1 Definitions and first properties

Definition 1.1. A power series is a series of functions \(\sum f_n \) where \(f_n : z \mapsto a_n z^n \), \((a_n)\) being a sequence of complex numbers. Depending on the cases, we will consider either the complex variable \(z \), or the real variable \(x \).

Notations 1.2. For \(r \geq 0 \), we will note \(\Delta_r = \{ z \in \mathbb{C} \mid |z| < r \} \), \(K_r = \{ z \in \mathbb{C} \mid |z| \leq r \} \) and \(C_r = \{ z \in \mathbb{C} \mid |z| = r \} \).

Lemma 1.3. [Abel’s lemma] Let \(\sum a_n z^n \) be a power series. We suppose that there exists \(z_0 \in \mathbb{C}^* \) such that the sequence \((a_n z_0^n) \) is bounded. Then, for all \(r \in]0, |z_0|[\), \(\sum a_n z^n \) normally converges on the compact \(K_r \).

Remark 1.4. • Note that it implies the absolute convergence on \(\Delta_{|z_0|} \), i.e. \(\forall z \in \Delta_{|z_0|}, \sum |a_n z^n| \) converges.

• Of course if we suppose \(\sum |a_n| r^n \) convergent, we directly have the normal convergence on \(K_r \) (cf. \(\forall z \in K_r, |a_n z^n| \leq |a_n| r^n \)).

Proof. Let \(z \) be in \(K_r \), we have
\[|a_n z^n| \leq |a_n| r^n = |a_n z_0^n| \left(\frac{r}{|z_0|} \right)^n = O \left(\left(\frac{r}{|z_0|} \right)^n \right), \]
which gives the result. \(\Box \)

Definition 1.5. We call the radius of convergence of the power series \(\sum a_n z^n \) the number
\[R = \sup \{ r \geq 0 \mid (a_n r^n) \text{ bounded} \} \in \mathbb{R}^+ = \mathbb{R}^+ \cup \{ +\infty \}. \]
It will sometimes be noted \(RCV(\sum a_n z^n) \).

Theorem 1.6. Let \(R \) be the RCV of a power series \(\sum a_n z^n \).
• For all \(r < R \), \(\sum a_n z^n \) normally converges on the compact \(K_r \).
• For all \(z \) such that \(|z| > R \), \(a_n z^n \xrightarrow{n \to \infty} 0 \).

Remark 1.7. It implies the absolute convergence on \(\Delta_R \).

Proof. The Abel’s lemma gives the first point : \(\forall r \in [0, R[, \exists r' \in]r, R] \) such that \((a_n r'^n) \) is bounded, which implies the normal convergence on \(K_r \). For the second point, it’s the contraposition of \(a_n z^n \to 0 \Rightarrow (a_n z^n) \) bounded \(\Rightarrow |z| \leq R \). \(\Box \)
Corollary 1.8. With the same hypothesis, \(R = \sup \{ r \geq 0 \mid \sum a_n r^n \text{ converges} \} = \inf \{ r \geq 0 \mid \sum a_n r^n \text{ diverges} \} \in \mathbb{R}^+ \).

Proof. Let’s note \(R' = \sup \{ r \geq 0 \mid \sum a_n r^n \text{ converges} \} \) and \(R'' = \inf \{ r \geq 0 \mid \sum a_n r^n \text{ diverges} \} \). First, \(R' \leq R'' \) : if not, \(R'' < R' \) and \(\exists r \in]R'', R'[, r'\) such that \(\sum a_n r'^n \) converges, so we would have \((a_n r'^n) \) bounded and convergence on \(\Delta_r \) (cf. 1.4), and thus \(R' \geq r \), absurd. By the first point of the theorem, \(R' \geq R \). By the second point, \(R'' \leq R \). So we have \(R \leq R' \leq R'' \leq R \), which gives the result. \(\square \)

Remark 1.9.
- With the same kind of proof, one can show that we also have \(R = \sup \{ r \geq 0 \mid a_n r^n \to 0 \} \).
- To sum up, if we note \(\mathcal{E} \) the domain of convergence of a power series which has a radius of convergence \(R \), we have

\[
\Delta_R \subset \mathcal{E} \subset K_R
\]

and we have absolute convergence on \(\Delta_R \).

Definition 1.10. We call \(\Delta_R = \{ z \in \mathbb{C} \mid |z| < R \} \) the (open) disk of convergence.

Remark 1.11. We can’t say anything \textit{a priori} about the convergence of a power series on the circle \(C_R \), as we will see in the examples.

Examples 1.12.
- \(RCV(\sum z^n) = 1 \) since the constant sequence \((1) \) is bounded (\(\Rightarrow RCV \geq 1 \) and \(\sum 1 \) diverges (\(\Rightarrow RCV \leq 1 \)). In fact there’s no point in \(C_1 \) where there is oconvergence \((|z| = 1 \Rightarrow z^n \to 0) \).
- \(RCV(\sum z^n/n) = 1 \) since \((1/n) \) bounded (\(\Rightarrow RCV \geq 1 \) and \(\sum 1/n \) diverges (\(\Rightarrow RCV \leq 1 \)). Here, the only point of \(C_1 \) where the power series diverges is \(1 \) : if \(z = e^{i\theta} \neq 1 \), \(\sum z^n/n \) converges if \(\Re(\sum z^n/n) \) and \(\Im(\sum z^n/n) \) converge, ie if \(\sum \cos(n\theta)/n \) and \(\sum \sin(n\theta)/n \) converge. But we’ve already seen that the first one converges if \(e^{i\theta} \neq 1 \), and the same proof shows that it’s the same for the second one.

Exercise 1.13. [Hadamard theorem] Prove that this definition of the radius of convergence is equivalent to the first one :

\[
R = (\limsup |a_n|^{1/n})^{-1}
\]

2 Few methods to find the RCV

Proposition 2.1. Let \(\sum a_n z^n \) be a power series and \(z_0 \in \mathbb{C} \). Then :
- If \(\sum a_n z_0^n \) converges but \(\sum |a_n z_0^n| \) diverges, then \(RCV = |z_0| \).
- Same conclusion if \(\sum a_n z_0^n \) diverges but \(a_n z_0^n \to 0 \).

Proof. For the first point, we have \(RCV \geq |z_0| \) (cf. 1.8), but we can’t have \(RCV > |z_0| \) (cf. 1.6). The second point is a consequence of 1.8 and 1.9. \(\square \)

Proposition 2.2. Let \(\sum a_n z^n \) and \(\sum b_n z^n \) be two power series, and \(R_a, R_b \) their RCV. We have \(a_n = O(b_n) \Rightarrow R_a \geq R_b \).
Proposition 2.8. Let \(a_n \neq 0 \) for \(n \) big enough. Then (with \(1/0 = +\infty \) and \(1/\infty = 0 \)):

\[
\exists \lim \frac{a_{n+1}}{a_n} = l \in \mathbb{R}^+ \Rightarrow RCV = \frac{1}{l}.
\]

Proof. We have \(\frac{|a_{n+1}z^{n+1}|}{a_nz^n} \rightarrow l|z| \). By the De D'Alembert rule, \(|z| < 1/l \Rightarrow \sum a_nz^n \) converges, and \(RCV \geq 1/l \) (cf. 1.8). Similarly, if \(|z| > 1/l \), \(\sum a_nz^n \) diverges, and \(RCV \leq 1/l \). \(\square \)

Corollary 2.4. With the same notations, we have \(a_n \sim b_n \Rightarrow R_a = R_b \).

Proof. \(\sim \Rightarrow O \).

Proposition 2.5. Suppose \(a_n \neq 0 \) for \(n \) big enough. Then (with \(1/0 = +\infty \) and \(1/\infty = 0 \)):

\[
\exists \lim \frac{a_{n+1}}{a_n} = l \in \mathbb{R}^+ \Rightarrow RCV = \frac{1}{l}.
\]

Proof. We have \(\frac{|a_{n+1}z^{n+1}|}{a_nz^n} \rightarrow l|z| \). By De D'Alembert rule, \(|z| < 1/l \Rightarrow \sum a_nz^n \) converges, and \(RCV \geq 1/l \) (cf. 1.8). Similarly, if \(|z| > 1/l \), \(\sum a_nz^n \) diverges, and \(RCV \leq 1/l \). \(\square \)

Proposition 2.6. Let \(\sum a_nz^n \) a power series and \(R \) its RCV. Then for all \(\alpha \in \mathbb{R} \) the RCV \(R_\alpha \) of the power series \(\sum n^\alpha a_nz^n \) is also \(R \).

Proof. Let \(r < R \) and \(\rho \in [r, R] \). We have

\[
n^\alpha a_n r^n = n^\alpha \left(\frac{r}{\rho} \right)^n a_n \rho^n \Rightarrow (n^\alpha a_n r^n) \text{ bounded} \Rightarrow R_\alpha \geq R.
\]

This is true for all \(\sum a_nz^n \), and for all \(\alpha \), so we also have, with \(\beta = -\alpha \),

\[
R = RCV(\sum n^\beta(n^\alpha a_nz^n)) \geq RCV(\sum n^\alpha a_nz^n) = R_\alpha.
\]

\(\square \)

Examples 2.7.

- By 2.5, \(RCV(\sum z^n/n!) = +\infty \).
- By 2.5, \(RCV(\sum n!z^n) = 0 \).
- By 2.6, \(RCV(\sum z^n/n^2) = 1 \) and we have normal convergence on \(K_1 \).
- We can abusively note \(\sum z^{2n}/5^n \) the power series defined by \(a_{2n+1} = 0 \) and \(a_{2n} = 5^{-n} \) for all \(n \). But we can’t apply directly 2.5. However, it’s clear that we have convergence on \(\Delta \sqrt{5} \) and divergence on its complementary, so \(RCV = \sqrt{5} \).

Proposition 2.8. Let \(R_a \) and \(R_b \) be the RCV of \(\sum a_nz^n \) and \(\sum b_nz^n \). Then \(R_{a+b} = RCV(\sum (a_n+b_n)z^n) \geq m = \min\{R_a, R_b\} \), with equality if \(R_a \neq R_b \). Moreover, on \(\Delta_m \), we have

\[
\sum (a_n+b_n)z^n = \sum a_nz^n + \sum b_nz^n.
\]

Proof. For all \(z \in \Delta_m \), \(\sum a_nz^n \) and \(\sum b_nz^n \) absolutely converges. Hence \(\sum (a_n+b_n)z^n \) also does : \(R_{a+b} \geq m \) and the additivity of limits of sequences gives the additivity formula. If \(R_a < R_b \), for all \(z \in \Delta_{R_a}\backslash K_{R_b} \) we have \(a_nz^n \rightarrow 0 \) and \(b_nz^n \rightarrow 0 \), thus \((a_n+b_n)z^n \rightarrow 0 \), and \(R_{a+b} \leq R_a = m \). \(\square \)
Example 2.9. Let $\sum a_n z^n = \sum z^n$ and $\sum b_n z^n = \sum ((1/2)^n - 1) z^n$, we have $R_0 = 1 = R_0$ (use 2.5 for the second one). As $a_n + b_n = (1/2)^n$, the domain of convergence of the $\sum (a_n + b_n) z^n$ is clearly Δ_2, so $R_{a+b} = 2 > m$.

The nest result is obvious :

Proposition 2.10. For all $\lambda \in \mathbb{C}^*$, $\sum a_n z^n$ and $\sum \lambda a_n z^n$ have the same RCV R.
Moreover, on Δ_R, we have

$$\sum \lambda a_n z^n = \lambda \sum a_n z^n.$$

Proposition 2.11. Let R_a and R_b be the RCV of $\sum a_n z^n$ and $\sum b_n z^n$. Then $R_{a+b} = RCV((\sum a_n z^n) * (\sum b_n z^n)) \geq m = \min\{R_a, R_b\}$. Moreover, on Δ_m, we have

$$\sum a_n z^n * (\sum b_n z^n) = (\sum a_n z^n)(\sum b_n z^n).$$

Proof. For all $z \in \Delta_m$, $\sum |a_n z^n|$ and $\sum |b_n z^n|$ absolutely converges. Hence the Cauchy product $(\sum |a_n z^n|) * (\sum |b_n z^n|)$ converges (cf. ch1). But

$$\forall n, \left| \sum_{k=0}^n a_k z^k b_{n-k} z^{n-k} \right| \leq \sum_{k=0}^n |a_k z^k| |b_{n-k} z^{n-k}|,$$

so we get $R_{a+b} \geq m$ and the result given about the Cauchy product in chapter 1 gives the formula.

Examples 2.12.
- We don't have the same result as for the addition if $R_a \neq R_b$: Let $\sum a_n z^n$ and $\sum b_n z^n$ be defined by $a_0 = 1/2, b_0 = -2$ and $a_n = -1/2^{n+1}, b_n = -3$ for $n \geq 1$. We have $\sum a_n z^n = 1 - \sum_{n \geq 0} z^n / 2^{n+1}$, $\sum b_n z^n = 1 - \sum_{n \geq 0} z^n$, so $R_a = 2 \neq R_b = 1$. We also have

$$\sum a_n z^n = 1 - \frac{1/2}{1 - (z/2)} = \frac{z - 1}{z - 2} \forall z \in \Delta_2,$$

and $\sum b_n z^n = 1 - 3 \frac{1}{1 - z} = \frac{z - 2}{z - 1} \forall z \in \Delta_1$.

Hence by 2.11 $(\sum a_n z^n) * (\sum b_n z^n) = 1$ on Δ_1, so if we note $c_n = \sum_{k=0}^n a_k b_{n-k}$, we have $c_0 = 1$ and $c_n = 0$ for $n \geq 1$. Thus $R_{a+b} = RCV(\sum c_n z^n) = +\infty > m$.
- Let R, R' be the RCV of $\sum a_n z^n$ and $\sum s_n(a) z^n$. We have $\sum s_n(a) z^n = (\sum a_n z^n) * (\sum z^n)$, hence $R' \geq \min\{1, R\}$. We also have

$$\sum a_n z^n = \sum s_n(a) z^n - \sum s_{n-1}(a) z^n = \sum s_n(a) z^n - z \sum_{n \geq 1} s_n(a) z^n,$$

which gives $R \geq R'$. Thus we have

$$\min\{1, R\} \leq R' \leq R$$

which gives $R = R'$ if $1 \geq R$.

3 Properties of the sum

We've already seen :

Theorem 3.1. Let $\sum a_n z^n$ be a power series and R its RCV, $\sum a_n z^n$ normally converges on every K_r, $r < R$, which leads to the continuity of the sum function on Δ_R.
Remark 3.2. If $\exists z_0 \in C_R$ such that $\sum a_n z_0^n$ absolutely converges, then we have normal convergence (and continuity) on K_R.

Theorem 3.3. [Radial continuity] Let’s suppose that $\sum a_n z_0^n$ converges for $z_0 \in C_R$. Then $\sum a_n z^n$ uniformly converges on $[0, z_0]$, ie $t \mapsto \sum a_n z_0^n t^n$ uniformly converges on $[0, 1]$.

Proof. We note $s_n(t) = \sum_{k=0}^{n} a_k z_0^k t^k$ for $t \in [0, 1]$ and $r_n = \sum_{k=n+1}^{\infty} a_k z_0^k$. By Abel’s formula we obtain

$$s_n(t) = \sum_{k=0}^{n} (r_{k-1} - r_k)t^k = \sum_{k=0}^{n} (t^{k+1} - t^k)r_k - t^{n+1}r_n + r_{n-1}. $$

For $\epsilon > 0$, $\exists N$ such that $n \geq N \Rightarrow |r_n| \leq \epsilon$, hence, for all $n \geq N$, $p \geq 1$, $t \in [0, 1]$

$$|f_{n+p}(t) - f_n(t)| \leq \sum_{k=n+1}^{n+p} |r_k| (t^k - t^{k+1}) \leq \epsilon(t^{n+1} - t^{n+p+1}) \leq \epsilon,$$

and $|t^{n+1}r_n| \leq \epsilon$, so (s_n) uniformly converges. \square

Remark 3.4. The Leibniz criterion can also be used in the case of a decreasing real sequence (a_n) which converges to zero. Suppose $R = 1$, then for $x \in [-1, 0]$, $\sum a_n x^n$ satisfies the hypothesis of the Leibniz criterion; so we get $|\sum_{k=n+1}^{\infty} a_n x^n| \leq |a_n x^n| \leq a_n$, which proves the uniform convergence on $[-1, 0]$, and thus the continuity in -1.

We can deduce from the radial continuity a new result about the Cauchy product - compare with the one obtained in ch.1:

Corollary 3.5. Let $\sum c_n$ be the Cauchy product of $\sum a_n$ and $\sum b_n$. We suppose that $\sum a_n$, $\sum b_n$ and $\sum c_n$ converge to A, B and C. Then $C = AB$.

Proof. The three power series $f(x) = \sum a_n x^n$, $g(x) = \sum b_n x^n$ and $h(x) = \sum c_n x^n$ have a RCV ≥ 1, hence absolutely converge for $|x| < 1$ so we can apply the theorem of chapter 1 and get $f(x)g(x) = h(x)$ for these x. But by the radial continuity theorem we can apply the double limit theorem for $x \rightarrow 1$ to obtain the result. \square

Definition 3.6. We call derivative series (resp. primitive series) of a power series $\sum a_n x^n$ the power series defined by $\sum (n+1) a_{n+1} z^n$ (resp. $\sum_{n \geq 1} (a_{n-1}/n) z^n$).

Remark 3.7. We know that they have the same RCV than $\sum a_n z^n$, thanks to 2.6 and 2.4: $\sum_{n \geq 1} (a_{n+1}/n) z^n$ converges iff $z \sum_{n \geq 1} (a_{n+1}) z^n = \sum_{n \geq 1} n a_n z^n$ converges; and $\sum_{n \geq 1} (a_{n-1}/n) z^n = z \sum_{n \geq 1} (a_n/(n+1)) z^n$ with $a_n/(n+1) \sim a_n/n$.

Theorem 3.8. Let $\sum a_n x^n$ (real variable) be a power series, f its sum, g (resp. F) the sum of its derivative (resp. primitive) series and R its RCV. Then, on $] - R, R [$, f is C^1 with $f' = g$, and F is the only primitive of f such that $F(0) = 0$.

Remark 3.9. This implies

$$\forall x \in] - R, R [\quad \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} = \int_0^x \left(\sum_{n=0}^{\infty} a_n t^n \right) dt.$$
Proof. Replacing f by F, the first assertion immediately gives the second one. But if we note $f_n(x) = a_n x^n$, we have $f_n \in C^1$ with $f_n'(x) = n a_n x^{n-1}$ for $n \geq 1$ ($f'_0 = 0$). Hence $\sum f_n'$ is the derivatives series of $\sum a_n x^n$ which normally converges on each $[-r, r] \subset [-R, R]$ (cf. 3.7), and we know that it implies : $\sum f_n \in C^1$ on $[-r, r]$ and $f' = (\sum f_n)' = \sum f_n' = g$. We conclude with the fact that $\exists -R, R[= U_0 < r < R] [-r, r]$.

Corollary 3.10. The sum function f of a power series $\sum a_n x^n$ with $RCV = R$ is C^∞ on $]-R, R[$, and $f^{(p)}$ is the sum function of $\sum \frac{(n+p)!}{n!} a_{n+p} x^n$.

The RCV of these power series is also R.

Remark 3.11. This implies

$$\forall p, \frac{f^{(p)}(0)}{p!} = a_p$$

Corollary 3.12. If we have $\sum_{n \geq 0} a_n x^n = \sum_{n \geq 0} b_n x^n$ on $]-R, R[$ (both power series converging on this interval), then $a_n = b_n$ for all n.

Proof. The difference of the sum functions is 0. Hence, all its derivatives at 0 are 0.

4 RPS functions

Definition 4.1. Given a complex number z_0 and a function $f : U \to \mathbb{C}$ defined on a neighborhood $U \subset \mathbb{C}$ of z_0, we say that f is representable by a power series (=RPS) or analytic at z_0 if $\exists r > 0$ and a power series $\sum a_n z^n$ with $RCV \geq r$ such that $\Delta(z_0, r) = \{z \in \mathbb{C} \mid |z_0 - z| < r\} \subset U$ and

$$\forall z \in \Delta(z_0, r), f(z) = \sum a_n (z - z_0)^n.$$

Remark 4.2.

- For $f : \mathbb{R} \to \mathbb{C}$ and $z_0 = x_0$, replace U by an interval $I \ni x_0$ and $\Delta(z_0, r)$ by $\Delta(x_0, r) \cap \mathbb{R} = [r + x_0, x_0 + r] \ni I(x_0, r)$.

- Most results will be given relatively to $z_0 = 0$, but only for convenience. The generalization is just the consequence of f RPS at $z_0 \Leftrightarrow f(z_0 + \bullet)$ is RPS at 0.

Definition 4.3. $f : U \subset \mathbb{C} \to \mathbb{C}$ is said to be analytic if f is RPS at any point of U.

Proposition 4.4. Let f be representable by $\sum a_n z^n$ at 0 on $\Delta(0, r)$. Then f is analytic on $\Delta(0, r)$.

Proof. Let $z_0 \in \Delta(0, r)$ and $\rho = r - |z_0|$. For $z \in \Delta(z_0, \rho)$ we have

$$f(z) = \sum_{n=0}^{\infty} a_n ((z - z_0) + z_0)^n$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{n} \binom{n}{m} a_n z^{n-m} (z-z_0)^m$$

$$= \sum_{m=0}^{\infty} \left(\sum_{n=m}^{\infty} \binom{n}{m} a_n z^{n-m} \right) (z-z_0)^m$$
The last equality is a consequence of the Fubini theorem given in ch1 with \(a_{m,n} = a_n \binom{n}{m} z_0^{n-m}(z - z_0)^m \) (with the convention \(\binom{n}{m} = 0 \) if \(m > n \)). We just have for example to check that \(\sum_n \sum_m |a_{m,n}| \) is finite:

\[
\sum_n \sum_m |a_{m,n}| = \sum_{n=0}^{\infty} |a_n| (|z - z_0| + |z_0|)^n = \sum_{n=0}^{\infty} |a_n|r^n,
\]

with \(0 \leq r' < \rho + |z_0| = r \) hence \(\sum |a_n|r^n \) converges and we have the result. \(\square \)

Remark 4.5. For \(z_0 \in \Delta(0, r) \), it’s important to notice that \(f \) is RPS at \(z_0 \) on the bigger disk centered at \(z_0 \) and contained in \(\Delta(0, r) \), which is \(\Delta(z_0, r - |z_0|) \).

From 3.10, we get a necessary condition for \(f \) to be RPS:

Proposition 4.6. If \(f : I \to \mathbb{C} \) is representable by \(\sum a_n x^n \) at 0, then \(\exists r > 0 \) such that \(I(0, r) \subset I \), with \(f \in C^\infty \) on \(I(0, r) \). Moreover we necessarily have \(a_n = f^{(n)}(0)/n! \).

Example 4.7. of a function which is not RPS:

\[
f : \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases} 0 & \text{if } x \leq 0 \\ \exp(-1/x^2) & \text{if } x > 0 \end{cases}
\]

By induction, one can prove that \(f \) is \(C^\infty \) on \(\mathbb{R} \) with all derivatives \(= 0 \) for all \(x \leq 0 \) and \(f^{(p)}(x) = P_p(1/x) \exp(1/x^2) \) for \(x > 0 \), \(P_p \) being a polynomial. Hence if \(f \)

representable by \(\sum a_n x^n \), \(a_n = f^{(n)}(0)/n! = 0 \Rightarrow f = 0 \) on \(I(0, r) \) for \(r > 0 \), which is false.

Definition 4.8. For \(f : I \subset \mathbb{R} \to \mathbb{C} \), the Taylor polynomial of \(f \) at \(a \),

\[
T_n(f, a, \bullet) : x \mapsto \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k
\]

the Taylor polynomial of \(f \) at \(a \),

\[
R_n(f, a, \bullet) : x \mapsto f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k
\]

the Taylor remainder of \(f \) at \(a \), and

\[
T(f, a, \bullet) : x \mapsto \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k
\]

the Taylor series of \(f \) at \(a \).

Corollary 4.9. A function \(f : I \to \mathbb{C} \) is RPS at 0 iff \(\exists r > 0 \) such that \(I(0, r) \subset I \) such that \(f \) is \(C^\infty \) on \(I(0, r) \) and

\[
\forall x \in I(0, r), \quad R_n(f, 0, x) \xrightarrow{n \to \infty} 0.
\]

In such a case, \(f \) is representable by its Taylor series at 0.

Remark 4.10.

• Of course we have the same result replacing 0 by \(a \) - just use \(f_a = f(\bullet + a) \).
• About the Taylor remainder: one can prove by induction, using integrations by parts, that we have, for $f \in C^{n+1}$:

\[
R_n(f, a, x) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t)dt
\]

This implies, for example, that

\[
|R_n(f, a, x)| \leq \int_a^x \frac{(x-t)^n}{n!} |f^{(n+1)}(t)|dt
\]

\[
\leq \max_{(a,x)} |f^{(n+1)}| \int_a^x \frac{(x-t)^n}{n!} dt
\]

\[
= \max_{(a,x)} |f^{(n+1)}| \left[\frac{(x-a)^{n+1}}{(n+1)!} - \frac{(a-t)^{n+1}}{(n+1)!} \right]
\]

because the sign of $x-t$ is constant on $[(a, x)] (= [a, x]$ if $a \leq x$, $= [x, a]$ if not). Hence we have

\[
|R_n(f, a, x)| \leq \max_{(a,x)} |f^{(n+1)}| \frac{|a-t|^{n+1}}{(n+1)!}
\]

This gives a sufficient condition for $f \in C^{\infty}$ to be RPS at a:

\[
\exists r > 0, \exists M \geq 0, \forall x \in [a-r, a+r], \forall n, |f^{(n)}(t)| \leq M.
\]

\[
(|a-t|^{n+1}/(n+1)! \to 0 \text{ since } RCV(\sum z^n/n!) = +\infty).
\]

Proposition 4.11. Let $\sum a_n z^n$ a power series with $RCV= R > 0$, sum function f. We suppose $a_0 \neq 0$. Then $1/f$ is RPS at 0.

Proof. We can suppose $a_0 = 1$ (consider $f \leftrightarrow f/a_0$). Let’s first prove

Lemma 4.12. $RCV(\sum u_n z^n) > 0 \iff \exists q > 0, |u_n| < q^n$.

Proof. For \Rightarrow, we note $r = RCV(\sum u_n z^n) > 0$. Fix $r' \in [0, r]$: we have $(u_n r^n)$ bounded by some constant $M \geq 1$, and we get $\forall n, |u_n| \leq M(1/r')^n \leq q^n$ with $q = M/r'$. For the other implication we have $u_n = O(q^n)$, hence $RCV(\sum u_n z^n) \geq RCV(\sum q^n z^n) = 1/q > 0$.

If $1/f$ is RPS $\sum b_n z^n$ on $\Delta(0, R') \subset \Delta(0, R)$, we get (cf. 2.11) on $\Delta(0, R')$

\[
(\sum a_n z^n) \ast (\sum b_n z^n) = (\sum a_n z^n)(\sum b_n z^n) = 1
\]

which implies (cf. 3.12)

\[
b_0 = 1 \text{ and } \forall n \geq 1, b_n = -a_1 b_{n-1} - \cdots - a_n b_0.
\]

Let $q > 0$ such that $|a_n| \leq q^n$ and let’s prove by induction that $|b_n| \leq q'^n$ with $q' = 2q$. This is true for $n = 0$ and if $|b_{n-1}| \leq q'^{n-1}$, we have

\[
|b_n| \leq \sum_{k=1}^n |a_k| |b_{n-k}| \leq \sum_{k=1}^n q'^k q'^{n-k} = \sum_{k=1}^n \frac{1}{2^k} q'^{n} \leq q'^n.
\]
Hence by the lemma we have $RCV(\sum b_n z^n) = R_0 > 0$ and the formula 1 proves that the sum function of $\sum b_n z^n$ is equal to $1/f$ on $\Delta(0, \min\{R, R_0\})$. □

Remark 4.13. About the composition of two RPS functions : Suppose $f(z) = \sum a_n z^n$ on $\Delta(0, R)$ and $g(z) = \sum b_n z^n$ on $\Delta(0, R')$ with $b_0 = 0 = g(0)$: then $\exists \rho < R'$ such that $z \in \Delta(0, \rho) \Rightarrow g(z) \in \Delta(0, R)$ by continuity of g, and for $z \in \Delta(0, \rho)$, we have $f(g(z)) = \sum_n a_n g(z)^n$. But, by Cauchy product, g^n is RPS on $\Delta(0, \rho)$, and we can note $g(z)^n = \sum_p b_{n,p} z^p$ for some complex numbers $b_{n,p}$.

Hence,

$$f(g(z)) = \sum_n \sum_p a_n b_{n,p} z^p = \sum_p (\sum_n a_n b_{n,p}) z^p$$

if we can apply the Fubini theorem to the double series $(a_n b_{n,p})$.

5 Classical examples

Definition 5.1. We note $\exp(z) = e^z$, $\cos z$ and $\sin z$ the sum functions of the following power series :

$$\sum \frac{z^n}{n!}, \sum \frac{(-1)^n}{(2n)!} z^{2n} \text{ and } \sum \frac{(-1)^n}{(2n + 1)!} z^{2n+1}.$$

Remark 5.2.
- The three power series have $RCV=\infty$: we already know that for the first one. But if we note these series respectively $\sum a_n z^n, \sum b_n z^n$ and $\sum c_n z^n$ ($a_n = 1/n!$) we remark that $|b_n| \leq a_n$ and $|c_n| \leq a_n$.
- Following this definition, we clearly have, for $z \in \mathbb{C}$,

$$\cos(-z) = \cos z \text{ and } \sin(-z) = -\sin z.$$

Proposition 5.3. We have the following facts :

1. The derivative series of \exp, \sin and \cos are respectively \exp, \cos and $-\sin$.
2. For all $z, z' \in \mathbb{C}$, $e^{z+z'} = e^z e^{z'}$.
3. For all $z \in \mathbb{C}$, $\cos z + i \sin z = e^{iz}$.
4. For all $z \in \mathbb{C}$, $e^z = \lim_{n \to \infty} (1 + \frac{z}{n})^n$.

Proof. The first point is a consequence of 3.8. For 2, we use the Cauchy product (and $RCV(\sum z^n/n!) = \infty$, so we have absolute convergence everywhere) to get

$$e^z e^{z'} = \sum_{n \geq 0} \left(\sum_{k=0}^n \frac{(-1)^k}{k!} \frac{(-1)^{n-k}}{(n-k)!} z^{n-k} \right) = \sum_{n \geq 0} \frac{(z+z')^n}{n!} = e^{z+z'}.$$

With the notations of 5.2, $b_n + ic_n = i^n a_n$ so we get 3. Let’s prove 4 : we note $E = \mathbb{N} \subset \mathbb{R}$ and for all $k \in \mathbb{N}$ (with the convention $\binom{n}{k} = 0$ if $k > n$),

$$\alpha_k \begin{cases}
E &\to \mathbb{C} \\
n &\mapsto \binom{n}{k} \frac{1}{n^k} z^k,
\end{cases}$$

so we get for all $n \in E$,

$$A(n) = \left(1 + \frac{z}{n}\right)^n = \sum_{k=0}^{+\infty} \alpha_k(n).$$
Let’s try to apply the double-limit theorem for \(n \to \infty \): we first have for all \(k \geq 0 \)
\[
\forall n \geq k, \quad \alpha_k(n) = \frac{z^k}{k!} \prod_{i=0}^{k-1} \left(1 - \frac{i}{n} \right) \xrightarrow{n \to \infty} \frac{z^k}{k!}.
\]
But we also have
\[
\forall n \geq k, \quad |\alpha_k(n)| = \left| \frac{z^k}{k!} \prod_{i=0}^{k-1} \left(1 - \frac{i}{n} \right) \right| \leq \frac{|z|^k}{k!},
\]
and this inequality is also true for \(n < k \): we have the normal convergence (cf. \(\sum |z|^n/n! \) converges). The double-limit theorem gives the result.

\[\square \]

Remark 5.4. As a consequence of 5.2 and 3 we have
\[
\cos z = \frac{e^{iz} + e^{-iz}}{2} \quad \text{and} \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}.
\]

Lemma 5.5. We note \(E = \{ x \in \mathbb{R}^+ \mid \cos(x) = 0 \} \). Then \(\exists x = \inf E \in \mathbb{R}_+^* \).

Proof. We just have to prove that \(E \neq \emptyset \). If not, \(\cos x > 0 \) for all \(x \geq 0 \) (cf. \(\cos 0 = 1 \) and \(\cos \) is continuous). This would imply the strict convexity of \(-\cos\) on \(\mathbb{R}_+ \), which cannot happen since for all \(x \in \mathbb{R}_+ \), \(-\cos x < 0 \) (the only negative convex functions on \(\mathbb{R}_+ \) are the constant functions).

\[\square \]

Definition 5.6. The constant \(2\alpha \) will be noted \(\pi \).

Corollary 5.7. We have the following facts:
1. For all \(x \in \mathbb{R} \), \(\cos^2 x + \sin^2 x = 1 \).
2. \(e^{i\pi/2} = i \), which implies \(\forall x \in \mathbb{R}, \cos(x + \frac{\pi}{2}) = -\sin x \) and \(\sin(x + \frac{\pi}{2}) = \cos x \).
3. \(e^{i\pi} = -1 \), which implies \(\forall x \in \mathbb{R}, \cos(\pi - x) = -\cos x \) and \(\sin(\pi - x) = \sin x \).
4. \(e^{i2\pi} = 1 \), which implies the \(2\pi \)-periodicity of the functions of the real variable \(x \mapsto \sin x, \cos x \).

Proof. Using the continuity and the algebraic properties of \(\tau : z \mapsto \bar{z} \), we have for all \(z \in \mathbb{C} \),
\[
\exp z = \tau \left(\lim_{n \to \infty} \sum_{k=0}^{n} \frac{z^k}{k!} \right) = \lim_{n \to \infty} \left(\tau \left(\sum_{k=0}^{n} \frac{z^k}{k!} \right) \right) = \lim_{n \to \infty} \left(\sum_{k=0}^{n} \frac{z^k}{k!} \right) = \exp \bar{z}.
\]
Hence for \(z = ix \in i\mathbb{R} \), by 5.3.2, we have \((e^{ix})^{-1} = e^{-ix} = e^{-i\pi} \), which gives \(e^{i\pi} = 1 \) and then 1. But \(\cos(\pi/2) = 0 \), so 5.3.3 implies \(e^{i\pi/2} = i \). Then \(e^{i\pi} = (e^{i\pi/2})^2 = 1 \) and \(e^{i2\pi} = (e^{i\pi/2})^4 = 1 \). Just take the real and imaginary parts of \(e^{ix}e^{i\lambda} = e^{(x+\lambda)i} \) for \(\lambda \in \{1/2, 1, 2\} \) to obtain the complementary assertions in 2, 3 and 4.

\[\square \]

Remark 5.8.
- More generally for \(a, b \in \mathbb{R} \), the classical trigonometric formulas
 \[
 \begin{align*}
 \cos(a + b) &= \cos a \cos b - \sin a \sin b \\
 \sin(a + b) &= \cos a \sin b + \sin a \cos b
 \end{align*}
 \]
 are a consequence of \(e^{ia}e^{ib} = e^{i(a+b)} \).
• The hyperbolic sine and cosine are defined as follow for \(z \in \mathbb{C} \) :
\[
\begin{align*}
\sinh z &= -i \sin(iz) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!} = \frac{e^z - e^{-z}}{2}, \\
\cosh z &= \cos(iz) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} = \frac{e^z + e^{-z}}{2},
\end{align*}
\]
generalizing the definition known for \(x \in \mathbb{R} \).

Example 5.9. There’s a classical way to calculate the sum of power series of the form \(\sum P(n)z^n/n! \) for a given polynomial \(P \in \mathbb{C}[X] \). First the RCV is \(+\infty\) by De D’Alembert rule. Then the idea is to decompose \(P \) on the base \(\{1, X, X(X-1), \ldots, X(X-1)\ldots(X-d+1)\} \) if \(\deg P = d \). Practically, with \(\prod_{i=0}^{+\infty}(X-i) = 1 \),
\[
\begin{align*}
\deg P = d \quad \Rightarrow \quad \exists! (a_0, \ldots, a_d) \in \mathbb{C}^{d+1} \mid P &= \sum_{k=0}^{d} a_k \prod_{i=0}^{k-1}(X-i) \\
&= \sum_{n \geq 0} \frac{P(n)}{n!} z^n = \sum_{k=0}^{d} a_k \sum_{n \geq 0} \frac{n \ldots (n-k+1) z^n}{n!} \\
&= \sum_{n \geq 0} \frac{P(n)}{n!} z^n = \sum_{k=0}^{d} a_k \sum_{n \geq k} \frac{n \ldots (n-k+1) z^n}{n!} \\
&= \sum_{n \geq 0} \frac{P(n)}{n!} z^n = \sum_{k=0}^{d} a_k \sum_{n \geq k} \frac{z^n}{(n-k)!} = \sum_{k=0}^{d} a_k z^k e^z.
\end{align*}
\]

Theorem 5.10. The function \(x \in \mathbb{R} \mapsto -\ln(1-x) \) is representable by the power series \(\sum_{n \geq 1} x^n/n \) on \([-1, 1]\).

Proof. More precisely, we have : the primitive series of \(\sum z^n \) (which has RCV= 1) is \(\sum_{n \geq 1} z^n/n \). Hence we have the result since \(\ln \) is defined on \(\mathbb{R}^+ \) as the primitive \(F \) of \(x \mapsto 1/x \) such that \(F(1) = 0 \).

Definition 5.11. We define the complex logarithm as the sum of the power series \(-\sum_{n \geq 1} (1-z)^n/n \), defined on \(\Delta(1, 1) \), and we note it \(\ln z \).

Proposition 5.12. We have

• for all \(z \in \Delta(1, 1) \), \(\exp(\ln z) = z \);
• for all \(z \in \Delta(0, \ln 2) \), \(\ln(\exp z) = z \).

Proof. Following 4.13, we write, for \(z \in \Delta_1 \),
\[
\ln^n(1-z) = (-1)^n(\sum_{k \geq 1} z^k/k)^n = (-1)^n \sum_{k \geq 0} a_{k,n} z^k,
\]
and we set \(b_{k,n} = (-1)^n a_{k,n} z^k/n! \). We have \(|b_{k,n}| = a_{k,n} |z|^k/n! \) because \(a_{k,n} \geq 0 \) (cf. \(\alpha_n \geq 0, \beta_n \geq 0 \Rightarrow \sum_{k \geq 0} a_{k,n} \alpha_k \beta_{n-k} \geq 0 \)), hence the series \(\sum_{n \geq 0} b_{k,n} \) converges to \((-1)^n \ln^n(1-|z|)/n! \). Since the series \(\sum(-\ln(1-|z|))/n \) converges, we can apply the Fubini’s theorem, which gives (cf. 4.13) :
\[
\exp(\ln(1-z)) = \sum_{k \geq 0} \left(\sum_{n \geq 0} \frac{a_{k,n}}{n!} \right) z^k = \sum_{k \geq 0} c_k z^k.
\]
The point is that we know that this quantity is 1 - \(x \) if \(z = x \in [-1, 1] \). Thus, by 3.12, we have \(c_0 = 1, c_1 = -1 \) and \(c_k = 0 \) if \(k > 1 \). Finally we get the result
\(\exp(\ln(1-z)) = 1 - z. \)

For the other assumption, we first remark that the left member is well defined:

\[z \in \Delta(0, \ln 2) \Rightarrow |e^z - 1| = |\sum_{n \geq 1} k^n/n!| \leq \sum_{n \geq 1} |z|^n/n! = e^{|z|} - 1 \in [0, 1]. \]

Then we write

\[\ln(\exp z) = \ln(1 - (1 - e^z)) = \sum_{n \geq 1} \sum_{k \geq 0} b_{k,n}. \]

with this time \(b_{k,n} = (-1)^n a_{k,n} z^k/n, \) where

\[(-1)^n \sum_{k \geq 0} a_{k,n} z^k = (1 - e^z)^n = (-1)^n (\sum_{p \geq 1} z^p/p!)^n. \]

Again, by induction (and using the definition of the coefficients of the Cauchy product), one can show that \(a_{k,n} \geq 0. \) This implies \(|b_{k,n}| = a_{k,n} |z|^k/n \) and thus

\[\sum_{k \geq 0} |b_{k,n}| = \sum_{k \geq 0} a_{k,n} |z|^k/n = (-1)^n (1 - e^{|z|})^n/n = (e^{|z|} - 1)^n/n \]

with \(e^{|z|} - 1 \in [0, 1]. \) Hence \(\sum_{n \geq 1} (e^{|z|} - 1)^n/n \) converges and we can, here again, apply the Fubini’s theorem. The end of the proof is the same as in the first case, using the known results when \(z = x \in]-\infty, \ln 2[. \)

\[\square \]

Proposition 5.13. For all \(x \in]-1, 1[, \)

1. \(\arctan(x) = \sum_{n \geq 0} (-1)^n/(2n + 1) x^{2n+1} \)
2. \(\arctanh(x) = \sum_{n \geq 0} x^{2n+1}/2n + 1 = \frac{1}{2} \ln \frac{1 + x}{1 - x} \)
3. \(\forall \alpha \in \mathbb{N}, (1 + x)^\alpha = \sum_{n \geq 0} (\alpha)_n x^n \) with \((\alpha)_n = \frac{\alpha(\alpha - 1) \ldots (\alpha - n + 1)}{n!} \) and \((\alpha)_0 = 1. \)
4. \(\frac{1}{\sqrt{1 - x^2}} = \sum_{n \geq 0} (2n)! \cdot 2^{2n} (n!)^2 x^{2n} \)
5. \(\arcsin(x) = \sum_{n \geq 0} (2n)!/2^{2n} (n!)^2 2n + 1 x^{2n+1} \)
6. \(\frac{1}{\sqrt{1 + x^2}} = \sum_{n \geq 0} (-1)^n (2n)!/2^{2n} (n!)^2 x^{2n} \)
7. \(\arcsinh(x) = \sum_{n \geq 0} (-1)^n (2n)!/2^{2n} (n!)^2 2n + 1 x^{2n+1} \)

Proof. 1 and 2 follow from 3.8; 5 and 7 follow from 3.8 and 4 and 6, which follow from 3. So, let’s prove 3 : the only power series which can represent \(x \mapsto (1 + x)^\alpha \) is the one given, which is the Taylor series of \(\phi. \) The power series \(\sum (\alpha)_n x^n \) has RCV= 1 by the ratio test and if we note \(S \) its sum function we have

\[S'(x) = \sum_{n \geq 0} \left(\frac{\alpha}{n + 1} \right) (n + 1) x^n = \sum_{n \geq 0} (\alpha)_n (\alpha - n) x^n = \alpha S(x) - x S'(x). \]

Hence, since \(S(0) = 1, \) \(S(x) = (1 + x)^\alpha \) for all \(x \in]-1, 1[. \)

\[\square \]