Feuille d'exercices nº 3

Nombres premiers, décomposition en facteurs premiers

Exercice 1. Soit $N = 2^4 \times 3^4 \times 7^2$. Parmi les entiers suivants, quels sont ceux qui divisent N? $a = 2^4 \times 3^6 \times 7$; $b = 2^2 \times 3^3$; c = 7.

Exercice 2. Décomposer 140 et 175 en produit de nombres premiers. En déduire pgcd(455, 175).

Exercice 3. Un entier naturel $n \leq 150$ n'est divisible par aucun des 6 premiers nombres premiers. Est-ce un nombre premier?

Exercice 4. Quel est le nombre de diviseurs positifs de $2^4 \times 3^3$?

Exercice 5. Les nombres a et b étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- 1) Si 13 divise ab, alors 13 divise a ou 13 divise b.
- 2) Si 6 divise ab, alors 6 divise a ou 6 divise b.
- 3) Si 5 divise b^2 , alors 25 divise b^2 .

Exercice 6*.

- 1. On suppose qu'il existe deux entiers relatifs p et q tels que $\frac{p^2}{q^2} = 2$.
- a) Montrer que 2 divise p^2 , puis que 2 divise p.
- b) Montrer que 2 divise q.
- 2. En déduire que $\sqrt{2}$ est irrationnel, c'est-à-dire qu'il n'existe pas de nombre rationnel $r = \frac{a}{b}$ (où $a \in \mathbb{Z}, b \in \mathbb{Z}^*$) tel que $r^2 = 2$.

Exercices supplémentaires

Exercice 7. Quel est le plus grand entier naturel dont le carré divise $a = 2^4 \times 3^5 \times 7$?

Exercice 8. Soit $a = 2^2 \times 3^4 \times 7^2$. Quel est le plus petit entier $b \in \mathbb{N}^*$ tel que ab soit un cube?

Exercice 9*. Soient a et b deux entiers naturels non nuls tels que pgcd(a, b) = 1. Montrer que pgcd(a + b, ab) = 1,

Exercice 10*. Soient a et b deux entiers strictement positifs tels que $a^2 = b^3$.

- a) Si p est un nombre premier, montrer que p divise a si et seulement si p divise b.
- b) Soit p un nombre premier, α l'exposant de p dans a et β l'exposant de p dans b. Montrer que $2\alpha = 3\beta$. En déduire qu'il existe un entier $\gamma \geq 0$ tel que $\alpha = 3\gamma$ et $\beta = 2\gamma$.
- c) En déduire qu'il existe un entier c tel que $a = c^3$ et $b = c^2$.

Exercice 11. L'effectif de l'école de Campet-Lamolère est compris entre 100 et 200 élèves. Si l'on range les élèves par 3, par 5 ou par 7, il reste toujours 2 élèves. Combien y a-t-il d'élèves dans cette école?

Exercice 12. Les nombres a et b étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- 1) Si 12 divise b^2 , alors 4 divise b.
- 2) Si 12 divise b^2 , alors 36 divise b^2 .
- 3) Si a divise b et si b ne divise pas c, alors a ne divise pas c.