Metric problems concerning nilpotent groups

P. Pansu

November 13th, 2010
We present four open problems about maps between nilpotent groups.

1. (Continuation of Tessera’s talk). Heisenberg groups do not biLipschitz embed in ℓ_2. But snowflaked versions do. Want bounds on distortions, dimensions of such embeddings.

2. Gromov’s Hölder homeomorphism problem and a variant.
Heisenberg group Heis^3 is the 3-dimensional Lie group with Lie algebra spanned by ξ, η and ζ with $[\xi, \eta] = \zeta$. The left-invariant vector fields ξ and η span a plane field H, Carnot-Carathéodory distance $d_{cc}(x, x')$ is the inf of length of curves tangent to H joining x to x'. Dilation δ_t is an automorphism induced by $\delta_t(\xi) = t\xi$, $\delta_t(\eta) = t\eta$, $\delta_t(\zeta) = t^2\zeta$. It multiplies Carnot distances by t.

Finiteness of Carnot distance follows from picture:
Translation and dilation invariance implies

1. \(d_{cc}(x, x \exp(t^2 \zeta)) = td_{cc}(1, \exp(\zeta)) = \text{const. } t. \)
2. \(\text{volume} B(x, r) = r^4 \text{volume} B(x, 1) = \text{const. } r^4, \) thus Hausdorff dimension is 4.
3. The same number of balls of radius \(r/2 \) suffice to cover every ball \(B(x, r). \)

Heisenberg group in its Carnot-Carathéodory metric gives a sharp approximation of the word metric on the integral Heisenberg group

\[
\text{Heis}_\mathbb{Z} = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} ; x, y, z \in \mathbb{Z} \right\}.
\]

In general, if \(\Gamma \) is a finitely generated nilpotent group, given a finite generating system, the word metric space \((\Gamma, d_w)\) admits an asymptotic cone, which is a Carnot group. A Carnot group is a nilpotent Lie group equipped with a Carnot-Carathéodory metric homogeneous under dilations.
Definition

The doubling dimension \(\dim(X) \) of a (doubling) metric space \(X \) is the least \(d \) such that for all \(R \), every \(R \)-ball can be covered by \(2^d \frac{R}{2} \)-balls.

Example

1. \(\mathbb{R}^n \), \(\text{Heis}^n \) (\(n \) odd) have doubling dimension linear in \(n \).
2. The Internet network equipped with its latency metric is believed to have low dimension.

Theorem

(Assouad 1983). For every \(\epsilon \in (0, 1) \) and \(d > 0 \), there exist \(D(d, \epsilon) \) and \(N(d, \epsilon) \) such that for every \(d \)-dimensional metric space \(X \), the snowflaked metric \((X, d_X^{1-\epsilon}) \) embeds in \(\ell_2^N \) with distortion \(\leq D \).

So snowflaked Heisenberg group does biLipschitz embed in \(\ell_2 \).

Question

Give sharp bounds on \(D \) and \(N \).
Theorem

(Gupta, Krauthgamer, Lee 2003; Lee, Mendel, Naor 2004). In Assouad’s theorem, one can take $N = O\left(\frac{d \log d}{\epsilon}\right)$ and $D = O\left(\frac{d}{\sqrt{\epsilon}}\right)$.

Unclear whether dimension bound is sharp or not.

Question

What is the minimal dimension $N(\epsilon)$ of a Euclidean space in which $(\text{Heis}^3, d_{cc}^{1-\epsilon})$ admits a biLipschitz embedding?

Remark

$N(\epsilon) > 4$.

Indeed, the Hausdorff dimension of $(\text{Heis}^3, d_{cc}^{1-\epsilon})$ is $\frac{4}{1-\epsilon} > 4$.
Theorem

(Gupta, Krauthgamer, Lee 2003; Lee, Mendel, Naor 2004). In Assouad's theorem, one can take $N = O\left(\frac{d \log d}{\epsilon}\right)$ and $D = O\left(\frac{d}{\sqrt{\epsilon}}\right)$. For fixed d, the distortion bound is sharp (Lee, Mendel, Naor 2004): $(1 - \epsilon)$-snowflaked Laakso spaces require distortion $\Omega\left(\frac{1}{\sqrt{\epsilon}}\right)$ when embedded in ℓ_2.

Dependance on d? Heisenberg groups do not help. Indeed, (Lee, Naor 2006): $(\text{Heis}^n, d^{1-\epsilon}_{cc})$ embed in ℓ_2 with distortion $O\left(\frac{1}{\sqrt{\epsilon}}\right)$ independent on n.

Question

What is the minimal distortion of a biLipschitz embedding of $(\text{Heis}^3, d^{1-\epsilon}_{cc})$ in ℓ_2?
Laakso graphs
Proof (Lee, Mendel, Naor 2004) that $1 - \epsilon$-snowflaked Laakso graph $(G_j, d_j^{1-\epsilon})$ requires distortion $D_j \geq \Omega\left(\frac{1}{\sqrt{\epsilon}}\right)$ when embedded in ℓ_2.

By induction on j. Show that $D_j^2 \geq 4^{-\epsilon} D_{j-1}^2 + \frac{1}{4}$.

In rescaled Laakso graph, $uavb$ is a unit square with a diagonal of length 2. When mapped to a quadrilateral $u'a'v'b'$ in Euclidean space in a distance nondecreasing manner, parallelogram inequality

$$|u' - v'|^2 + |a' - b'|^2 \leq |u' - a'|^2 + |a' - v'|^2 + |v' - b'|^2 + |b' - u'|^2$$

implies

$$4 \frac{|u' - v'|^2}{|u - v|^2} + \frac{|a' - b'|^2}{|a - b|^2} \leq \frac{|u' - a'|^2}{|u - a|^2} + \frac{|a' - v'|^2}{|a - v|^2} + \frac{|v' - b'|^2}{|v - b|^2} + \frac{|b' - u'|^2}{|b - u|^2},$$

or

$$4^{1-\epsilon} \frac{|u' - v'|^2}{|u - v|^{2(1-\epsilon)}} + \frac{|a' - b'|^2}{|a - b|^{2(1-\epsilon)}} \leq \frac{|u' - a'|^2}{|u - a|^{2(1-\epsilon)}} + \frac{|a' - v'|^2}{|a - v|^{2(1-\epsilon)}} + \frac{|v' - b'|^2}{|v - b|^{2(1-\epsilon)}} + \frac{|b' - u'|^2}{|b - u|^{2(1-\epsilon)}}.$$
Question

(Gromov 1993). Let G be a Carnot group of dimension n. For which $\alpha \in (0, 1)$ does there exist locally a homeomorphism $\mathbb{R}^n \to G$ which is C^{α}-Hölder continuous?

Definition

Let X, Y be metric spaces. Let $\text{Holder}(X, Y) = \sup\{\alpha \in (0, 1) \mid \exists \text{ locally a } C^{\alpha}\text{-Hölder continuous homeomorphism } X \to Y \text{ whose inverse is Lipschitz}\}$.

Example

If G is a r-step Carnot group, the exponential map $g = \text{Lie}(G) \to G$ is locally $C^{1/r}$-Hölder continuous and its inverse is Lipschitz. Thus $\text{Holder}(\mathbb{R}^n, G) \geq 1/r$.

Proposition

Let G have dimension n and Hausdorff dimension Q. Then $\text{Holder}(\mathbb{R}^n, G) \leq \frac{n}{Q}$.
Proposition

Let G have dimension n and Hausdorff dimension Q. Then $\text{Holder}(\mathbb{R}^n, G) \leq \frac{n-1}{Q-1}$.

Proof. Use the Varopoulos (1985) isoperimetric inequality for piecewise smooth domains $D \subset M$,

$$\text{vol}(D)^{Q-1/Q} \leq \text{const.} \, \mathcal{H}^{Q-1}(\partial D).$$

It follows that the boundary of any non smooth domain Ω has Hausdorff dimension at least $Q - 1$. Indeed, cover $\partial \Omega$ with balls B_j and apply (*) to $\Omega \cup \bigcup B_j$. This gives a lower bound on $\mathcal{H}^{Q-1}(\partial (\bigcup B_j)) \leq \sum \mathcal{H}^{Q-1}(\partial B_j) \leq \text{const.} \sum \text{diameter}(B_j)^{Q-1}$.
(Gromov 1993). Let $n = 2m + 1$, let Heisn denote n-dimensional Heisenberg group. Let $V \subset \text{Heis}^n$ be a subset of topological dimension $m + 1$. Then the Hausdorff dimension of V is at least $m + 2$. It follows that $\text{Holder}(\mathbb{R}^n, \text{Heis}^n) \leq \frac{m+1}{m+2}$.

Proof. According to topological dimension theory (Alexandrov), there exists an m-dimensional polyhedron P and a continuous map $f : P \to \text{Heis}^n$ such that every map sufficiently C^0-close to f hits V.

Gromov approximates f with piecewise horizontal maps which sweep an open set U. This gives rise to a local projection $p : U \to \mathbb{R}^{m+1}$ such that for every ball B, the tube $p^{-1}(p(B))$ has volume $\leq \text{const. diameter}(B)^{m+2}$.

Cover V with balls B_j. The corresponding tubes $T_j = p^{-1}(p(B_j))$ cover U. Then the volume of U is less than $\sum \text{diameter}(B_j)^{m+2}$, which shows that $\text{dim}_{\text{Hau}}(V) \geq m + 2$.

Theorem

(Gromov 1993). Let G be a generic Carnot group of dimension n, Hausdorff dimension Q, with an h-dimensional distribution. Let $k \leq h$ be such that $h - k \geq (n - h)k$. Then $\text{Holder}(\mathbb{R}^n, G) \leq \frac{n-k}{Q-k}$.

Facts about Heisenberg group

Snowflake embeddings

Hölder homeomorphism problem

Isoperimetric inequality

Horizontal submanifolds

Conformal Hölder homeomorphism problem

P. Pansu

Metric problems concerning nilpotent groups
Curvature pinching

Definition

Let M be a Riemannian manifold. Let $-1 \leq \delta < 0$. Say M is δ-pinched if sectional curvature ranges between -1 and δ. Define the optimal pinching $\delta(M)$ of M as the least $\delta \geq -1$ such that M is quasiisometric to a δ-pinched simply connected Riemannian manifold.

Example

Rank one symmetric spaces of noncompact type are hyperbolic spaces over the reals $H^n_{\mathbb{R}}$, the complex numbers $H^m_{\mathbb{C}}$, the quaternions $H^m_{\mathbb{H}}$, and the octonions $H^2_{\mathbb{O}}$. Real hyperbolic space has sectional curvature -1. Other rank one symmetric spaces are $-\frac{1}{4}$-pinched.

Question

What is the optimal pinching of $H^m_{\mathbb{C}}$?
Definition

Say two geodesic rays in a Riemannian manifold are asymptotic if their Hausdorff distance is finite. The visual boundary of a negatively curved manifold is the set of asymptoticity classes of geodesic rays.

Facts.

- The visual boundary, seen from a point \(o \), is a sphere (use polar coordinates).
- It carries a visual metric \(d_o \).
- Different visual metrics \(d_o \) and \(d_{o'} \) are equivalent.
- Quasiisometries between negatively curved Riemannian manifolds induce quasisymmetric maps between ideal boundaries.
Example

If M is a rank one symmetric space, the visual metrics on its ideal boundary are locally equivalent to Carnot-Carathéodory metrics on Carnot groups.

Proposition

Let M be a simply connected δ-pinched Riemannian manifold. Equip the ideal boundary ∂M of M with a visual metric. The natural homeomorphism $S^{n-1} \to \partial M$ is C^α with $\alpha = \sqrt{-\delta}$, and its inverse is Lipschitz. Therefore $\text{Holder}(\mathbb{R}^{n-1}, \partial M) \geq \sqrt{-\delta}$.

Indeed, geodesics from a unit ball to a point come together exponentially fast, with exponents ranging from $\sqrt{-\delta}$ to 1 (Rauch comparison theorem, 1950's).

Question

Let G be a Carnot group. Let $\alpha > 1/2$. Does there exist quasisymmetrically equivalent metrics on G which locally admit C^α homeomorphisms from Euclidean space? With Lipschitz inverses?

If no, then optimal pinching of H^m_C is $-\frac{1}{4}$.
Definition

Let $f : X \to Y$ be a homeomorphism. The conformal Hölder exponent $\text{CHolder}(f)$ of f is the supremum of α’s such that for all $\ell > 0$, there exists $L > 0$ such that for all x, x', x'' in X,

$$d(f(x), f(x'')) \leq \ell d(f(x), f(x')) \Rightarrow d(x, x'') \leq L d(x, x')^\alpha.$$

Let $\text{CHolder}(X, Y)$ denote the supremum of α’s such that there locally exist homeomorphisms $X \to Y$ with conformal Hölder exponents $\geq \alpha$.

Lemma

1. If $f : X \to Y$ is C^α and f^{-1} is C^β, then $\text{CHolder}(f) \geq \alpha \beta$. In particular, $\text{Holder}(X, Y) \leq \text{CHolder}(X, Y)$.

2. Let $f : X \to Y$ and $g : Y \to Z$ be homeomorphisms. Assume that g is quasisymmetric. Then $\text{CHolder}(g \circ f) = \text{CHolder}(f)$.

Advertisements
Definition

Let X be a compact metric space. The conformal dimension of X is the infimum of Hausdorff dimensions of metric spaces quasisymmetrically equivalent to X.

Example

(Pansu 1990). Carnot groups have conformal dimension equal to their Hausdorff dimension.

Corollary

Let G be a Carnot group of dimension n and Hausdorff dimension Q. Then $\text{CHolder}(\mathbb{R}^n, G) \leq \frac{n}{Q}$.

Theorem

(Pansu 2009). The optimal pinching of H^2_C is $-\frac{1}{4}$.

Gives some hope for $\text{CHolder}(\mathbb{R}^3, \text{Heis}^3) = \frac{1}{2}$ and therefore $\text{Holder}(\mathbb{R}^3, \text{Heis}^3) = \frac{1}{2}$.

P. Pansu

Metric problems concerning nilpotent groups
Metric geometry, algorithms and groups

Paris, January 10th - April 8th, 2011

Institut Henri Poincaré

Organizers: Guy Kindler (Jerusalem), James Lee (U. Washington), Claire Mathieu (Brown), Ryan O’Donnell (Carnegie Mellon), Pierre Pansu (Paris-Sud/ENS), Nicolas Schabanel (LIAFA-CNRS), Lior Silberman (Vancouver)

Workshops:
January 17-21: embeddings, algorithms, complexity
March 21-25: expanders, derandomization

In between: courses (Valette, Linial, Pisier, Maurey, Breuillard, Cordero-Erausquin, Lang, Wenger, Silberman, Peres, Gamburd, Wigderson + computer scientists)

Search the web: pansu metric