn) f(Xm)
]

− Ex

[

∞
∑

n=0

f(Xn)
2
]

= 2Gg(x)− Ex

[

∞
∑

n=0

h(Xn)
]

= 2Gg(x)−Gh(x).

(iii) Fix x, y ∈ S. By definition, N(y) =
∑∞

n=0 f(Xn), where f := 1{y}. For this choice of

f , we have h = f 2 = f , so Gh(x) = G(x, y), whereas g(z) := f(z)Gf(z) = 1z=y G(z, y) =

1z=y G(y, y), which yields Gg(x) =
∑

z∈S G(x, z)g(z) = G(x, y)G(y, y). As a consequence,

Ex[N(y)2] = 2G(x, y)G(y, y)−G(x, y), as desired. �

Exercise 17 (Irreducible chains). Prove that (Xn, n ∈ N) is irreducible if and only if

there exists no A ⊂ S, with A 6= ∅ and A 6= S, such that p(x, y) = 0, ∀x ∈ A, ∀y ∈ Ac.

Solution. “⇒” Suppose there exists A ⊂ S, with A 6= ∅ and A 6= S, such that p(x, y) = 0,

∀x ∈ A, ∀y ∈ Ac.

Let x ∈ A and y ∈ Ac. Since p(x, y) = 0 while the chain is irreducible, there exists n ≥ 2

such that pn(x, y) > 0, and thus x =: x1, x2, · · · , xn := y ∈ S such that p(xi, xi+1) > 0 for

any 1 ≤ i ≤ n− 1. Let

k := max{i : 1 ≤ i ≤ n− 1, xi ∈ A}.

Then xk ∈ A, xk+1 ∈ Ac, and p(xk, xk+1) > 0, which is impossible.
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“⇐” By assumption, for any A ⊂ S with A 6= ∅ and A 6= S, there exist a ∈ A and

b ∈ Ac such that p(a, b) > 0.

For any x ∈ S, let Bx := {y ∈ S : G(x, y) > 0} ⊃ {x}. We need to show that Bx = S.

Suppose Bx 6= S. Then by assumption, there exist a ∈ Bx and b ∈ Bc
x such that

p(a, b) > 0. Since a ∈ Bx, we have G(x, a) > 0; so there exists n ∈ N such that pn(x, a) > 0.

This implies pn+1(x, b) ≥ pn(x, a) p(a, b) > 0; thus G(x, b) > 0, i.e., b ∈ Bx. Contradiction.

�

Exercise 18 (Wright–Fisher reproduction model). Let S := {0, 1, 2, · · · , N}, and

let

p(i, j) := Cj
N (

i

N
)j (1−

i

N
)N−j.

The chain describes, in an idealized model, the process of genetic drift in a population of

fixed size.

(i) Classify the states of (Xn, n ∈ N).

(ii) Prove, for any k ∈ S, that (Xn, n ∈ N) under Pk is a martingale with respect to the

canonical filtration, and that the limit

X∞ := lim
n→∞

Xn

exists Pk-a.s. What is the law of X∞ under Pk?

Solution. (i) Since p(0, 0) = p(N, N) = 1, 0 and N are absorbing, thus recurrent. For

i ∈ {1, 2, · · · , N−1}, we have p(i, 0) > 0; therefore, with positive Pi-probability, the chain,

starting at i, never returns to i. Therefore, 1, 2, · · · , N − 1 are transient states.

(ii) For any n ∈ N, Xn is Fn-measurable, and Pk-integrable (being bounded). Moreover,

by the Markov property,

Ek(Xn+1 |Fn) = Ek(Xn+1 |Xn),

and given Xn, Xn+1 has the binomial distribution of parameter (N, Xn

N
) (thus of mean

N × Xn

N
= Xn), so that Ek(Xn+1 |Xn) = Xn. Therefore, (Xn, n ∈ N) is a martingale.

A non-negative martingale converges a.s., so X∞ := limn→∞Xn exists Pk-a.s.

To determine the law of X∞, we observe that, the number of visits at a transient state

being finite, XN takes values in {0, N}. Since (Xn) is a uniformly integrable martingale

(being bounded), it also converges to X∞ in L1: thus Ek(X∞) = Ek(X0) = k. This means

Pk(X∞ = N) = k
N
; so the law of X∞ under Pk is k

N
δN + (1− k

N
)δ0. �
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Exercise 19 (A random walk on Z
d resembling simple random walk). Consider the

transition probability on Z
d:

p(x, y) =
1

2d

d
∏

i=1

1{|yi−xi|=1}, x := (x1, · · · , xd), y := (y1, · · · , yd) ∈ Z
d.

Classify the states of the chain.

Solution. We know that for random walks, since Green’s function depends only on x−y, there

are only two possible situations: either all states are recurrent, or all states are transient.

Our Markov chain under P0 has the law of (Y 1
n , · · · , Y

d
n )n∈N, where the processes (Y

1
n )n∈N,

· · · , (Y d
n )n∈N are independent copies of the simple symmetric random walk on Z starting from

0 ∈ Z. Therefore,

pn(0, 0) = P (Y 1
n = 0, · · · , Y d

n = 0) = P (Y 1
n = 0)d.

It is easy to compute P (Y 1
n = 0): the probability is 0 if n is odd, and if n = 2k, then

P (Y 1
2k = 0) =

Ck
2k

22k
.

Therefore, for x ∈ Z
d,

G(x, x) = G(0, 0) =

∞
∑

k=0

p2k(0, 0) =

∞
∑

k=0

(
Ck

2k

22k
)d.

By the Stirling formula, when k → ∞,

Ck
2k

22k
=

(2k)!

22k (k!)2
∼

(2k
e
)2k(4πk)1/2

22k [(k
e
)k(2πk)1/2]2

=
1

(πk)1/2
,

So that G(x, x) = ∞ if d = 1 or 2, and G(x, x) < ∞ if d ≥ 3. We conclude that in

dimensions d = 1 and 2, all states are recurrent, whereas in dimensions d ≥ 3, all states are

transient. �

Exercise 20 (Birth-and-death chain). Let S = N and consider the transition matrix

q :=















r0 p0 0 0 0 · · ·
q1 r1 p1 0 0 · · ·
0 q2 r2 p2 0 · · ·
0 0 q3 r3 p3 · · ·
...

...
...

...
...

. . .















,
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where pi > 0 and ri ≥ 0 (for i ≥ 0) and qj > 0 (for j ≥ 1) are such that p0 + r0 = 1 and

pj + rj + qj = 1 (for j ≥ 1).

(i) Prove that (Xn, n ∈ N) is irreducible.

(ii) Prove that the chain is recurrent if and only if

∞
∑

i=1

q1 · · · qi
p1 · · · pi

= ∞.

Solution. (i) Let x, y ∈ N. If x < y, then G(x, y) > 0 (because pi > 0, ∀i ≥ 0). If x > y,

then G(x, y) > 0 (because pj > 0, ∀j ≥ 1). If x = y, then G(x, x) ≥ p2(x, x) ≥ px qx+1 > 0.

As a consequence, the chain is irreducible.

(ii) Since the chain is irreducible, either all states are recurrent or they are all transient.

It suffices to check for state 0. Since P0{T0 < ∞} = r0 + p0 P1{T0 < ∞}, we need to know

whether P1{T0 < ∞} = 1.

Let M be an integer (at the end, M → ∞), and let ai := Pi{τ0 < τM} for 0 ≤ i ≤ M ,

where τx := inf{n ∈ N : Xn = x}. So a0 = 1 and aM = 0 while by the Markov property,

ai = qi ai−1+ri ai+pi ai+1 for 1 ≤ i ≤ M−1, which becomes pi(ai+1−ai) = qi(ai−ai−1). Write

bi := ai+1−ai, 0 ≤ i ≤ M−1, then bi =
qi
pi
bi−1, 1 ≤ i ≤ M−1, so that bi =

q1···qi
p1···pi

b0. Summing

over i ∈ [1, M − 1] ∩ Z, we get
∑M−1

i=1 bi = b0
∑M−1

i=1
q1···qi
p1···pi

. But
∑M−1

i=1 bi = aM − a0 = −1,

whereas b0 = a1 − 1, we get

P1{τ0 < τM} = a1 = 1−
1

∑M−1
i=1

q1···qi
p1···pi

.

We let M ↑ ∞. By the monotone convergence theorem, this gives

P1{T0 < ∞} = 1−
1

∑M−1
i=1

q1···qi
p1···pi

,

which equals 1 if and only if
∑∞

i=1
q1···qi
p1···pi

= ∞. �

Exercise 21 (Kolmogorov’s condition for reversibility). Assume that (Xn, n ∈ N) is

irreducible. Prove that the chain has a reversible measure if and only if the following two

conditions are satisfied:

(i) ∀x, y ∈ S, p(x, y) > 0 ⇒ p(y, x) > 0;

(ii) for any n and any x0, x1, · · · , xn := x0 ∈ S, we have

p(x0, x1) p(x1, x2) · · · p(xn−1, xn) = p(xn, xn−1) · · · p(x2, x1) p(x1, x0).
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Solution. “⇒” Let µ be a reversible measure for the chain. Let us first prove that µ(x) > 0,

∀x ∈ S.

Suppose there exists x ∈ S such that µ(x) = 0. Let y ∈ S\{x}. Since the chain is

irreducible, there exist x0 = x, x1, · · · , xn := y such that p(xi−1, xi) > 0, ∀1 ≤ i ≤ n. By

the definition of reversibility,

µ(xn−1) p(xn−1, x) = µ(x) p(x, xn−1) = 0,

so µ(xn−1) = 0. By induction, this yields µ(xi) = 0, 0 ≤ i ≤ n. In particular, µ(x) = 0,

contradicting the choice of x.

Now that we know µ(x) > 0, ∀x ∈ S, we have, by reversibility,

p(y, x) =
µ(x)

µ(y)
p(x, y), ∀x, y ∈ S.

In particular, if p(x, y) > 0, then p(y, x) > 0.

To check (ii), we see that

n
∏

i=1

p(xi−1, xi) =
(

n
∏

i=1

µ(xi−1)

µ(xi)

)

n
∏

i=1

p(xi, xi−1),

which is
∏n

i=1 p(xi, xi−1) since
∏n

i=1 µ(xi−1) =
∏n

i=1 µ(xi) (recalling that x0 = xn).

“⇐” Let us construct a reversible measure. Fix an arbitrary x ∈ S, and let µ(x) := 1.

Let y ∈ S\{x}.

By irreducibility, there exist x0 = x, x1, · · · , xn := y such that p(xi−1, xi) > 0, ∀1 ≤ i ≤

n. Since we also have p(xi, xi−1) > 0, we can define

µ(y) :=
n
∏

i=1

p(xi−1, xi)

p(xi, xi−1)
.

An elementary calculation tells us that µ is well-defined, in the sense that it does not depend

on the choice of the path x0 = x, x1, · · · , xn := y.

Let us check that µ is reversible. Let z ∈ S, and we need to verify µ(y) p(y, z) =

µ(z) p(z, y).

If p(y, z) = 0, then p(z, y) = 0, and the identity holds trivially.

Assume p(y, z) > 0. Then by using the path x0 = x, x1, · · · , xn := y connecting x to y,

and add a last element xn+1 := z, we have, by definition of µ,

µ(z) =

n+1
∏

i=1

p(xi−1, xi)

p(xi, xi−1)
= µ(y)

p(y, z)

p(z, y)
,
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giving again the desired equality. �

Exercise 22. Let π be an invariant probability for p such that π(x) > 0 for all x ∈ S.

Define

p∗(x, y) :=
p(y, x)π(y)

π(x)
, x, y ∈ S.

(i) Prove that p∗ is a transition kernel on S and that π is an invariant probability for p∗.

Give a necessary and sufficient condition for p∗ = p.

(ii) Let (Xn, n ≥ 0) be the canonical Markov chain with transition kernel p. Fix N ∈ N,

and define X∗
n := XN−n, 0 ≤ n ≤ N . Compute Pπ(X

∗
0 = x0, · · · , X

∗
N = xN ). Prove that

(X∗
n, 0 ≤ n ≤ N) is, under Pπ, a Markov chain with initial law π and transition kernel p∗.

(iii) Let 0 < α < 1, and let p be the transition kernel on N defined by

p(x, y) = α 1{y=x+1} + (1− α) 1{y=0}, x, y ∈ N .

Find an invariant probability π. Is π unique?

(iv) Compute p∗ and prove that

p∗(x, y) = 1{y=x−1} + π(y) 1{x=0}, x, y ∈ N .

Solution. (i) By definition, p∗(x, y) ≥ 0 for all x, y ∈ S, and

∑

y

p∗(x, y) =
∑

y

p(y, x)π(y)

π(x)
,

which is (because π is an invariant probability) = π(x)
π(x)

= 1. So p∗ is a transition kernel.

Furthermore, for any y ∈ S,

∑

x∈S

π(x) p∗(x, y) =
∑

x∈S

π(x)
p(y, x)π(y)

π(x)
=
∑

x∈S

p(y, x)π(y) = π(y) ,

which implies that π is invariant for p∗.

We have p∗ = p if and only if π(x) p(x, y) = p(y, x) π(y) for all x, y ∈ S, i.e., if and only

if π is reversible for p.

(ii) We have

Pπ(X
∗
0 = x0, · · · , X

∗
N = xN) = Pπ(X0 = xN , · · · , XN = x0)

= π(xN ) p(xN , xN−1) · · ·p(x1, x0) .
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Since π(xi) p(xi, xi−1) = p∗(xi−1, xi) π(xi−1), this yields

Pπ(X
∗
0 = x0, · · · , X

∗
N = xN )

= p∗(xN−1, xN ) π(xN−1) p(xN−1, xN−2) · · · p(x1, x0)

= p∗(xN−1, xN ) p
∗(xN−2, xN−1) π(xN−2) p(xN−2, xN−3) · · · p(x1, x0)

= · · · = p∗(xN−1, xN ) · · ·p
∗(x0, x1) π(x0)

= π(x0) p
∗(x0, x1) · · · p

∗(xN−1, xN ).

Therefore, (X∗
n, n ∈ [0, N ]) is, under Pπ, a Markov chain with initial law π and transition

matrix p∗.

(iii) Consider the system of equations π(y) =
∑

x∈N π(x) p(x, y). For y = 0, this gives

π(0) =
∞
∑

x=0

π(x) p(x, 0) =
∞
∑

x=0

π(x)(1− α) = 1− α .

For y > 0,

π(y) =

∞
∑

x=0

π(x) p(x, y) = απ(y − 1) ,

and thus by induction, π(y) = αy π(0) = (1−α)αy, y ≥ 1. In other words, π is the geometric

law of parameter α, and is clearly unique.

(iv) We have

p∗(x, y) =
π(y)

π(x)
p(y, x) = αy−x

(

α 1{x=y+1} + (1− α) 1{x=0}

)

= 1{y=x−1} + π(y) 1{x=0} ,

for all x, y ∈ N. �

Exercise 23. Let (Xn, n ≥ 0) be a Markov chain taking values in S := {1, 2, 3} with

transition matrix

p :=





0 1 0
1/2 1/2 0
1/3 1/3 1/3





(i) Determine the recurrent classes, as well as the transient states. Determiner all states

x such that G(x, x) = ∞. Determiner all states x and y such that G(x, y) = 0.

(ii) Prove that G = I + pG, where I is the 3× 3 identity matrix. Compute G. Compute

Ex(Ny) all all x, y ∈ S, where Ny :=
∑∞

n=0 1{Xn=y}.
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(iii) Let T1 := inf{n ≥ 0 : Xn = 1} (with inf ∅ := ∞), and let v(x) = Ex(T1). Prove

that

v(x) = 1 +
∑

y∈S

p(x, y)v(y), x ∈ {2, 3}, v(1) = 0.

Compute Ex(T1) for all x ∈ S.

(iv) Compute Ex(T3) where T3 := inf{n ≥ 0 : Xn = 3} (inf∅ := ∞).

(v) Give an invariant probability, and determine whether it is unique.

(vi) Let T{1,2} := inf{n ≥ 0 : Xn ∈ {1, 2}} (inf∅ := ∞). What is the law of T{1,2} under

P3?

(vii) Prove that E3(T{1,2}) = E3(N3). What is the reason?

Solution. (i) State 3 leads to states 1 and 2, but neither state 1 nor state 2 lead to state 3,

so state 3 is transient.

State 1 leads to state 2 and state 2 leads to state 1. Since S is a finite set, there is at least

one recurrent state. So {1, 2} is a recurrent class, and is the only one, since 3 is transient.

Since states 1 and 2 are recurrent while state 3 is transient, we have G(1, 1) = G(2, 2) =

∞ and G(3, 3) < ∞.

Finally, since 3 cannot be reached from neither 1 nor 2, we have G(1, 3) = G(2, 3) = 0,

while all other G(i, j) are (strictly) positive.

(ii) Observe that Ny = 1{X0=y} +Ny ◦ θ1, so by the Markov property,

Ex(Ny |F1) = 1{X0=y} + EX1(Ny) .

Taking expectation with respect to Px on both sides gives that

G(x, y) = 1{x=y}+Ex(EX1(Ny)) = 1{x=y}+
∑

z∈S

p(x, z)Ez(Ny) = 1{x=y}+
∑

z∈S

p(x, z)G(z, y) ,

i.e., G = I + pG. By (i), we have

G =





∞ ∞ 0
∞ ∞ 0
∞ ∞ G(3, 3)



 ,

whereas from the equation G = I + pG, we deduce that G(3, 3) = 1 + p(3, 3)G(3, 3) =

1 + 1
3
G(3, 3). Hence G(3, 3) = 3

2
.

By definition, Ex(Ny) = G(x, y).

(iii) By defintion, v(1) = 0. Let x 6= 1. Then Px-a.s.,

T1 = inf{n ≥ 1 : Xn = 1} = 1 + inf{j ≥ 0;Xj+1 = 1} = 1 + T1 ◦ θ1 .
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Exactly as in (ii), we apply the Markov property to see that v(x) = 1 +
∑

y∈S p(x, y)v(y).

Concretely, v(2) = 1 + 1
2
(v(1) + v(2)) and v(3) = 1 + 1

3
(v(1) + v(2) + v(3)); solving the

system of linear equations (recalling that v(1) = 0) gives v(2) = 2 and v(3) = 5
2
.

Conclusion: E1(T1) = 0, E2(T1) = 2 and E3(T1) =
5
2
.

(iv) We have T3 = 0 P3-a.s., so E3(T3) = 0. On the other hand, 3 cannot be reached

from 1 nor from 2, so T3 = ∞ P1-a.s. and P2-a.s. In particular, Ex(T3) = ∞ if x ∈ {1, 2}.

(v) Let π be an invariant probability:
∑3

i=1 π(i) = 1 and
∑3

i=1 π(i) p(i, j) = π(j) for all

j ∈ {1, 2, 3}. Solving the system of linear equations

(π(1), π(2), π(3))





0 1 0
1
2

1
2

0
1
3

1
3

1
3



 = (π(1), π(2), π(3)), π(1) + π(2) + π(3) = 1 ,

we see that π(3) = 1
3
π(3), so π(3) = 0; whereas π(1) = 1

2
π(2), so π(1) =

1
3
and π(2) = 2

3
:

π = (1
3
, 2

3
, 0). This system has a unique solution.

(vi) From state 3, the chain stays at 3 with probability 1
3
and enters {1, 2} with proba-

bility 2
3
. So T{1,2} under P3 has a geometric law of parameter 2

3
.

(vii) We have E3(T{1,2}) =
3
2
= E3(N3). The reason is as follows: once leaving state 3,

the chain never comes back; so for any k, the events {T{1,2} = k} and {X0 = X1 = · · · =

Xk−1 = 3, Xj 6= 3, ∀j ≥ k} are P3-a.s. identical, which leads to T{1,2} = N3 P3-a.s. �

Exercise 24. A player visits 3 casino places, numbered as 1, 2 and 3. Every day, he chooses,

with equal probability 1
2
, to go to one of the two casino places he has not been the day before.

The initial day, day 0, the player chooses to go to one of the three casinos with probability

µ on S := {1, 2, 3}. Let Xn denote the number of the casino place where the player is at day

n.

(i) Prove that (Xn, n ≥ 0) is a Markov chain, and give its transition matrix p.

(ii) Compute pn, as well as limn→∞ pn.

(iii) Compute limn→∞ Pµ(Xn = j), for j = 1, 2 and 3.

Solution. (i) By definition, the casino where the player is at day n+ 1 depends only on the

casino where he was the day before (i.e., at day n). (Xn, n ≥ 0) is a Markov chain, with

transition matrix p := (p(x, y), x, y ∈ S := {1, 2, 3}) given by

p =





0 1/2 1/2
1/2 0 1/2
1/2 1/2 0



 .
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(ii) Let M :=





1 1 1
1 1 1
1 1 1



. Since p = 1
2
(M − I) (with I denoting the identity matrix

3× 3), we have

pn =
1

2n

(

n
∑

k=0

Ck
n(−1)n−kMk

)

=
1

2n

[

1

3

(

n
∑

k=1

Ck
n(−1)n−k3k

)

M + (−1)nI

]

=
1

2n

(

1

3
(2n − (−1)n)M + (−1)nI

)

.

Hence, [pn](i, j) = 2−n

3
(2n − (−1)n), if i 6= j, and 2−n

3
(2n + 2(−1)n), if i = j. It follows that

lim
n→∞

pn =





1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3



 .

We have Pµ(Xn = j) = [µpn](j) =
∑

i∈{1,2,3} µ(i)[p
n](i, j). So limn→∞ Pµ(Xn = j) = 1

3
, for

j = 1, 2 or 3. �

Exercise 25 (Existence and uniqueness of invariant measures). (i) Is there always an

invariant measure (not necessarily an invariant probability measure) for a transition kernel?1

(ii) Is there always an invariant measure for an irreducible transition kernel?2

(iii) If there is an invariant measure, is it necessarily unique (up to a constant multipli-

cation)?

Solution. (i) Consider S := N and the kernel p(x, x + 1) = 1. The equation for invariant

measures says µ(y) =
∑

x∈N µ(x) p(x, y) = µ(y − 1) for y ≥ 1 (so µ(y) = µ(0) for all y ∈ N)

and µ(0) =
∑

x∈N µ(x) p(x, 0) = 0, which is impossible. Conclusion: there is no invariant

measure for p.

(ii) Consider S = N and p(x, x + 1) = px and p(x, 0) = 1 − px for x ∈ N , where px,

x ∈ N, are real numbers lying in (0, 1). The chain is irreducible.

The equation for invariant measures says µ(y) =
∑

x∈N µ(x) p(x, y) = µ(y − 1) py−1 for

y ≥ 1, so µ(j) = (p0 · · · pj−1)µ(0) for j ≥ 1. On the other hand, µ(0) =
∑

x∈N µ(x) p(x, y) =

1Hint: You can consider the chain p(x, x+ 1) = 0 on S := N.
2Hint: You can modify the previous example by taking p(x, x+1) < 1 and adding p(x, 0) := 1−p(x, x+1).
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∑

i≥0 µ(i)(1− pi), which yields

µ(0) = µ(0)(1− p0) +
∞
∑

i=1

µ(i)(1− pi)

= µ(0)(1− p0) +

∞
∑

i=1

(p0 · · · pj−1)µ(0)(1− pi)

= µ(0)(1− p0) + lim
n→∞

n
∑

i=1

(p0 · · · pj−1)µ(0)(1− pi)

= lim
n→∞

µ(0)[1− p0p1 · · · pn].

If
∏∞

i=0 pi > 0, then µ(0) = 0 and thus µ(y) = 0, ∀y ∈ N, which is impossible. So there is no

invariant measure for the chain if
∏∞

i=0 pi > 0.3

(iii) No uniqueness is guaranteed in general. For example, we have seen that for the

biased random walk on Z, both the counting measure on Z, and µ(i) := (p
q
)i, i ∈ Z, are

invariant measures. �

Exercise 26 (Records). Consider an i.i.d. sequence (Xn, n ≥ 0) of geometric random

variables variables of parameter 0 < p < 1. They are used to represent the lifetime of certain

lamps. The lamps are numbered from 0; they are all lit on at the same time, and Xn denotes

the lifetime of the lamp number n.

We define the times of successive records of lifetime of the lamps

τ0 := 0, τn+1 := inf{k > τn : Xk > Xτn}, n ≥ 0,

as well as the successive records Zn := Xτn , n ≥ 0. So Zn is the n-th record of lifetime that

one sees at the sequence (Xn).

We assume that (Xn, n ≥ 0) is a Markov chain taking values in S := N
∗ := {1, 2, · · · }

with transition probability

p(x, y) = qy−1 p, x, y ∈ N
∗.

We fix an x ∈ N
∗.

(i) Prove that under Px, Xn, n ≥ 1, are i.i.d. geometric random variables of parameter

p. Are Xn, n ≥ 0, independent? Are they i.i.d.?

3Since p0p1 · · · pn = P0{Tn < T0} → P0{T0 = ∞}, the condition
∏∞

i=0
pi > 0 is equivalent to saying that

the chain is transient. On the other hand, if
∏∞

i=0
pi = 0, then the chain is recurrent, so we know there are

invariant measures. Conclusion: there is no invariant measure for the chain if and only if
∏∞

i=0
pi > 0.
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(ii) Compute Px(X1 ≤ x, · · · , Xk−1 ≤ x, Xk > y) for k, y ∈ N
∗ such that y ≥ x.

(iii) Let τ := inf{n ≥ 1 : Xn > X0}, inf ∅ := ∞. Compute Px(τ = k, Xk > y) for k,

y ∈ N
∗ such that y ≥ x.

(iv) Prove under Px, that τ is a geometric random variable of which we will determine

the parameter, and that Xτ has the same law as x+X1. Are τ and Xτ independent under

Px?

(v) Prove that π(y) = qy−1p, y ∈ N
∗, is the unique invariant probability measure for p.

(vi) Prove that Pπ(τ < ∞) = 1 and that Eπ(τ) = ∞.

(vii) Prove that τ is a stopping time.

For the rest of the exercise, we can use the fact that for (τn, n ≥ 1) defined as above, we

have τn+1 = τn + τ ◦ θτn and thus each τn is a stopping time that is Px-a.s. finite.

(viii) Prove that (Zn, n ≥ 0) is a Markov chain under Px, with respect to the filtration

(Fτn). Compute its transition kernel and its initial law.

(ix) Let f : N∗ 7→ R be bounded. Compute Ex[f(Zn+1 − Zn) |Fτn). Prove that under

Px, the sequence Zn − Zn−1, n ≥ 1 is i.i.d.

(x) Prove that Zn

n
converges Px-almost surely when n → ∞, and determine the limit.

Solution. (i) Let us check that Xn, n ≥ 0, are independent under Px. By definition, it

suffices to prove that for all n ≥ 1, X0, · · · , Xn are independent. For all x0, · · · , xn ∈ N
∗,

Px(X0 = x0, · · · , Xn = xn) = 1{x=x0} p(x0, x1) · · ·p(xn−1, xn)

= 1{x=x0} q
x1−1p · · · qxn−1p ,

which means that X0, · · · , Xn are independent, that X0 = x Px-a.s., and that X1, · · · , Xn

are geometric random variables of parameter p.

Conclusion: Under Px, Xn, n ≥ 1 are i.i.d. geometric random variables of parameter p,

and Xn, n ≥ 0 are independent, but not i.i.d.

(ii) Let k, y ∈ N
∗ such that y ≥ x. We have

Px(X1 ≤ x, · · · , Xk−1 ≤ x, Xk > y) = (1− qx)k−1 qy = (1− qx)k−1qx qy−x .

(iii) We have

Px(τ = k, Xk > y) = Px(X1 ≤ X0, · · · , Xk−1 ≤ X0, Xk > y)

= Px(X1 ≤ x, · · · , Xk−1 ≤ x, Xk > y)

= (1− qx)k−1qx · qy−x .
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(iv) Taking y = x in what we have obtained in (iii) yields

Px(τ = k) = (1− qx)k−1qx .

Summing over k ≥ 1 gives that

Px(Xτ > y) =
∑

k≥1

Px(τ = k, Xk > y) =
∑

k≥1

(1− qx)k−1qx · qy−x = qy−x .

Therefore, under Px, τ is a geometric random variable of parameter qx, and Xτ is distributed

as x+X1. For k, y ∈ N
∗ with y ≥ x,

Px(τ = k, Xτ > y) = Px(τ = k)Px(Xτ > y) ,

which means that τ and Xτ are independent under Px.

(v) A probability measure π on N
∗ is invariant means that for all z ∈ N

∗,

π(z) =
∑

y∈N∗

π(y) p(y, z) =
∑

y∈N∗

π(y) qz−1p = qz−1p .

This implies that π(z) = qz−1p, z ∈ N
∗, is the unique invariant measure. [For uniqueness,

we can also prove it by checking that the chain is irreducible and positive recurrent.]

(vi) We have

Pπ(τ < ∞) =
∑

x∈N∗

π(x)Px(τ < ∞) =
∑

x∈N∗

π(x) = 1 .

[We have used the fact that under Px, τ being a geometric random variable is a.s. finite.]

We also have

Eπ(τ) =
∑

x≥1

Ex(τ) q
x−1 p =

∑

x≥1

q−x qx−1 p = ∞.

(vii) We have {τ = 0} = ∅ ∈ F0, and for n ≥ 1,

{τ = n} = {X1 ≤ X0, · · · , Xk−1 ≤ X0, Xk > X0} ∈ Fn .

By definition, this means that τ is a stopping time.

(viii) By the Markov property,

Ex[f(Xτn+1) |Fτn] = Ex[f(Xτn+τ◦θτn ) 1{τn<∞} |Fτn]

= EXτn
(f(Xτ ))

=
∑

y≥1

f(Xτn + y) qy−1 p ,
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where we have used the fact that Xτ has the law of x+X1 under Px. As such,

Ex[f(Zn+1) |Fτn] =
∑

y≥1

f(Zn + y) qy−1 p =
∑

y≥Zn+1

f(y) qy−Zn−1 p .

Therefore, (Zn, n ≥ 0) is a Markov chain with transition kernel pZ given by

pZ(x, y) = 1{y>x} q
y−x−1 p .

(ix) Let f : N∗ 7→ R be bounded. By the strong Markov property,

Ex[f(Xτn+1 −Xτn) |Fτn] = Ex[f(Xτn+τ◦θτn −Xτn) 1{τn<∞} |Fτn]

= EXτn
[f(Xτ −X0)]

=
∑

y≥1

f(y) qy−1 p ,

where we have once again used the fact that under Pz, Xτ − z has the same law as X1. This

yields

Ex[f(Zn+1 − Zn) |Fτn] =
∑

y≥1

f(y) qy−1 p .

Taking expectation on both sides with respect to Px, we obtain:

Ex(f(Zn+1 − Zn)) =
∑

y≥1

f(y) qy−1 p = Ex[f(Zn+1 − Zn) |Fτn] .

Therefore, for all bounded functions f : N∗ 7→ R,

Ex[f(Zn+1 − Zn) |Fτn] = Ex[f(Zn+1 − Zn)] ,

from which it follows that Zn+1 − Zn is independent of Fτn . Since Zi − Zi−1 = Xτi −Xτi−1

is Fτi-measurable, this yields that Zi − Zi−1, i ≥ 1, are independent. Furthermore, for all

i ≥ 1, Zi−Zi−1 is a geometric random variable of parameter P , which yields that Zi−Zi−1,

i ≥ 1, are i.i.d.

(x) Since Z0 = X0 = x Px-a.s., we have, by induction,

Zn = x+
n
∑

i=1

(Zi − Zi−1) ,

where Zi−Zi−1, i ≥ 1, are i.i.d. geometric random variables of parameter p. By Kolmogorov’s

law of large numbers, Zn

n
= x

n
+ 1

n

∑n
i=1(Zi − Zi−1) converges Px to Ex(Z1 − Z0) =

1
p
. �
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Exercise 27. Assume that p(x, x) < 1, ∀x ∈ S.

(i) Let T := inf{n ≥ 1 : Xn /∈ X0}, inf ∅ := ∞. Let x ∈ S. Determine the laws of T

and of XT under Px.

(ii) Let T0 := 0 and Tn+1 := Tn + T ◦ θTn . Prove that for any x ∈ S, (Xn, n ∈ N) is an

increasing sequence of Px-almost surely finite stopping times with respect to the canonical

filtration (Fn)n∈N.

(iii) Let Yn := XTn , n ∈ N. Prove that (Yn, n ∈ N) is a Markov chain. Compute its

transition probability.

(iv) Assume that p is irreducible and recurrent, with an invariant measure µ. Prove that

(Yn, n ∈ N) is irreducible and recurrent, and that ν(x) := (1 − p(x, x))µ(x), x ∈ S, is an

invariant measure for (Yn, n ∈ N).

Solution. (i) By definition, for any n ≥ 1,

Px{T ≥ n} = Px{x = X0 = X1 = · · · = Xn−1} = p(x, x)n−1,

which means T has a geometric distribution under Px, with Px{T < ∞} = 1 (recalling that

p(x, x) < 1 by assumption).

Since T < ∞, Px-a.s., XT is Px-a.s. well-defined, and its measurability is seen with the

writing XT =
∑∞

n=1Xn 1{T=n} (Px-a.s.). To determine the law of XT , we first note that

XT 6= x, Px-a.s., and for any y 6= x,

Px{XT = y} =
∞
∑

n=1

Px{T = n, Xn = y}

=
∞
∑

n=1

Px{x = X1 = · · · = Xn−1, Xn = y}

=
∞
∑

n=1

p(x, x)n−1 p(x, y)

=
p(x, y)

1− p(x, x)
.

(ii) We prove by induction (in n) that for any n and any x, Tn is Px-a.s. finite and is a

stopping time. For n = 1, this is already proved. Assume this holds for n. Then for any j,

{Tn+1 = j} =

j−1
⋃

i=1

{Tn+1 = j, Tn = i} =

j−1
⋃

i=1

{Xi = Xi+1 = · · · = Xj−1, Xj 6= Xi, Tn = i}.

For any i ≤ j − 1, {Tn = i} ∈ Fi (since Tn is a stopping time by induction assumption),

which, a fortiori, is an element of Fj, whereas {{Xi = Xi+1 = · · · = Xj−1, Xj 6= Xi} ∈ Fj
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by definition of Fj . Therefore, {Tn+1 = j} ∈ Fj , proving that Tn+1 is a stopping time. To

show the finiteness, we see that by the strong Markov property,

Px{Tn+1 < ∞} = Px{Tn < ∞, Tn+1 < ∞}

= Px{Tn < ∞, Tn + T ◦ θTn < ∞}

= Ex[1{Tn<∞}PXTn
(T < ∞)].

We have proved in (i) that PXTn
(Tn < ∞) = 1 Px-a.s., so Px{Tn+1 < ∞} = Px{Tn < ∞},

which equals 1 by induction assumption.

As a consequence, for any n and any x, Tn is Px-a.s. finite and is a stopping time. The

monotonicity of n 7→ Tn is obvious by definition (and by the a.s. finiteness of Tn).

(iii) Let n ∈ N and let x, y0, y1, · · · , yn ∈ S. We compute

an := Px{Y0 = y0, · · · , Yn = yn}.

If y0 6= x, or if there exists i ∈ {1, 2, · · · , n} such that yi = yi−1, then the probability is

obviously 0. So let us assume y0 = x and yi 6= yi−1, ∀i ∈ {1, 2, · · · , n}. Then (k0 := 0)

an =
∞
∑

k1=1

∞
∑

k2=k1+1

· · ·
∞
∑

kn=kn−1+1

Px{Y1 = y1, · · · , Yn = yn, T1 = k1, · · · , Tn = kn}

=
∞
∑

k1=1

∞
∑

k2=k1+1

· · ·
∞
∑

kn=kn−1+1

Px

{

n
⋂

i=1

{Xki−1+1 = Xki−1+2 = · · ·Xki−1 = yi−1, Xki = yi}
}

=
∞
∑

k1=1

· · ·
∞
∑

kn=1

n
∏

i=1

p(yi−1, yi−1)
ki−ki−1−1 p(yi−1, yi)

=
n
∏

i=1

p(yi−1, yi)

1− p(yi−1, yi−1)
.

As a consequence, (Yn, n ∈ N) is a Markov chain, with transition kernel q(x, y) := p(x, y)
1−p(x, x)

for y 6= x, and q(x, x) := 0.

(iv) Under Px, Xi = YTn−1 for all i ∈ [Tn−1 + 1, Tn) ∈ Z, which implies that the sites

visited by the new chain (Yn, n ∈ N) coincide with those visited by (Xn, n ∈ N). So if

(Xn, n ∈ N) is irreducible and recurrent, then so is (Yn, n ∈ N).
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Let ν(x) := (1− p(x, x))µ(x), x ∈ S. We have

∑

y∈S

ν(x) q(x, y) =
∑

y∈S\{x}

(1− p(x, x))µ(x)
p(x, y)

1− p(x, x)

=
∑

y∈S\{x}

µ(x) p(x, y)

=
∑

y∈S

µ(x) p(x, y)− µ(x) p(x, x)

= µ(x)− µ(x) p(x, x),

which is ν(x). So ν is an invariant measure for q. �

Exercise 28 (Reflecting biased random walk on N). In this exercise, S = N and

p(i, i+ 1) = p, p(i, i− 1) = q = 1− p, if i ≥ 1,

p(0, 1) = 1,

were 0 < p < 1 is a fixed parameter.

(i) Prove that the chain is irreducible.

(ii) Prove that the measure µ, defined by µ(i) := (p
q
)i (for i ≥ 1) and µ(0) := 1, is

reversible.

(iii) Prove that the chain is positive recurrent if p < 1
2
.

(iv) Prove that the chain is null recurrent if p = 1
2
.

(v) Prove that the chain is transient if p > 1
2
.

Solution. (i) For any x ≥ 1, G(0, x) ≥ px(0, x) ≥ p(0, 1) p(1, 2) · · ·P (x − 1, x) = px > 0

and G(x, 0) ≥ px(x, 0) ≥ p(1, 0) p(2, 1) · · ·P (x, x − 1) = qx > 0. Therefore, the chain is

irreducible.

(ii) We need to check, for x < y, that µ(x) p(x, y) = µ(y) p(y, x).

If y ≥ x+ 2, the equality holds trivially (0 = 0). So we assume y = x+ 1.

If x = 0 (thus y = 1), µ(0) p(0, 1) = p whereas µ(1) p(1, 0) = p
q
q = p: the equality is all

right.

If x ≥ 1, µ(x) p(x, x+ 1) = (p
q
)x p whereas µ(x+ 1), p(x+ 1, x) = (p

q
)x+1q = (p

q
)x p: the

equality is fine as well.

Conclusion: µ is reversible, and a fortiori, invariant.

(iii) If p < 1
2
, µ is a finite measure; so there is an invariant measure for the irreducible

chain, which must be positive recurrent.
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(iv) If p = 1
2
, µ is has infinite mass. The chain is irreducible. If we are able to prove

that the chain is recurrent, then we will have shown that the chain is null recurrent. Let

us prove that 0 is recurrent, which is equivalent to saying that P1{T0 < ∞} = 1 (since 0 is

reflecting). However, the value of P1{T0 < ∞} does not change if we replace the reflecting

random walk by simple random walk, which is known to be recurrent (because the jump law

has 0 expectation). So P1{T0 < ∞} = 1, and the reflecting random walk is null recurrent in

case p = 1
2
.

(v) If p > 1
2
, again by checking P1{T0 < ∞} for random walk without reflection at the

origin (which is transient because the random walk has a non-centered jump law), we know

that P1{T0 < ∞} < 1: the chain is transient. �

Exercise 29. Consider an irreducible and aperiodic transition kernel on a finite state space.

Prove that there exists n0 < ∞ such that pn(x, y) > 0, ∀n ≥ n0, ∀x, y ∈ S.

Solution. An irreducible chain on a finite state space is recurrent. Since it is aperiodic, we

have seen in the class that for any x, y ∈ S, there exists n0 < ∞ such that pn(x, y) > 0,

∀n ≥ n0. The assumption that #S < ∞ yields that we can choose a common n0 < ∞ for

all x and y such that pn(x, y) > 0, ∀n ≥ n0. �

Exercise 30 (Simple random walk on hypercube). In this exercise, S := {0, 1}d. For

x := (x1, · · · , xd) ∈ S and i ∈ {1, · · · , d}, we denote by x(i) := (x
(i)
1 , · · · , x

(i)
d ) the unique

element of S whose components coincide with those of x except for the i-th: x
(i)
k = xk for all

k ∈ {1, · · · , d}\{i} but x
(i)
i 6= xi. Let

p(x, y) :=

{

1
d

if y = x(i) for some i ∈ {1, · · · , d}

0 otherwise.

(i) Prove that p is a transition kernel on S.

(ii) Is the kernel irreducible?

(iii) Is the kernel aperiodic?

(iv) Compute the invariant distribution.

Solution. (i) Since p(x, y) ≥ 0 for all x, y ∈ S, and
∑

y∈S p(x, y) = 1 for all x ∈ S, p is a

transition kernel on S.

(ii) Yes. For any x ∈ S, we see that G(0, x) ≥ pn(0, x) > 0, where n :=
∑d

i=1 |xi|:

it suffices to the chain to increase at each step a component by one (this happens with
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probability 1
d
), and similarly, G(x, 0) > 0 by asking the chain to decrease at each step a

component by one.

(iii) The chain is irreducible, and recurrent (because #S < ∞).

Consider the set Ix := {n ∈ N : pn(x, x) > 0} for x = 0. Clearly, 2 ∈ Ix (with

y := (1, 0, · · · , 0), we see that p2(0, 0) ≥ p(0, y) p(y, 0) = 1
d2

> 0) and for the same of

parity, n /∈ Ix if n is odd, we conclude that d0 = 2. So the period of the chain is d = 2: the

kernel is not aperiodic.

(iv) The chain being irreducible on a finite state space, there is a unique invariant prob-

ability measure.

Since the chain is a special case of simple random walk on a graph with Ax = d, ∀x ∈ S,

we have seen in the class that µ(x) := 1
#Ax

= 1
d
, ∀x ∈ S, is an invariant measure, so the

uniform distribution µ(x) := 1
#S

= 1
2d
, ∀x ∈ S, is the unique invariant probability measure.

�

Exercise 31 (Blocks of consecutive head runs in coin tossings). Let ξn, n ≥ 1, be

an i.i.d. sequence of Bernoulli random variables of parameter 1
2
. Let Nn denote the number

of blocks of three successive zeros in ξi, 1 ≤ i ≤ n.4

Consider the Markov chain (Xn, n ≥ 0) taking values in S := {0, 1, 2, 3}, with ini-

tial state 0, which records the number of consecutive zeros in the sequence (ξn, n ≥ 1),

and which falls back to 0 after each counting of three successive zeros. For example, if

(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, · · · ) = (0, 1, 0, 0, 0, 0, 1, · · · ), then Y0 = 0 (by definition) and

(Y1, Y2, Y3, Y4, Y5, Y6, Y7, · · · ) = (1, 0, 1, 2, 3, 1, 0, · · · ), and N7 = 1 =
∑7

k=1 1{Yk=3}.

The transition matrix p for (Xn, n ≥ 0) is given by

p(0, 0) = p(0, 1) =
1

2
, p(1, 0) = p(1, 2) =

1

2

p(2, 0) = p(2, 3) =
1

2
, p(3, 0) = p(3, 1) =

1

2
.

(i) Prove that (Xn, n ≥ 0) is irreducible and positive recurrent. Determine its invariant

probability.

(ii) Prove that Nn

n
converges a.s. and compute the limit.

Solution. (i) Since every state is connected to state 0 in both ways, the chain is irreducible.

The space S being finite, (Xn, n ≥ 0) is irreducible and positive recurrent.

4We only count disjoint blocks, so the number of blocks of three successive zeros in 0, 0, 0, 0, 0, 1 is one,
and that in 0, 0, 0, 0, 0, 0, 1 is two.
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The equation π(y) =
∑

x∈S π(x) p(x, y) leads to:

π(0) =
1

2
π(0) +

1

2
π(1) +

1

2
π(2) +

1

2
π(3),

π(1) =
1

2
π(0) +

1

2
π(3),

π(2) =
1

2
π(1),

π(3) =
1

2
π(2).

Since π(0) + π(1) + π(2) + π(3) = 1, it follows that

π(0) =
1

2
, π(1) =

2

7
, π(2) =

1

7
, π(3) =

1

14
.

(ii) Writing Nn =
∑n

k=1 1{Yk=3}, it follows from the ergodic theorem that limn→∞
Nn

n
= 1

14

a.s. �

Exercise 32. Consider a Markov chain (Xn, n ≥ 0) taking values in S := {1, 2, 3} with

transition matrix

p :=





0 1/2 1/2
1/2 0 1/2
1 0 0





(i) Classify the states and determine all recurrence classes.

(ii) Compute an invariant probability and determine whether it is unique and if it is

reversible.

(iii) Let x ∈ S, and let Tx := inf{n ≥ 1 : Xn = x} (with inf∅ := ∞). Compute Ex(Tx).

(iv) Let x ∈ S. Compute the period of x. What can be said about pn(x, y) when

n → ∞?

Solution. (i) State 1 leads to state 2, which leads to state 3, which in turn leads to state 1,

so any state x leads to any state y: the chain is irreducible. Since S is finite, all states are

recurrent; they form a single recurrence class.

(ii) A probability measure π on S is invariant if and only if

(π(1), π(2), π(3))





0 1
2

1
2

1
2

0 1
2

1 0 0



 = (π(1), π(2), π(3)) , π(1) + π(2) + π(3) = 1 ,

with the condition that π(x) ≥ 0 for all x ∈ S. We find the solution π = (4
9
, 2
9
, 3
9
).
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Since this is the unique solution for the system of equations, there is uniqueness of

invariant probability (which is also a consequence of the fact that the chain is irreducible on

a finite space).

The invariant probability π is not reversible: π(2) p(2, 3) = 1
9
6= 0 = π(3) p(3, 2).

(iii) We have Ex(Tx) =
1

π(x)
; so E1(T1) =

9
4
, E2(T2) =

9
2
and E3(T3) =

9
3
= 3.

(iv) By irreducibility, the period is identical for all state x ∈ S. For x = 1, we have

p2(1, 1) > 0 and p3(1, 1) > 0; the greatest commun divisor of {2, 3} being 1, we see that

the chain is aperiodic. In particular, pn(x, y) → π(y) for all x, y ∈ S. �

Exercise 33 (Product of independent chains). Let X = (Xn) and Y = (Yn) be two

independent canonical Markov chains taking values in SX and SY , with transition kernels

pX and pY , respectively. Let Zn = (Xn, Yn), n ≥ 0, which is a Markov chain with transition

kernel

pZ
(

(x, y), (x′, y′)
)

:= pX(x, x′) pY (y, y′), x, x′ ∈ SX , y, y′ ∈ SY .

The chain (Zn) is called the product chain.

(i) Compute (pZ)n in terms of (pX)n and (pY )n.

(ii) Prove that if both (Xn) and (Yn) are irreducible, positive recurrent and aperiodic,

then so is (Zn).

(iii) Consider a checkerboard with 16 squares (4 × 4), numbered from 1 to 16 from left

to right and from top to bottom. The squares are of alternating black and white colour,

on which two mice move independently. Each mouse moves to one of the k neighbouring

squares with equal probability 1
k
(diagonal displacements being prohibited). Compute the

expected waiting time between two successive meetings at square 7.

Solution. (i) By definition,

(pZ)n
(

(x, y), (x′, y′)
)

:= (pX)n(x, x′) (pY )n(y, y′), x, x′ ∈ SX , y, y′ ∈ SY .

(ii) Since (Xn) is irreducible with period 1, we have (pX)n(x, x′) > 0 for all x, x′ ∈ SX

and all sufficiently large n (Proposition 6.6). Something similar holds for (pY )n(y, y′) as

well. Therefore, (pZ)n((x, y), (x′, y′)) > 0 for all sufficiently large n. This yields that (Zn)

is irreducible and aperiodic (if recurrent).

To see positive recurrence of (Zn), let π
X the (unique) invariant probability for (Xn), and

πY be the invariant probability for (Yn), then πZ(x, y) := πX(x)πY (y), (x, y) ∈ SX × SY , is

an invariant probability for (Zn).
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(iii) Let (Xn, n ≥ 0) be the sequence of numbers of the squares occupied by the first

mouse. It is irreducible, and positive recurrent because of the finite state space. Let us

compute its invariant probability measure. For obvious symmetry reason, write

a := πX(1) = πX(4) = πX(13) = πX(16) ,

b := πX(2) = πX(3) = πX(5) = πX(9) = πX(14) = πX(15) = πX(8) = πX(12) ,

c := πX(6) = πX(7) = πX(10) = πX(11) .

Equation
∑

x∈SX πX(x) pX(x, x′) = πX(x′) for all x′ ∈ SX gives

a =
1

3
b+

1

3
b ,

b =
1

2
a+

1

3
b+

1

4
c ,

c =
1

3
b+

1

3
b+

1

4
c+

1

4
c .

Moreover, 4a+ 8b+ 4c = 1 because πX is a probability measure. Il follows that

a =
1

24
, b =

1

16
, c =

1

12
.

Let (Yn, n ≥ 0) be the sequence of numbers of the squares occupied by the second mouse.

Then πY := πX is also the invariant probability for (Yn), and πZ(x, y) := πX(x)πY (y),

(x, y) ∈ SX × SY , is the invariant probability for (Zn := (Xn, Yn), n ≥ 0). The product

chain possesses two recurrent classes: class C1 of pairs of squares with identical colours, and

class C2 of pairs of squares with different colours. The restriction of the chain to each of the

two classes is irreducible and positive recurrent, and has the restriction of πZ to the class as

an invariant measure. The invariant probability on C1 is given by

πZ
1 (x, y) :=

πZ(x, y)

πZ(C1)
= 2πZ(x, y), x, y ∈ C1 .

Indeed,

πZ(C1) =
∑

x, y of same colour

πX(x)πX(y) =
∑

x

πX(x)
∑

y of the same colour as x

πX(y) =
1

2
,

as the somme of πX(y) over all black squares y is identical to the somme of πX(y) over all

white squares y.

Finally,

E(7, 7)(T(7, 7)) =
1

πZ(7, 7)
=

1

2c2
= 72 ,
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which is the expected waiting time between two successive meetings at square 7. �

Exercise 34 (Metropolis algorithm). Assume S < ∞, and p irreducible and symmetric5.

Let µ be a probability measure on S such that µ(x) > 0, ∀x ∈ S. Let

q(x, y) :=

{

p(x, y) min{µ(y)
µ(x)

, 1} if y 6= x,

1−
∑

z∈S\{x} p(x, z) min{µ(z)
µ(x)

, 1} if y = x.

(i) Prove that µ is reversible for q.

(ii) Prove that q is irreducible.

(iii) From now on, we assume that there exist x 6= y such that µ(x) 6= µ(y). Let

M := {x ∈ S : µ(x) = maxy∈S µ(y)}. Prove that there exists x0 ∈ M such that p(x0, y) > 0

for some y ∈ S\M . Prove that q(x0, z) < p(x0, z) for some z ∈ S. Prove that q(x0, x0) > 0.

(iv) Is q aperiodic?

Solution. (i) Obviously, q is a transition kernel. Let us check µ(x) q(x, y) = µ(y) q(y, x).

There is nothing to prove if x = y, so let us assume x 6= y. Then

µ(x) q(x, y) = p(x, y)min{µ(y), µ(x)}, µ(y) q(y, x) = p(y, x)min{µ(x), µ(y)},

so they are identical by the assumption that p(x, y) = p(y, x). As a consequence, µ is

reversible for q, and a fortiori, invariant.

(ii) Let x 6= y ∈ S. Since p is irreducible, there exist x0 = x, x1, · · · , xn = y elements of

S such that p(xi−1, xi) > 0, ∀i ∈ {1, · · · , n}.

By definition, p(xi−1, xi) > 0 implies q(xi−1, xi) > 0. So if we write Gq for Green’s

function associated with q, then Gq(x, y) > 0: q is irreducible.

(iii) Suppose that p(x, y) = 0, ∀x ∈ M , ∀y /∈ M . Then for all x ∈ M , we would have

Px{Xn ∈ M , ∀n ∈ N} = 1, which would contradict the irreducibility assumption (since M

is a strict subset of S). Consequently, there exists x0 ∈ M such that p(x0, y0) > 0 for some

y0 /∈ M .

Since y0 /∈ M , we have µ(x0) > µ(y0), so by definition,

q(x0, y0) = p(x0, y0)
µ(y0)

µ(x0)
< p(x0, y0).

Finally, since y0 6= x0, we have

q(x0, x0) = 1−
∑

z 6=x0

q(x0, z) > 1−
∑

z 6=x0

p(x0, z) = p(x0, x0) ≥ 0.

5Definition of symmetry of p: p(x, y) = p(y, x), ∀x, y ∈ S.
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(iv) Since q(x0, x0) > 0, q is aperiodic. �

Exercise 35. Assume that the chain is irreducible and positive recurrent, with invariant

probability measure π. Let f : S → R and g : S → R be bounded functions. Let

h(x) :=
∑

y∈S p(x, y) g(y), ∀x ∈ S. We assume that f + h = g. Let ν be an arbitrary

probability measure on S.

(i) Let Sn :=
∑n

i=0 f(Xi), n ∈ N. Prove that limn→∞
1
n
Eν(Sn) exists and determine its

value.

(ii) Let M0 := 0 and Mn+1 :=
∑n

i=0[g(Xi+1)− h(Xi)], n ∈ N. Prove that (Mn, n ∈ N) is

a martingale under Pν , with respect to the canonical filtration (Fn)n∈N.

(iii) Prove that for all n ∈ N ,

Eν(M
2
n+1) = Eν

{

n
∑

i=0

[g(Xi+1)− h(Xi)]
2
}

.

(iv) Prove that

lim
n→∞

1

n
Eν

{

n−1
∑

i=0

g(Xi+1)h(Xi)
}

=

∫

S

h2 dπ.

(v) Prove that

lim
n→∞

Eν(M
2
n)

n
=

∫

S

(g2 − h2) dπ.

(vi) Prove that

lim
n→∞

Eν(S
2
n)

n
=

∫

S

(g2 − h2) dπ.

Solution. We assume in questions (i)–(v) without loss of generality that ν = δx for some

x ∈ S (otherwise, if need be, we apply the dominated convergence theorem). This is obvious

for questions (i)–(iv), but is also obvious for question (v) if we take the identity in (iii) into

account and apply the dominated convergence theorem.

(i) The chain being irreducible and positive recurrent, we know that 1
n

∑n
i=0 f

+(Xi) →
∫

f+ dπ. Since f is bounded, we can apply the dominated convergence theorem, to see that
1
n

∑n
i=0Ex[f

+(Xi)] →
∫

f+ dπ. Exactly for the same reason, 1
n

∑n
i=0Ex[f

−(Xi)] →
∫

f− dπ.

As a consequence, 1
n
Ex(Sn) →

∫

f dπ.

(ii) For any n, Mn is integrable and Fn-measurable. Since Ex[Mn+1 − Mn |Fn] =

Ex[g(Xn+1) − h(Xn) |Fn] = Ex[g(Xn+1) |Fn] − h(Xn) = h(Xn) − h(Xn) = 0, it follows

that (Mn, n ∈ N) is a martingale.

(iii) It suffices to check that for j > i, Ex{[g(Xj+1)− h(Xj)] [g(Xi+1)− h(Xi)]} = 0.
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Since g(Xi+1)− h(Xi) is Fj-measurable, Ex{[g(Xj+1)−h(Xj)] [g(Xi+1)− h(Xi)] |Fj} =

[g(Xi+1) − h(Xi)]Ex{g(Xj+1) − h(Xj) |Fj} which vanishes, since we have noted that the

last conditional expectation is 0, Px-a.s.

(iv) Since E[g(Xn+1)− h(Xn) |Fn] = 0, we have E[(g(Xn+1)− h(Xn))h(Xn)] = 0, so

1

n
Ex

{

n−1
∑

i=0

g(Xi+1)h(Xi)
}

=
1

n
Ex

{

n−1
∑

i=0

h(Xi)
2
}

,

which converges Px-a.s. to
∫

h2 dπ (as the chain is irreducible and positive recurrent).

(v) We have

Ex(M
2
n)

n
=

1

n
Ex

{

n−1
∑

i=0

g(Xi+1)
2
}

+
1

n
Ex

{

n−1
∑

i=0

h(Xi)
2
}

−
2

n
Ex

{

n−1
∑

i=0

g(Xi+1)h(Xi)
}

.

On the right-hand side, the first term converges to
∫

g2 dπ, the third to 2
∫

h2 dπ, whereas

the second (by question (iv)) to
∫

h2 dπ. So Ex(M2
n)

n
→
∫

g2 dπ +
∫

h2 dπ − 2
∫

h2 dπ =
∫

(g2 − h2) dπ.

(vi) In this question, we work under Pν instead of Px.

By assumption, f = g − h, so Sn =
∑n

i=0[g(Xi)− h(Xi)] = Mn+1 + g(x)− g(Xn+1), and

thus

Eν(S
2
n)

n
=

Eν(M
2
n+1)

n
+

1

n
Eν{[g(x)− g(Xn+1)]

2}+
1

n
Eν{2Mn+1[g(x)− g(Xn+1)]} .

We let n → ∞. On the right-hand side, the first term converges to
∫

(g2−h2) dπ (by (v)). For

the second and third, we recall that g is bounded by assumption, so there exists a constant

C such that |g(x) − g(Xn+1)| ≤ C. The second term on the right-hand side thus tends

to 0, being bounded by C
n
. For the third, we note that by the Cauchy–Schwarz inequality

(or Jensen’s inequality), |Eν{Mn+1[g(x) − g(Xn+1)]}| ≤ C[Eν(M
2
n+1)]

1/2. So by (v) again,
1
n
Eν{2Mn+1[g(x)− g(Xn+1)]} → 0.

Consequently, Eν(S2
n)

n
→
∫

(g2 − h2) dπ. �

Exercise 36 (Renewal theorem). Ken enjoys wine. One day, he makes a dream: at the

beginning, he has in the pocket an amount of money x ∈ N (in yuans); at each minute,

he drinks a glass of wine, which costs him a yuan; each time there is no money left in the

pocket, he finds a wallet containing a random integer number of pieces of one yuan each,

and he instantly restarts buying and drinking wine without losing a second. The dream goes

on, indefinitely.
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We modelize the capital Xn in Ken’s pocket at each time n ∈ N by means of a Markov

chain (Xn, n ≥ 0) taking values in N, with transition kernel

p(x, y) :=







f(y + 1) x = 0, y ≥ 0,
1 x > 0, y = x− 1,
0 otherwise,

where f is a probability measure on N
∗ := {1, 2, · · · }. We assume that f : N∗ 7→ (0, 1) with

∑∞
n=1 f(n) = 1, such that f(y) > 0 for all y ∈ N

∗.

If Xi = y > 0 at time i, then Xi+1 = y − 1 at time i+ 1. If Xi = 0 at time i, Ken finds

y ≥ 1 yuans with probability f(y), and he instantly spends a yuan to buy wine, so at time

i+ 1, Xi+1 = y − 1 with probability f(y).

Let T
(0)
0 := 0 and let T

(n)
0 := inf{i > T

(n−1)
0 : Xi = 0}, n ≥ 1. In words, T

(n)
0 is the n-th

return to state 0.

(i) Prove that P0(T
(1)
0 = n) = f(n), n ≥ 1.

(ii) Classify the states, and determine all recurrence classes.

(iii) Let λ be the measure on N given by

λ(x) :=

∞
∑

y=x+1

f(y), x ∈ N .

Prove that λ is the unique (up to a constant multiple) invariant measure for p.

(iv) Give a necessary and sufficient condition for (Xn) to be positive recurrent. Prove

that there is uniqueness of invariant probability if and only if

m :=

∞
∑

n=1

n f(n) < ∞ .

We assume m < ∞ in the rest of the exercise.

(v) Compute limn→∞ Px(Xn = y), for all x, y ∈ N.

(vi) Let u(n) := P0(Xn = 0), n ≥ 1. Prove that {X0 = Xn = 0} = ∪n
z=1{X0 = Xn =

0, T
(1)
0 = z}. Prove that

u(n) =

n
∑

z=1

f(z) u(n− z) =: [f ∗ u](n), n ≥ 1.

(vii) Define ti := T
(i)
0 − T

(i−1)
0 , i ≥ 1. Prove that under P0, (ti, i ≥ 1) is a sequence of

i.i.d. random variables. Compute P0(ti = n) for all n ≥ 1.

(viii) Prove that P0(T
(i)
0 = n) = f i∗(n), i ≥ 1, where f i∗ = f ∗ · · · ∗ f is the i-th fold

convolution of f .
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(ix) Prove that {Xn = 0} = ∪∞
i=0{T

(i)
0 = n}. Prove that

u(n) =
∞
∑

i=1

f i∗(n), n ≥ 1.

(x) Prove that

lim
n→∞

u(n) =
1

m
.

Solution. (i) By definition,

P0(T
(1)
0 = n) = P0(Xn = 0, Xn−1 = 1, · · · , X1 = n− 1) = P0(X1 = n− 1) = f(n) .

(ii) State 0 leads to all state x > 0 because p(0, x) = f(x) > 0. All state x > 0 leads to

state x− 1, and thus to state 0 after x steps. The chain is thus irreducible.

By (i), P0(T
(1)
0 < ∞) =

∑∞
n=1 f(n) = 1; so that chain is (irreducible and) recurrent.

(iii) We have

∑

x∈N

λ(x) p(x, y) = f(y + 1)

∞
∑

z=1

f(z) +

∞
∑

z=y+2

f(z) =

∞
∑

z=y+1

f(z) = λ(y) ,

which means that λ is invariant.

Let µ is an invariant measure, so

µ(y) =
∑

x∈N

µ(x) p(x, y) = f(y + 1)µ(0) + µ(y + 1) ,

which yields

µ(y) = µ(0)− µ(0)(f(y) + f(y − 1) + · · ·+ f(1)) = µ(0)

∞
∑

z=y+1

f(z) = µ(0) λ(y) ,

as desired.

(iv) The chain (Xn) is positive recurrent if and only if ∞ > E0(T
(1)
0 ) =

∑∞
n=1 n f(n).

There exists an invariant probability if and only if
∑

x∈N λ(x) < ∞; on the other hand,

∞
∑

x=0

λ(x) =
∞
∑

x=0

∞
∑

z=x+1

f(z) =
∞
∑

z=1

f(z)
z−1
∑

x=0

1 =
∞
∑

z=1

z f(z) = m.

Hence, existence of an invariant probability is equivalent to m < ∞.

(v) Since m < ∞ by assumption, the unique invariant probability is

π(x) =
1

m

∞
∑

z=x+1

f(z), x ∈ N .
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The chain is irreducible and positive recurrent, and is aperiodic because p(0, 0) = f(1) > 0.

Thus for all x, y ∈ N,

lim
n→∞

Px(Xn = y) = π(y) =
1

m

∞
∑

z=y+1

f(z) .

(vi) If X0 = Xn = 0, then T
(1)
0 ∈ {1, · · · , n}, hence {X0 = Xn = 0} ⊂ ∪n

z=1{X0 = Xn =

0, T
(1)
0 = z}. The converse being trivial, we obtain {X0 = Xn = 0} = ∪n

z=1{X0 = Xn =

0, T
(1)
0 = z}.

Applying the strong Markov property at T
(1)
0 gives that

P0(Xn = 0) =

n
∑

z=1

P0(T
(1)
0 = z, Xn = 0)

=
n
∑

z=1

E0

(

1
{T

(1)
0 =z}

PXz(Xn−z = 0)
)

=
n
∑

z=1

E0(T
(1)
0 = z)P0(Xn−z = 0) ,

which is
∑n

z=1 f(z) u(n− z).

(vii) By definition, ti+1 = T
(1)
0 ◦ θ

T
(i)
0
. It follows from the strong Markov property that ti,

i ≥ 1, are i.i.d. under P0, and that

P0(ti = n) = P0(t1 = n) = P0(T
(1)
0 = n) = f(n), n ≥ 1.

(viii) Since T
(i)
0 = t1 + · · · + ti, and (ti, i ≥ 1) is a sequence of i.i.d. random variables

under P0 with common law f , we have P0(T
(i)
0 = n) = f i∗(n).

(ix) The sequence (T
(i)
0 , i ≥ 0) representing successive hitting times at state 0, it follows

that {Xn = 0} coincides with disjoint union ∪n
i=1{T

(i)
0 = n}; hence for all n ≥ 1,

u(n) = P0(Xn = 0) =

∞
∑

i=1

P0(T
(i)
0 = n) =

∞
∑

i=1

f i∗(n) .

(x) By (v), u(n) = P0(Xn = 0) → π(0) = 1
m

∑∞
z=1 f(z) =

1
m
. �

Exercise 37 (A criterion for recurrence and transience). In this exercise, S = N. We

assume that the chain is irreducible.

Question A. Prove that for any x ∈ S, lim supn→∞Xn = ∞, Px-a.s.
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Question B. Let f : S → R+ be such that for some k ∈ N,

∑

y∈S

p(x, y) f(y) ≤ f(x), ∀x > k.

Let τ := inf{n ∈ N : Xn ≤ k}. Prove that for all x > k, (f(Xn∧τ), n ∈ N) under Px is a

supermartingale.

Question C. In this question (and only in this question), we assume that limx→∞ f(x) = ∞.

(C1) Prove that for all x ∈ S, Px{τ < ∞} = 1.

(C2) Prove that for all x ∈ S and all n ∈ N, Px{τ ◦ θn < ∞} = 1.

(C3) Let x ∈ S. Prove that
∑∞

n=0 1{Xn≤k} = ∞, Px-a.s.

(C4) Prove that the chain is recurrent.

Question D. In this question, we assume that f(x) > 0, ∀x ∈ S, and that limx→∞ f(x) = 0.

(D1) Prove that limx→∞ Px{τ < ∞} = 0.6

(D2) Prove that the chain is transient.

Question E.We apply our results to an example of birth-and-death chain. Assume p(0, 1) =

1 and for x ≥ 1,

p(x, y) :=











px if y = x+ 1,

qx if y = x− 1,

0 otherwise,

where px > 0 and qx := 1− px > 0, ∀x.

(E1) Prove that the chain is irreducible.

(E2) We assume from now on that for some λ ∈ R, px = 1
2
+ (1 + ε(x))λ

x
, where ε(x) is

such that limx→∞ ε(x) = 0. Prove that for all α ∈ R,

Ex(X
α
1 )

xα
= 1 +

2α

x2
(λ−

1

4
+

α

4
) +

o(1)

x2
, x → ∞.

(E3) Prove that in case λ < 1
4
, the chain is recurrent.

(E4) Prove that in case λ > 1
4
, the chain is transient.

Solution. (A) If the chain is recurrent, then any state y is visited infinitely often Px-a.s.

by the chain, which implies lim supn→∞Xn ≥ y, Px-a.s. Since y is arbitrary, this means

lim supn→∞Xn = ∞, Px-a.s.

If the chain is transient, then any state y ∈ N is visited only finitely many times Px-a.s.,

which implies Xn → ∞, Px-a.s.

6Hint: You could start by studying Ex[f(Xτ )1{τ<∞}].
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(B) This is essentially done in the class: for any n, since τ is a stopping time, we deduce

that f(Xn∧τ ) is Fn-measurable, and by writing

f(X(n+1)∧τ ) = f(Xn+1) 1{τ>n} + f(Xτ) 1{τ≤n} = f(Xn+1) 1{τ>n} + f(Xn∧τ ) 1{τ≤n},

we see that Ex[f(Xn+1) 1{τ>n} |Fn] = 1{τ>n}Ex[f(Xn+1) |Fn] = 1{τ>n}

∑

y∈S p(Xn, y)f(y),

and Ex[f(Xn∧τ) 1{τ≤n} |Fn] = f(Xn∧τ) 1{τ≤n} (by measurability), so

Ex[f(X(n+1)∧τ ) |Fn] = 1{τ>n}

∑

y∈S

p(Xn, y)f(y) + f(Xn∧τ) 1{τ≤n}

≤ 1{τ>n} f(Xn) + f(Xn∧τ ) 1{τ≤n}

= f(Xn∧τ ),

where, to get the inequality in the middle, we used the fact that Xn > k on the event

{τ > n}. By induction, we get Ex[f(Xn∧τ )] ≤ Ex[f(X0∧τ )] = f(x), which proves that

f(Xn∧τ ) is Px-integrable, and that (f(Xn∧τ ), n ∈ N) is a supermartingale.

(C1) If x ≤ k, then τ = 0, Px-a.s., so Px{τ < ∞} = 1.

Assume now x > k. Since (f(Xn∧τ ), n ∈ N) is a non-negative Px-supermartingale, it

converges Px-a.s. to a finite limit, denoted by ξ. On the set {τ = ∞}, f(Xn) → ξ, Px-a.s.

However, by assumption, f(y) → ∞ for y → ∞, which yields that on the set {τ = ∞},

(Xn) is Px-a.s. bounded. In view of Question A, this happens with Px-probability 0; i.e.,

Px{τ < ∞} = 1.

(C2) By the Markov property, Px{τ ◦ θn < ∞} = PXn{τ < ∞}, which is Px-a.s. 1 (see

(C1)).

(C3) Let An := {τ ◦ θn < ∞}, n ∈ N, which is a non-increasing sequence of events, with

∩n∈NAn = {
∑∞

n=0 1{Xn≤k} = ∞}. By (C2), Px(An) = 1, ∀n ∈ N, so Px(∩n∈NAn) = 1, which

means
∑∞

n=0 1{Xn≤k} = ∞, Px-a.s.

(C4) We have proved
∑∞

n=0 1{Xn≤k} = ∞, Px-a.s. A fortiori, Ex[
∑∞

n=0 1{Xn≤k}] = ∞, i.e.,
∑

y∈k G(x, y) = ∞. So there exists y ∈ {0, 1, · · · , k} such that G(x, y) = ∞. A fortiori,

G(y, y) = ∞, i.e., y is a recurrent state. Since the chain is irreducible, it is recurrent.

(D1) Let x ∈ S. By Fatou’s lemma,

Ex[f(Xτ ) 1{τ<∞}] ≤ lim inf
n→∞

Ex[f(Xn∧τ ) 1{τ<∞}],

which is bounded by f(x) because (f(Xn∧τ ), n ∈ N) is a Px-supermartingale (see Question

B).

On the other hand,

Ex[f(Xτ ) 1{τ<∞}] ≥ c Px{τ < ∞},
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where c := min0≤y≤k f(y) > 0. Thus Px{τ < ∞} ≤ 1
4
f(x)c. Letting x → ∞ gives the desired

conclusion.

(D2) If the chain were recurrent, we would have Px{τ < ∞} = 1, ∀x ∈ S, which would

contract what we have proved in (D1). Conclusion: the chain is transient.

(E1) For any x ≥ 1, G(0, x) ≥ px(0, x) ≥ p(0, 1) p(1, 2) · · · p(x− 1, x) = p0p1 · · ·px−1 >

0, and similarly, G(x, 0) ≥ px(x, 0) ≥ p(x, x − 1) · · · p(2, 1) p(1, 0) = qx · · · q2q1 > 0.

Therefore, the chain is irreducible.

(E2) For any x ≥ 1,

Ex(X
α
1 ) = px (x+ 1)α + qx (x− 1)α = xα[px(1 + x−1)α + qx (1− x−1)α].

Letting x → ∞ and making an asymptotic development (under the second order) of the

function s 7→ (1 + s)α for s in the neighbourhood of 0, we get

Ex(X
α
1 )

xα
=

(

1 +
α

x
+

α(α− 1) + o(1)

2x2

)(1

2
+

(1 + ε(x))λ

x

)

+
(

1−
α

x
+

α(α− 1) + o(1)

2x2

)(1

2
−

(1 + ε(x))λ

x

)

= 1 +
4αλ+ α(α− 1) + o(1)

x2
, x → ∞.

(E3) If λ < 1
4
, then by choosing α > 0 such that α − 1

4
+ α

4
< 0, we get Ex(X

α
1 ) ≤ xα

for all sufficiently large x, say ∀x > k. So the function f(x) := xα satisfies the conditions in

Question C, which yields that the chain is recurrent.

(E4) If λ > 1
4
, then by choosing α < 0 such that α − 1

4
+ α

4
> 0, we get Ex(X

α
1 ) ≤ xα

for all sufficiently large x, say ∀x > k. So the function f(x) := xα satisfies the conditions in

Question D, which yields that the chain is transient. �

Exercise 38 (Foster’s criterion). Assume that the chain is irreducible. The aim of this

exercise is to show that if there exist α > 0, a finite set A ⊂ S and f : S → R+ such that

(∗)
∑

y∈S

p(x, y) f(y) < ∞, ∀x ∈ S;
∑

y∈S

p(x, y) f(y) ≤ f(x)− α, ∀x ∈ Ac,

then the chain is positive recurrent.

Notation: For any A ⊂ S, we write

τA := inf{n ∈ N : Xn ∈ A}, TA := inf{n ≥ 1 : Xn ∈ A}, inf∅ := ∞.
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Question A. In this question, we assume that there exists a finite set A ⊂ S such that

Ex(TA) < ∞, ∀x ∈ A. Let ̺0 := 0 and

̺n+1 := ̺n + TA ◦ θ̺n , n ∈ N.

(A1) Prove that for all x ∈ A and n ∈ N, Px{̺n < ∞} = 1.

(A2) Let Yn := X̺n , n ∈ N. Prove that (Yn, n ∈ N) is a Markov chain, and determine

its transition probability q.

(A3) Prove that (Yn, n ∈ N) is irreducible and positive recurrent.

(A4) Let x ∈ A. Let Tx := inf{n ≥ 1 : Xn = x} and T Y
x := inf{n ≥ 1 : Yn = x}. Prove

that

Tx =

∞
∑

n=0

1{TY
x >n} TA ◦ θ̺n ,

and that {T Y
x > n} ∈ F̺n .

(A5) Prove that for any x ∈ A,

Ex(Tx) ≤ max
y∈A

Ey(TA)Ex(T
Y
x ).

(A6) Prove that (Xn, n ∈ N) is positive recurrent.

Question B. In this question, we assume (∗) for some α > 0, finite set A ⊂ S and f : S →

R+.

(B1) Let Zn := f(Xn) + nα, n ∈ N. Prove that for all x ∈ Ac, (Zn∧τA, n ∈ N) is a

Px-supermartingale with respect to the canonical filtration (Fn)n∈N.

(B2) Prove that for all x ∈ S, Ex(τA) ≤
f(x)
α

.

(B3) Prove that (Xn, n ∈ N) is positive recurrent.

Solution. Several ingredients in the solution (to questions (A1), (A2) and (B1)) have been

seen in previous exercises, so we only make a sketch.

(A1) By induction and the strong Markov property. [More details in Exercise 27 (ii).]

(A2) Check by definition, discussing on the value of the stopping times. The transition

kernel is q(x, y) = Px{XTA
= y}. [More details in Exercise 27 (iii).]

(A3) Let x 6= y ∈ S. Since (Xn, n ∈ N) is irreducible, there exist x0 := x, x1, · · · , xn := y

such that p(xi−1, xi) > 0, ∀i ∈ {1, 2, · · · , n}. Let xj1 , · · · , xjm be the sequence of x1, · · · ,

xn−1 lying in A. Then

Px{Y1 = xj1 , · · · , Ym = xjm, Ym+1 = y} ≥ Px{X1 = x1, · · · , Xn−1 = xn−1, Xn = y} > 0,
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which yields that (Yn, n ∈ N) is irreducible. Since the chain takes values in a finite space, it

is positive recurrent.

(A4) Let k ≥ 1. The event T Y
x = k means that on the occasion of its k-th return to A,

the chain (Xn) returns to x for the first time. So {T Y
x = k} = {Tx = ̺k}. Therefore, on the

event {T Y
x = k}, we have

Tx = ̺k =

k−1
∑

n=0

(̺n+1 − ̺n) =

k−1
∑

n=0

TA ◦ θ̺n =

∞
∑

n=0

(TA ◦ θ̺n) 1{k>n},

giving the first desired equality.

Furthermore, {T Y
x ≤ k} = ∪k

n=0{Tx = ̺n}. Since {Tx = ̺n} ∈ F̺n ⊂ F̺k for n ∈

{0, 1, · · · , k}, we have {T Y
x ≤ k} ∈ F̺k .

(A5) By (A4) and then by the strong Markov property,

Ex(Tx) =

∞
∑

n=0

Ex[(TA ◦ θ̺n) 1{TY
x >n}] =

∞
∑

n=0

Ex[1{TY
x >n}EX̺n

(TA)].

Since EX̺n
(TA) ≤ maxy∈A Ey(TA), this yields

Ex(Tx) ≤ max
y∈A

Ey(TA)
∞
∑

n=0

Ex[1{TY
x >n}].

It remains to note that
∑∞

n=0Ex[1{TY
x >n}] = Ex(T

Y
x ) by the Fubini–Tonelli theorem.

(A6) By (A3), (Yn, n ∈ N) is positive recurrent, so Ex(T
Y
x ) < ∞. On the other hand, by

assumption, Ey(TA) < ∞, ∀y ∈ A. Since A is a finite set, this yields maxy∈A Ey(TA) < ∞. So

by the inequality proved in (A5), we have Ex(Tx) < ∞, ∀x ∈ A. Since the chain (Xn, n ∈ N)

is irreducible, this means it is positive recurrent.

(B1) By writing Z(n+1)∧τA = Zn+1 1{τA>n} + ZτA 1{τA≤n}, one checks, using assumption

(∗), that (Zn∧τA , n ∈ N) is a Px-supermartingale. [More details in Exercise 37, Question B.]

(B2) If x ∈ A, the inequality holds trivially.

Assume now x ∈ Ac. Since (Zn∧τA , n ∈ N) is a Px-supermartingale (see (B1)), we have

Ex[Zn∧τA] ≤ Ex(Z0) = f(x), ∀n ∈ N. On the other hand, since Zn ≥ nα, ∀n ∈ N, we have

Ex[Zn∧τA] ≥ αEx(n ∧ τA). Therefore, Ex(n ∧ τA) ≤ f(x)
α

, ∀n ∈ N. An application of the

monotone convergence theorem yields the desired inequality.

(B3) Let x ∈ A. By definition, TA = 1 + τA ◦ θ1. Hence

Ex(TA) = 1 + Ex(τA ◦ θ1) = 1 + Ex[EX1(τA)].
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By (B2), EX1(τA) ≤
f(X1)

α
, so that for all x ∈ A,

Ex(TA) ≤ 1 +
Ex[f(X1)]

α
= 1 +

1

α

∑

y∈S

p(x, y) f(y),

which is finite by assumption. So the condition of Question A is satisfied: we are entitled to

apply (A6) to conclude that (Xn, n ∈ N) is positive recurrent. �

Exercise 39 (Branching processes). Let (Zn, n ≥ 0) be a branching process, defined by

Zn+1 :=

Zn
∑

j=1

ξn, j , (

0
∑

j=1

:= 0)

where ξn, j, for (n, j) ∈ N×N
∗, are i.i.d. random variables taking values in N, whose common

distribution is denoted by ξ. We assume ξ(0) + ξ(1) < 1 and ξ(0) > 0.

Let Fn := σ(ξi, j; 1 ≤ i ≤ n, j ≥ 1) and F0 = σ(X0).

Let

m :=
∞
∑

k=0

k ξ(k), φ(r) :=
∞
∑

k=0

ξ(k)rk, r ∈ [0, 1] .

Let φ0(r) = r, and φn+1(r) := φn(φ(r)), n ∈ N.

Question A. We assume Z0 = 1 in this question.

(A1) Compute E(Zn+1 |Fn) and E(Zn) for all n ≥ 0. Prove that for n ∈ N and r ∈ [0, 1],

E(rZn+1 |Fn) = φ(r)Zn .

Compute E(rZn).

(A2) Determine the number of solutions of φ(r) = r on [0, 1].

Let q be the smallest solution of φ(r) = r on [0, 1]. Prove that φn(0) ≤ φn+1(0) for all

n ∈ N , and that φn(0) → q, n → ∞.

(A3) Let

T := inf{n ∈ N : Zn = 0}, inf ∅ = ∞ .

Prove that {Zn = 0} ⊂ {Zn+1 = 0} for all n ∈ N. Prove that

P (T < ∞) = q .

We call the event {T < ∞} extinction, and the event {T = ∞} survival. We say that

the system is critical if m = 1, supercritical if m > 1, and sub-critical if m < 1.

46



Find a relation between extinction/survival and supercritical/critical/sub-critical cases.

Question B (Martingales in the supercritical branching process). We assume Z0 = 1

and m > 1 in this question.

(B1) Define Mn := qZn, n ≥ 0. Prove that (Mn, n ≥ 0) is an (Fn)-martingale, and

study convergence (a.s., in L1, in Lp for 1 < p < ∞). Prove that

lim
n→∞

qZn1{T=∞} = 0 a.s.

(B2) Prove that

1{T=∞} = 1{limn→∞ Zn=∞} a.s.

Compute P (Zn converges).

(B3) Let Wn := Zn

mn , n ≥ 0. Prove that (Wn, n ≥ 0) is an (Fn)-martingale.

(B4) Assuming σ2 :=
∑∞

k=0 k
2ξ(k)−m2 < ∞, prove that for all n ∈ N,

E(Z2
n+1 |Fn) = m2 Z2

n + σ2 Zn a.s.

Prove that supn∈N E(W 2
n) < ∞. Prove that Wn converges in L2, to a limit denoted by W∞.

(B5) Define L(λ) := E(e−λW∞), λ ≥ 0. Write a functional identity involving φ, L and

m.

(B6) Prove that P (W∞ = 0) = limλ→∞ L(λ).

(B7) We assume σ2 < ∞. Compute P (W∞ = 0). Prove that 1{T=∞} = 1{W∞>0} a.s.

Prove that on the set of the system’s survival, Zn grows at an exponential rate, and give an

equivalent.

Question C (Martingales in the critical/subcritical branching process). We assume

Z0 = 1 and m ≤ 1 in this question.

(C1) Prove that Wn converges almost surely, and study the limit.

(C2) Does Wn converge in L1?

Question D (The branching process as a Markov process). Let x ∈ N
∗.

(D1) Prove that (Zn, n ≥ 0) is a Markov chain taking values in N. Compute its transition

kernel.

(D2) Classify the states, and determine the recurrence classes.

(D3) Prove that

Px(∃n ∈ N : Zk = 0, ∀k ≥ n) + Px

(

lim
n→∞

Zn = ∞
)

= 1.
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Solution. (A1) We have

E(Zn+1 |Fn) = E
(

∑

k∈N

1{Zn=k}

k
∑

j=1

ξn, j

∣

∣

∣
Fn

)

=
∑

k∈N

1{Zn=k}

k
∑

j=1

E(ξn, j |Fn)

=
∑

k∈N

1{Zn=k}

k
∑

j=1

E(ξn, j)

=
∑

k∈N

1{Zn=k} km ,

which is mZn. Taking expectation on both sides gives E(Zn+1) = mE(Zn). So by induction

and the fact that Z0 = 1, we obtain E(Zn) = mn, n ≥ 0.

Let n ∈ N and r ∈ [0, 1]. Since rZn ∈ [0, 1], it is integrable, and

E(rZn+1 |Fn) = E
(

∑

k∈N

1{Zn=k}r
∑k

j=1 ξn, j

∣

∣

∣
Fn

)

=
∑

k∈N

1{Zn=k}E
(

r
∑k

j=1 ξn, j

∣

∣

∣Fn

)

.

Since E(r
∑k

j=1 ξn, j

∣

∣

∣
Fn) =

∏k
j=1E(rξn, j ) = φ(r)k, it follows that

E(rZn+1 |Fn) =
∑

k∈N

1{Zn=k} φ(r)
k = φ(r)Zn a.s.

Taking expectation on both sides, and we obtain: E(rZn+1) = E(φ(r)Zn). Iterating the

procedure, and since Z0 = 1, we get E(rZn) = φn(r), for n ∈ N and r ∈ [0, 1].

(A2) The moment generating function φ( · ) is a power series with radius of convergence

≥ 1. As a consequence, for all 0 ≤ r < 1,

φ′′(r) =
∑

k≥2

k(k − 1)ξ(k) rk−2 ,

and φ′′(r) > 0 for 0 < r < 1 since there exists k ≥ 2 such that ξ(k) > 0 (recalling that

ξ(0) + ξ(1) < 1 by assumption). So the function r → φ(r) − r is strictly convex. Since

m = φ′(1−) (by the monotone convergence theorem when r ↑ 1), we see that φ(r) − r is

strictly above the slope m at r = 1 on (0, 1), and

φ(r)− r > (m− 1)(r − 1) > 0 ,

48



if r ∈ [0, 1) and m ≤ 1. Since φ(1) = 1, we conclude that in case m ≤ 1, q = 1 is the unique

fixed point of φ on [0, 1].

By assumption φ(0) = ξ(0) > 0. If m > 1, then the slope of φ(r) − r at 1 is negative,

so φ(1 − ε) − (1 − ε) < 0 for some sufficiently small ε > 0. The continuity of φ on [0, 1]

yields the existence of 0 < c < 1 such that φ(c) − c = 0. By convexity, c is unique. As a

consequence, in case m > 1, there are two fixed points of φ on [0, 1] given by q = c ∈ (0, 1)

and 1.

Summarizing, we have φ(r) > r if r < q, and φ(r) < r if r > q, so the sequence

(φn(0), n ≥ 0) is non-decreasing, and its limit is q, the smallest fixed point.

(A3) The inclusion {Zn = 0} ⊂ {Zn+1 = 0} is clear by definition. Since {T < ∞} =

∪∞
n=0{Zn = 0}, this yields

P (T < ∞) = lim
n→∞

↑ P (Zn = 0) .

On the other hand, φn(r) = E(rZn) = E(1{Zn=0}) + E(rZn1{Zn≥1}); in particular, φn(0) =

P (Zn = 0). By (A2), P (T < ∞) = limn→∞ ↑ φn(0) = q.

We have seen in (A2) that q < 1 if and only if m > 1; hence P (extinction) < 1 if and

only if m > 1 (critical).

(B1) For any n ≥ 0, Mn is Fn-measurable, and integrable (because 0 ≤ Mn ≤ 1 a.s.);

moreover, E(Mn+1 |Fn) = φ(q)Zn = qZn = Mn. Consequently, (Mn, n ≥ 0) is an (Fn)-

martingale.

Since for any 1 ≤ p < ∞, supn∈NE(|Mn|
p) ≤ 1 < ∞, it follows that the (Mn, n ≥ 0)

converges p.s., in L1, and in Lp for all 1 ≤ p < ∞, to a random variable M∞ taking values

in [0, 1].

Observe that

Mn∧T = Mn 1{T=∞} +Mn∧T 1{T<∞} ;

taking expectation on both sides yields

E(M0) = q = E(Mn 1{T=∞}) + E(Mn∧T 1{T<∞}).

Since 0 ≤ Mn∧T ≤ 1 a.s., we are entitled to apply the dominated convergence theorem

to see that when n → ∞, E(Mn∧T 1{T<∞}) → E(MT 1{T<∞}) = P (T < ∞) = q, and

E(Mn 1{T=∞}) → E(M∞ 1{T=∞}). Accordingly,

E(M∞ 1{T=∞}) = 0 .

The a.s. non-negativity of the integrand yields that it vanishes a.s. Hence limn→∞ qZn 1{T=∞} =

0 a.s., as desired.
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(B2) For almost all ω ∈ {T = ∞}, we have limn→∞ qZn(ω) = 0 (by (B1)), hence

limn→∞ Zn(ω) = ∞. This yields 1{T=∞} ≤ 1{limn→∞ Zn=∞} a.s. The converse being triv-

ial, we obtain 1{T=∞} = 1{limn→∞ Zn=∞} a.s., as desired.

In particular, almost surely on the survival of the system, the size of the population goes

to infinity, whereas on the extinction of the system, the size eventually vanishes by definition.

So P (Zn converges) = 0.

(B3) Clearly, (Wn, n ∈ N) is (Fn)-adapted, with E(Wn) = 1, ∀n ∈ N (which is easily

seen by induction). We have seen in (A1) that E(Zn+1 |Fn) = mZn, which is equivalent to

saying that E(Wn+1 |Fn) = Wn: (Wn, n ∈ N) is indeed an (Fn)-martingale.

(B4) By definition,

E(Z2
n+1 |Fn) = E

[

∑

k∈N

1{Zn=k}

(

k
∑

j=1

Xn, j

)2 ∣
∣

∣
Fn

]

=
∑

k∈N

1{Zn=k}

k
∑

j1=1

k
∑

j2=1

E(Xn, j1Xn, j2 |Fn)

=
∑

k∈N

1{Zn=k}

k
∑

j1=1

k
∑

j2=1

E(Xn, j1Xn, j2)

=
∑

k∈N

1{Zn=k}

(

k(σ2 +m2) + k(k − 1)m2
)

,

which is σ2 Zn +m2 Z2
n, as desired.

Taking expectation on both sides and dividing by m2(n+1), we see that

E(W 2
n+1) = E(W 2

n) +
σ2

m2+n
.

The sequence (un) defined by u0 := 1 and un+1 = un + σ2

m2+n (for all n ∈ N) converges (to

1 + σ2

m(m−1)
; recalling that m > 1 by assumption), and is thus bounded. In other words,

sup
n

E(W 2
n) < ∞ .

The martingale (Wn) being bounded in L2, it converges (a.s. and) in L2.

(B5) By definition,

E(e−λmWn+1) = E[(e−λ/mn

)Zn+1] = φn+1(e
−λ/mn

) = φ
(

φn(e
−λ/mn

)
)

,

which is = φ(E[e−λZn/mn
]) = φ(E[e−λWn ]). We let n → ∞. By continuity of φ and the

dominated convergence theorem, we obtain: for λ ≥ 0,

L(λm) = φ(L(λ)).
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(B6) We write

L(λ) = E(1{W∞=0}) + E(e−λW∞ 1{W∞>0}),

and let λ → ∞. By dominated convergence, E(e−λW∞ 1{W∞>0}) → 0, λ → ∞, so that

P (W∞ = 0) = limλ→∞ L(λ).

(B7) Let ℓ := limλ→∞ L(λ). By (B5), φ(ℓ) = ℓ (recalling the continuity of φ); hence

ℓ ∈ {q, 1} (recalling that m > 1 by assumption). However, ℓ cannot be 1 because (Wn) is

uniformly integrable (see (B4)) under the assumption σ2 < ∞. Therefore, P (W∞ = 0) = q.

Let us prove 1{W∞>0} = 1{T=∞} a.s. Since {W∞ > 0} ⊂ {Zn → ∞}, we have 1{T=∞} −

1{W∞>0} ≥ 0 a.s. This non-negative random variable having expectation E(1{T=∞} −

1{W∞>0}) = (1− q)− (1− q) = 0, it vanishes a.s., proving the desired almost sure identity.

On {T = ∞} (which is a.s. {W∞ > 0}), we have Zn ∼ mnW∞ a.s.

(C1) By assumption, m < 1, so T < ∞ a.s. (see (A3)). This means that Wn = 0 a.s. for

all sufficiently large n. In particular, Wn → W∞ := 0 a.s.

(C2) Since E(W∞) = 0 < E(Wn), ∀n, it follows that the martingale is not uniformly

integrable: there is no convergence in L1 for (Wn).

(D1) Recall from (A1) that E(rZn+1 |Fn) = φ(r)Zn a.s., i.e.,

∑

j∈N

rjE(1{Zn+1=j} |Fn) =
∑

j∈N

rj
∑

k∈N

1{Zn=k}αj(k) ,

where αj(k) is the coefficient of rj in the power series φk. Consequently,

E(1{Zn+1=j} |Fn) = αj(Zn) , a.s.

By definition, φ(r)k =
∑

j∈N ξ
∗k(j)rj, where ξ∗k is the k-th fold convolution of ξ (with

ξ∗k := δ0 if k = 0). Hence αj(k) = ξ∗k(j), and

E(1{Zn+1=j} |Fn) = ξ∗Zn(j) = p(Zn, j) .

In words, (Zn, n ∈ N) is a Markov chain with transition kernel p(x, y) := ξ∗x(y), for x,

y ∈ N, in agreement with what was seen in the class.

(D2) Let x ∈ N
∗. We have Px(T0 < ∞) ≥ p(x, 0) = ξ(0)x > 0, so state x leads to state

0; on the other hand, state x is not accessible from state 0 which is absorbant. We conclude

that 0 is the only recurrent state (so {0} is the only recurrence class); all other states are

transient.

(D3) Starting from transient state x, consider T0, the first hitting time of any recurrent

state. There are two possibilities.
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First possibility: T0 < ∞, in which case the chain stays absorbed at state 0 after T0:

Zk = 0 for all k ≥ T0.

Second (and last) possibility: T0 = ∞, in which case the classification theorem tells us

that the chain, though never hitting 0, visits each of the transient states only a finite number

of times Px-a.s. So for Px-almost all ω and for all N ∈ N
∗, there exists n0(ω) < ∞ such

that Zn /∈ {1, 2, · · · , N}, ∀n ≥ n0(ω). This yields that Px-almost surely on {T0 = ∞},

limn→∞ Zn = ∞.

As a consequence,

P (∃n ∈ N, ∀k ≥ n, Zk = 0) + P
(

lim
n→∞

Zn = ∞
)

= 1,

as desired. �
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