TD 11 : Hyperbolic dynamics, the Poincare disk and geodesic flow.

1. Define the rectangles: $R_{A}=[0,1 / 3] \times[0,1]$ and $R_{B}=[2 / 3,1] \times[0,1]$. Define the map from $R_{A} \cup R_{B}$ to the unit square:

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cl}
\left(3 x_{1}, \frac{x_{2}}{3}\right) & , x \in R_{A}  \tag{0.1}\\
\left(3 x_{1}-2, \frac{2+x_{2}}{3}\right) & , x \in R_{B}
\end{array}\right.
$$

We let $\Omega \in[0,1] \times[0,1]$ denote the maximal invariant set of $f$. One has $\Omega=f \Omega=f^{-1} \Omega$.
(a) Show that $R_{A}$ and $R_{B}$ may be described as products of pieces of unstable and stable manifolds (or rather subsets of such). $\left\{R_{A}, R_{B}\right\}$ is called a Markov partition for $\Omega$.
(b) Show that there is a bijective map $j: \Omega \rightarrow \Sigma_{2}$ which conjugates $(\Omega, f)$ to the full shift $\left(\Sigma_{2}, \sigma\right)$.
2. Let $f\left(\binom{x_{1}}{x_{2}}\right)=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\binom{x_{1}}{x_{2}}$ be a map of the 2-torus $\mathbb{T}^{2}$ and $\gamma=\frac{1+\sqrt{5}}{2}$. Setting $e^{u}=\binom{1}{1 / \gamma}, e^{s}=\binom{-1 / \gamma}{1}$ one has: $f\left(e^{u}\right)=\gamma e^{u}, f\left(e^{s}\right)=-1 / \gamma e^{s}$.

(a) Describe 3 closed rectangles $R_{1}, R_{2}, R_{3} \subset \mathbb{T}^{2}$ (see figure) bounded by pieces of $\mathrm{u} / \mathrm{s}$-manifolds of the origin such that they have disjoint interior and their union covers $\mathbb{T}^{2}$.
(b) Let $t$ be the 3 by 3 transition matrix defined by $t_{i j}=1$ if $f\left(R_{i}^{o}\right) \cap R_{j}^{o} \neq \emptyset$, and zero otherwise. Calculate it. Let $\Sigma_{t}=\left\{\xi \in \Sigma_{3}: t_{\xi_{k}, \xi_{k+1}}=1\right.$, for all $\left.k \in \mathbb{Z}\right\}$. Show that $\left(\Sigma_{t}, \sigma\right)$ is semi-conjugated to $\left(\mathbb{T}^{2}, f\right)$ through a surjective map $j: \Sigma_{t} \rightarrow \mathbb{T}^{2}$.
(a) Show that the periodic points in the two spaces are in 1-1 correspondence except for one fixed point (which one?). Calculate $\lim _{n \rightarrow \infty} \frac{1}{n} \# \operatorname{Fix}\left(f^{n}\right)$.
3. Consider the (Euclidean) d-torus and its set of closed geodesics. For each $\alpha \in \pi^{1}\left(\mathbb{T}^{d}\right)$ pick a closed geodesic $\gamma_{\alpha}$. Its length depends only upon $\alpha$. Let $N(r)$ be the number of $\gamma_{\alpha}$ of length not exceeding $r$. Show that $N(r) \sim r^{d}$.
4. Consider the closed geodesics in the double doughnut $S=\Gamma \backslash \mathbb{D}$. For each $\alpha \in \pi^{1}(S)$ let $\gamma_{\alpha}$ be the unique closed geodesic homotopic to $\alpha$. Define $N(r)$ as above. Show that

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{1}{r} \log N(r)=1 \tag{0.2}
\end{equation*}
$$

