Séminaire: Problèmes Spectraux en Physique Mathématique

Année 2018-2019

Les séminaires auront lieu à l'Institut Henri Poincaré.
Le séminaire est financé par le GDR "Dynamique quantique" du CNRS.

Pour tout renseignement complémentaire, veuillez contacter les organisateurs, Hakim Boumaza, Mathieu Lewin ou Stéphane Nonnenmacher.

Prochain séminaire le lundi 11 mars 2019 en salle 314 (3e étage)
Affiche en pdf

 11h15 - 12h15 Jean-Marie Barbaroux (Toulon)
Graphene antidot lattices : a mathematical approach

From the physics point of view, it is important to turn semimetallic graphene into a semiconductor. This can be achieved for example by considering graphene antidot lattices (GALs) that consists of a periodic array of perforations in a graphene sheet. This causes a band gap to open up at the Fermi level. In this talk, I will present some recent mathematical results on two-dimensional Dirac operators modeling Hamiltonians for GALs. I will mostly focus on operators with periodic mass potentials, as well as their random Anderson-like perturbations describing defects in the array of perforations.
This is joint work with H.Cornean, E.Stockmeyer and S.Zalczer.

14h - 15h Serena Cenatiempo (Gran Sasso Science Institute, L'Aquila)
Bogoliubov theory in the Gross-Pitaevskii regime

In 1947 Bogoliubov suggested a heuristic theory to compute the excitation spectrum of a weakly interacting Bose gas. Remarkably, such a theory predicts a linear excitation spectrum (in sharp contrast with the quadratic dispersion of free bosons) and provides expressions for the thermodynamic functions which are believed to be correct in the dilute limit. However, so far there are only a few cases where the predictions of Bogoliubov theory can be obtained
through a rigorous mathematical analysis. In particular, a major challenge is to recover the physical intuition that the correct parameter to appear in the expressions of the physical quantities is the scattering length of the interaction.
In this talk I will discuss how the validity of the predictions of Bogolibov theory can be established for a system of N interacting bosons trapped in a box in the Gross-Pitaevskii
limit, where the scattering length of the potential is of the order 1/N and N tends to infinity.
Joint work with C. Boccato, C. Brennecke and B. Schlein.
 15h15 - 16h15 Gabriel Stoltz (Ecole des Ponts + Inria Paris)
Longtime convergence of evolution semigroups in molecular dynamics

I will present exponential decay estimates for the evolution operators associated with paradigmatic stochastic evolutions in molecular dynamics. The first case I will consider is a nonequilibrium Langevin dynamics. The associated generator is hypoelliptic and not coercive. It can however be shown to be hypocoercive for equilibrium dynamics, through the use of
a modified
L2 scalar product ; this property persists for nonequilibrium dynamics provided the external forcing is not too large. The second case corresponds to a nonlinear Feynman-Kac dynamics, whose convergence can be studied by Lyapunov techniques, once the existence and uniqueness of the eigenvector associated with the dominant eigenvalue of the evolution operator has been proved through a Krein-Rutman theorem.

Prochaines dates prévues:

8 avril 2019
13 mai 2019
24 juin 2019

Informations pratiques: Plan d'accès à l'IHP.

Historique du séminaire:

Année 2018-2019
Année 2017-2018
Année 2016-2017
Année 2015-2016
Année 2014-2015
Année 2013-2014
Année 2012-2013
Année 2011-2012
Année 2010-2011
Année 2009-2010
Année 2008-2009
Année 2007-2008
Année 2006-2007
Année 2005-2006

Dernière mise à jour: 18 février 2019
Page maintenue par Stéphane Nonnenmacher