TD 08 : Dimension of repellers and Gibbs measures.

Consider a collection of $k \ge 2$ disjoint closed subintervals I_1, \ldots, I_k of I = [0, 1] and strictly positive weights $p = (p_1, \ldots, p_k)$ for which $\sum_i p_i = 1$. We write $g : \bigcup I_i \to \mathbb{R}$ for the function $g(x) = \log(p_i)$ for $x \in I_i$.

Let $\psi_i : I \to I_i$ be an affine bijective map, i = 1, ..., k and let $T : \bigcup I_i \to I$ be the inverse (expanding) map. Let $J = \bigcap_{n \ge 0} T^{-n}I$ denote the maximal *T*-invariant subset of *I*. We consider the transfer operator acting upon $\phi \in C^0$, Lip(*I*) or $L^1(I)$:

$$L_{g}\phi(y) = \sum_{x:Tx=y} e^{g(x)}\phi(x) = \sum_{i=1}^{k} p_{i}\phi(\psi_{i}(y)), \ y \in I.$$

- 1. Let ν_g be the Gibbs measure associated with g and T. Show that $\nu_g(I_i) = p_i$.
- 2. Show that the support of ν_g is J.
- 3. Calculate P(g), the Lyapunov exponent Λ_{ν_g} and the dimension of the measure, $\underline{d}^*_{\nu_g} = \dim_H \nu_g$.
- 4. Using Jensen's inequality, show that if $\sum_i q_i = 1$, then $\sum_i p_i \log(q_i/p_i) \le 0$.
- 5. Show that $\underline{d}_{\nu_g}^*$ attains its maximum value when $p_i = |I_i|^s$ where s is the unique value for which $\sum_i |I_i|^s = 1$.
- 6. Show that this maximum value is the Hausdorff dimension of J.