TD 06 : Pressure expansion and CLT.

The pressure function.

Let (Ω, d) be a metric space and assume in the following that T is a uniformly expanding and uniformly mixing map of Ω as defined in the lectures. We write: $X_{\mathbb{R}}=\operatorname{Lip}(\Omega, \mathbb{R})$ (real valued) and $X_{\mathbb{C}}=\operatorname{Lip}(\Omega ; \mathbb{C})$ (complex valued). For $g \in X_{\mathbb{R}}$ or $g \in X_{\mathbb{C}}$ we define the transfer operator acting upon $X_{\mathbb{C}}$:

$$
L_{g} \phi(y)=\sum_{x: T x=y} e^{g(x)} \phi(x)
$$

By $\rho\left(L_{g}\right)$ we denote the spectral radius of L_{g} when acting upon $X_{\mathbb{C}}$.

1. Let $A(x)=b(T x)-b(x)+c, \forall x \in \Omega$ for some $b \in X_{\mathbb{R}}$ and $c \in \mathbb{R}$. One says that A is cohomologous to a constant or if $c=0$ that A is a co-boundary.

Calculate the spectral radius of $L_{g+t A}$ for $t \in \mathbb{C}$.
2. Let $h \in X, \mu \in M_{+}^{1}(\Omega)$ be the right and left eigenvectors of L_{g} corresponding to the leading eigenvalue $\lambda>0$. Let $d \nu=h d \mu$ be the associated Gibbs measure. Define the Hilbert space $H=L^{2}(\Omega, \nu)$ and let $\langle\cdot, \cdot\rangle$ denote the associated inner product. Define (slight abuse of notation) $T \phi=\phi \circ T$.
(a) Let T^{*} be the dual of T in H. Derive an expression for T^{*} in terms of L_{0}, h and λ.
(b) Show that $T^{*} T$ is the identity on H.
(c) Show that $T 1=1$ and that $T^{*} 1=1$. Show that $T T^{*}$ is a projection.
(d) Let $Z=\{\phi \in H:\langle\mathbf{1}, \phi\rangle=0\}$. Show that $\left(T^{*}\right)^{n} \phi \rightarrow \mathbf{1}\langle\mathbf{1}, \phi\rangle$.
(e) Given $A \in Z$ show that we may find $\psi, b \in X$ so that $A=\psi+(T b-b)$ and $T^{*} \psi=0$. (Hint: Suppose A has this form and deduce what b must look like).
(f) Show that $S_{n} A=S_{n} \psi+T^{n} b-b$ and that for $n \geq 1:\left\|S_{n} A\right\|_{H}^{2}=n\|\psi\|_{H}^{2}+\mathcal{O}(1)$.
(g) Deduce that $\sigma_{A}^{2}=\|\phi\|_{H}^{2}$ and conclude that $\sigma_{A}=0$ iff A is a co-boundary.

