TD 01 : Introduction to Dynamical Systems

Toral Endo- and automorphisms

Write $\pi : \mathbb{R}^n \to \mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ for the canonical projection. Let $[x] = x + \mathbb{Z}^n$ be the equivalence class of $x \in \mathbb{R}^n$. Write $L_n := M_n(\mathbb{Z})$ ($n \times n$ matrices with integer entries). We say that $A \in GL_n(\mathbb{Z})$ iff $A \in L_n$ is invertible and $A^{-1} \in L_n$.

- 1. Assume $A \in L_n$. Show that $A \in GL_n(\mathbb{Z})$ iff $|\det(A)| = 1$. We assume from now on that this is the case.
- 2. Show that when $A \in L_n$ then there is a unique map $f_A : \mathbb{T}^n \to \mathbb{T}^n$ making the diagram to the right commutative. Show also that if $A \in GL_n(\mathbb{Z})$ then f_A is invertible.

- 3. Show that if $[x] \in \operatorname{Per}_p(f_A)$ then $(1 A^p)x \in \mathbb{Z}^n$.
- 4. Show that $\operatorname{Per}_p(f_A)$ has infinite cardinality iff 1 is an eigenvalue of A^p .

We assume from now on that every eigenvalue of A has modulus different from 1.

- 5. Show that if $[x] \in \operatorname{Per}_p(f_A)$ then $x = \frac{1}{q} \overrightarrow{m}$ where $q = \det(\mathbf{1} A^p)$ and $\overrightarrow{m} \in \mathbb{Z}^n$.
- 6. Show that if $x = \frac{1}{a} \overrightarrow{m}$ with $q \in \mathbb{Z}^*$ and $\overrightarrow{m} \in \mathbb{Z}^n$ then [x] is a periodic point for f_A .
- 7. Show that periodic points are dense in \mathbb{T}^n .

From now on consider the case
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

8. Show that there are one dimensional A-invariant subspaces $E^u \subset \mathbb{R}^2$ and $E^s \subset \mathbb{R}^2$ so that

$$\forall x \in E^s : \lim_{k \to +\infty} A^k x = 0 \text{ and } \forall x \in E^u : \lim_{k \to -\infty} A^k x = 0.$$

9. Show that $W^s(0) = \pi(E^s) \subset \mathbb{T}^2$ and $W^u(0) = \pi(E^u) \subset \mathbb{T}^2$ are f_A -invariant and that

$$\xi \in W^s(0)$$
 iff $\lim_{k \to +\infty} f_A^k(\xi) = 0$ and $\xi \in W^u(0)$ iff $\lim_{k \to -\infty} f_A^k(\xi) = 0$

- 10. Show that $W^{s}(0)$ and $W^{u}(0)$ are both dense in \mathbb{T}^{2} .
- 11. Describe the (forward and backward) orbit of $\xi \in W^s(0) \cap W^u(0)$.