A note on transitive topological Markov chains of given entropy and period

Jérôme Buzzi and Sylvie Ruette

November 11, 2015

Abstract

We show that, for every positive real number h and every positive integer p, there exist oriented graphs G, G' (with countably many vertices) that are strongly connected, of period p, of Gurevich entropy h, such that G is positive recurrent (thus the topological Markov chain on G admits a measure of maximal entropy) and G' is transient (thus the topological Markov chain on G' admits no measure of maximal entropy).

We also show that any transitive topological Markov chain with infinite entropy carries uncountably many ergodic, invariant probability measures with infinite entropy.

1 Vere-Jones classification of graphs

Definition 1 Let G be an oriented graph and let u, v be two vertices in G. We define the following quantities.

- $p^G_{u,v}(n)$ is the number of paths $u_0 \to u_1 \to \cdots \to u_n$ such that $u_0 = u$ and $u_n = v$; $R_{uv}(G)$ is the radius of convergence of the series $\sum p^G_{u,v}(n)z^n$.
- $f^G_{u,v}(n)$ is the number of paths $u_0 \to u_1 \to \cdots \to u_n$ such that $u_0 = u$, $u_n = v$ and $u_i \neq v$ for all $0 < i < n$; $L_{uv}(G)$ is the radius of convergence of the series $\sum f^G_{u,v}(n)z^n$.

Definition 2 Let G be an oriented graph and V its set of vertices. The graph G is strongly connected if for all $u, v \in V$, there exists a path from u to v in G. The period of a strongly connected graph G is the greatest common divisor of $(p^G_{u,u}(n))_{u \in V, n \geq 0}$. The graph G is aperiodic if its period is 1.

Proposition 3 (Vere-Jones [8]) Let G be an oriented graph. If G is strongly connected, $R_{uv}(G)$ does not depend on u and v; it is denoted by $R(G)$.

If there is no confusion, $R(G)$ and $L_{uv}(G)$ will be written R and L_{uv}.

In [8] Vere-Jones gives a classification of strongly connected graphs as transient, null recurrent or positive recurrent. The definitions are given in Table 1 (lines 1 and 2) as well as properties of the series $\sum p^G_{u,v}(n)z^n$ which give an alternative definition.

Proposition 4 (Salama [7]) Let G be a strongly connected oriented graph. If G is transient or null recurrent, then $R = L_{uv}$ for all vertices u. Equivalently, if there exists a vertex u such that $R < L_{uv}$, then G is positive recurrent.
Table 1: Properties of the series associated to a transient, null recurrent or positive recurrent graph \(G \) (\(G \) is strongly connected); these properties do not depend on the vertices \(u, v \).

2 Topological Markov chains and Gurevich entropy

Let \(G \) be an oriented graph and \(V \) its set of vertices. Then \(\Gamma_G \) is the set of two-sided infinite paths in \(G \), that is,

\[
\Gamma_G = \{ (v_n)_{n \in \mathbb{Z}} \mid \forall n \in \mathbb{Z}, v_n \to v_{n+1} \text{ in } G \} \subset V^\mathbb{Z}.
\]

\(\sigma \) is the shift on \(\Gamma_G \). The **topological Markov chain** on the graph \(G \) is the system \((\Gamma_G, \sigma) \).

The set \(V \) is endowed with the discrete topology and \(\Gamma_G \) is endowed with the induced topology of \(V^\mathbb{Z} \). The space \(\Gamma_G \) is not compact unless \(G \) is finite.

The topological Markov chain \((\Gamma_G, \sigma) \) is transitive if and only if the graph \(G \) is strongly connected. It is topologically mixing if and only if the graph \(G \) is strongly connected and of period 1.

If \(G \) is a finite graph, \(\Gamma_G \) is compact and the topological entropy \(h_{\text{top}}(\Gamma_G, \sigma) \) is well defined (see e.g. [2] for the definition of the topological entropy). If \(G \) is a countable graph, the **Gurevich entropy** [3] of the graph \(G \) (or of the topological Markov chain \(\Gamma_G \)) is given by

\[
h(G) = \sup \{ h_{\text{top}}(\Gamma_H, \sigma) \mid H \subset G, H \text{ finite} \}.
\]

This entropy can also be computed in a combinatorial way, as the exponential growth of the number of paths with fixed endpoints.

Proposition 5 (Gurevich [4]) Let \(G \) be a strongly connected oriented graph. Then for all vertices \(u, v \)

\[
h(G) = \lim_{n \to +\infty} \frac{1}{n} \log p_{uv}^G(n) = -\log R(G).
\]

Moreover, the variational principle is still valid for topological Markov chains.

Theorem 6 (Gurevich [3]) Let \(G \) be an oriented graph. Then

\[
h(G) = \sup \{ h_\mu(\Gamma_G) \mid \mu \text{-invariant probability measure} \}.
\]

In this variational principle, the supremum is not necessarily reached. The next theorem gives a necessary and sufficient condition for the existence of a measure of maximal entropy (that is, a measure \(\mu \) such that \(h(G) = h_\mu(\Gamma_G) \)) when the graph is strongly connected.
Theorem 7 (Gurevich [4]) Let G be a strongly connected oriented graph of finite positive entropy. Then the topological Markov chain on G admits a measure of maximal entropy if and only if the graph G is positive recurrent. Moreover, such a measure is unique if it exists.

3 Construction of graphs of given entropy and given period that are either positive recurrent or transient

Lemma 8 Let $\beta \in (1, +\infty)$. There exist a sequence of non negative integers $(a(n))_{n \geq 1}$ and positive constants c, M such that

- $a(1) = 1$,
- $\sum_{n \geq 1} a(n) \frac{1}{\beta^n} = 1$,
- $\forall n \geq 2, c \cdot \beta^{n^2-n} \leq a(n^2) \leq c \cdot \beta^{n^2-n} + M$,
- $\forall n \geq 1, 0 \leq a(n) \leq M$ if n is not a square.

These properties imply that the radius of convergence of $\sum_{n \geq 1} a(n)z^n$ is $L = \frac{1}{\beta}$ and that $\sum_{n \geq 1} na(n)L^n < +\infty$.

Proof. First we look for a constant $c > 0$ such that

\[
\frac{1}{\beta} + c \sum_{n \geq 2} \beta^{n^2-n} \frac{1}{\beta^{n^2}} = 1. \tag{1}
\]

We have

\[
\sum_{n \geq 2} \beta^{n^2-n} \frac{1}{\beta^{n^2}} = \sum_{n \geq 2} \beta^{-n} = \frac{1}{\beta(\beta-1)}.
\]

Thus

\[
(1) \iff \frac{1}{\beta} + \frac{c}{\beta(\beta-1)} = 1 \iff c = (\beta-1)^2.
\]

Since $\beta > 1$, the constant c is positive. We define the sequence $(b(n))_{n \geq 1}$ by:

- $b(1) := 1$,
- $b(n^2) := \lfloor c\beta^{n^2-n} \rfloor$ for all $n \geq 2$,
- $b(n) := 0$ for all $n \geq 2$ such that n is not a square.

Then

\[
\sum_{n \geq 1} b(n) \frac{1}{\beta^n} \leq \frac{1}{\beta} + c \sum_{n \geq 2} \beta^{n^2-n} \frac{1}{\beta^{n^2}} = 1.
\]

We set $\delta := 1 - \sum_{n \geq 1} b(n) \frac{1}{\beta^n} \in [0, 1[$ and $k := \lfloor \beta^2 \delta \rfloor$. Then $k \leq \beta^2 \delta < k + 1 < k + \beta$, which implies that $0 \leq \delta - \frac{k}{\beta^2} < \frac{1}{\beta^2}$. We write the β-expansion of $\delta - \frac{k}{\beta^2}$ (see e.g. [1, p 51] for the definition): there exist integers $d(n) \in \{0, \ldots, \lfloor \beta \rfloor \}$ such that $\delta - \frac{k}{\beta^2} = \sum_{n \geq 1} d(n) \frac{1}{\beta^n}$. Moreover, $d(1) = 0$ because $\delta - \frac{k}{\beta^2} < \frac{1}{\beta}$. Thus we can write

\[
\delta = \sum_{n \geq 2} d'(n) \frac{1}{\beta^n}
\]

where $d'(2) = d(2) + k$ and $d'(n) = d(n)$ for all $n \geq 3$.

We set $a(1) := b(1)$ and $a(n) := b(n) + d'(n)$ for all $n \geq 2$. Let $M := \beta + k$. We then have:
• $a(1) = 1$,
• $\sum_{n \geq 1} a(n) \frac{1}{\beta^n} = 1$,
• $\forall n \geq 2, c \cdot \beta^{n^2-n} \leq a(n^2) \leq c \cdot \beta^{n^2-n} + \beta \leq c \cdot \beta^{n^2-n} + M$,
• $0 \leq a(2) \leq \beta + k = M$,
• $\forall n \geq 3, 0 \leq a(n) \leq \beta \leq M$ if n is not a square.

The radius of convergence L of $\sum_{n \geq 1} a(n)z^n$ satisfies

$$- \log L = \limsup_{n \to +\infty} \frac{1}{n} \log a(n) = \lim_{n \to +\infty} \frac{1}{n^2} \log a(n^2) = \log \beta \quad \text{because } a(n^2) \sim c\beta^{n^2-n}.$$

Thus $L = \frac{1}{\beta}$. Moreover,

$$\sum_{n \geq 1} na(n) \frac{1}{\beta^n} \leq M \sum_{n \geq 1} \frac{1}{\beta^n} + c \sum_{n \geq 1} \beta^{n^2-n} \frac{1}{\beta^n} = M \sum_{n \geq 1} \frac{n}{\beta^n} + c \sum_{n \geq 1} \frac{n^2}{\beta^n} < +\infty.$$

\[
\begin{proof}
\end{proof}

Lemma 9 ([5], Lemma 2.4) Let G be a strongly connected oriented graph and u a vertex.

i) $R < L_{uu}$ if and only if $\sum_{n \geq 1} f_{uu}^n(n)L_{uu}^n > 1$.

ii) If G is recurrent, then R is the unique positive number x such that $\sum_{n \geq 1} f_{uu}^n(x) = 1$.

Proof. For (i) and (ii), use Table 1 and the fact that $F(x) = \sum_{n \geq 1} f_{uu}^n(x)$ is increasing for $x \in [0, +\infty]$.

\[
\begin{proof}
\end{proof}

Proposition 10 Let $\beta \in (1, +\infty)$. There exist aperiodic strongly connected graphs $G'(\beta) \subset G(\beta)$ such that $h(G'(\beta)) = h(G'(\beta)) = \log \beta$, $G(\beta)$ is positive recurrent and $G'(\beta)$ is transient.

Remark: Salama proved the part of this proposition concerning positive recurrent graphs in [6, Theorem 3.9].

Proof. This is a variant of the proof of [5, Example 2.9].

Let u be a vertex and let $(a(n))_{n \geq 1}$ be the sequence given by Lemma 8 for β. The graph $G(\beta)$ is composed of $a(n)$ loops of length n based at the vertex u for all $n \geq 1$ (see Figure 1). More precisely, define the set of vertices of $G(\beta)$ as

$$V = \{u\} \cup \bigcup_{n=1}^{+\infty} \{v_k^{n,i} \mid 1 \leq i \leq a(n), 1 \leq k \leq n-1\},$$

where the vertices $v_k^{n,i}$ above are distinct. Let $v_0^{n,i} = v_{n,i}^{n,i} = u$ for all $1 \leq i \leq a(n)$. There is an arrow $v_k^{n,i} \rightarrow v_{k+1}^{n,i}$ for all $0 \leq k \leq n-1, 1 \leq i \leq a(n), n \geq 2$, there is an arrow $u \rightarrow u$, and there is no other arrow in $G(\beta)$. The graph $G(\beta)$ is strongly connected and $f_{uu}^G(\beta)(n) = a(n)$ for all $n \geq 1$.

By Lemma 8, the sequence $(a(n))_{n \geq 1}$ is defined such that $L = \frac{1}{\beta}$ and

$$\sum_{n \geq 1} a(n)L^n = 1,$$

(2)
Figure 1: the graphs $G(\beta)$ and $G'(\beta)$; the bold loop (on the left) is the only arrow that belongs
to $G(\beta)$ and not to $G'(\beta)$, otherwise the two graphs coincide.

where $L = L_{uu}(G(\beta))$ is the radius of convergence of the series $\sum a(n)z^n$. If $G(\beta)$ is transient,
then $R(G(\beta)) = L_{uu}(G(\beta))$ by Proposition 4, but Equation (2) contradicts the definition of
transient (see the first line of Table 1). Thus $G(\beta)$ is recurrent, and $R(G(\beta)) = L$ by Equation (2)
and Lemma 9(ii). Moreover

$$\sum_{n\geq 1} na(n)L^n < +\infty$$

by Lemma 8, and thus the graph $G(\beta)$ is positive recurrent (see Table 1). By Proposition 5,
h$(G(\beta)) = -\log R(G(\beta)) = \log \beta$.

The graph $G'(\beta)$ is obtained from $G(\beta)$ by deleting a loop $u \rightarrow \cdots \rightarrow u$ of length n_0 for
some $n_0 \geq 2$ such that $a(n_0) \geq 1$ (such an integer n_0 exists because $L < +\infty$). Obviously one
has $L_{uu}(G'(\beta)) = L$ and

$$\sum_{n\geq 1} f_{uu}^{G'(\beta)}(n)L^n = 1 - L^{n_0} < 1.$$

Since $R(G'(\beta)) \leq L_{uu}(G'(\beta))$, this implies that $G'(\beta)$ is transient. Moreover $R(G'(\beta)) = L_{uu}(G'(\beta))$ by Proposition 4, so $R(G'(\beta)) = R(G(\beta))$, and hence $h(G'(\beta)) = h(G(\beta))$ by
Proposition 5. Finally, both $G(\beta)$ and $G'(\beta)$ are of period 1 because of the loop $u \rightarrow u$. □

Corollary 11 Let p be a positive integer and $h \in (0, +\infty)$. There exist strongly connected
graphs G, G' of period p such that $h(G) = h(G') = h$, G is positive recurrent and G' is transient.

Proof. For G, we start from the graph $G(\beta)$ given by Proposition 10 with $\beta = e^{hp}$. Let V
denote the set of vertices of $G(\beta)$. The set of vertices of G is $V \times \{1, \ldots, p\}$, and the arrows in G
are:

- $(v, i) \rightarrow (v, i + 1)$ if $v \in V$, $1 \leq i \leq p - 1$,
- $(v, p) \rightarrow (w, 1)$ if $v, w \in V$ and $v \rightarrow w$ is an arrow in $G(\beta)$.

According to the properties of $G(\beta)$, G is strongly connected, of period p and positive recurrent.
Moreover, $h(G) = \frac{1}{p}h(G(\beta)) = \frac{1}{p}\log \beta = h$.

For G', we do the same starting with $G'(\beta)$. □

According to Theorem 7, the graphs of Corollary 11 satisfy that the topological Markov
chain on G admits a measure of maximal entropy the topological Markov chain on G' admits
no measure of maximal entropy ; both are transitive, of entropy h and carried by a graph of
period p.

5
4 Topological Markov chains with infinite entropy

Proposition 12 Any transitive topological Markov chain with infinite entropy carries uncountably many ergodic, invariant probability measures with infinite entropy.

Proof. Let (Γ_G, σ) be a topological Markov chain, where G is a strongly connected graph such that $h(G) = +\infty$. Let v be a vertex of G and choose a sequence $(n_k)_{k \geq 1}$ such that $f_{vv}^G(n_k) \geq 2^{k^2 n_k}$ (such a sequence exists because $h(G) = +\infty$).

Set $a_k := f_{vv}^G(n_k)$ and define $f = \sum_{k=1}^{\infty} a_k z^{n_k}$.

The loop shift σ_f embeds into the topological Markov chain (Γ_G, σ).

For all $k \geq 1$, define $q_k = (2^k a_k n_k)^{-1}$ and $p_0 = \sum_{k=1}^{\infty} q_k$.

Consider σ_f as a vertex shift. Let μ be the Markov measure assigning the base vertex v probability p_0, with transition probability q_k/p_0 from v to each vertex following v and lying in a first return loop of length n_k. Then μ is an ergodic, atomless invariant probability measure of σ_f and $h_{\mu}(\sigma_f) = +\infty$.

By use of other subsequences, we easily get uncountably many distinct ergodic measures with infinite entropy. \qed

References

