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Abstract. We address the problem of describing solutions of the nonlinear
Schrödinger equation on a compact surface in the high frequency regime. In
the context, we introduce a nonnegative threshold, depending on the geometry
of the surface, which can be seen as a measurement of the nonlinear character
of the equation, and we compute this number for the torus and for the sphere,as
a consequence of earlier arguments. The last part is devoted to the study, on
the sphere, of the critical regime associated to this threshold. We prove that
the effective dynamics are given by a new evolution equation, the Resonant
Hermite-Schrödinger equation.

1. Introduction

Let (M, g) be a Riemannian manifold of dimension 2 without boundary. The
(cubic) nonlinear Schrödinger equation on M reads

(1.1) i
∂u

∂t
+ ∆u = |u|2u

where the unknown u = u(t, x) is a complex valued function on R × M . This
equation firstly arises in Nonlinear Optics, where it is obtained as an envelope
equation from an oscillatory regime of the Maxwell system with a nonlinear response
(see e.g Sulem-Sulem [20]). In this context, the inhomogeneity represented by
the metric g may be interpreted for instance as a modelization of a non uniform
optical index. Equation (1.1) also comes from Quantum Mechanics : indeed, the
cubic Schrödinger equation in R3 is now commonly used in the theory of Bose-
Einstein condensates and in the theory of superfluidity (see [12] for a mathematical
justification). If a confining potential in normal directions to some surface of R3 is
added, the asymptotic limit is equation (1.1) (see [1]).
From the mathematical point of view, equation (1.1) is a Hamiltonian system,
associated to the energy

H =
∫

M

(
|∇u|2 +

1
2
|u|4

)
dx ,
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which is therefore a conservation law of the t-evolution. Moreover, the invariance
of H by u 7→ eiθu leads to a second conservation law,

‖u(t)‖L2(M) = cst .

Using these conservation laws, global existence and uniqueness of solutions to the
Cauchy problem for (1.1) with data in the Sobolev space H1(M) rely on classical
arguments, as we will recall below. Our goal in this paper will be rather to address
the problem of describing the solution in the high frequency regime, depending on
the size of the energy H with respect to the L2 norm. As we will see, this problem is
intimately related to a quantitative evaluation of the nonlinear character of equation
(1.1), and the answer depends on the geometry of M . In order to emphasize the
role of the geometry, we will assume from now on that the manifold M is compact.

2. A brief review of the Cauchy problem

Theorem 2.1 (Brezis-Gallouet [4], Vladimirov [22]). For every u0 ∈ H1(M), there
exists a unique solution u ∈ C(R,H1(M)) of (1.1) with u(0) = u0. Moreover, if
u0 ∈ Hs(M) for some s > 1, then u ∈ C(R,Hs(M)).

Proof. We just give a sketch.
The local existence for data in Hs(M), for s > 1 is standard. The rest of the proof
relies on the fact that the conservation laws control the H1 norm, and that H1(M)
is “almost” contained in L∞(M) since M is two dimensional. More precisely,
globalization in Hs, s > 1 is obtained by means of the inequality

‖u‖L∞ ≤ Cs‖u‖H1

(
log

(
2 +

‖u‖Hs

‖u‖H1

)) 1
2

, s > 1 ,

proved in [4] in the case of a smooth plane domain. The proof in the case of a
compact manifold is similar.
As for data in H1, global existence of weak solutions is just a compactness argu-
ment in view of the conservation laws. The hard part is uniqueness of these weak
solutions, and it follows from the estimate

‖u‖Lp ≤ C
√

p‖u‖H1 , p < ∞,

or from the associated Trudinger inequality (see [22] or Ogawa [17]). ¤

We are now in position to address the problem of describing high frequency regimes
for (1.1).

3. The case of bounded energy

We start with a property which expresses that the cubic 2D NLS evolution
propagates oscillations with bounded energy as the linear Schrödinger equation.

Proposition 1. Let (un
0 ) be a bounded sequence of H1(M), weakly convergent to

0. Denote by un the solution of (NLS) with un(0) = un
0 . Then

un(t) = eit∆un
0 + o(1)

in H1(M), uniformly for t ∈ [−T, T ], T > 0.

Remark 3.1. (1) The information claimed by Proposition 1 has important con-
sequences in Control Theory (see [11]).
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(2) Notice that the methods used in the previous section to solve the Cauhcy
problem do not give such an information.

Proof. From the Duhamel equation,

un(t) = eit∆un
0 − i

∫ t

0

ei(t−t′)∆(|un(t′)|2un(t′)) dt′,

we get

‖un(t)− eit∆un
0‖H1 ≤ C

∫ t

0

‖|un(t′)|2un(t′)‖H1 dt′ ≤ C

∫ t

0

‖un(t′)‖2L∞‖un(t′)‖H1 dt′

≤ C

∫ t

0

‖un(t′)‖2L∞(M) dt′ sup
t′∈[0,t]

‖un(t′)‖H1(M)

therefore the claim is proved if we establish that
∫ T

−T

‖un(t)‖2L∞(M) dt → 0

for every T > 0. For this crucial step, we appeal to an important estimate for the
linear Schrödinger equation due to Staffilani-Tataru [19] and Burq-Gérard-Tzvetkov
[5].

Lemma 3.2.
(∫ T

−T

‖eit∆f‖2L∞(M) dt

) 1
2

≤ Cs‖f‖Hs(M) , s >
1
2

.

A consequence of this lemma is that, under the assumptions of Proposition 1,
∫ T

−T

‖eit∆un
0‖2L∞(M) dt → 0,

Moreover, combining Minkowski’s inequality with the lemma, ∀s > 1/2,
∫ T

−T

∥∥∥∥
∫ t

0

ei(t−t′)∆F (t′) dt′
∥∥∥∥

2

L∞(M)

dt ≤ C‖F‖2L1([−T,T ],Hs(M)) .

Hence, from Duhamel’s formula,

‖un‖L2([−T,T ], L∞(M)) ≤ C
(
o(1) + ‖un‖2L2([−T,T ], L∞(M))

)
,

and the conclusion follows from an easy bootstrap argument. ¤

4. The case of high energy solutions

In order to generalize Proposition 1 to solutions with unbounded energy, we
introduce the following definition.

Definition 4.1. Let s ∈ (0, 1], and let (un) be a sequence of H1(M).
We shall say that un is high frequency Hs-normalized if the following two conditions
hold :

(1) ‖un‖L2 → 0 .

(2) ‖∇un‖L2 ≤ C‖un‖−
1−s

s

L2 .
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Notice that the above conditions imply that un is bounded in Hs. Moreover, by
the Sobolev imbedding, the second condition is equivalent to

H(un) ≤ C‖un‖−2 1−s
s

L2

hence this property is preserved by the evolution of (1.1). We now introduce the
main property which will allow us to evaluate the nonlinear character of equation
(1.1).

Definition 4.2. We shall say that property P(s) holds on M if, for every Hs

normalized high frequency Cauchy data (un
0 ) , the solution un of

i∂tu
n + ∆un = λ|un|2un , un(0) = un

0

satisfies
‖un(t)− eit∆un

0‖Hs → 0

uniformly in λ ∈]0, 1], t ∈ [−T, T ], T > 0.

This definition calls for several comments. First of all, notice that property P(1)
is the property proved in section 3. Secondly, since

∫ T

−T

‖eit∆f‖2L∞(M) dt ≤ Cs‖f‖2Hs , s >
1
2

,

by the same arguments as in Proposition 1, we infer that P(s) holds for every s > 1
2 .

Finally, we claim that

(4.1) P(s) ⇒ P(s′) ∀s′ ∈ (s, 1).

Indeed, if un is Hs′-normalized and solves

i∂tu
n + ∆un = λ|un|2un

then ũn := ‖un
0‖

s−s′
s′

L2 un is Hs-normalized and solves

i∂tũ
n + ∆ũn = µn|ũn|2ũn ,

with

µn = ‖un
0‖

2
(s′−s)

s′
L2 λ ≤ λ .

The claim follows from the application of P(s) to ũn. Notice that the somewhat
technical introduction of the parameter λ in Definition 4.2 is justified by property
(4.1).

At this stage, it is natural to introduce the following quantity, for a given surface
(M, g),

sc(M, g) = inf{s ∈ (0, 1) : P(s) holds on M} .

Notice that sc(M, g) is a measurement of how much equation (1.1) is nonlinear :
indeed, the smaller sc(M) is, the higher energy oscillations are linearly propagated
by (1.1). From the above observations, we already know that

sc(M, g) ≤ 1
2

,
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for every M . However, it turns out that the exact value of sc(M, g) depends on
the geometry of (M, g). The next theorem gives the answer for two well known
compact surfaces.

Theorem 4.3. With the standard metrics, we have

sc

(
(R/2πZ)2

)
= 0 .

sc(S2) =
1
4

.

Moreover, P(1/4) does not hold on S2.

The part of Theorem 4.3 concerning the torus is a consequence of arguments
developed by Bourgain in [3]. Notice that sc (R/aZ× R/bZ) is still unknown for
arbitrary values of a, b, though it has been proved to be ≤ 1/3 by Catoire-Wang in
[10]. The part of Theorem 4.3 concerning the sphere is deduced from arguments
by Burq-Gérard-Tzvetkov in [6] and [7] (see also [13]). A generalization of these
arguments shows that, if M is a surface of revolution with a nondegenerate equator,
sc(M) ≥ 1/4, but the upper bound is still open. Other generalizations of this type
can be found in Thomann [21].

Notice that the value 1/4 of sc(S2) may seem surprising in view of the observation
that the threshold s = 1/2 in Lemma 3.2 is optimal on S2. In other words, the
estimate

(4.2)

(∫ T

−T

‖eit∆f‖2L∞(S2) dt

) 1
2

≤ Cs‖f‖Hs(S2)

fails if s < 1
2 . Notice that the similar one on R2 holds ∀s > 0 (see Ginibre-Velo

[14]). To prove the failure of the estimate, take for f the zonal spherical harmonic
kn(x0, .) of degree n at some point x0 of S2, characterized by

H(x) =
∫

S2
kn(x0, x)H(x) dx

for every spherical harmonic H of degree n. It is easy to check that

kn(x0, x) =
2n+1∑

j=1

ej(x0)ej(x) ,

where (ej) is any orthonormal basis of spherical harmonics of degree n. Then, using
the invariance by rotation, we have

kn(Rx0, Rx) = kn(x0, x)

for every rotation R of S2 and therefore kn(x0, x0) does not depend on x0. Conse-
quently,

‖kn(x0, .)‖L∞ = |kn(x0, x0)| =
2n+1∑

j=1

|ej(x0)|2 = 2n + 1 = ‖kn(x0, .)‖2L2 ,

so that
(∫ T

−T

‖eit∆kn(x0, .)‖2L∞(S2) dt

) 1
2

=
√

T‖kn(x0, .)‖L∞ =
√

T (2n + 1) ,
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while
‖kn(x0, .)‖Hs ' ns+1/2,

which, if n tends to ∞, contradicts inequality (4.2) for s < 1/2.

This observation, compared to Theorem 4.3, shows that the approach we used in
Section 3 to estimate the solutions of (1.1) is not the optimal one. In the next
two sections, we shall briefly present a better approach, due to Bourgain, and then
explain the value 1/4 on S2. Finally, in the last section, we shall investigate the
effective nonlinear dynamics on S2 of a class of H1/4 normalized data.

5. The use of bilinear Strichartz inequalities

Definition 5.1. Let s0 ≥ 0. We shall say that a bilinear Strichartz inequality of
order s0 holds on M if

(5.1) ‖eit∆f eit∆g‖L2([0,1]t×M) ≤ CNs0‖f‖L2(M)‖g‖L2(M)

where N ≤ L are arbitrary positive integers and f, g are arbitrary functions on M
such that

f = 1√−∆∼N f , g = 1√−∆∼L g .

Notice that estimate (5.1) implies the following Strichartz inequality,

‖eit∆f‖L4([0,1]t×M) ≤ C‖f‖Hs0/2(M)

but that it has the additional advantage of giving a better estimate in the case of
interaction of high frequency terms with lower frequency terms. This estimate was
proved in [7] to be a criterion for the existence of a local-in-time smooth flow map
for (1.1) on Hs0+ε(M).
The following theorem can be deduced from arguments in [7].

Theorem 5.2. If a bilinear Strichartz inequality of order s0 holds on M , then, for
every s > s0, P(s) holds on M .

Let us give some indications for the proof, referring to [7] for missing details. Fol-
lowing Bourgain [3], we introduce the norms ‖u‖Xs,b

T
= ‖e−it∆u(t)‖Hb([0,T ]t,Hs(M)),

and we observe that Xs,b
T ⊂ C([0, T ],Hs) as soon as b > 1/2. Then we replace the

estimate

sup
0≤t≤T

∥∥∥∥
∫ t

0

ei(t−t′)∆F (t′) dt′
∥∥∥∥

Hs

≤ C‖F‖L1([0,T ],Hs)

used in section 3 by the estimate

(5.2)
∥∥∥∥
∫ t

0

ei(t−t′)∆F (t′) dt′
∥∥∥∥

Xs,b
T

≤ CT 1−b−b′‖F‖
Xs,−b′

T

if b > 1
2 > b′, b + b′ < 1, T ≤ 1. Notice that the latter estimate is nothing but an

inequality about antiderivation in Sobolev spaces on the time interval (0, T ).

The main step is then the following observation : (5.1) implies, for s ≥ σ > s0 and
some b′ < 1

2 , that

‖|u|2u‖
Xs,−b′

T

≤ C‖u‖2
Xσ,b′

T

‖u‖
Xs,b′

T

.
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If un
0 is a high frequency Hs normalized sequence, denote by un the solution of

(1.1) with un(0) = un
0 , and by vn the solution of the linear Schrödinger equation

with the same Cauchy data un
0 . We have

(5.3) un(t) = vn(t)− i

∫ t

0

ei(t−t′)∆(|un(t′)|2un(t′)) dt′ .

Consequently, for σ < s and b′ < 1/2,

‖un‖
Xσ,b′

T

≤ ‖vn‖
Xσ,b′

T

+ C‖|un|2un‖
Xσ,−b′

T

≤ C(‖un
0‖Hσ + ‖un‖3

Xσ,b′
T

) .

From the assumptions, we know that ‖un
0‖Hσ tends to 0. Hence, by a bootstrap

argument, we conclude that
‖un‖

Xσ,b′
T

→ 0

for every T ≤ 1 — notice that, since b′ < 1/2, ‖u‖
Xσ,b′

T

tends to 0 as T tends to 0.
We now come back to the Duhamel formula (5.3) and we estimate the difference
un − vn,

‖un − vn‖Xs,b
T
≤ C‖|un|2un‖

Xs,−b′
T

≤ C‖un‖2
Xσ,b′

T

‖un‖
Xs,b′

T

.

The proof will be therefore complete if we establish that ‖un‖
Xs,b′

T

is bounded,
which is still a consequence of similar estimates and of the bootstrap lemma, using
this time the smallness of the factor T 1−b−b′ if T is small in (5.2).

We turn to the case of S2. In order to apply Theorem 5.2, we need to establish
bilinear Strichartz estimates on S2. Testing (5.1) with f = g = ϕn (spherical
harmonic of degree n), we get the following necessary condition,

‖ϕn‖L4 ≤ Cn
s0
2 ‖ϕn‖L2

which imposes s0 ≥ 1
4 in view of the example of the highest weight harmonic,

(5.4) ϕn(x1, x2, x3) = (x1 + ix2)n .

It is known since results by Sogge [18] that the growth n1/8 is the worst possible in
the above eigenfunction estimate. It is in fact possible to prove a bilinear version
of this result (see [7], [8], [9]), and, combining with the clustering properties of the
spectrum, one can prove that (5.1) holds on S2 for every s0 > 1

4 , which proves that

sc(S2) ≤ 1
4
.

In order to prove the reverse inequality, we need a nonlinear version of the highest
weight harmonic (5.4).

6. The failure of P(1/4) on S2

We denote by Rα the rotation of angle around the x3 axis in R3, and we define

Hs
n(S2) := {u ∈ Hs(S2) : ∀α ∈ R, u(Rαx) = einαu(x) } .

Notice that, up to a meaningless multiplicative constant, the function ϕn defined
by (5.4) is a minimizer for the problem

min{
∫

S2
|∇ϕ(x)|2 dx , ϕ ∈ H1

n(S2), ‖ϕ‖L2(S2) = n−
1
4 } .
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Similarly, let ψn be a minimizer of

min{
∫

S2
|∇ψ(x)|2 +

1
2
|ψ(x)|4 dx , ψ ∈ H1

n(S2), ‖ψ‖L2(S2) = n−
1
4 } .

Then the Euler-Lagrange equation reads

−∆ψn + |ψn|2ψn = ωnψn

so that
un(t) = e−itωnψn

is a solution of (1.1), which defines a high frequency H1/4 normalized sequence.
One can prove (see [13]) that, for some θn,

‖ψn − eiθnϕn‖H1/4 = o(1) , ωn =
1

‖ϕn‖2L2

(‖∇ϕn‖2L2 + ‖ϕn‖4L4) + o(1) = n(n + 1) + γ + o(1).

where

γ = lim
n→∞

‖ϕn‖4L4

‖ϕn‖2L2

> 0 .

Hence
‖un(t)− eit∆un(0)‖H1/4 → |eiγt − 1| ,

which contradicts P(1/4).
Let us mention that the use of stationary solutions for proving instability of the
flow map of a nonlinear dispersive equation already arose in papers by Birnir-Kenig-
Ponce-Svanstedt-Vega [2] and Kenig-Ponce-Vega [16]. A slightly different proof can
be found in [6].

7. The effective dynamics on H
1/4
n (S2), n →∞

In this section, we describe the effective dynamics corresponding to the concen-
tration on the equator which is repsonsible of the failure of P(1/4), according to
the previous section. Let un

0 ∈ H1
n(S2) satisfying

(7.1) ‖un
0‖L2 ≤ Cn−1/4 , ‖∇un

0‖2L2 − n(n + 1)‖un
0‖2L2 ≤ Cn1/2 .

These bounds clearly imply that (un
0 ) is a high frequency H1/4–normalized se-

quence. We would like to describe the solution un(t) of (1.1) with un(0) = un
0 , up

to a small error in H1/4(S2) as n → ∞. Let us expand un
0 in spherical harmonics

as

un
0 (x) = n−1/4

∞∑

k=0

zn
k,0 hn,k(x) ,

where hn,k is the L2 normalized harmonic of degree n + k in H1
n

If Hkdenotes the Hermite function normalized in L2(R), one can prove that, as n
goes to ∞,

hn,k(x) = n
1
4 einθHk(

√
nx3) + o(1) , (x1 + ix2) :=

√
1− x2

3 eiθ .

These asymptotics can be seen as an illustration of the general principle of single
well approximation, see e.g. Helffer [15].

For τ ∈ T := R/2πZ and y ∈ R, we introduce the following concentration profile,

U0(τ, y) =
∞∑

k=0

zk,0 e−ikτHk(y)
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where zk,0 := limn→∞ zn
k,0 (well-defined up to the extraction of a subsequence), so

that
un

0 (x)− einθU0(0,
√

nx3) → 0 in H1/4(S2) .

Notice that, in view of the assumptions (7.1),
∞∑

k=0

k|zk,0|2 = (i∂τU0, U0)L2 < ∞ ,

and that U0 satisfies the following linear equation on T× R,

i
∂U0

∂τ
+

1
2

(
∂2

∂y2
− y2 + 1

)
U0 = 0 .

Denote by P the orthogonal projector onto the nullspace N of

i
∂

∂τ
+

1
2

(
∂2

∂y2
− y2 + 1

)

in L2(Tτ × Ry). The following theorem describes the evolution with t of the con-
centration profile of un(t).

Theorem 7.1 (Burq, PG, Tzvetkov, 2007). Let U = U(t, τ, y) be the solution of
the following equation,

(7.2)
(

i
∂U

∂t
+

∂2U

∂τ2

)
= P (|U |2U) ,

with the Cauchy data U(0, τ, y) = U0(τ, y) . Then, ∀T > 0, we have, in H1/4,
uniformly for t ∈ [−T, T ],

un(t, x) = einθ−in(n+1)tU(t, (2n + 1)t,
√

nx3) + o(1) .

Equation (7.2) is obtained by extracting the resonant part of the infinite sys-
tem on the unknown (zn

k )k≥0. One can call it the Resonant Hermite-Schrödinger
equation. It is a Hamiltonian system with three conservation laws,

Q = ‖U‖2L2(T×R) , M = (i∂τU,U)L2 , E = ‖∂τU‖2L2 +
1
2
‖U‖4L4 .

Moreover, the combination of dispersive estimates for the Schrödinger equation on
T (see [3]) with the bilinear estimates for the Hermite functions,

‖Hn H`‖L2(R) ≤
Cε

(1 + max(n, `))
1
4−ε

,

lead to the following well-posedness result for rough data.

Theorem 7.2 (Burq, PG, Tzvetkov, 2008). Equation (7.2) is globally well-posed
on N , and the flow map is continuous for some negative Sobolev norm.

The proofs of Theorems will appear in a paper in preparation.

Let us conclude with some comments and open questions.
• In the particular case of one initial mode

U0(τ, y) = zp,0 e−ipτHp(y) ,

it is easy to check that

U(t, τ, y) = e−i(p2+cp|zn
p,0|2)tzp,0 e−ipτHp(y)
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which means that no other mode appears. This observation, combined with
Theorem 7.1, includes the nonlinear highest weight harmonic approxima-
tion of the previous section.

• For s < 1/4, effective dynamics in Hs are expected to be described by large
time behavior of the equation (7.2). This leads to very delicate stability
issues, where the study of invariant tori for the Hamiltonian system 7.2
might play a central role.
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4. Brezis, H., Gallouët, T., Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4 (1980),
677–681.

5. Burq, N., Gérard, P., Tzvetkov, N., Strichartz inequalities and the nonlinear Schrödinger
equation on compact manifolds. Amer. J. Math. 126 (2004), 569–605.

6. Burq, N., Gérard, P., Tzvetkov, N., An instability property of the nonlinear Schrödinger
equation on Sd. Math. Res. Lett. 9 (2002), 323–335.

7. Burq, N., Gérard, P., Tzvetkov, N., Bilinear eigenfunction estimates and the nonlinear
Schrödinger equation on surfaces. Invent. math. 159 (2005), 187–223.

8. Burq, N., Gérard, P., Tzvetkov, N., Multilinear eigenfunction estimates and global existence

for the three dimensional nonlinear Schrödinger equations. Ann. Scient. Éc. Norm. Sup. 38
(2005), 255–301.

9. Burq, N., Gérard, P., Tzvetkov, N., The Cauchy Problem for the nonlinear Schrödinger
equation on compact manifolds. In Phase Space Analysis of Partial Differential Equations
(ed. by F. Colombini and L. Pernazza), vol.I. Centro di Ricerca Matematica Ennio de Giorgi,
Scuola Normale Superiore, Pisa, 2004, 21–52.

10. Catoire, F., Wang, W.-M., Bounds on Sobolev norms for the nonlinear Schrdinger equation
on general tori. Preprint, September 2008, http://arxiv.org/abs/0809.4633.

11. Dehman, B., Gérard, P., Lebeau, G., Stabilization and Control for the Nonlinear Schrödinger
Equation on a Compact Surface. Mathematische Zeitschrift 254, (2006), 729–749.

12. Erdo”s, L., Schlein, B., Yau, H. –T., Derivation of the cubic non-linear Schrdinger equation
from quantum dynamics of many-body systems. Invent. Math. 167 (2007), 515–614.

13. Gérard, P., Nonlinear Schrödinger equations on compact manifolds. In European Congress of
Mathematics, Stokholm, June 27-July 2, 2004 (ed. by Ari Laptev). European Mathematical
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