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Abstract. — This article is a written reenactement of my lecture at the Asian-

French summer school Motives and related topics at the I.H.É.S. in July 2006. The
paper focuses on Weil cohomologies, comparison between them and their applications

to Zeta functions over finite fields and algebraic cycles.

Résumé. — Cet article est une version rédigée de mon exposé à l’école d’été

franco-asiatique Autour des motifs à l’I.H.É.S. en juillet 2006. L’essentiel du texte
est consacré aux cohomologies de Weil, aux résultats de comparaison les liant et à

leurs applications aux fonctions Zêta sur les corps finis et à la théorie des cycles

algébriques.
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1. Weil cohomologies

We fix a base field k. We let V be the category of smooth and projective algebraic
varieties over k.

Let F be a field of coefficients. We assume that the characteristic of F is zero.
The ⊗-category (1) of Z-graded finite dimensional F -vector spaces is denoted VecGrF .
The signs in the commutativity constraint of VecGrF are given by the Koszul rule.

(1)In this paper, a ⊗-category is a « ⊗-catégorie linéaire ACU » in the sense of [15].
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1.1. Definitions. —

Definition 1.1. — A Weil cohomology is a functor H : Vopp → VecGrF with the
following properties and additional data:

– H is a ⊗-functor: we have a Künneth formula H(X)⊗H(Y ) ∼−→ H(X×Y ) for
all X, Y ∈ V;

– for all X ∈ V, H(X) lies in nonnegative degrees;
– for all X, Y ∈ V, we have a canonical isomorphism H(XtY ) ∼−→ H(X)×H(Y );
– the F -vector space H2(P1) is one-dimensional, its dual is denoted F (1) (for any

F -vector space V and integer n, we define V (n) = V ⊗F F (1)⊗n);
– for any d-dimensional X ∈ V, there is a multiplicative trace map H2d(X)(d) →

F inducing perfect Poincaré duality pairings:

Hi(X)⊗H2d−i(X)(d) → H2d(X)(d) → F ;

– there is a cycle class map cl : CH?(X) → H2?(X)(?), contravariant in X ∈ V,
compatible with products and normalized with the trace map so that the trace
of the cycle classes of 0-cycles be given by the degree;

– cl([∞]) is the canonical generator of H2(P1)(1).

Proposition 1.2. — If H : Vopp → VecGrF is a ⊗-functor which can be endowed
with the structure of a Weil cohomology, then the cycle class is unique.

The proof of this proposition shall be postponed until the end of this subsection.

Definition 1.3. — A cycle x ∈ CHd(X) ⊗ F is homologically equivalent to zero
(with respect to the Weil cohomology H) if clx = 0 in H2d(X)(d). This is an
adequate equivalence relation on cycles. The corresponding category of pure motives
is denoted Mothom,F .

Proposition 1.4. — Let H be a Weil cohomology. There is an associated realization
⊗-functor rH : Motrat → VecGrF such that rH(h(X)) ' H(X).

Proof. — Let X and Y be in V. Let dX be the dimension X. Let α ∈ CHdX (X×Y ).
We shall define an action H(X) → H(Y ) of α. As α can be considered as a morphism
h(X) → h(Y ) in Motrat, it will give the expected functoriality.

The cycle class provides an element clα ∈ H2dX (X×Y )(dX). We use the Künneth
formula to think of this class as a family of elements in

H2dX−p(X)(dX)⊗Hp(Y )

for all p. Then, we use the Poincaré duality for X to get a family of elements in

Hp(X)∨ ⊗Hp(Y ) ' Hom(Hp(X),Hp(Y )) .

We thus have defined the action H(X) → H(Y ) of any Chow correspondence α.
The verification of the details are left to the reader.

Definition 1.5. — If H is Weil cohomology, M ∈ Mot and n ∈ Z, we define Hn(M)
to be the degree n part of rH(M).
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Remark 1.6. — The functor rH factors through the homological equivalence to give
a faithful functor Mothom,F → VecGrF .

We can give a new (equivalent) definition of a Weil cohomology using ⊗-functors.

Definition 1.7. — A Weil cohomology is a ⊗-functor

r : Motrat → VecGrF

such that r(L) lies in degree 2 and for all X ∈ V, r(h(X)) lies in nonnegative de-
grees (2).

Proposition 1.4 shows that a Weil cohomology in the sense of definition 1.1 natu-
rally gives a Weil cohomology in the sense of definition 1.7. The converse is also true
(see [2, proposition 4.2.5.1]). Then it makes sense to think of Motrat as the universal
coefficient category for a Weil cohomology.

Remark 1.8. — If E is a vector bundle of rank d over X ∈ V, we denote P(E)
the associated projective bundle. Then, the powers of c1(O(1)) ∈ CH1(P(E)) give a
canonical isomorphism

d−1⊕
i=0

h(X)⊗ L⊗i ∼−→ h(P(E))

in Motrat. This is the motivic projective bundle formula. It follows that for any Weil
cohomology H, we also have a projective bundle formula

d−1⊕
i=0

H?−2i(X)(−i) ∼−→ H?(P(E)) .

Proof of proposition 1.2. — Let (H, cl,Tr) and (H, cl′,Tr′) be two Weil cohomology
structures on the same ⊗-functor H : Vopp → VecGrF . By definition, the maps cl
and cl′ agree on CH?(P1). It follows from the motivic projective bundle formula that
the obvious maps H2(Pn) → H2(P1) are isomorphisms for all n ≥ 1. As the algebra
CH?(Pn) is generated by its homogeneous elements of degree 1, we get that cl and
cl′ agree on CH?(Pn) for all n.

We can consider the compositions of cl and cl′ with the Chern character
ch: K0(X) → CH?(X)Q. Once tensored with Q, this ring morphism becomes
an isomorphism (see [6, example 15.2.16]). Thus, we only have to prove that cl and
cl′ agree on the image on the Chern character. We already know that they agree on
ch([O(1)]) ∈ CH?(Pn)Q for all n where O(1) is the fundamental sheaf on Pn. By
functoriality, they agree on ch(f?[O(1)]) for any morphism of the form f : X → Pn

in V. As a result, if L is a line bundle over X ∈ V that is generated by its global
sections, then cl(ch([L])) = cl′(ch([L])). As any line bundle over X ∈ V is isomorphic
to a line bundle of the form L ⊗M∨ where L and M are line bundles generated by
their global sections, we see that cl ◦ ch and cl′ ◦ ch agree on classes of line bundles.
They shall also agree on Z-linear combinations of classes of line bundles. It follows

(2)The Lefschetz motive L is defined by the canonical decomposition h(P1) = 1 ⊕ L. We let T be

the ⊗-inverse of L in the category Motrat.
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from the projective bundle formula that we can use the splitting principle to prove
that cl ◦ ch = cl′ ◦ ch.

1.2. Traces. —

1.2.1. Definitions. —

Definition 1.9 (Dold-Puppe [5]). — Let T be a ⊗-category. Let M be an object
of T . We say that M has a strong dual if there exists an object N of T and maps
η : 1→ M ⊗N and ε : N ⊗M → 1 such that the following diagrams commute:

M

LLLLLLLLLLL

LLLLLLLLLLL
η⊗M // // M ⊗N ⊗M

M⊗ε

��

N

LLLLLLLLLLL

LLLLLLLLLLL
N⊗η // N ⊗M ⊗N

ε⊗N

��
M N

If M has a strong dual, the internal Hom. functor Hom(M,−) exists and (M,η, ε)
is unique up to a unique isomorphism. If we define M∨ as Hom(M,1), there is a
canonical isomorphism N ' M∨ and the canonical morphism is an isomorphism:

M∨ ⊗X
∼−→ Hom(M,X)

for any X ∈ T .

Definition 1.10. — Let T be a ⊗-category. We say that T is rigid if all its objects
have strong duals.

If f : M → N is a morphism in a rigid ⊗-category, we can define the transpose
morphism tf : N∨ → M∨ of f . It is obtained using the functor Hom(−,1).

Definition 1.11. — Let T be a rigid ⊗-category. Let f : M → M be an endomor-
phism in T . We define the trace TrT f ∈ EndT (1) of f as the following composition:

1
η−→ M ⊗M∨ f⊗M∨

−→ M ⊗M∨ ' M∨ ⊗M
ε−→ 1 .

Proposition 1.12. — Let T be a rigid ⊗-category. Let M be an object of T . Let f
and g be elements of EndT (M). Let λ ∈ EndT (1). Then, we have some formulas:

TrT (f + g) = TrT f + TrT g ;

TrT (g ◦ f) = TrT (f ◦ g) ;

TrT (λ · f) = λ · TrT f ;

TrT (tf) = TrT f .

Traces in rigid ⊗-categories satisfy an important compatibility with respect to
⊗-functors:

Proposition 1.13 ([15, 5.2.4.1, chapitre I]). — Let F : T → T ′ be a ⊗-functor be-
tween rigid ⊗-categories. Let f : M → M be an endomorphism in T . Then, there is
an equality in EndT ′(1):

F (TrT f) = TrT ′ F (f).
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1.2.2. Traces in VecGrF . — Obviously, the category VecGrF is rigid and the com-
putation of traces in that category reduces to usual traces of endomorphism of vector
spaces:

Proposition 1.14. — Let f : V → V be an endomorphism in VecGrF . Then,

TrVecGrF
f =

∑
n∈Z

(−1)n TrF (f : V n → V n) .

1.2.3. Traces in Motrat. —

Proposition 1.15. — The category Motrat is rigid.

Proof. — One only needs to prove that for any X ∈ V, the motive of X has a strong
dual. We let M be the motive of X, N be M ⊗ Td. By definition of the category
Motrat, there are isomorphisms

HomMotrat(1,M ⊗N) ' CHd(X ×X) ' HomMotrat(N ⊗M,1) .

We define ε and η to be the morphisms corresponding to the cycle associated to the
diagonal ∆X in X ×X. A simple computation shows that it makes N = h(X)⊗Td

the strong dual of M = h(X).

Proposition 1.16. — Let X ∈ V. Let α ∈ CHdX (X ×X). We consider the mor-
phism f : h(X) → h(X) in Motrat associated to α. Then, we have an equality of
integers:

TrMotrat(f : h(X) → h(X)) = deg(α · [∆X ]) ,
where ∆X is the diagonal in X ×X.

More generally, if β ∈ CHdX (X×X) is a cycle corresponding to a second morphism
g : h(X) → h(X) in Motrat, we have an equality:

TrMotrat(g ◦ f : h(X) → h(X)) = deg(α · τ?(β)) ,

where τ : X ×X → X ×X is the intertwining automorphism.

It follows from simple computations in Chow groups of powers of X.

1.2.4. Lefschetz’s trace formula. —

Theorem 1.17. — Let H be a Weil cohomology. Let X ∈ V. Let f : h(X) → h(X)
be an endomorphism of the motive of X: f corresponds to a cycle class α ∈ CHdX (X×
X)Q. Let [∆X ] ∈ CHdX (X×X) be the class of the diagonal. Then there is an equality
of rational numbers:

deg(α · [∆X ]) =
2dX∑
n=0

TrF (f : Hn(X) → Hn(X)) .

Proof. — Thanks to proposition 1.13, if we compute the trace of f in Motrat or
in VecGrF after the application of the realization functor rH : Motrat → VecGrF ,
we shall get the same result. Then, the equality follows from the computations of
propositions 1.14 and 1.16.
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2. Applications of Weil cohomologies

2.1. Zeta functions. — Let k = Fq be a finite field with q elements.
In this subsection, we shall prove that the existence of a Weil cohomology over k

implies the rationality of the Zeta function of a smooth and projective variety over
k and that it satisfies a functional equation, which statements are part of the Weil
conjecture.

2.1.1. Definition of Zeta functions. —

Definition 2.1. — Let f : M → M be an endomorphism of an object in a rigid
F -linear ⊗-category T (with EndT (1) = F ). We assume that the characteristic of F
is zero. We define

Z(f, t) = exp

( ∞∑
n=1

TrT (fn)
tn

n

)
∈ F [[t]] .

Remark 2.2. — If r : T → T ′ is a F -linear ⊗-functor and f ∈ EndT (M), then
Z(r(f), t) = r(Z(f), t).

2.1.2. Computations in VecGrF . —

Proposition 2.3. — Let f : V → V and g : W → W be endomorphisms in VecGrF .
We assume that W is 1-dimensional (lying in degree d) and that g is the multiplication
by λ ∈ F . Then, we have the relation

Z(f ⊗ g, t) = Z(f, λt)(−1)d

.

Proof. — It follows from the equality

TrVecGrF
[(f ⊗ g)n] = (−1)dλn TrVecGrF

(fn) ,

for all n ≥ 1.

Proposition 2.4. — Let f : V → V be an endomorphism in VecGrF . For any n ∈
Z, we define Pn(t) = det(id−tf : Vn → Vn) ∈ F [t]. Then,

Z(f, t) =
∏
n∈Z

Pn(t)(−1)n+1
.

Proof. — First, we observe that if 0 → V ′ → V → V ′′ → 0 is an exact sequence in
VecGrF such that f(V ′) ⊂ V ′, there are induced endomorphisms f ′ : V ′ → V ′ and
f ′′ : V ′′ → V ′′ and then the additivity of traces implies the following relation

Z(f, t) = Z(f ′, t) · Z(f ′′, t) .

We may enlarge the field F so that we can assume that the eigenvalues of f lie in F .
Then, by « dévissage », the general formula reduces to the case of a 1-dimensional
V (lying in degree zero). For any λ ∈ F , we have to consider the endomorphism
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λ : F → F given by the multiplication by λ. In that case, the formula reduces to the
simple equation:

Z(λ : F → F, t) = exp

( ∞∑
n=1

(λt)n

n

)
=

1
1− λt

.

Proposition 2.5. — Let f : V → V be an automorphism in VecGrF . We consider
the dual V ∨ → V of V and the automorphism tf−1 : V ∨ → V ∨. Then, we have an
equality

Z(tf−1,
1
t
) = (−t)χ(V ) · det(f) · Z(f, t) ,

where χ(V ) =
∑

n∈Z(−1)n dim Vn and det f =
∏

n∈Z det(f : Vn → Vn)(−1)n

.

Proof. — As above, we can assume that V is 1-dimensional and lies in degree zero.
Then, it reduces to the following trivial equality:

1
1− 1

λt

=
−λt

1− λt
.

2.1.3. Results in Motrat. —

Proposition 2.6. — The geometric Frobenius morphism F : X → X for all X ∈ V
induces a ⊗-automorphism F of the identity functor of Motrat.

Proof. — For any X ∈ V, we have the geometric Frobenius morphism F : X → X.
It induces a morphism F : h(X) → h(X) in Motrat. We leave to the reader the (not
so easy) exercise to prove that for any morphism f : h(X) → h(Y ) in Motrat, the
following diagram commute:

h(X)
f //

F

��

h(Y )

F

��
h(X)

f // h(Y ) .

Then, one can formally extend this construction to get a natural Frobenius morphism
F : M → M for any effective motive M ∈ Moteffrat. Obviously, the Frobenius on
h(X) ⊗ h(Y ) is the tensor product of the Frobenius morphisms on h(X) and h(Y ),
so that we have a ⊗-endomorphism F of the identity functor of Moteffrat.

One easily sees that F : L→ L is the multiplication by q, which is an isomorphism
as we work with rational coefficients. Then, one can extend the Frobenius morphism
from Moteffrat to Motrat so that for any effective motive M and r ∈ N, the Frobenius
morphism on M ⊗Tr is 1

qr FM ⊗ idTr where FM is the Frobenius on M .
As the category Mot is rigid, it follows from [15, 5.2.2, chapitre I] that the Frobenius

endomorphism of any motive is an isomorphism. More precisely, for any motive M
in Mot, the morphism FM∨ : M∨ → M∨ is tF−1

M .
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Definition 2.7. — For any motive M ∈ Mot, we let FM : M → M be the Frobenius
automorphism of M . We define the Zeta function Z(M, t) of M to be Z(FM , t). If
X ∈ V, the Zeta function Z(X, t) of X is Z(h(X), t).

Proposition 2.8. — Let X ∈ V. The Zeta function of X defined above is the usual
one:

Z(X, t) = exp

( ∞∑
n=1

#X(Fqn)
n

tn

)
.

Proof. — One has to check that for any n ≥ 1, #X(Fqn) = TrMot(Fn : h(X) →
h(X)). The set #X(Fqn) is in bijection with the set of fixed points of Fn acting on
X(Fq). The differential of Fn is zero, so that the graph Gn of Fn : X → X and the
diagonal ∆X intersects transversaly in X ×X. Thus, we have an equality:

deg([Gn] · [∆X ]) = #X(Fq)

since all the intersection multiplicites are one, which finishes the proof thanks to
proposition 1.16.

Theorem 2.9 (Rationality). — Let H be a Weil cohomology with coefficient field
F over Fq. For any endomorphism f : M → M in Motrat, the Zeta function Z(f, t)
belongs to Q(t). Moreover,

Z(f, t) =
∏
n∈Z

Pn(t)(−1)n+1
,

where Pn(t) = det(id−tf : Hn(M) → Hn(M)) ∈ F [t]. In particular, the Zeta func-
tion of a smooth and projective variety X over Fq belongs to Q(t).

Proof. — Let f ∈ EndMotrat(M). The Zeta function of f is the same as the one of
rH(f) : rH(M) → rH(M) in VecGrF . Then, proposition 2.4 shows that Z(f, t) is
given by the formula above, which implies that Z(f, t) belongs to F (t). As we know
that Q[[t]] ∩ F (t) = Q(t) (3), it follows that Z(f, t) belongs to Q(t).

Theorem 2.10 (Functional equation). — Let H be a Weil cohomology with co-
efficient field F over Fq. Let X be a smooth and projective variety over Fq. Assume
that X is purely d-dimensional. Then,

Z(X, t) = ε · q
−dχ(X)

2 · t−χ(X) · Z(X, q−dt−1)

where ε = ±1. If d is odd, then ε = 1. If d is even, then ε = (−1)N where N is the
multiplicity of q

n
2 as an eigenvalue of the geometric Frobenius acting on Hd(X).

Proof. — For any motive M , we can compare the Zeta functions of M and M ⊗Td

(cf. proposition 2.3) and also those of M and M∨ (cf. proposition 2.5). Then, one
can argue using the fact the the dual of the motive h(X) is h(X)⊗Td.

2.2. Numerical equivalence. —

(3)This is a consequence of the following algebraic lemma: if F is a field and f =
P

n≥0 antn ∈ F [[t]],

then f belongs to F (t) if and only if there exists an integer m such that for any large enough integer
s, the determinant Ns,m of the matrix (as+i+j)0≤i,j≤m vanishes.
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2.2.1. Definition. —

Definition 2.11. — Let X ∈ V and A be Z or a field of characteristic zero. A cycle
of codimension i on X with coefficients in A is numerically equivalent to zero if for
any cycle of dimension i on X, we have deg(x · y) = 0 in A. This defines an adequate
equivalence relation on cycles. We define Ai

num(X;A) to be the group of equivalence
classes of cycles modulo cycles numerically equivalent to zero. If A = Z, this group
is denoted Ai

num(X).

Proposition 2.12. — For any field F of characteristic zero, we have a canonical
isomorphism:

Ai
num(X)⊗Z F

∼−→ Ai
num(X;F ) .

Proof. — Contrary to the proof of the corresponding statement in [2, proposi-
tion 3.2.7.1], here, we shall not use the existence of a Weil cohomology.

If F = Q, the statement is trivial. Then, we are reduced to proving the the obvious
map:

Ai
num(X;Q)⊗Q F → Ai

num(X;F )

is an isomorphism. We may assume that X is d-dimensional. We shall use the
following lemma:

Lemma 2.13. — Let V and B be Q-vector spaces with a bilinear pairing V ×W → Q
such that the obvious map V → HomQ(W,Q) is injective. Then, for any field F of
characteristic zero, the obvious map

V ⊗Q F → HomF (W ⊗Q F, F )

is injective.

Proof of the lemma. — We shall prove that for any Q-vector space F , the obvious
map

V ⊗Q F → HomQ(W,F )

is injective. This statement is trivial if F is finite-dimensional. Thus, we get that for
any finite-dimensional subspace F ′ of F , the composite map

V ⊗Q F ′ → HomQ(W,F ′) → HomQ(W,F )

is injective. Then, we can take the inductive limit of these maps for any F ′ in the
ordered set of finite-dimensional subspaces of F , which proves that

V ⊗Q F → HomQ(W,F )

is injective.

We have to prove that the intersection pairing

(Ai
num(X;Q)⊗Q F )× (Ad−i

num(X;Q)⊗Q F ) → F

is such that the obvious map

Ai
num(X;Q)⊗Q F → HomF (Ad−i

num(X;Q)⊗Q F, F )
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is injective, which follows from the lemma and the fact that

Ai
num(X;Q) → HomQ(Ad−i

num(X),Q)

is injective.

Conjecture 2.14 (Standard conjecture D). — The functor

Mothom,F → Motnum,F

is an equivalence of categories, i.e. a cycle is numerically equivalent to zero if and
only if it is homologically equivalent to zero.

2.2.2. Finite generation. —

Theorem 2.15. — Assume that there exists a Weil cohomology with a coefficient
field F (of characteristic zero). Then, for any X ∈ V and integer i, the abelian group
Ai

num(X) is finitely generated and torsion-free.

Proof. — For any i, there is a surjection of F -vector spaces:

Ai
hom(X;F ) → Ai

num(X;F ) .

As Ai
hom(X;F ) injects into H2i(X)(i) which is finite-dimensional, the F -vector space

Ai
num(X;F ) is finite-dimensional. From proposition 2.12, we get that Ai

num(X)⊗Z F
is finite-dimensional. Then, by flat descent, Ai

num(X) ⊗Z Q is a finite-dimensional
Q-vector space.

Lemma 2.16. — Let V be an abelian group such that V ⊗ZQ is a finite-dimensional
Q-vector space. Then, HomZ(V,Z) is a finite type and torsion-free group.

Proof of the lemma. — Let n = dimQ V . We may assume that Zn ⊂ V ⊂ Qn. Then,
the obvious map

HomZ(V,Z) → HomZ(Zn,Z)
is injective, which implies that HomZ(V,Z) is finitely generated and torsion-free.

We already know that Ad−i
num(X)⊗ZQ is a finite-dimensional Q-vector space. Thus,

the lemma tells us that HomZ(Ad−i
num(X),Z) is finitely generated and torsion-free.

By construction, this group contains a subgroup isomorphic to Ai
num(X), so that

Ai
num(X) is also finitely generated and torsion-free.

2.2.3. Semi-simplicity. —

Theorem 2.17 (Jannsen [13]). — For any field of coefficients F of characteristic
zero, the category Motnum,F is a semisimple abelian category.

Sketch of proof. — The main step is to prove that for any d-dimensional X ∈ V, the
algebra

EndMotnum,F
(h(X)) = Ad

num(X ×X;F )
is finite dimensional and semi-simple. We may enlarge the coefficient field F so that
there exists a Weil cohomology. Let R be the Jacobson radical of EndMothom,F

(h(X)).
We shall prove that R is the kernel of the surjection

EndMothom,F
(h(X)) → EndMotnum,F

(h(X))
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so that EndMotnum,F
(h(X)) shall be semisimple.

Let f and g be elements of EndMothom,F
(h(X)). We know that Tr(g ◦ f) = deg(f ·

τ?(g)) where τ is the intertwining automorphism on X×X. If f belongs to R, for any
g, g ◦f is nilpotent and then Tr(g ◦f) = 0. According to the formula above, it implies
that f is numerically equivalent to zero. Conversely, if f is numerically equivalent to
zero, then for any g as above, for any n ≥ 0, we have Tr((g ◦ (f ◦ g)n) ◦ f) = 0. Then,
the endomorphism of H(X) associated to g ◦ f is nilpotent, which also means that
g ◦ f is nilpotent. Thus, f belongs to R.

Remark 2.18. — Conservely, Jannsen proved that if ∼ is an adequate equivalence
relation on cycles such that the associated category of motives Mot∼,F is abelian
semisimple, then ∼ is the numerical equivalence.

3. Examples

3.1. Classical Weil cohomologies. — The classical Weil cohomologies are defined
to be the following ones:

– for any prime number ` invertible in k and any separable closure k/k of k, the
étale cohomology H?

ét(Xk;Q`) is a Weil cohomology with coefficient field Q`;
– if k is of characteristic zero, the algebraic De Rham cohomology H?

DR(X/k) is
a Weil cohomology with coefficient field k;

– if σ : k → C is a complex embedding of k, the Betti cohomology H?
B(X(C);Q)

is a Weil cohomology with coefficient field Q;
– if k is of positive characteristic p, the crystalline cohomology H?

cris(X) is a Weil
cohomology with coefficient field K = W (k)[1/p] where W (k) is the ring of Witt
vectors of k.

Thus, we get different realization functors:

Motrat
rét,`

yyrrrrrrrrrr
rDR

��
rB %%KKKKKKKKKK

rcris

++VVVVVVVVVVVVVVVVVVVV

VecGrQ` VecGrk VecGrQ VecGrW (k)[1/p

Note that for a given base field k, not all these Weil cohomologies are available.

3.2. Additional structures. —

3.2.1. Étale cohomology. — The étale cohomology groups of schemes are functorial
with respect to arbitrary morphisms of schemes. As the Galois group Gal(k/k) acts
on the scheme Xk, this Galois group naturally acts on the étale cohomology groups
H?

ét(Xk;Q`). Actually, for any integer q, Hq
ét(Xk;Q`) is a continuous representation

of the profinite group Gal(k/k).
Moreover, the notation Q`(1) that we defined for the dual of H2

ét(P
1;Q`) (cf.

definition 1.1) is consistent with the usual definition of Q`(1) as Z`(1)[1/`] where
Z`(1) is limν µ`ν (k).
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Furthermore, for any X ∈ V, the image of the cycle class map CHn(X) →
H2n(Xk;Q`(n)) is contained in the subspace of fixed points under Gal(k/k) (4).

The realisation functor Motrat → VecGrQ`
can be enriched as a ⊗-functor to the

category of continuous Q`-representations of Gal(k/k).

3.2.2. Algebraic De Rham cohomology. — The stupid filtration on the De Rham com-
plex of sheaves Ω?

X/k on X ∈ V leads to a spectral sequence (which is E1-degenerated):

Epq
1 = Hp(X, Ωq

X/k) =⇒ Hp+q
DR (X/k) .

The corresponding filtration on Hn
DR(X/k) is the Hodge filtration F p. More precisely,

F pHn
DR(X/k) is the image of the obvious (injective) map:

Hn(X; · · · → 0 → Ωp
X/k

d→ Ωp+1
X/k

d→ Ωp+2
X/k

d→ . . . ) ⊂ Hn(X; Ω?
X/k) .

The computation of H2
DR(P1/k) shows that it is isomorphic to k and that it lies

in Hodge degree 1. More generally, for any X ∈ V, the cycle class map CHn(X) →
H2n

DR(X/k) factors through the subspace FnH2n
DR(X/k).

Moreover, the Hodge filtration of rDR(h(X)) for any X ∈ V extends to a Hodge
filtration on rDR(M) for any motive M ∈ Motrat and for any morphism M → N in
Motrat, the corresponding morphism rDR(M) → rDR(N) is strictly compatible with
the Hodge filtration.

3.2.3. Betti cohomology. — From its very definition, the Betti cohomology
H?

B(X(C);Q) does not seem to have any additional structure. However, if we
extend the coefficient field to C, one can get a differential description of it using the
holomorphic Poincaré lemma:

H?
B(X(C);Q)⊗Q C ∼−→ H?(X(C); Ω?

X(C),hol) ,

where Ωp
X(C),hol denotes the sheaf of holomorphic differential p-forms on X(C). Then,

the C-vector space Hn
B(X(C);Q) ⊗Q C is endowed with an Hodge filtration in the

same way as the algebraic De Rham cohomology is.

Definition 3.1. — A pure Q-Hodge structure of weight n ∈ Z is a finite dimensional
Q-vector space V endowed with a decomposition of the C-vector space VC = V ⊗Q C
as

VC =
⊕

p+q=n

V p,q ,

such that for all (p, q), V p,q and V q,p are exchanged by the complex conjugation on
VC. The Hodge filtration on VC is defined by F pVC =

∑
p′≥p V p′,n−p′ .

If V is a pure Q-Hodge structure of weight n, then one can recover the V p,q

from the Hodge filtration. More precisely, one can define a second filtration F p

which is the complex conjugate of the Hodge filtration F p on VC. Then, V p,n−p =
F pVC ∩ Fn−pVC).

(4)The Tate conjecture asserts that for a base field k of finite type over its prime field, the Q`-vector

space spanned by the image of CHn(X) is precisely the subspace of fixed points under Gal(k/k).
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One of the main analytic results of classical Hodge theory is the following theorem:

Theorem 3.2. — Let X be a compact C-analytic variety. If X has a Kähler met-
ric, then the Hodge filtration on Hn(X;C) endows Hn(X;Q) with a pure Q-Hodge
structure of weight n.

As any projective and smooth variety over C has a Kähler metric, it follows that
the Betti cohomology spaces of an algebraic variety X are endowed with Q-Hodge
structures. If we let HSQ denote the category of Q-Hodge structures, one may extend
this definition to get a realization functor Motrat → HSQ.

3.2.4. Crystalline cohomology. — The crystalline cohomology vector spaces
H?

cris(X) = H?
cris(X/W (k))[1/p] are endowed with a semilinear Frobenius endo-

morphism φ : H?
cris(X) → H?

cris(X).

3.3. Comparison theorems. — We have just seen that there are many different
Weil cohomologies, with different coefficients fields. However, if k is of characteristic
zero, there are comparison theorems between the corresponding realization functors,
provided the coefficient field is extended properly:

Theorem 3.3. — If k is embedded in C and ` is a prime number, there is a canonical
isomorphism of ⊗-functors Motrat → VecGrQ`

:

rét,`
∼−→ rB ⊗Q Q` .

If k is embedded in C, there is a canonical isomorphism of ⊗-functors Motrat →
VecGrC:

rDR ⊗k C ∼−→ rB ⊗Q C .

If p is a prime number and k is an algebraic extension of Qp, there exists a iso-
morphism of ⊗-functors Motrat → VecGrBDR :

rDR ⊗k BDR ' rét,p ⊗Qp BDR .

These theorems are easy extensions of comparison theorems between cohomol-
ogy groups of projective and smooth varieties for different Weil cohomologies. The
comparison between étale cohomology and Betti cohomology is due to M. Artin
(SGA 1 XI 4.4). The comparison of the algebraic De Rham cohomology with the
Betti cohomology follows from results by Serre [16], and has been extended to smooth
varieties that are not assumed to be projective by Grothendieck in [7] (see also [8]).
The last statement is one of the comparison theorems from p-adic Hodge theory. The
period ring BDR is one of the rings that are needed to state the comparison theorems
in that setting. It has been developped by many authors: Tate, Fontaine and Messing,
Breuil, etc. In this form, this is due to Faltings and Tsuji.

There are also comparison theorems in mixed characteristic:

Theorem 3.4 (Berthelot-Ogus). — Let A be a complete discrete valuation ring,
with fraction field k and perfect residue field k0. We assume that k is of characteristic
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zero and k0 of characteristic p > 0. Let X be a projective and smooth scheme over
A. Then, there is an isomorphism:

H?
DR(Xk/k) ' H?

cris(Xk0)⊗W (k0)[1/p] k .

4. Absolute Hodge cycles, motivated cycles

4.1. Absolute Hodge cycles. — We assume that the base field k is of finite
transcendance degree over Q. We fix an algebraic closure k of k.

The Q-vector space of absolute Hodge cycles on a smooth and projective variety
defined in [3] can be described as follows:

Definition 4.1. — Let X ∈ V. An absolute Hodge cycle of codimension n on X is
a family of elements:

– xDR ∈ H2n
DR(X/k)(n);

– xσ ∈ H2n
B (X(C)σ;Q) for any embedding σ : k → C;

– x` ∈ H2n
ét (Xk;Q`)(n) for any prime number `,

such that:
– xDR belongs to F 0(H2n

DR(X/k)(n));
– for any prime number `, x` is fixed under the action of Gal(k/k);
– these elements constitute a compatible family under the comparison isomor-

phisms of theorem 3.3.
We let Cn

AH(X) be the (finite-dimensional) Q-vector space of absolute Hodge cycles
of codimension n on X.

Remark 4.2. — Obviously, if x is an algebraic cycle of codimension n on X, then
the family of the images of x under the cycle class maps is an absolute Hodge cycle.
We shall say that such absolute Hodge cycles are algebraic.

Remark 4.3. — If H is a classical Weil cohomology, then Cn
AH(X) identifies to a

subgroup of H2n(X)(n). Then, it makes sense to say that an element in H2n(X)(n)
“is” an absolute Hodge cycle.

Definition 4.4. — One may define a ⊗-category whose objects are the h(X) for
X ∈ V in such a way that the set of morphisms h(X) → h(Y ) is CdX

AH(X × Y )
(which identifies to a subset of Hom(H(X),H(Y )) for all classical Weil cohomologies
H). Then, one may take the pseudo-abelian envelope of that category and invert the
“Lefschetz motive” to get a ⊗-category MotAH and get ⊗-functors Motrat → MotAH

and “realizations functors” rH : MotAH → VecGrF for any classical Weil cohomology
H with coefficient field F .

If the commutativity constraint of MotAH is modified properly, the category MotAH

becomes a Tannakian category.

Definition 4.5. — Let X ∈ V. Let x ∈ H2n
DR(X/k)(n). Let σ : k → C be an

embedding. We say that x is a Hodge cycle relative to σ if



REALIZATIONS FUNCTORS 15

– the image of x in H2n
B (X(C)σ;C)(n) via the comparison isomorphism is in the

rational subspace H2n
B (X(C)σ;Q)(n);

– the element x lies in Hodge bidegree (0, 0).

Remark 4.6. — The Hodge conjecture asserts that any Hodge cycle is an algebraic
cycle. As any absolute Hodge cycle is a Hodge cycle, the Hodge conjecture implies
that the functor Mothom,Q → MotAH is an equivalence.

The main result of [3] can be considered as a weaker form of the Hodge conjecture:

Theorem 4.7 (Deligne). — Any Hodge cycle over an abelian variety is an absolute
Hodge cycle.

4.2. Motivated cycles. — Let k be a field of characteristic zero and H be a
classical Weil cohomology.

Let X ∈ V. Let D be an ample divisor on X. For any 0 ≤ i ≤ 2dX , we have a
commutative square:

Ai
hom,Q(X)

��

·[D]dX−2i

// AdX−i
hom,Q(X)]

��
H2i(X)(i)

·(cl[D])dX−2i

∼
// H2dX−2i(X)(d− i)

where A?
hom,Q(X) denote groups of cycles on X modulo the homological equivalence

and the vertical (injective) maps are given by the cycle class map. The bottom map is
an isomorphism: this is the hard Lefschetz theorem. Then, the upper map is injective.

Conjecture 4.8 (Standard conjecture B). — Let X ∈ V. Let D be an ample
divisor on X. For any i, the (injective) map Ai

hom,Q(X) → AdX−i
hom,Q(X) induced by

the multiplication by [D]dX−2i is a bijection.

The idea of the definition of motivated cycles in [2] is to enlarge the groups
A?

hom,Q(X) so as to force the analog of standard conjecture B to be true.

Definition 4.9. — We let Cohom be the ⊗-category of “motives” defined as MotAH

(cf. definition 4.4) but such that the set of morphisms h(X) → h(Y ) is the whole
group H2dX (X × Y )(dX).

Definition 4.10. — There exists a smallest Q-linear pseudoabelian sub-⊗-category
Motmot of Cohom containing Mothom,Q and such that for any X ∈ V and D an ample
divisor on X, the injective map Ai

mot(X) → AdX−i
mot (X) induced by the multiplica-

tion by (cl[D])2dX−2i is a bijection, where An
mot(X) = HomMotmot(L

⊗n, h(X)). The
elements of An

mot(X) are called “motivated cycles”.

By construction, the faithful functor Mothom,Q → Motmot is an equivalence of
categories if and only if standard conjecture B is true.

If H ′ is another classical Weil cohomology, the categories of motivated motives
Motmot defined using H and H ′ are naturally equivalent. If k is of finite transcendance
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degree over Q, there exists an obvious faithful functor Motmot → MotAH (i.e. a
motivated cycle is an absolute Hodge cycle).

The following proposition is an analog of the fact that standard conjecture B implies
standard conjecture C:

Proposition 4.11. — For any X ∈ V, the Künneth projectors in EndCohom(h(X))
are motivated cycles.

It follows that one can alter the commutativity constraint on Motmot to get a
Tannakian category.

The arguments of [3] have been improved in [1] to get a stronger version of theo-
rem 4.7:

Theorem 4.12 (André). — Any Hodge cycle over an abelian variety is a motivated
cycle.

5. Mixed realizations

5.1. The abelian category of mixed realizations. — Let k be a field embed-
dable in C and k be an algebraic closure of k. Delinge [4] and Jannsen [12] have
defined an abelian category of mixed realizations in the same spirit as absolute Hodge
cycles were defined in definition 4.1. The definition can be sketched as follows:

Definition 5.1. — The abelian category MRk of mixed realizations is the category
whose objects are families of objects:

– HDR is a k-vector space equipped with a Hodge filtration and a weight filtration;
– Hσ is a mixed Q-Hodge structure (for any embedding σ : k → C);
– H` is a Q`-vector space with a continuous action of Gal(k/k)

with comparison isomorphisms (like in theorem 3.3) compatible with the additional
data. The morphisms in MRk are the families of linear maps that are compatible
with the additional data and the comparison isomorphisms.

This category MRk is a Tannakian category. For any smooth (and quasi-projective)
variety U over k, the De Rham, Betti and étale cohomology spaces of U fit together
as an object H(U) of MRk. Jannsen defined a category of mixed motives as the
sub-Tannakian category of MRk generated by objects H(U) for any smooth variety
U . If we let Smk be the category of smooth (and quasi-projective) k-schemes, there
is a well-defined functor Smk

opp → MRk.
The main problem with that definition is that morphisms have no geometric inter-

pretation whereas they have such an origin in Motrat.

5.2. Triangulated categories of motives. — Another approach of mixed motives
have been developped since the 1990s. The idea is to construct a triangulated category
of mixed motives, and then one may expect to construct an abelian category of mixed
motives as the heart of some t-structure of the triangulated category. There are
several constructions of these triangulated categories. However, we do not know any
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unconditional construction of a good candidate for the abelian category of mixed
motives.

For any perfect field k, Voevodsky defined in [18] a triangulated category of motives
DMgm(k). By construction, there is a covariant functor Smk → DMgm(k) that maps
a smooth variety U to its motive M(U) (in the previous sections, the natural functor
from V ro Motrat was contravariant). Levine defined another category DM(k) with
a contravariant motive functor from the category Smk.

These two constructions have been compared by Levine for k of characteristic zero
and by Ivorra for any perfect field provided we take Q as a coefficient ring:

Theorem 5.2 (Levine [14, Part I, Chapter VI, 2.5.5], Ivorra [11])
For any field of characteristic zero k, there is an equivalence of triangulated cate-

gories DMgm(k)opp ' DM(k).
For any perfect field k, there is an equivalence of triangulated categories

DMgm(k;Q)opp ' DM(k;Q).

Category of pure motives and triangulated motives are also related by the following
embedding theorem:

Theorem 5.3 (Voevodsky). — Let k be a perfect field. There is an fully faithful
functor Motrat(k)opp → DMgm(k).

5.3. Triangulated realization functors. — Various kinds of triangulated real-
ization functors naturally have arisen. If D is triangulated category, we may say that
a covariant realization functor is a triangulated functor DMgm(k) → D. The idea
is that when we compose this functor with the natural functor from the category of
smooth schemes to DMgm(k), we get a functor Smk → D rather than a functor from
the opposite category Smk

opp. We may also say that this realization functor is of ho-
mological type. Conversely, if we consider a triangulated functor DMgm(k)opp → D
or DM(k) → D, we shall say that it is a contravariant realization functor, or a
realization functor of cohomological type.

5.3.1. Covariant realization functors. —

Theorem 5.4 (Huber [9]). — Let k be a field embeddable in C. There exists a
well defined category Db

MRk
of mixed realizations, equipped with various triangulated

functors:
– an étale component functor Db

MRk
→ Db(két;Q`);

– an algebraic De Rham component functor Db
MRk

→ Db(VecGrk);
– a Betti component functor Db

MRk
→ Db(MHSQ) for any embedding σ : k → C.

There is a triangulated realization functor DMgm(k)opp → Db
MRk

of cohomologi-
cal type, whose components are compatible with the definition of the aforementioned
cohomology theories for smooth varieties.

Theorem 5.5 (Ivorra [10]). — Let k be a field and ` be a prime number invertible
in k. There exists a well defined étale realization functor DMgm(k)opp → Db(két;Z`)



18 JOËL RIOU

of cohomological type. If k is embeddable in C, this functor, once tensored with Q, is
naturally isomorphic to the étale component of the realization functor of theorem 5.4.

Remark 5.6. — The theory of relative cycles of [17] enabled Ivorra to define a
triangulated category DMgm(S) for any noetherian base scheme S (which has also
been studied independently by Cisinski and Déglise). Moreover, his construction of
the triangulated étale realization functor is possible with that degree of generality.

Remark 5.7. — The hard part in the constructions of triangulated functors is to
extent the functoriality of cohomology theory from morphism of schemes to finite
correspondences (i.e. to construct transfers). Huber used Galois-theoretic arguments
to do this process: this method is highly versatile but requires the coefficient ring to
be tensored with Q. In his work, Ivorra used another method: he proved that the
Godement resolution of the constant étale sheaf Z/`νZ naturally has transfers.

Remark 5.8. — Levine also constructed realizations functors of cohomological type
DM(k) → Db

MRk
. However, it is not clear whether or not these constructions are

compatible with respect to the equivalence of categories DMgm(k)opp ' DM(k) from
theorem 5.2.

Remark 5.9. — One can use these triangulated realization functors to construct
regulators. For any X ∈ Smk, and integers (p, q), the motivic cohomology group
Hp(X;Z(q)) is defined as HomDMgm(k)(M(X),Z(q)[p]) (5). Thus, one can apply tri-
angulated functors to get interesting maps from Hp(X;Z(q)) to other groups. For
instance, the étale realization functors brings a regulator map

Hp(X;Z(q)) → Hp
ét,cont(X;Z`(q)) ,

where Hp
ét,cont(X;Z`(q)) denotes a continuous étale cohomology group of X.

5.3.2. Covariant realization functors. — One of the features of Voevodsky’s con-
struction of triangulated categories of motives lies in its sheaf-theoretic aspects. One
may define DMeff(k) as the subtriangulated category of A1-local objects in the de-
rived category of Nisnevich sheaves with transfers over Smk (a complex of Nisnevich
sheaves K over Smk is A1-local if for any X ∈ Smk and q ∈ Z, the obvious map
Hq(X, K) → Hq(A1 ×X, K) is an isomorphism). The category DMeff

gm(k) naturally
embeds in DMeff(k) as a triangulated subcategory (cf. [18, theorem 3.2.6]).

Theorem 5.10 (Suslin-Voevodsky [18, proposition 3.3.3])
Let k be a perfect field which is of finite cohomological dimension. Let n ≥ 1

be an integer invertible in k. One can define an étale version DMeff
ét (k;Z/nZ) of

DMeff(k;Z/nZ) and there is an equivalence of categories

DMeff
ét (k;Z/nZ) ' Db(két;Z/nZ) .

(5)The motive Z(1) is defined in such a way that M(P1) = Z⊕ Z(1)[2], and Z(q) is defined for any

q as its qth ⊗-power.
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Thus, the associated sheaf functor (for the étale topology) DMeff(k;Z/nZ) →
DMeff

ét (k;Z/nZ) induces a triangulated realization functor of homological type:

DMeff(k;Z/nZ) → Db(két;Z/nZ) .

One may extent this to a non-effective version DM(k) of DMeff(k) defined using
Z(1)-spectra.

Another construction has been proposed by Cisinski and Déglise. Let k be a perfect
field and F be a field of coefficients of characteristic zero. We let VecGr∞F be the ⊗-
category of F -vector spaces. Let E be a presheaf of complexes of F -vector spaces on
the category of schemes of finite type over k. Under some circumstances (homotopy
invariance, Künneth formula, Nisnevich descent, proper descent...), they prove that
there is a ⊗-functor r : DM(k) → D(VecGr∞F ) such that for any X ∈ Smk, there
is a canonical isomorphism r(M(X)) ' HomF (E(X), F ). They claimed that their
method applies to the algebraic De Rham cohomology and to rigid cohomology.
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