TD 04 : Cone contraction and spectral gap

The cross ratio

Let x, y, u, v be four vectors, no two being parallel. Let $\ell=\{\xi(t)=t w+z: t \in \mathbb{R}\}$ define an affine line (not containing the origin) and cutting the 1-D vectorspaces $\mathbb{R} x, \mathbb{R} y, \mathbb{R} u, \mathbb{R} v$ in the four points $\xi\left(t_{1}\right), \xi\left(t_{2}\right), \xi\left(t_{3}\right)$ and $\xi\left(t_{4}\right)$. Express the cross-ratio (as given in the lectures) in terms of $t_{1}, t_{2}, t_{3}, t_{4}$.

Postive matrices.

1. Let $K_{a}=\left\{x \in \mathbb{R}_{+}^{n}: x_{i} \geq a x_{j}\right\}, 0 \leq a \leq 1$. Let $M=\left(m_{i j}\right)$ be a strictly positive $n \times n$ matrix for which there is $b>0$ so that $m_{i j} \geq b m_{k l}$ (for all indices). Let the eigenvalues be ordered as: $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$.
(a) Let $0<a \leq 1$. Give a (finite) bound for $\operatorname{diam}_{K_{0}} K_{a}$.
(b) Show that K_{a} is outer and inner regular.
(c) Show that: $\frac{\left|\lambda_{2}\right|}{\lambda_{1}} \leq \max _{i, j, k, l} \frac{m_{i j}-m_{k l}}{m_{i j}+m_{k l}}$. Optimal example: $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
2. Collatz-Wielandt formula: Let M be a strictly positive matrix.

Define a partial order on \mathbb{R}^{n} by: $x \preceq y \Leftrightarrow y-x \in \mathbb{R}_{+}^{n} \Leftrightarrow x_{i} \leq y_{i}, \forall i$.
(a) Show that M preserves the partial order on \mathbb{R}_{+}^{n}.
(b) Show that if $x \in\left(\mathbb{R}_{+}^{n}\right)^{*}, r>0$ are such that $M x \preceq r x$ (respectively, $M x \succeq r x$) then $\lambda_{1} \leq r$ (respectively, $\lambda_{1} \geq r$).
(c) Show that $\lambda_{1}=\inf _{x \in K_{0}^{*}} \max _{i} \frac{(M x)_{i}}{x_{i}}=\sup _{x \in K_{0}^{*}} \min _{i} \frac{(M x)_{i}}{x_{i}}$.
(d) Give a bound for λ_{1} with $A=\left(\begin{array}{lll}4 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$ using the above and the vector $x=\left(\begin{array}{l}4 \\ 2 \\ 1\end{array}\right)$.

A family of operators associated with the Gauss map.

Let $I=[0,1]$, equipped with the metric $d\left(x, x^{\prime}\right)=\left|\log \frac{1+x}{1+x^{\prime}}\right|$.
Denote $I_{k}=\left[\frac{1}{k+1}, \frac{1}{k}\right]$ and $\psi_{k}(y)=\frac{1}{y+k}, k \geq 1$, a diffeo of I obto I_{k}. The collection of $\psi_{k}, k \geq 1$ defines the inverse branches of the socalled Gauss map: $f(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor$. Let $X=\operatorname{Lip}(I, d)$. Let $s \in \ell_{+}^{\infty}(\mathbb{N})$ be a family of non-negative 'weights'. We define the transfer operator:

$$
L_{s} \phi(y)=\sum_{k \geq 1} s_{k} \frac{1}{(k+y)^{2}} \phi\left(\frac{1}{k+y}\right) \quad \phi \in X, y \in I .
$$

1. Show that L_{s} is a bounded operator when acting upon X.
2. For $a>0$, let $K_{a}=\left\{\phi \geq 0: \phi(x) \leq \phi\left(x^{\prime}\right) e^{a d\left(x, x^{\prime}\right)}, \forall x, x^{\prime} \in I\right\}$.
3. Suppose that some s_{k} 's are strictly positive. Show that there are $a>0,0<\sigma<1$ such that $L_{s}\left(K_{a}^{*}\right) \subset K_{\sigma a}^{*}$.
4. Estimate the contraction rate in the Hilbert metric of L_{s} and show that L_{s} admits a spectral gap.
5. In the case when $s_{k} \equiv 1, k \geq 1$ show that $h(x)=\frac{1}{\log (2)} \frac{1}{1+x}$ is an eigenvector of $L_{s \equiv 1}$.
6. Show that the Gauss map admits a unique invariant probability measure which is abs cont w.r.t. Lebesque and that this measure is strongly mixing (whence ergodic).
