Université Paris-Saclay • M2 Analyse Modélisation Simulation Introduction to spectral theory (2016-2017, 1er semestre)

Stéphane Nonnenmacher

Final exam (23 November 2016)

Problem : Negative eigenvalues of a Schrödinger operator

We consider the Schrödinger operator $A=-\Delta+V$ acting on $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$, with a potential function $V \in L^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$.

1. Recall the domain $D(A) \subset L^{2}\left(\mathbb{R}^{d}\right)$ on which A is selfadjoint. Describe the quadratic form q_{A} associated with A, including its domain $Q(A)=D\left(q_{A}\right)$.
2. We assume $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ has a compact support. Explain why the essential spec$\operatorname{trum} \sigma_{\text {ess }}(A)=\mathbb{R}_{+}$. We want to show that $\sigma_{\text {disc }}(A)$ is finite.

Let $B \subset \mathbb{R}^{d}$ be an open ball containing the support of V. We define the sesquilinear form

$$
q_{B}(\psi, \psi)=\int_{\mathbb{R}^{d}}\left(|\nabla \psi(x)|^{2}+V(x)|\psi(x)|^{2}\right) d x
$$

of domain $D\left(q_{B}\right)=H^{1}\left(B \cup\left(\mathbb{R}^{d} \backslash \bar{B}\right)\right)$.
(a) Show that q_{B} is a closed form. We call A_{B} the associated self-adjoint operator. Show that $D\left(q_{B}\right)=H^{1}(B) \oplus H^{1}\left(\mathbb{R}^{d} \backslash \bar{B}\right)$. Deduce that A_{B} can be decomposed as the sum of two independent selfadjoint operators.
(b) Show that A_{B} admits at most a finite number of negative eigenvalues.
(c) Show the inclusion $H^{1}\left(\mathbb{R}^{d}\right) \subset D\left(q_{B}\right)$. Using the max-min principle for the operators A and A_{B}, show that $\mu_{n}\left(A_{B}\right) \leq \mu_{n}(A)$ for any $n \geq 1$.
Hint: use the form domain in the max-min principle.
(d) Deduce that A admits at most a finite number of negative eigenvalues.
3. From now on, we assume that V is continuous with compact support. We will consider the family of semiclassical Schrödinger operators

$$
A_{h}=-h^{2} \Delta+V(x),
$$

where $h \in(0,1]$ is called "Planck's constant".
Using question 2 , show that for any $h \in(0,1]$ the number $N(h)$ of negative eigenvalues of A_{h} is finite. We want to study the behaviour of $N(h)$, in the limit $h \rightarrow 0+$ (called the semiclassical limit).

To simplify the notations, we restrict ourselves to the dimension $d=2$. We assume that the support of V is contained in the unit square $S=(0,1) \times(0,1)$.
(a) Our strategy is to approximate the function V by functions constant over small squares. For any integer $j \geq 1$, let us divide the square S into j^{2} disjoint open squares

$$
S_{j}(\boldsymbol{m}) \stackrel{\text { def }}{=}\left(\frac{m_{1}-1}{j}, \frac{m_{1}}{j}\right) \times\left(\frac{m_{2}-1}{j}, \frac{m_{2}}{j}\right), \quad \boldsymbol{m}=\left(m_{1}, m_{2}\right) \in\{1, \ldots, j\}^{2}
$$

and call their (disjoint) union $S_{j} \stackrel{\text { def }}{=} \bigcup_{m} S_{j}(\boldsymbol{m})$. What is the boundary of S_{j} ? Draw a sketch of ∂S_{j}.
(b) Using these squares, we define the functions $V_{j}^{ \pm}$as follows :
$\forall x \in S_{j}(\boldsymbol{m}), \quad\left\{\begin{array}{l}V_{j}^{-}(x)=V_{j, \boldsymbol{m}}^{-} \stackrel{\text { def }}{=} \inf _{x \in S_{j}(\boldsymbol{m})} V(x) \\ V_{j}^{+}(x)=V_{j, \boldsymbol{m}}^{+} \stackrel{\text { def }}{=} \sup _{x \in S_{j}(\boldsymbol{m})} V(x)\end{array} ; \quad \forall x \in \mathbb{R}^{2} \backslash S_{j}, \quad V_{j}^{ \pm}(x)=0\right.$.
We want to show that V_{j}^{+}and V_{j}^{-}are good approximations of V_{-}when j is large. For this, take $\varepsilon>0$ arbitrary small. Show that there exists $j_{0}=j_{0}(\varepsilon) \in \mathbb{N}$ such that, $\forall j \geq j_{0}$, we have

$$
\begin{equation*}
\left\|V_{j}^{+}-V\right\|_{L^{1}\left(\mathbb{R}^{2}\right.} \leq \varepsilon, \quad\left\|V_{j}^{-}-V\right\|_{L^{1}\left(\mathbb{R}^{2}\right.} \leq \varepsilon \tag{1}
\end{equation*}
$$

(c) Notation : for any real valued function $f(x)$, its negative part is defined as $f_{-}(x)=\max (0,-f(x))$.
Show that the negative parts $\left(V_{j}^{+}\right)_{-}$and $\left(V_{j}^{+}\right)_{-}$are good approximations of V_{-} when j is large, in the sense of (1).
(d) We introduce two quadratic forms :

$$
\begin{aligned}
q_{j}^{ \pm}(\psi, \psi) & =\int\left(h^{2}|\nabla \psi(x)|^{2}+V_{j}^{ \pm}(x)|\psi(x)|^{2}\right) d x, \quad \text { of respective domains } \\
D\left(q_{j}^{+}\right) & =H_{0}^{1}\left(S_{j} \cup \mathbb{R}^{2} \backslash \bar{S}\right), \quad D\left(q_{j}^{-}\right)=H^{1}\left(S_{j} \cup \mathbb{R}^{2} \backslash \bar{S}\right)
\end{aligned}
$$

Show that q_{j}^{+}can be split as the sum of $j^{2}+1$ quadratic forms, acting on functions defined respectively on $S_{j, \boldsymbol{m}}, \boldsymbol{m} \in\{1, \ldots, j\}^{2}$, and on $\mathbb{R}^{2} \backslash \bar{S}$.
Call A_{j}^{+}the operators associated with the forms $q_{j}^{ \pm}$. Show that A_{j}^{+}can be represented as a sum of j^{2} selfadjoint operators $A_{j, \boldsymbol{m}}^{+}$acting on $S_{j}(\boldsymbol{m})$, plus an operator A^{+}acting on $\mathbb{R}^{2} \backslash B$. Describe the operators $A_{j, \boldsymbol{m}}^{+}, A^{+}$, including their domains.
(e) Same question for q_{j}^{-}and its associated operator A_{j}^{-}, split into $A_{j, m}^{-}$and A^{-}
4. We now want to obtain quantitative informations on the spectra of the operators $A_{j, m}^{ \pm}$and $A^{ \pm}$.
(a) Taking $\boldsymbol{m}_{0}=(1,1)$, compute explicitly the spectrum of the Dirichlet Laplacian on the square $S_{j}\left(\boldsymbol{m}_{0}\right)$. Deduce the spectrum of the operator $A_{j, \boldsymbol{m}_{0}}^{+}$. Compute the spectrum of $A_{j, \boldsymbol{m}}^{+}$for each $\boldsymbol{m} \in\{1, \ldots, j\}^{2}$.
Hint: notice that the squares $S_{j}(\boldsymbol{m})$ are all isometric to each other.
(b) We want to show that $\sigma\left(A^{+}\right)=\mathbb{R}^{+}$. For any $\lambda>0$, construct a sequence of L^{2}-normalized states $\left(\psi_{n} \in H^{2}\left(\mathbb{R}^{2}\right)\right)_{n \geq 1}$, such that ψ_{n} are supported in the left half-space $\mathbb{R}_{-}^{2}=\left\{(x, y) \in \mathbb{R}^{2}, x<0\right\}$, and satisfy $\left\|(-\Delta-\lambda) \psi_{n}\right\|^{n \rightarrow \infty} 0$. Deduce that the Laplacian $\left(-\Delta_{\mathbb{R}^{d} \backslash S}\right)$ on $\mathbb{R}^{d} \backslash S$, with Neumann or Dirichlet boundary conditions, admits for spectrum \mathbb{R}^{+}. Conclude.
Hint : you may take for ψ_{n} truncated plane waves.
(c) Describe the spectrum of the operator A_{j}^{+}.
(d) Compute similarly the spectra of $A_{j, \boldsymbol{m}}^{-}, A^{-}$, and A_{j}^{-}.
(e) We call $N_{j}^{ \pm}(h)$ the number of negative eigenvalues of $A_{j}^{ \pm}$. Show that these numbers are finite.
(f) Apply the max-min principle (again, using form domains) to compare the μ_{n} 's of the operators A_{j}^{+}, A_{j}^{-}and A. Deduce that $N_{j}^{+}(h), N_{j}^{ \pm}(h)$ and $N(h)$ satisfy, for any $h \in(0,1]$, the inequalities

$$
\begin{equation*}
N_{j}^{+}(h) \leq N(h) \leq N_{j}^{-}(h) . \tag{2}
\end{equation*}
$$

(g) We want to obtain an asymptotic expression of $N_{j}^{+}(h)$ and $N_{j}^{-}(h)$, when $h \rightarrow 0$. For this aim, we will admit the following asymptotics for the number of integer lattice points in large quarter-disks :

$$
\#\left\{\left(n_{1}, n_{2}\right) \in \mathbb{N}^{2}, n_{1}^{2}+n_{2}^{2} \leq \lambda\right\} \sim \frac{\pi \lambda}{4}, \quad \text { when } \lambda \rightarrow \infty
$$

Use this expression to estimate the number of negative eigenvalues of the operators $A_{j, m}^{ \pm}$when $h \searrow 0$. Deduce the following asymptotics for $N_{j}^{ \pm}(h)$:

$$
N_{j}^{ \pm}(h) \sim \frac{1}{4 \pi h^{2}} \int_{\mathbb{R}^{2}}\left(V_{j}^{ \pm}\right)_{-}(x) d x \quad \text { when } h \searrow 0
$$

(h) Using the inequalities (2) and the approximation (1), deduce the following asymptotics for the negative eigenvalues of A :

$$
N(h) \sim \frac{1}{4 \pi h^{2}} \int_{\mathbb{R}^{2}} V_{-}(x) d x \quad \text { when } h \searrow 0 .
$$

This type of asymptotics is called a (semiclassical) Weyl's formula.

Exercise : Rank 1 perturbation of a Schrödinger operator

Our base Hilbert space is $\mathcal{H}=L^{2}(\mathbb{R})$. Consider a potential function $V \in L_{\mathrm{loc}}^{1}(\mathbb{R},[1, \infty))$. We consider the following sesquilinear form:

$$
q(\varphi, \psi)=\int_{\mathbb{R}} \bar{\varphi}^{\prime}(x) \psi^{\prime}(x) d x+\int_{\mathbb{R}} V(x) \bar{\varphi}(x) \psi(x) d x
$$

defined on the domain $D(q)=\left\{\psi \in H^{1}(\mathbb{R}), \sqrt{V} \psi \in L^{2}(\mathbb{R})\right\}$. We call q_{0} the restriction of q on the domain $D\left(q_{0}\right)=\{\psi \in D(q), \psi(0)=0\}$.

1. (a) Show that q and q_{0} are closed sesquilinear forms.
(b) Let A, A_{0} be respectively the operators associated with q and q_{0}.
(c) Recall why A and A_{0} are selfadjoint.
(d) In the case where $V \in L^{\infty}(\mathbb{R})$, describe the domains $D(A)$ and $D\left(A_{0}\right)$.

Hint : Apply the integration by parts separately on \mathbb{R}_{-}and \mathbb{R}_{+}.
(e) Show that and that the spectra of A and A_{0} are included in the interval $[1, \infty)$.
2. We want to compare the operators A and A_{0}.
(a) Show that there exists a unique $\phi \in D(q)$ such that $q(\phi, \psi)=\psi(0)$ for all $\psi \in D(q)$, and explain why $\phi(0) \neq 0$.
Hint : apply Riesz's theorem on the appropriate Hilbert space.
(b) Denote $K=\left\{\psi \in D(q), q\left(\varphi_{0}, \psi\right)=0\right.$ for all $\left.\varphi_{0} \in D\left(q_{0}\right)\right\}$. Show that K is a one-dimensional subspace, and is spanned by ϕ.
Hint : for any $\psi \in D(q)$, show that $\psi_{0} \stackrel{\text { def }}{=} \psi-\frac{\psi(0)}{\varphi(0)} \varphi$ belongs to $D\left(q_{0}\right)$.
(c) Let $f \in L^{2}(\mathbb{R})$. Set $\psi \stackrel{\text { def }}{=} A^{-1} f$ and $\psi_{0} \stackrel{\text { def }}{=} A_{0}^{-1} f$. Justify that these states are well-defined. Show that $\psi-\psi_{0} \in K$.
(d) Deduce that the difference $A^{-1}-A_{0}^{-1}$ is a rank one operator. Show that this operator must be a multiple of the orthogonal projector π_{ϕ} on the state ϕ, namely $A^{-1}-A_{0}^{-1}=c \pi_{\phi}$ for some constant $c=c_{V} \in \mathbb{R}$.
Hint : notice that $A^{-1}-A_{0}^{-1}$ is symmetric.
3. We will now treat more explicitly the case where the potential $V=1$.
(a) Using the defining formula $q(\phi, \psi)=\psi(0)$, compute the Fourier transform $\hat{\phi}(\xi)$ of the state $\phi \in D(q)$ defined in 2(a). Using contour integrals, give the explicit formula for $\phi(x)$.
(b) Write the action of A on f as a multiplication operator in Fourier space, and then as a convolution operator acting on f.
(c) From this expression and the condition $A_{0}^{-1} f \in D\left(A_{0}\right) \subset D\left(q_{0}\right)$, compute explicitly the constant $c=c_{V=1}$ for this case.
(d) What are the spectra of A and A_{0} for this case? Hint: notice that A_{0}^{-1} is a compact perturbation of A^{-1}.

