TD 09 : Complex dynamics and dimensions.

We consider the quadratic family $P_{c}(z)=z^{2}+c$ with $|c|<1 / 6$.
Let $A=\left\{z: \frac{3}{4}<|z|<\frac{4}{3}\right\}$ and let $J\left(P_{c}\right)=\partial\left\{z: P_{c}^{n}(z) \nrightarrow \infty\right\}$ be the Julia set of P_{c}.
Let $L \phi(w)=\sum_{z: P_{c}^{n} z=w} \phi(z)$ be the Ruelle transfer operator with weight zero.
Pick $w \in A$ and define for $n \geq 1$ the empirical measure : $\mu_{n}=\frac{1}{2^{n}} \sum_{z: P_{c}^{n} z=w} \delta_{z}$.

1. Show that $\mu_{*}=$ weak $-\lim _{n} \mu_{n}$ is the Gibbs measure associated with L. In particular, it is invariant with respect to P_{c} and independent of the choice of w. It is called the 'harmonic' measure of P_{c}.
2. Write $\left(P_{c}\right)^{-n}(w)=\left\{z_{k}\right\}_{1 \leq k \leq 2^{n}}$ and show that $P_{c}^{n}(0)-w=\prod_{k=1}^{2^{n}} z_{k}$.
3. Show that $\int \log \left|P_{c}^{\prime}\right| d \mu_{n}=\log 2+\frac{1}{2^{n}} \log \left|P_{c}^{n}(0)-w\right|$.
4. Show that $\int \log \left|P_{c}^{\prime}\right| d \mu_{*}=\log 2$.
5. Conclude that $\operatorname{dim}_{H}\left(\mu_{*}\right)=1$.
(Result by Anthony Manning, published in Annals of Math, 1984).
