TD 11 : Hyperbolic dynamics, the Poincare disk and geodesic flow.

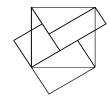
1. Define the rectangles: $R_A = [0, 1/3] \times [0, 1]$ and $R_B = [2/3, 1] \times [0, 1]$. Define the map from $R_A \cup R_B$ to the unit square:

$$f(x_1, x_2) = \begin{cases} (3x_1, \frac{x_2}{3}) & , & x \in R_A \\ (3x_1 - 2, \frac{2 + x_2}{3}) & , & x \in R_B \end{cases}$$
(0.1)

We let $\Omega \in [0,1] \times [0,1]$ denote the maximal invariant set of f. One has $\Omega = f\Omega = f^{-1}\Omega$.

- (a) Show that R_A and R_B may be described as products of pieces of unstable and stable manifolds (or rather subsets of such). $\{R_A, R_B\}$ is called a Markov partition for Ω .
- (b) Show that there is a bijective map j : Ω → Σ₂ which conjugates (Ω, f) to the full shift (Σ₂, σ).

2. Let
$$f\left(\begin{pmatrix} x_1\\ x_2 \end{pmatrix}\right) = \begin{pmatrix} 1 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix}$$
 be a map of the 2-torus \mathbb{T}^2
and $\gamma = \frac{1+\sqrt{5}}{2}$. Setting $e^u = \begin{pmatrix} 1\\ 1/\gamma \end{pmatrix}$, $e^s = \begin{pmatrix} -1/\gamma\\ 1 \end{pmatrix}$ one has:
 $f(e^u) = \gamma e^u$, $f(e^s) = -1/\gamma e^s$.



- (a) Describe 3 closed rectangles $R_1, R_2, R_3 \subset \mathbb{T}^2$ (see figure) bounded by pieces of u/s-manifolds of the origin such that they have disjoint interior and their union covers \mathbb{T}^2 .
- (b) Let t be the 3 by 3 transition matrix defined by t_{ij} = 1 if f(R_i^o) ∩ R_j^o ≠ Ø, and zero otherwise. Calculate it. Let Σ_t = {ξ ∈ Σ₃ : t_{ξk,ξk+1} = 1, for all k ∈ ℤ}. Show that (Σ_t, σ) is semi-conjugated to (T², f) through a surjective map j : Σ_t → T².
- (a) Show that the periodic points in the two spaces are in 1-1 correspondence except for one fixed point (which one?). Calculate $\lim_{n\to\infty} \frac{1}{n} \# \operatorname{Fix}(f^n)$.
- 3. Consider the (Euclidean) d-torus and its set of closed geodesics. For each $\alpha \in \pi^1(\mathbb{T}^d)$ pick a closed geodesic γ_{α} . Its length depends only upon α . Let N(r) be the number of γ_{α} of length not exceeding r. Show that $N(r) \sim r^d$.
- 4. Consider the closed geodesics in the double doughnut $S = \Gamma \setminus \mathbb{D}$. For each $\alpha \in \pi^1(S)$ let γ_{α} be the unique closed geodesic homotopic to α . Define N(r) as above. Show that

$$\lim_{r \to +\infty} \frac{1}{r} \log N(r) = 1.$$
(0.2)