Université Paris-Saclay • M2 Analyse Modélisation Simulation Introduction to spectral theory (2016-2017, 1er semestre)

Stéphane Nonnenmacher

Final exam (23 November 2016)

Problem : Negative eigenvalues of a Schrödinger operator

We consider the Schrödinger operator $A = -\Delta + V$ acting on $\mathcal{H} = L^2(\mathbb{R}^d)$, with a potential function $V \in L^{\infty}(\mathbb{R}^d, \mathbb{R})$.

- 1. Recall the domain $D(A) \subset L^2(\mathbb{R}^d)$ on which A is selfadjoint. Describe the quadratic form q_A associated with A, including its domain $Q(A) = D(q_A)$.
- 2. We assume $V \in L^{\infty}(\mathbb{R}^d)$ has a compact support. Explain why the essential spectrum $\sigma_{\text{ess}}(A) = \mathbb{R}_+$. We want to show that $\sigma_{\text{disc}}(A)$ is finite.

Let $B \subset \mathbb{R}^d$ be an open ball containing the support of V. We define the sesquilinear form

$$q_B(\psi,\psi) = \int_{\mathbb{R}^d} \left(|\nabla \psi(x)|^2 + V(x) |\psi(x)|^2 \right) dx \,,$$

of domain $D(q_B) = H^1(B \cup (\mathbb{R}^d \setminus \overline{B})).$

- (a) Show that q_B is a closed form. We call A_B the associated self-adjoint operator. Show that $D(q_B) = H^1(B) \oplus H^1(\mathbb{R}^d \setminus \overline{B})$. Deduce that A_B can be decomposed as the sum of two independent selfadjoint operators.
- (b) Show that A_B admits at most a finite number of negative eigenvalues.
- (c) Show the inclusion $H^1(\mathbb{R}^d) \subset D(q_B)$. Using the max-min principle for the operators A and A_B , show that $\mu_n(A_B) \leq \mu_n(A)$ for any $n \geq 1$. Hint : use the form domain in the max-min principle.
- (d) Deduce that A admits at most a finite number of negative eigenvalues.
- 3. From now on, we assume that V is continuous with compact support. We will consider the family of *semiclassical* Schrödinger operators

$$A_h = -h^2 \Delta + V(x),$$

where $h \in (0, 1]$ is called "Planck's constant".

Using question 2, show that for any $h \in (0, 1]$ the number N(h) of negative eigenvalues of A_h is finite. We want to study the behaviour of N(h), in the limit $h \to 0+$ (called the semiclassical limit).

To simplify the notations, we restrict ourselves to the dimension d = 2. We assume that the support of V is contained in the unit square $S = (0, 1) \times (0, 1)$.

(a) Our strategy is to approximate the function V by functions constant over small squares. For any integer $j \ge 1$, let us divide the square S into j^2 disjoint open squares

$$S_j(\boldsymbol{m}) \stackrel{\text{def}}{=} \left(\frac{m_1-1}{j}, \frac{m_1}{j}\right) \times \left(\frac{m_2-1}{j}, \frac{m_2}{j}\right), \qquad \boldsymbol{m} = (m_1, m_2) \in \{1, \dots, j\}^2,$$

and call their (disjoint) union $S_j \stackrel{\text{def}}{=} \bigcup_m S_j(\boldsymbol{m})$. What is the boundary of S_j ? Draw a sketch of ∂S_j .

(b) Using these squares, we define the functions V_j^{\pm} as follows :

$$\forall x \in S_j(\boldsymbol{m}), \quad \begin{cases} V_j^-(x) &= V_{j,\boldsymbol{m}}^- \stackrel{\text{def}}{=} \inf_{x \in S_j(\boldsymbol{m})} V(x) \\ V_j^+(x) &= V_{j,\boldsymbol{m}}^+ \stackrel{\text{def}}{=} \sup_{x \in S_j(\boldsymbol{m})} V(x) \end{cases}; \quad \forall x \in \mathbb{R}^2 \backslash S_j, \quad V_j^{\pm}(x) = 0. \end{cases}$$

We want to show that V_j^+ and V_j^- are good approximations of V_- when j is large. For this, take $\varepsilon > 0$ arbitrary small. Show that there exists $j_0 = j_0(\varepsilon) \in \mathbb{N}$ such that, $\forall j \geq j_0$, we have

(1)
$$\|V_j^+ - V\|_{L^1(\mathbb{R}^2} \le \varepsilon, \quad \|V_j^- - V\|_{L^1(\mathbb{R}^2} \le \varepsilon$$

- (c) Notation : for any real valued function f(x), its negative part is defined as $f_{-}(x) = \max(0, -f(x))$. Show that the negative parts $(V_{j}^{+})_{-}$ and $(V_{j}^{+})_{-}$ are good approximations of V_{-} when j is large, in the sense of (1).
- (d) We introduce two quadratic forms :

$$q_j^{\pm}(\psi,\psi) = \int \left(h^2 |\nabla \psi(x)|^2 + V_j^{\pm}(x)|\psi(x)|^2\right) dx, \quad \text{of respective domains}$$
$$D(q_j^+) = H_0^1(S_j \cup \mathbb{R}^2 \setminus \overline{S}), \quad D(q_j^-) = H^1(S_j \cup \mathbb{R}^2 \setminus \overline{S}).$$

Show that q_j^+ can be split as the sum of $j^2 + 1$ quadratic forms, acting on functions defined respectively on $S_{j,\boldsymbol{m}}, \boldsymbol{m} \in \{1, \ldots, j\}^2$, and on $\mathbb{R}^2 \setminus \overline{S}$.

Call A_j^+ the operators associated with the forms q_j^{\pm} . Show that A_j^+ can be represented as a sum of j^2 selfadjoint operators $A_{j,\boldsymbol{m}}^+$ acting on $S_j(\boldsymbol{m})$, plus an operator A^+ acting on $\mathbb{R}^2 \setminus B$. Describe the operators $A_{j,\boldsymbol{m}}^+$, A^+ , including their domains.

- (e) Same question for q_i^- and its associated operator A_i^- , split into $A_{i,\boldsymbol{m}}^-$ and A^-
- 4. We now want to obtain quantitative informations on the spectra of the operators $A_{j,\boldsymbol{m}}^{\pm}$ and A^{\pm} .
 - (a) Taking $\boldsymbol{m}_0 = (1, 1)$, compute explicitly the spectrum of the Dirichlet Laplacian on the square $S_j(\boldsymbol{m}_0)$. Deduce the spectrum of the operator A_{j,\boldsymbol{m}_0}^+ . Compute the spectrum of $A_{j,\boldsymbol{m}}^+$ for each $\boldsymbol{m} \in \{1, \ldots, j\}^2$.

Hint : notice that the squares $S_j(\boldsymbol{m})$ are all isometric to each other.

(b) We want to show that $\sigma(A^+) = \mathbb{R}^+$. For any $\lambda > 0$, construct a sequence of L^2 -normalized states $(\psi_n \in H^2(\mathbb{R}^2))_{n \ge 1}$, such that ψ_n are supported in the left half-space $\mathbb{R}^2_- = \{(x, y) \in \mathbb{R}^2, x < 0\}$, and satisfy $\|(-\Delta - \lambda)\psi_n\| \xrightarrow{n \to \infty} 0$. Deduce that the Laplacian $(-\Delta_{\mathbb{R}^d \setminus S})$ on $\mathbb{R}^d \setminus S$, with Neumann or Dirichlet boundary conditions, admits for spectrum \mathbb{R}^+ . Conclude.

Hint : you may take for ψ_n truncated plane waves.

- (c) Describe the spectrum of the operator A_i^+ .
- (d) Compute similarly the spectra of $A_{j,\boldsymbol{m}}^-$, A^- , and A_j^- .
- (e) We call $N_j^{\pm}(h)$ the number of negative eigenvalues of A_j^{\pm} . Show that these numbers are finite.
- (f) Apply the max-min principle (again, using form domains) to compare the μ_n 's of the operators A_j^+, A_j^- and A. Deduce that $N_j^+(h), N_j^{\pm}(h)$ and N(h) satisfy, for any $h \in (0, 1]$, the inequalities

(2)
$$N_{i}^{+}(h) \leq N(h) \leq N_{i}^{-}(h)$$
.

(g) We want to obtain an asymptotic expression of $N_j^+(h)$ and $N_j^-(h)$, when $h \to 0$. For this aim, we will admit the following asymptotics for the number of integer lattice points in large quarter-disks :

$$#\{(n_1, n_2) \in \mathbb{N}^2, n_1^2 + n_2^2 \le \lambda\} \sim \frac{\pi\lambda}{4}, \text{ when } \lambda \to \infty.$$

Use this expression to estimate the number of negative eigenvalues of the operators $A_{i,m}^{\pm}$ when $h \searrow 0$. Deduce the following asymptotics for $N_i^{\pm}(h)$:

$$N_j^{\pm}(h) \sim \frac{1}{4\pi h^2} \int_{\mathbb{R}^2} (V_j^{\pm})_{-}(x) \, dx \quad \text{when } h \searrow 0.$$

(h) Using the inequalities (2) and the approximation (1), deduce the following asymptotics for the negative eigenvalues of A:

$$N(h) \sim \frac{1}{4\pi h^2} \int_{\mathbb{R}^2} V_-(x) \, dx \quad \text{when } h \searrow 0.$$

This type of asymptotics is called a (semiclassical) Weyl's formula.

Exercise : Rank 1 perturbation of a Schrödinger operator

Our base Hilbert space is $\mathcal{H} = L^2(\mathbb{R})$. Consider a potential function $V \in L^1_{loc}(\mathbb{R}, [1, \infty))$. We consider the following sesquilinear form :

$$q(\varphi,\psi) = \int_{\mathbb{R}} \bar{\varphi}'(x)\psi'(x)\,dx + \int_{\mathbb{R}} V(x)\,\bar{\varphi}(x)\psi(x)\,dx\,,$$

defined on the domain $D(q) = \{ \psi \in H^1(\mathbb{R}), \sqrt{V}\psi \in L^2(\mathbb{R}) \}$. We call q_0 the restriction of q on the domain $D(q_0) = \{ \psi \in D(q), \psi(0) = 0 \}$.

- 1. (a) Show that q and q_0 are closed sesquilinear forms.
 - (b) Let A, A_0 be respectively the operators associated with q and q_0 .
 - (c) Recall why A and A_0 are selfadjoint.
 - (d) In the case where $V \in L^{\infty}(\mathbb{R})$, describe the domains D(A) and $D(A_0)$. *Hint*: Apply the integration by parts separately on \mathbb{R}_- and \mathbb{R}_+ .
 - (e) Show that and that the spectra of A and A_0 are included in the interval $[1, \infty)$.
- 2. We want to compare the operators A and A_0 .
 - (a) Show that there exists a unique $\phi \in D(q)$ such that $q(\phi, \psi) = \psi(0)$ for all $\psi \in D(q)$, and explain why $\phi(0) \neq 0$. Hint : apply Riesz's theorem on the appropriate Hilbert space.
 - (b) Denote $K = \{ \psi \in D(q), q(\varphi_0, \psi) = 0 \text{ for all } \varphi_0 \in D(q_0) \}$. Show that K is a one-dimensional subspace, and is spanned by ϕ . *Hint*: for any $\psi \in D(q)$, show that $\psi_0 \stackrel{\text{def}}{=} \psi - \frac{\psi(0)}{\varphi(0)}\varphi$ belongs to $D(q_0)$.
 - (c) Let $f \in L^2(\mathbb{R})$. Set $\psi \stackrel{\text{def}}{=} A^{-1}f$ and $\psi_0 \stackrel{\text{def}}{=} A_0^{-1}f$. Justify that these states are well-defined. Show that $\psi \psi_0 \in K$.
 - (d) Deduce that the difference $A^{-1} A_0^{-1}$ is a rank one operator. Show that this operator must be a multiple of the orthogonal projector π_{ϕ} on the state ϕ , namely $A^{-1} A_0^{-1} = c\pi_{\phi}$ for some constant $c = c_V \in \mathbb{R}$. Hint : notice that $A^{-1} - A_0^{-1}$ is symmetric.
- 3. We will now treat more explicitly the case where the potential V = 1.
 - (a) Using the defining formula $q(\phi, \psi) = \psi(0)$, compute the Fourier transform $\phi(\xi)$ of the state $\phi \in D(q)$ defined in 2(a). Using contour integrals, give the explicit formula for $\phi(x)$.
 - (b) Write the action of A on f as a multiplication operator in Fourier space, and then as a convolution operator acting on f.
 - (c) From this expression and the condition $A_0^{-1}f \in D(A_0) \subset D(q_0)$, compute explicitly the constant $c = c_{V=1}$ for this case.
 - (d) What are the spectra of A and A_0 for this case? *Hint* : notice that A_0^{-1} is a compact perturbation of A^{-1} .