Cauchy theory for the gravity water waves system with non
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ABSTRACT. In this article, we develop the local Cauchy theory for the gravity water
waves system, for rough initial data which do not decay at infinity. We work in the
context of L?-based uniformly local Sobolev spaces introduced by Kato ([27]). In this
context we prove a classical well-posedness result (without loss of derivatives). Our result
implies also a local well-posedness result in Holder spaces (with loss of d/2 derivatives).
As an illustration, we solve a question raised by Boussinesq in 1910 [13] on the water
waves problem in a canal. We take benefit of an elementary (though seemingly previously
unnoticed) observation to show that the strategy suggested in [13] does indeed apply to
this setting.

1. Introduction

We are interested in this paper in the free boundary problem describing the motion of
an incompressible, irrotational fluid flow moving under the force of gravitation, without
surface tension, in case where the initial data are neither localized nor periodic. There are
indeed two cases where the mathematical analysis is rather well understood: firstly for
periodic initial data (in the classical Sobolev spaces H*(T)) and secondly when they are
decaying to zero at infinity (for instance for data in H(R?) with s large enough). With
regards to the analysis of the Cauchy problem, we refer to the recent papers of Lannes [30],
Wu [36, 37] and Germain, Masmoudi and Shatah [23]. We also refer to the introduction
of [3] or [10, 28] for more references. However, one can think to the moving surface of a
lake or an ocean where the waves are neither periodic nor decaying to zero (see also [20]).

A most natural strategy would be to solve the Cauchy problem in the classical Holder
spaces W (R%). However even the linearized system at the origin (the fluid at rest) is ill-
posed in these spaces (see Remark 2.4 below), and this strategy leads consequently to loss
of derivatives. Having this loss of derivatives in mind, the other natural approach is to work
in the framework of L? based uniformly local Sobolev spaces, denoted by H Zl(Rd). These
spaces were introduced by Kato (see [27]) in the analysis of hyperbolic systems. Notice
however, that compared to general hyperbolic systems, the water waves system appears to
be non local, which induces new difficulties. This framework appears to be quite natural
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in our context. Indeed, the uniformly local Sobolev spaces H, Zl(Rd) contain, in particular,
the usual Sobolev spaces H*(RY), the periodic Sobolev spaces H*(T?) (spaces of periodic
functions on R?), the sum H*(R?) + H*(T9) and also the Holder spaces WP(R?) (and
as a by-product of our analysis, we get well-posedness in Hélder spaces, with a loss of
derivatives).

The aim of this paper is precisely to prove that the water waves system is locally (in
time) well posed in the framework of uniformly local Sobolev spaces. Moreover, following
our previous paper [3], the data for which we solve the Cauchy problem are allowed to
be quite rough. Indeed we shall assume, for instance, that the initial free surface is the

L
graph of a function which belongs to the space H ZTQ (RY) for s > 1+ g. In particular,

in term of Sobolev embedding, the initial free surface is merely W%"’O(Rd) thus may have
unbounded curvature. On the other hand this threshold should be compared with the
scaling of the problem. Indeed it is known that the water wave system has a scaling

invariance for which the critical space for the initial free surface is the space H 1‘*'%(Rd)
(or Wh>°(R%)). This shows that we solve here the Cauchy problem for data 3 above the
scaling. (Notice that in [4] we prove well-posedness, in the classical Sobolev spaces, % - 1—12
above the scaling when d = 2). As an illustration of the relevance of this low regularity
Cauchy theory in the context of local spaces, we solve a question raised by Boussinesq in
1910 [13] on the water waves problem in a canal. In [13], Boussinesq suggested to reduce
the water-waves system in a canal to the same system on R3 with periodic conditions with
respect to one variable, by a simple reflection/periodization procedure (with respect to the
normal variable to the boundary of the canal). However, for a century, this idea remained
unapplicable for the simple reason that the even extension of a smooth function on the
half line is in general merely Lipshitz continuous (due to the singularity at the origin). As
a consequence, even if one starts with a smooth initial domain, the reflected/periodized
domain will only be Lipshitz continuous. Here, we are able to take benefit of an elementary
(though seemingly previously unnoticed) observation which shows that actually, as soon
as we are looking for reasonably smooth solutions, the angle between the free surface and
the vertical boundary of the canal is a right angle. Consequently, the reflected/periodized
domain enjoy additional smoothness (namely up to C®), which is enough to apply our
rough data Cauchy theory and to show that the strategy suggested in [13] does indeed
apply. This appears to be the first result on Cauchy theory for the water-wave system in
a domain with boundary.

The present paper relies on the strategies developed in our previous paper [3] and
we follow the same scheme of proof. In Section 3, we develop the machinery of para-
differential calculus in the framework of uniformly local spaces that we need later. We
think that this section could be useful for further studies in this framework. In Section 4
we prove that the Dirichlet-Neumann operator is well defined in this framework (notice
that this fact is not straightforward, see [22, 19] for related works), and we give a precise
description (including sharp elliptic estimates in very rough domains) on these spaces. In
Section 5, we symmetrize the system and prove a priori estimates. In section 6, we prove
contraction estimates and well posedness. In section 7, we give the application to the canal
(and swimming pools). Finally, in an appendix, we prove that in the context of Holder
spaces, the water-waves system linearized on the trivial solution (rest) is ill posed.
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2. The problem and the result

In this paper we shall denote by ¢ € R the time variable and by € R¢ (where d > 1),
y € R, the horizontal and vertical space variables. We work in a fluid domain with free
boundary and fixed bottom on the form

Q={(t,z,y) €[0,T] x REx R : (z,y) € Q(t)} where
Q) = {(z,y) s me(2) <y <n(t, 2)}.

Here the free surface is described by 7, an unknown of the problem, and the bottom by a
given function n.. We shall only assume that 7, is bounded and continuous. We assume
that the bottom is the graph of a function for the sake of simplicity: our analysis applies
whenever one has the Poincaré inequality given by Lemma 4.1 below.

We shall denote by ¥ the free surface and by I' the bottom,

Y= {(t,z,y) €[0,T] x REx R : (z,y) € X(t)} where
2(t) = {(z,y) e R x R:y = n(t,2)},
L ={(z,y) e RIxR:y=n()}
We shall use the following notations

vx = (3x¢)1§i§d, v:c,y = (vxaay)a Aa: = 8517 Ax,y = Ax + 85

2.1. The equations. The Eulerian velocity v : Q — R solves the incompressible
and irrotational Euler equation

O+ (V- Vgy)v+ VP =—ge,, divg,v=0, curl, , v =0 in Q

where g > 0 is the acceleration of the gravity, e, the vector (x = 0,y = 1) and P the
pressure. The problem is then given by three boundary conditions:

e a kinematic condition (which states that the free surface moves with the fluid)

om=+1+|Ven?(v-n) on X,

where n denotes the unit normal vector to 3,
e a dynamic condition (that expresses a balance of forces across the free surface)

P=0 onX,
e the “solid wall” boundary condition on the bottom I'
v-v=0 onl,

where v denotes the normal vector to I' whenever it exists.

Since the motion is incompressible and irrotational there exists a velocity potential
¢ : Q@ — R such that v = V,, 0, thus A, ¢ = 0 in Q. We shall work with the
Zakharov/Craig-Sulem formulation of the water waves equations. We introduce

w(tv :U) = ¢(t7 L, 77(757 :E))
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and the Dirichlet-Neumann operator

9¢
2( 2%
L+ Ve <6n ‘2)
= (0y0)(t, 2, 0(t, ) — Van(t, ) - (Va@) (¢, x, (¢, x)).
Then (see [18]) the water waves system can be written in term of the unknown 7, as

o = G(n),

(2.1) Lo o, 1
3t¢——§fvz¢‘ +§

(Va:’ﬂ i vaﬂ/} + G(UW)Q
1+ |Van|?
It is useful to introduce the vertical and horizontal components of the velocity. We set

vzn : vmw + G(WW

—gn.

B = = s
(2.2) (o)l 1+ |Van|?
V = (vg)|n = Vot — BV,n.
We recall also that the Taylor coefficient defined by a = —%—I; 5, can be defined in terms

of n,v, B,V only (see §7.2 below and §4.3.1 in [28]).

2.2. The uniformly local Sobolev spaces. We recall here the definition of the
uniformly local Sobolev spaces introduced by Kato in [27].

that
(2.3) Z Xq(x) =1, VoeR?
q€Z4
where
Xq(2) = x(z = q).
Definition 2.1. For s € R the space HS,(R?) is the space of distributions u € H

loc <Rd)
such that

[ullgs (may = sup [[xqullgs@ay < +o0.
qezd
The definition of the space H;(R?) is independent of the choice of the function x in
C5°(R?) satisfying (2.3) (see Lemma 3.1 below).

Proposition 2.2. One has the following embeddings:
(1) If s> % and s — 3 ¢ N, H5,(R?) is continuously embedded in Ws_%’oo(Rd).
(2) If m € N, W™>=(RY) is continuously embedded in H™(R?).
(3) If s > 0, Wste°(RY) is continuously embedded in HS,(RY) for e > 0.

2.3. The main result. The goal of this article is to prove the following result.

Theorem 2.3. Letd > 1,5 > 1+ %. Assume that ny is a bounded continuous function
on RY. Consider an initial data (1o, o) satisfying the following conditions

1
s+5

. s+3
(i) mo € Hy, *(RY), v € H,, *(RY), Vo € H}(RY), By € Hy(RY),
(i3) there exists h > 0 such that no(x) — n(x) > 2h, Vo € RY,
4



(iii) there exists ¢ > 0 such that ag(x) > ¢, Vr € RY,

where ag denotes the Taylor coefficient at time t = 0.
Then there exists T > 0 such that the Cauchy problem for the system (2.1) with initial
data (no, o) at t =0 has a unique solution

(.)€ L ([0, 7], HS 2 (RY) x i 2 (RY)
such that
1. (V,B) € L*([0,T], HS,(R?) x HS,(RY)),
2. n(t,x) —ne(z) > h, Y(t,z) €0, T] x RY,
3. a(t,z) > %c, V(t,x) € [0,T] x R%,
4. For any s’ < s,

(n,4,V,B) € C°([0,T), H, +Z(Rd) y +'z(Rd) x H3(R?) x HZ(RY)).

Remark 2.4. e Theorem 2.3 implies local well posedness in Holder spaces: indeed, as-
suming that

(7707¢07 %7 BO) c WU+%+6,00(R(1) Wa+%+€,oo(Rd> Wa+s,00(Rd) % WU+€,OO(Rd)

c Ha-l— + (Rd) a-i— +2(Rd) O‘+2(Rd) v H (Rd)

for some 0 > 1+ d/2 and € > 0, then we get a solution

(.. V. B) € CO(0.T], H}}"* (RY) x H{"* (RY) x H(RY) x H(R)
c (0,1, W"*T? (Rd) x WoTa—2°(RY) x Wo~2°°(RY) x W7~ 2°°(RY)).

e It is very likely that this loss of d/2 derivatives cannot be completely avoided. Indeed
the linearized water waves equation around the zero solution can be written as

Opu + i ]Dw]% u=0.
The solution of this equation, with initial data wug, is given by
1
u(t) = S(t)uo, S(t) = exp(—it |Dy|?).

Proposition 8.1 shows that for ¢ # 0 the operator S(t) is not bounded from the Zygmund
space C7(R%) to C$(RY) if s > o — %, remembering that C7(R?) = W= (R?) if o > 0,
o ¢ N. (For positive results see Fefferman and Stein [21, page 160]). Thus even in the
linear case we have a loss of % derivative.

e The result in the appendix also shows that, in the presence of surface tension, a

similar well posedness result in the framework of uniformly local Sobolev space is rather
unlikely to hold. Indeed, in the presence of surface tension, the linearized operator around

the solution (n,1) = (0,0) can be written (see [1]) with u = ]D|%77 + i) as
Owu + 1| Dy \%u =0, uli=o = up.
According to Proposition 8.1 the loss of derivatives in 2 from ug to the solution u(t,-),t # 0,

t3d

is at least 5 whereas an analogue of the above theorem would give a loss of at most g.
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3. Preliminaries

3.1. Invariance. The following result shows that the definition of the uniformly local
Sobolev spaces does not depend on the choice of the function x satisfying (2.3).

Lemma 3.1. Let E be a normed space of functions from R to C such that
Vo e W(RY) 3C>0: ||fullp < Cllullp YueE

where C' depends only on a finite number of semi-norms of 6 in W°o>>°(R9). Then for any
X € C°(RY) there exists C' > 0 such that

(3.1) sup || Xxulle < C' sup |Ixqulle
keZd qeZ4

where Xi(x) = X(z — k).
PROOF. Let x € Cg° (R%) be equal to one on the support of x. We write with N = d+1

(k=" _

Xixgu = (b —q)" [<$ — q>NXk] [ = 0™y, | xqu.

Since the two functions inside the brackets belong to W°>(R?) with semi-norms inde-
pendent of k, ¢, using the assumption in the lemma we deduce that

IXkulle < ) IXexqulle < C ) (k—q)™ sup [Ixqulls,
qceZ4 qc€Z4 qez?
which completes the proof. ]
Lemma 3.2. Let p € R and N > d+ 1. Then there exists C > 0 such that

(3.2) sup |z — )"V ul guray < Ollull s, ray
zeRJ

for alluw € H",(R?).
PRroOOF. Indeed we have
[ =) Nullae <> Il =) Vxqullan
qc€Zd
and we write

T — N
M) = 1 o e R u)

(z—y)
where X € C§°(R%), ¥ = 1 on the support of x. This implies that
1
-N
Z [{z =) " xqulla» < Cn Z WHUHHgl < Cyllullgn,
q€Z4 qE€Z4 q

since the function y + éi:g;g%q(y) belongs to W°»°(R%) with semi-norms uniformly

bounded (independently of x and g). O



3.2. Product laws.
Proposition 3.3. (i) Let o; € R, j = 1,2 be such that o1+02 > 0 and u;j € HZ; (RY),j =
1,2. Then ujus € Hgf(Rd) for og < oj and o9 < 01+ 02 — g. Moreover we have

||U1U2||HZ?(Rd) < CHUIHHZZI(Rd)||U2||H;’l2(11d)~
(ii) Let s >0 and uj € HS,(RY) N L®(RY),j =1,2. Then ujus € HS,(R?) and
HU1U2”H§;Z(Rd) < C(||UIHL°°(Rd)”uQHHil(Rd) + ||U2||L°°(Rd)HulnHZl(Rd))'
... 0o s N

(iii) Let F € C®(RN,C) be such that F(0) = 0. Let s > %. IfU € (H(RY)™ then

F(U) € H5,(RY) and
IE(O)llgs, ey < GUIUN poe ay)IU [l s, (rayyv

for an increasing function G : RT — R™.

PrOOF. The proofs are straightforward extensions of the proofs in the classical Sobolev
spaces case. Indeed let us show (i) for instance. Let x, be defined in (2.3) and Y € C§°(R?)
be equal to one on the support of x. Then from the classical case we can write

Ixquruz|| o = lIxquiXquzllmo < Clixquallm= [[Xquzl e

< Cllun gy luzll oo -
The proofs of (i7) and (iii) are similar. O
The following spaces will be used in the sequel

Definition 3.4. Let p € [1,+00], J = (20,0),20 <0 and 0 € R.

(1) The space LP(J, H° (R%)),; is defined as the space of measurable functions u from
R x J, to C such that

||u||LP(J,H°(Rd))ul ‘= Sup HXCIUHLP(J,HU(Rd)) < +o0.
qeZ4

(2) We set
o (J) = L®(J, H° (R%)) o N L2(J, HTT2 (RY))

ul

o(J) = L'(J, H°(R))w + L2(J, H 2 (R%))

ul

endowed with their natural norms.
(8) We define the spaces X°(J),Y?(J) by the same formulas without the subscript
ul.

Notice that L (J, H%(R%)),; = L>®(J, H%(RY)).

Lemma 3.5. Let 09,001,092 be real numbers such that o1 + 02 > 0,00 < 0j,j = 1,2,00 <
0’1—1—02—% and 2 < p < 4o00. Then

lwoll Lo (gm0 Ry < Cllull Lo (5,501 (R4 VN Lo (o2 (RAY) i
whenever the right hand side is finite.
The same inequality holds for the spaces without the subscript ul.
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PrOOF. This follows immediately from Proposition 3.3 (i) and (3.1). O
Lemma 3.6. If o > % the spaces X,(J) and X°(J) are algebras.
Lemma 3.7. Let sp > 1+ %l,,u >0 and J = (—1,0). Then we have

(3.3) 1£9llx. < OO llzeqproy, Nl e + lgll ooyl ).
(3.4) I9lxt, < OO e uaro-sy s, + 191 oy, 71 s

Let F € Cg°(CY,C) be such that F(0) = 0. Then there exists a non decreasing function
F:RY — R* such that for p > %l we have

(3.5) IE@)xs, < FOU ooz, )Tl e

PROOF. The first and the third estimates follow easily from the inequalities (i), (ii7)

in Proposition 3.3. To prove the second one we start from the inequality (see [3], Corollary
2.12)

Ixkfallze < C(lxef |l | Xegl me + H%kQHC% HkaHHH%), t>0

where Y € C’go(Rd) is equal to one on the support of xy. Then we use the continuous

: _1
embeddings: H%~! c L>, H=3 ¢ C, % and the above inequality for ¢t = pu,t = ,u—i—%. g

3.3. Continuity of the pseudo-differential operators. We have the following
result which reflects the pseudo-local character of the pseudo-differential operators. Recall
that ST is the set of symbols p € C>(R4 x R%) such that

|DEDYp(x, )| < Cap(1+ ()™ Va,8 € N%V(z,¢) € R x R™

Proposition 3.8. Let P be a pseudo-differential operator whose symbol belongs to the
class ST\y. Then for every s € R there exists a constant C > 0 such that

1Pull s, ey < Cllull gtm (gay;
for every u € Hfjm(Rd), where C' depends only on semi-norms of the symbol in ST,
Proor. Write
(3.6) Xk Pu = Z XePxqu + Z XePxqu=: A+ Z By 4.
lk—q|<2 lk—q|>3 |k—q|>3

The first sum is finite depending only on the dimension. To bound it in H*(R?) we use the
usual continuity of pseudo-differential operators. For the second one let ng € N, ng > s.
We shall prove that
.y
————||ull gystm, || <n

L2®RY) = g = gyart WIHET 0
which will complete the proof of Proposition 3.8.

Notice that, due to the presence of xy, we have |DgBy 4|2 < C||DSBjgllre. We
have

(3.7) 1D Br.g

DgBk,q(Jf) = <D3K($7 ')7Xqu>
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with
Klay) = @0 [ o0, e xul) (0

where X € C§°(R?), Y = 1 on the support of .

Now on the support of xx(2)x4(y) we have |z —y| > 6|k —¢|,0 > 0. Integrating by
parts N times (with large N depending on d, ng) with the vector field L = Z =1 Ej y‘y"Q Ok;
we see that for all 3 € N™ we have

Cy ~
IDIK (2,y)| < me, ¥(z,y) € R x R%,

It follows that

1D Bg(@)] < [|DZ K (@, ) r—em [Ixgull grosm

Cq,
< WHX(I“HHHW

which proves (3.7) and hence concludes the proof. O

In a particular case the proof above gives the following more precise result.

Proposition 3.9. Let m € R, h(§) = h(4§)[¢™(¢) where h € C(S%!) and ¥ €
C>®(R?) is such that ¥(€) =1 if |€] > 1, ¥(€) = 0 if |¢] < % Then for every u € R there

exists a constant C such that
IR(D2ll s sy < I lgass sl s
for all u € H“+m(Rd)
We shall use the following result when p(¢) = (£) and p(¢) = |€]2.

Lemma 3.10. Letd > 1,r >0,m € R. Let p € S’{’O(Rd),a € STO(Rd) two symbols with

constant coefficients. We assume that one can find ¢o > 0 such that for all ¢ € R* we have
p(&) > colé|". Then for all o € R and every interval I = [0,T], one can find a positive
constant C' such that, with HS = H5(R%)

(38) e PP a(D)ul e ra1e),, + e~ Pa(Dyu] < Clull o

L2(I,H T 2)y,
o+m
for alluw e H7™.

PROOF. The estimate of the first term in (3.8) follows from Proposition 3.8 since
e (D )a(D) is a pseudo-differential operator of order m whose symbol has semi-norms in
1o bounded by constants depending only on T'. Let us look at the second term. Set

Iy = ||Xq6_tp(D)a( Jull
9
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One can write

Iy = Aq + By
Aq = Z Hqu_tp(D)a(D)XkuHL2(I’H0+%)v
(3.9) |k—q|<2
Bq = Z Hquitp(D)a(‘D)XkuHL2(I7HU+§)'
|k—q|>3

\

Since the number of terms in the sum defining A, is bounded by a fixed constant (depend-
ing only on d) using a classical computation we can write

4, < Gy sup e P Pa(D)xiul ) o)

(3.10) hezs
Aq < Co sup ||a(D)xrul|ge < C3 sup [[xpul gotm < C3||ul| gotm.
kezZd kezZd ul

Let us look at the term B;. Let Ny be an integer such that Ng > o + 5. Then By is
bounded by a finite sum of terms of the form

> D) (DPe P P)a(D))xpul 127,12
lk—q|>3
with |a| + |8] < No. Due to the presence of the function D%y, By is therefore bounded
by a finite number of terms of the form
Z H(Dan)(Dﬁe_tp(D)a(D))Xku||L2(1,Loo),
lk—q|>3
Now we can write
(3.11) F(t,2) := (Dx)(DPe"Pa(D))xule) = (K (t,z,-), (xxu)())
with
K(ta,) = (2n) (D) @Ru0) [ €0 q(t,6) de

where ¥ € C$°(R?) is equal to one on the support of y and q(t,&) = EPe=tPEq (). It
follows that for fixed (¢, x) we have

(3.12) [E(t, )| < [ 2, )| ot [ X00 ] ot

Let Ny € N be fixed such that N1 > —(o + m). We shall show that for every N € N one
can find Oy = Cn(T) > 0 such that for every (t,7) € I x R? we have

T D) @)

Indeed for |u| < Ny, DK (z,y) is a finite linear combination of terms of the form

It..9) = (DS DGR [ D a(t, e
where |v| + || = |p].
We notice that for all v € N we have

(3.14) D7 (E2q(t,))] < Cy(T) (g orMtm=hl,
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Now let N € N be such that N > max(d+1,No+ N1 +m+d+1) and v € N with
|7 = N. Then

(z —y)"J(t,2,y) = (Daxq)(év)(DZ)?k)(y)/ez(x W (=Dg)(E2q(t, €)) dE.
It follows from (3.14) that
(@ —y)7J (&, y)| < CLT) (D Xq) (2)[[(DyXk) (y)]-

Now since [k — ¢g| > 3, on the support of (D%xy)(z)(DyXk)(y) we have |z — y[ > |k —ql.

It follows that

Cy(T

70,9 < 2 (D) @) (D))
(k—q)

which proves (3.13). According to (3.12) and (3.13) we obtain

C C!
IFllaq0) < g oalioen < 8 g

which implies that By < C4(T')||ul| yo+m. Combined with (3.9) and (3.10) this proves the
ul
estimate of the second term in (3.8). O

Corollary 3.11. Let m € R and a € ST} (Rd). Then for every o € R there exists C > 0
such that

le”P) a(Dy)u

b gy < Ol ot

for every 6 > 0 and every u € HZZJr 7§(Rd).

3.4. An interpolation Lemma. We shall use the following interpolation lemma for
which we refer to [32] Théoreme 3.1.

Lemma 3.12. Let J = (—1,0) and t € R. Let f € L2(J, H'H'%(Rd)) be such that 0, f €
L2(J, Ht_%(Rd)). Then f € C%([—1,0], H'(R%)) and there exists an absolute constant

C > 0 such that

sup ||f(z, )l meray < CIFI L,

+Co.f
A gy + Cl0:£ll

(LHT3( L2(J,H'" 2 (RY))’

3.5. Para-differential operators.

3.5.1. Symbolic calculus. In this section we quote some results which concern the
symbolic calculus for para-differential operators in the framework of the uniformly lo-
cal Sobolev spaces. Of course, here, the theory for the classical Sobolev spaces will be
assumed to be known (see [33]).

The following technical lemma will be used in the sequel.

Lemma 3.13. Let x € C°(RY) and ¥ € CP(R?) be equal to one on the support of .
Let 1,0 € S(RY). For every m,o € R one can find a constant C > 0 such that

(3.15) Z Hin/J(TjD)((l - Yk)U)Q(TjD)UHHm(Rd) < CHUHHgl(Rd)HUHLOO(Rd)~
i>-1
11



For every m,o,t € R one can find a constant C > 0 such that
(3816) > [t D)((L = X)w)B I D)ol yrmmay < Clull e, ey 0] (-
j=-1

PrOOF. We may assume m € N. Let us call A, ; the term inside the sum in the left
hand side of (3.15). Due to xj, the term Ay ; is a bounded by finite sum of terms of the
form

Ak = 2" [ (D* X0ty (277 D) (1 = X)) Xnbas (277 D)ol oo
where |a1| + |ag| + |as| < m and P, = %2, 04, = 30, We are going to show that for
large N € N we have

(i) (D xi)thay (277 D)((1 = Xp)u) [0 < CN2M D27V ]| e
(i) [ Xibas (277 D)v]| L < Cllv]z
(i08) || Xkbas (277 D)ol| e < CZMED 0] e

where, as indicated, M; are fixed constants depending only on d,o,t. Then the lemma
will follow from these estimates.
To prove (i) we write

(D* Xk ()10 (277 D)((1 = Xp)u) (z) = 279277V

— xTr — - N
x (e — )N (@ (@ — ), Mwm(m)((l ~ ) — )N,

<|ﬁ:3|>’]\’v (D* x1(2))((1 = Xk(y)) belongs to W with semi-norms uni-

formly bounded in x. Using the duality H~? — H? we deduce that
(D k) (27 D) (1 = R oo < O M@ 27N (g0 — )= Noy] |1,

and we conclude using Lemma 3.2.
The estimate (ii) is easy. To prove (iii) we take ¥ € C§°(R?) equal to one on the
support of ¥ and we write

IX#0as (27 D)vllzoe < [IXkbas (27 D)XwvllLoe + [ Xibas (277 D)(1 = X)v Loe.
The second term is bounded exactly by the same method as (i). For the first one we write
Xl (277 D)X (x) = 29Xk (2)( 003 (27 (2 = ), Xe ()0 ()
and we use the H~! — H? duality. O

Remark 3.14. (i) Notice that the sames estimates in (3.15), (3.16) hold if in the left
hand side one 277 is replaced by 277770 where jo € Z is fixed.

(74) Notice also that in the above proof we have proved that for all real numbers m, o,
all N € N and all ¢ € C§° (Rd) one can find a positive constant Cn , » such that

(3.17) w277 D)(1 = Xi)ull g (ray < CNn,o 277 Jull o (o

for every j € N and every k € Z%.

The function y +—

We introduce now the para-differential calculus.
12



Definition 3.15. Given m € R,p € [0, 1],F:,”(Rd) denotes the space of locally bounded

functions on R* x R4\ {0} which are C°° with respect to €, such that for all o € N% the
function x — Og'a(x,§) belongs to WP (R%) and there exists a constant Cy, > 0 such that

o m—|«x 1
10 a(-, E)llweoemaey < Call +[E]) ol g > >
For such a we set

(3.18) M*a) = sup sup ||(1+ €)1 0¢al, &)l ra)-
lal<2d+2 j¢)>

Then f‘;"(Rd) denotes the subspace of F;”(Rd) which consists of symbols a(x,&) which
are homogeneous of degree m with respect to &.

Given a symbol a we denote by T, the associated para-differential operator which is
given by the formula

—

T,u() = (2m) ¢ /Rd 0(& —n,ma(§ —n,n)(n)a(n)dn

where a(¢,n) = [ga € “Ca(x,n)dz is the Fourier transform of a with respect to the first
variable, 1, 6 are two fixed C* functions on R such that for 0 < £; < 2 small enough

(3.19) Y =1l =1, p(n) =0 Jnl < |
(3:20) OCm) =1 [ < etlnl, 0 m) =0 [¢] > ol

Notice that if the symbol a is independent of & the associated operator T, is called a
paraproduct.

Theorem 3.16. Let m,m' € R, p € [0,1].

(i) If a € TZY(RY), then for all p € R T, is continuous from H",(RY) to H'™(R?)
with norm bounded by CM["(a).

(i) If a € F';,”(Rd), be F?I(Rd) then, for all p € R, T, Ty, — Ty is continuous from

H" (RY) to H{fl_m_murp(Rd) with norm bounded by
C(M,"(a)Mg" (b) + Mg"(a)M" (b)).
(7i1) Let a € F;”(Rd). Denote by (T,)* the adjoint operator of T,, and by a the complex

conjugate of a. Then for all p € R (T,)* —T5 is continuous from Hgl(Rd) to H{fl_erp(Rd)
with norm bounded by CM;"(a).

PROOF. All these points are proved along the same lines. We shall only prove the first
one and for simplicity we shall consider symbols in I'}? (R%). We begin by the case where
a is a bounded function. Then we write

XrTou = xxTa(Xew) + XxkTa((1 — Xi)u)
where ¥ € C5°(R%), X = 1 on the support of x. By the classical theory we have

e Ta(Xku) | e < Cllal| oo [ Xnullge < Cllal|Loo|Jull g,
13



Now we write
XeTa((1 = Xe)w) = > xe{t (277 D)a}{e(27D)((1 — Xi)u)}-
J

and the desired estimate follows immediately from the first inequality in Lemma 3.13.
We now assume that a(z, &) = b(z)h(§) where h(§) = |§|mh(%) with h € C>(S471).
Then directly from the definition we have T, = Ty (D,)h(D,) and our estimate in (7)

follows from the first step and from the estimate proved in Proposition 3.9
[R(D)vlln < CllAl gasr(ga-r)l[ull gusm.

In the last step we introduce (h,)yen+ an orthonormal basis of L2(S%1) consisting of
eigenfunctions of the (self adjoint) Laplace Beltrami operator A, = Aga—1 on L?(S91)
i.e. Ayh, = A2h,. By the Weyl formula we know that X, ~ cvi. Setting h, = |€|"h(w),
w = % when & # 0, we can write

a(,§) = Y by(x)h,(§) where by(z)= / a(z, w)hy (w)dw.

veN* sa-t

Since
N2y (7)) = A oz, w)hy (w)dw
gd—1

we deduce that
(3.21) 1Bl oo (ray < CA, P2 MG (a).
Moreover there exists a positive constant K such that for all v > 1
(3.22) P | st g1y < EXEHL,

Now using the steps above and Proposition 3.9 we obtain

| Tl g, < S T, (D) (D,

v>1

<Cy 160 | Lo ety 1ol a1 s -1y [l g

v>1

< M (@)l g S A D

v>1
and )\;(dH) ~ e 1F3), O
3.5.2. Paraproducts. We have the following result of paralinearization of a product.

Proposition 3.17. Given two functions a € H%(R?),u € Hgl(Rd) with o + 3 > 0 we
can write

au = T,u+ Tya + R(a,u)
with
(3.23) | R(a, u)]|

d
a2 (Ra

ey < Cllallgro a5
ul

14



Proor. We have

R(a,u) = Z Z ©(277D)a - (27 *D)u.

Jj=—1|k—j|<1

We take y € C5°(RY) satisfying (2.3), ¥ € C$°(R?) equal to one on the support of x and
we write a = xxa + (1 — Xg)a,u = Xgu + (1 — Xg)u. It follows that

xeR(a,u) = xpR(Xka, Xruw) + xxSk(a, u).

The term xR(Xka, Xru) is estimated by the right hand side of (3.23) using Theorem 2.11
in [3]. The remainder x%Sk(a,u) is estimated using (3.16). O

Proposition 3.18. Let v, r, i be real numbers such that

d
r+u>0 vy fy<r+u—§.

There exists a constant C > 0 such that
(3.24) I(a - Ta)uHHZl(Rd) < C||a”H51(Rd)||UHH51(Rd)
whenever the right hand side is finite.

Proor. We write

(3.25) Xk(a —Ty)u = xp(Xka — T%ka)iku + Ry pu+ Roju
(3.26) Ry pu = xr(Xra — Tga)(1 — Xi)u
(3.27) Rog = —xaTa—gpat = — Xk »_ Si((1 = Xi)a) A (u)

J
where ¥ € C$°(R?) is equal to one on the support of x. According to Proposition 2.12
in [3] we have
(3.28) Ixk(Xka — Txpa) Xiull gy < \lallar, |wll e -
Now
Rik = xsTa -z Xka + X R((1 — Xru, Xxa)

=Xk > Si((1= X)W A;(Xka) + x>, Aul(1 = Xe)u)A;(Xka).
J li—jl<1
Therefore we can apply (3.16) in Lemma 3.13 to R;; and Ryj to conclude that the
estimate (3.24) holds for these terms. O

3.6. On transport equations. We will be using the following result about solutions
of vector fields.

Lemma 3.19. Let I = [0,T], s > 1 —i-g and p > 0. Then there exists F : RT — R*
non decreasing such that for V; € L*(I, H*(RY)y N LI, HY RNy j = 1,....d,
fe LY I, H*(RY))w, up € H"(R?) and any solution u € L>=(I, H*(R%)),; of the problem

(8,: + V. V)u = f, U’t:() = Up
15



we have,

o ey < F TNV oo mroy) { ol zs, + 171l ..
T
tsup ([ 100y |70V (@) dor)}
keZd 0 "
where ¥ € C§°(RY) is equal to one on the support of .
PROOF. Set Vi = xiV. We have
(3.29) (O + Tv, - V) (xww) = xif + Vi - (V) Xeu + (Tv, — Vi) - V(xpu) := g

Now computing the quantity 4 [ xku(t)||72, using the above equation, the fact that [|(Ty -
V+ (Tv - V)22 < C||[V(t)|liyr1. and the Gronwall inequality we obtain

t
(330)  Ixwul®)lzz < F(IVIzgwn){ ol 2 + /0 lgw(o)llz do }.
Now we can write

(0 + Tv;, - VYD) (xww) = (D) gx + [Tvi,, (D)'] - V(xku).
By the symbolic calculus (see Theorem 3.16, (i7)) we have

ITvi, (D) - VOxrw) ()| 2 < ClIV () [lwrr, e [[xaw(t) || 220

Therefore using (3.30) and Gronwall inequality we obtain

31 @l < FViam) {hwvol + [ o)l do )
Coming back to the definition of g given in (3.29) we have
Vi - (V) Xew(®) [ e < CUIV (@)oo Xk | me + 1w oo [ Vi) 1)
On the other hand we have
(Ve = Tv,,) - V(xxw) = Ty (u) - Vi + R(Vie, V(xxu))-
By Theorem 3.16 (i) and an easy computation we see that
175 oy (1)« Vi@l e + [ B(Vi, Vxrw)) < Cllu(t)[wee [|Vie(6) [ -

Using (3.31), the Gronwall inequality, the embedding of H.9 in W' and the above
estimates we obtain the desired conclusion. O

3.7. Commutation with a vector field.

Lemma 3.20. Let [ = [0,T],V € CO(I, W'*¢(R%)) for some ¢ > 0 and consider a symbol
p = p(t,z,&) which is homogeneous of order m. Then there exists a positive constant K
(independent of p, V) such that for any t € I and any u € C°(I, H™(R?)) we have

(3.32) 1Ty, 0% + Ty - VaJult, Mz gy < KC @, V)llult, gz ey
where
Cp, V) = Mg" 0V llcowr+emay + Mg* (0p + V- Vap) V|| Lo (1xr4)-
16



PRrROOF. We proceed as in the proof of Theorem 3.16 and we begin by the case where
m = 0 and p is a function. We denote by R the set of continuous operators R(t) from
L%, (R?) to L?*(R?) such that sup;; | R(t)u(t)|| 2(re) is bounded by the right hand side
of (3.32). We write

Xk?[T]M 815 + TV : vm] = Xk[Tp7 at + TV . Va:];(/k + [XkTpa at + TV . V:v](l - )A(Jk)

where ¥ € C5°(RY) is equal to one on the support of y. By Lemma 2.17 in [3] the first
operator in the right hand side of the above equality belongs to R. Let us look at the
second term. It is equal to

—XkTo,p(1 = Xk) + Xk TpTv - Vo (1 = Xg) — xxTv - VoI, (1 — Xg) =t A+ B+ C.
We can write
A= —xkToprv-v.p(l = Xi) + xeTv.v,p(1 — X&) == A1 + As.
By Theorem 3.16 () the term A; belongs to R. Now
Agu = X1 Taiv(pv)—pdivv (1 — Xi)u

= > (277 D)(div(pV) — pdiv V)xze(2 7 D)((1 — Xi)u).
j>—1
Since
[4(277 D) (div(pV) — pdiv V)| 1 < C¥|p|lLos |V [y

we deduce from Remark 3.17 that 4 € R.
Let x € C(‘)X’(Rd) such that ¥ = 1 on the support of x and x = 1 on the support of x.
We write

B =xiTpx,Tv - Va(l = X)) + x6Tp(1 — X, )Tv - V(1 = Xk) := B1 + Ba.
By Theorem 3.16 (i) we have
IBiull g2 < Cllpllze || x, Tv - Va(1 = Xi)ul| 2
< Clpllr= Y (277 D)V)27x, 01(27/ D) (1 = Xi)u|
j=-1

< Ollpllzee IV || e Z 2j\\xk¢1(2_j17)(1 — Xk)u| 2
j>—1

and Remark 3.17 shows that B; € R.
Now by (3.15) and Theorem 3.16 we can write

1Baullzz < Clipllz< || Ty - Va1 = XiJul| ;-1
< Clpllz= IV llz=llull 2
so By € R. The term C' is estimated exactly by the same way, introducing a cut-off X,
after the operator Ty - V. Thus C' € R.
The case where p = a(z)h(§) and then were p is a general homogeneous symbol of

order m is handled as in the proof of Theorem 3.16. O
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4. The Dirichlet-Neumann operator
4.1. Definition of the Dirichlet-Neumann operator. For d > 1 we set
{ Q= {(z,y) e R :np.(2) <y <n(2)},
S ={(x,y) e R 1y = n(a)}

where 7, is a fixed bounded continuous function on R? and n € WH>°(R%). We shall
assume that there exists h > 0 such that

(4.2) {(z,y) e R in(z) —h <y <n(z)} C Q.

In [3] the Dirichlet-Neumann operator G(n) associated to €2 has been defined as a contin-

(4.1)

uous operator from H%(Rd) to H_%(Rd). Our aim here is to prove that it has a unique
1
extension to the space H2(RY) (see Theorem 4.8 below). Define first the space H} (Q) by

ue Hy(Q) & HUHH;Z(Q) = sup || xqul g1() < +oo.
qE€Za
Each element u € H', () have a trace on ¥ (see below) which will be denoted by you. We
introduce the subspace H. igo(ﬂ) C H},/(Q) defined by

H"(Q) = {u e HL(Q) : you = 0}.

ul

Then we have the following Poincaré inequality.

Lemma 4.1. There exists C > 0 depending on ||n|peomray + |74/ Loo(may such that for
a € C(RY) non negative and u € Hl’O(Q) we have

// ]uxy[Qda:dy<C'// z)|0yu(z, y)|? dedy.

PROOF. Letu € H - 0(Q). It is easy to see that there exists a sequence (uy,) of functions
which are C'! in Q and vanish near the top boundary y = n(z) such that

im = ull g @ glal<icy) = 0-

As a consequence, it is enough to prove the result for such functions. Let oo € C§° (RY), o >
0. We can write
y
u(z,y) = / Osu(z, s)ds
n(z)
from which we deduce

n(z)

a(a)u(z,y)|* < |In - n*IILooa(x)/ |Osu(x, 5)[*ds.

+(x)

Integrating this inequality on {2 we obtain,

J[ e@lut) Py < =l [[ a@)ioute. )l dedy.

18



Remark 4.2. Let
HYO(Q) = {ue L*(Q) : Vyyue L*(Q), and uly—u) = 0},

then we also have the Poincaré inequality

(4.3) // |u:cy|2<0// )| 0yuz, y)|? dedy

for all u € HYO(Q), a € cye (R%), a > 0, with a constant C independent of «. Indeed,
this follows from the same computation as above using the fact that any u € H%(Q) can
be approximated by a sequence of functions which are C*° in Q and vanish near y = n(x).

Proposition 4.3. For every i € Hu%l(Rd) the problem
0P
v
has a unique solution ® € H&l(Q) and there exists a function F : Rt — RT independent
of (¢,m) such that

(4.4) Apy®=0inQ, ®g=1 Ir =0,

1211, ) = FClnllwrooma) 11y 4 gy

PRrROOF. Before giving the proof we have to precise the meaning of the boundary
condition g%h‘ = 0 since I is only C°. This condition means that

(4.5) /Q Vay®(@,y) - Vayla(z)d(z,y))dedy =0

for every § € H'(Q) (the usual Sobolev space) with suppf C {(z,y) : ni(z) < y <
n«(x) + €} for a small € > 0 and every a € C§°(RY).

Notice that if 7, € W2>(R?) the Green formula (see [24] p.62) shows that (4.5) is
equivalent to g—‘fh =0.

Lemma 4.4. We have
(4.6) / [ V.0(.0) - ey (0@)0lay) dedy =0

for every 6 € HY(Q) with 00 = 0 and every o € C$°(RY).

PROOF. If § has support in a neighborhood of I', V¢ = {(z,y) : € R%,n.(2) < y <
n«(x) + €}, this follows from (4.5). Assume that 6 vanishes in a neighborhood of I'. Let
Qo = {(z,y) : ne(z) + § <y < n(z)} for ¢ > 0 small enough. Then 6 € H* () and
o, = 0. Thus @ € H} (). Since Qp has a Lipschitz upper boundary there exists a
sequence 0, € C§°(Qp) which converges to 0 in H'(€g) (see [24] Corollary 1.5.1.6). Now
by the equation we have

0= <Az,yq)a a9n> = / vx,yq)(xa y) ’ Vm,y(a(x)en(:ﬂa y)) dx dy.
Q

Moreover
/Q Vaey®(z,y) - Vay (04(95)(971 = 0)(z, y)) dx dy| < CH‘I’HH;Z(Q)H@n - e”Hl(QO)-
Therefore, passing to the limit, we obtain (4.6) for such 6. O
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Part 1. Uniqueness: Let us denote by ® the difference of two solutions in H}, () of

(4.4). Then y® = 0. Now we take in (4.6) a(z) = ef%g‘(%) where A, B are large
constants to be chosen, ( € C*°(R) ((t) =1 when [t| < 1, supp( C {t e R: [t| < 1},0 <
¢ <1and @ = ai(z)® where a; € C°(R?) is equal to one on the support of a. Then
6 € H'(Q) and 40 = 0. We can therefore use Lemma 4.4 and we obtain

I _// (2)| Ve y®(z,y) | dz dy

(4.7) - _// (Valz))a(2)®(z,y) - Vo (2,y) dx dy
B // <B )2(z,y) (Vo)) - Vo @(z,y) dz dy

By the Cauehy—Schwarz 1nequahty we have

]<— // \V@my\zdacdy // \@my\zdacdy) .

Using Lemma 4.1 we deduce that

|<— // |V<I>a:y|d$dy+// )]0, ®(x, )| dxdy)

Taking A large enough we see that the term (1) can be absorbed by the left hand side of
(4.7). We then fix A. It follows that

<
1<3 2 % [[ e Inate)ee nl|v: (o)) ddy
qEZd kezd
If |k — g| > 2 we have supp x4 Nsupp xx = 0. Therefore we have |k — ¢| < 1 (essentially

k = q.) Moreover in the integral in the right hand side we have \x—q\ <land1l< % < 2.
If B is large enough we have therefore B <|q| < 3B and |z| > |q|. It follows that

where

1
// Xq(2) (2, y)|? d:vdy // |V (xq(@ w,y))\dedy)z

so using again the Poincaré 1nequahty we obtain

C
I< §6 e CsA // |Vay Xq (x,y))|2dxdy

? |¢|<3B

<O TN @0

£<q|<3B
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Since the cardinal of the set {¢ € Z? : £ < |¢| < 3B} is bounded by CB? we obtain
eventually

@ {x) ~1—ci3
/ﬂeAﬂBﬂwwmﬂwmwé%H“eAHM%m'

Letting B go to +oo and applying Fatou’s Lemma we obtain

// _7]V$y<I> z,y)|? dedy =0,

which implies that V. ,®(z,y) = 0 in Q thus ® = 0 since ®|x, = 0.

Part 2: Existence. We first recall the situation when v € H %(Rd). In the following
lemma, whose proof is given below, in section 4.2, we construct a suitable extension of v
to Q.

Lemma 4.5. Let ¢ € H%(Rd). One can find v such that

(1) e (), swpy € {(z,9) :n(z) —h <y < n@)},
(2) b, =il)

() 1505 < F (Ul eyl
Then (see [3] for more details) the problem

Agyu = _Ax,yﬁ

has a unique solution u € H'Y(Q2). This solution, which is the variationnal one, is char-
acterized by

(4.8) //Q Veyu(2,y) - Ve 0(z,y)dedy = — //Q Vaeyb(z,y) - Ve, 0(x,y)dxdy
for every § € H%0(Q). Tt satisfies

IVayull 20y < Cll|l
Then ® = u + 1 solves the problem (4.4).

1
Let us consider now the case where ¢ € H2(R?). If ¢ € Z¢ and y, is defined in (2.3)
we set

HZ (R4’

Yo = xq¥ € H2(RY).

By Lemma 4.5 one can find yq € H'(Q) such that yq]y:n(x) = 1py(x) and
(1) suppy, C{(z,9): [z —ql <2,m(x) —h <y <n(x)}

(@) I, HHl ) < Fllnllwcoma)llll ;1

To achieve (i) we multiply the function constructed in the lemma by X,(x), where supp X
is contained in {x : |z| < 2} and ¥ = 1 on the support of x.
Let ug4 be the variational solution, described above, of the equation A, yuy = —Ag y1)q.

jig3 (Rd)

Our aim is to prove that the series ) 7a uq is convergent in the space H iio (). This will

be a consequence of the following lemma.
21



Lemma 4.6. There exists 6 > 0 and F : RT — R™ non decreasing such that for all
q € Z% we have

(4.9) Hed<x_q>vx yugll 2y < FlInllwr.e Rd))H%HHz (R4)"

Assuming that this lemma has been proved, one can write

—6(z—q) 66<a:—

Xk VayuqllLz ) = [Ixre DV 4 ytigll 20

(4.10) < Ce "D F(|Inllroe) Wl 4
< 0'6_5<’“_q>f(\|77HW1,oo)II@ZJIIH%

ul

Let us set S9 = >_lql<q Uq- First of all (S?) converges to u = > _gezd Ugq in D'(2). Indeed

if ¢ € C§°() there exists a finite set A C Z? such that ¢ = Y, .4 xxp. Then using
Lemma 4.1 and (4.10) we can write

[(ug, p)| < Z [(Xkug, p)| < C Z ||Xkay“q||L2(ﬂ)||<P||L2(Q)
keA keA

<Ce”’ Flnllwo) I3 e llr2@)

ul

for large |q|.
On the other hand (4.10) shows that for fixed k the series .74 Xxuq is absolutely

convergent in H iiO(Q). Therefore (xS%) converges to (xxu) in H iZO(Q) and we can write
using (4.10),
XKV yullrz) = 1im HXkVSQllL2(Q)

< Z Fllnllwre)llll g -
qEeZ4 H
Therefore u € H iéo (©) and
(4.11) IVayull 2 @) < Fllnllwre) ]l
ul

Finally ® = u + 1) solves the problem (4.4) and we have
1911300 < F (=l

which completes the proof of Proposition 4.3 assuming Lemma 4.6. g

Proor orF LEMMA 4.6. We set

__(z—q)
v g
Let u, be the variational solution in H19(Q) of Au, = —qu. According to the variational

formulation (4.8), with 6 = €®*=(®)q,, we have

// Vg - Vm@(e%w‘f(z)uq) dxdy = — // Vx,y¢q : Vx,y(e%we(ac)uq) dx dy.
o) Q —
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Therefore

//Q eQ‘SwE(I)V%yuq -Veyugdrdy = — //Q e%wf(m)vx,yﬂq - Ve yugdx dy
— 26 //Q 625w5(x)uqvx,yyq - Vawe dz dy — 26 //Q 20wy 7 g - Vpwe da dy.

Now V,w, is uniformly bounded in L*° with respect to € and = and, on the support of yq,
dwe ()

(4.12)

we have e < €99, Consequently, using the Cauchy-Schwarz inequality, the inequality
(4.3) with a = ¢**<(®) and taking § small enough we obtain

(4_13) //Q e?éws(x)yvx,yuq‘Qd.r dy < CquH%ﬁ(Q)
We deduce when € goes to 0, using the Fatou Lemma, that
17~V g, yugll r2() < ClIY (@) < Flllnllwroema)) I

This completes the proof. ]

H? (R)’

4.2. Straightening the boundary. Before studying more precisely the properties
of the Dirichlet-Neumann operator, we first straighten the boundaries of

(4.14) Q= {(z,y) € R* i) —h <y < n(a)}.

Lemma 4.7. There is an absolute constant C' > 0 such that if we take § > 0 so small that

h
Sl[nllw.oo(may < °C
then the map (z,z) — (x, p(x, 2)) where
(4.15) p(x,2) = (14 2)*PIn(z) — 2{e 20+ Pely(z) — n}
is a diffeomorphism from Q = {(z,2): x € R%, =1 < 2 < 0} to .

PROOF. First of all we have p(z,0) = n(z), p(z,—1) = n(z) — h. Moreover we have
0.p > % Indeed we have

8.p =0+ (7Pl — i) + (1 + 2)8e°*P=) (D, )n
(= Bt (S0P ) 2S00 (D,

Now for any A < 0 the symbol a(£) = e satisfies the estimate 0ga(§)] < Co (&)~

where C,, is independent on A\. Therefore its Fourier transform in an L'(R%) function
whose norm is uniformly bounded. This implies that ||a(D)f|| 1o (ra)y < K| f|| Lo (ra) With

K independent of \. Since e?MP=)y —p = §A fl 0tMDa) (D, \n dt we can write
197 — ]| Lo (ray + 611€° PN (D)l oo (ray + eI Pein — )l oo (ma)

+ 5”676(1+Z)<DI><Dx>77HLoo(Rd) < Cd|nllwromay < -

NS

This completes the proof. ]
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From the above computation we deduce that

h
(4.16) 0:p(w,2) 2> 5 and Vel zemay < Cllnllwroqnay

We shall denote by k the inverse of p,

p(z,2) =y <= 2z = K(,y).

If we set _
f(xv Z) = f(a:,p(x, Z))
we have
gf(x,p(az?z)) _ 0.f(x,2) := A f(z, 2)
(4.17) 4 2P

wa(.%',p(l', z)) = (V:rf - gmppasz) (.%', Z) = A2f(x> Z)'

z
We introduce the space
Hoy(Q) = {ueLl(Q):Aue L2(Q), j = 1,2},
endowed with the norm
2
@l @) = sup Xl 2y + Y sup [IxgA;ull 2(g)
ul qGZd j= 1q€

Then according to Lemma 3.12 we see that the elements of Hil(ﬁ) have a trace on

1 - ~
z = 0 belonging to the space H2,(R?). Then we introduce the subspace Hllb’lo(ﬂ) C HL ()
defined as follows
Ho () = {i € Hy(Q) : @l.m = 0}.

ul

It follows that we have
uwe HY(Q) e ae HL(Q), uwe HY(Q) sueH(9Q).
4.3. Definition of the Dirichlet-Neumann operator. We can now define the
1

Dirichlet-Neumann operator. Formally we set for ¢ € H2(R?)

Gnla) = (14 Ven)h O = (Zj V.-V,

= (M1® — V1 - A2®) e = (M1® — Vip - Aa®) |

(4.18)

where ® is the solution described in Lemma 4.3 and A; is as defined by (4.17). Our aim
is to prove the following theorem.

Theorem 4.8. Let d > 1 and n € WV(RY). Then the Dirichlet-Neumann operator
1

is well defined on HE(RY) by (4.18). Moreover there exists a non decreasing function

F:R*T — R* such that for all n € WH*(R4)

Gyl -y . < Flnlwrema) 0y

2 (RY) Z(RY)
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PROOF. Set U = A1® — Vyp-Ao® and J = (—1,0). We shall prove that for all ¢ € Z4,
(4.19) IxqUllz2(s,02) < f(HnHWLOO)H@ZJHH%a

ul

Y

(4.20) IXqO=Ull L2511 < J—“(Hnuwm)uwuH

£ =

where F : RT™ — R is independent of ¢ and . Then Theorem 4.8 will follow from (4.19),
(4.20) and Lemma 3.12. Recall that ® = @ + 1. Now the estimate (4.19) follows from
(4.11), (4.17) and Corollary 3.11 with ¢ = 0 and m = 1. To prove (4.20) we observe that

(4.21) 8U = —V,((9.p)Aa®).
Indeed we have
0.U = 0,1 ® — V,0.p - Ao® — Vyp - 9. M@
= (0:p)A® — V,0:p - Aa® + (D:p) (Mg — V) As®
= (0:p)(AT + A3)® — V. ((9:p)A2®)

s0 (4.21) follows from the fact that (A2+A2)® = 0. Then (4.20) follows from the estimates
used to bound (4.19) and the Poincaré inequality (4.3). The proof of Theorem 4.8 is
complete. O

We state now a consequence of the previous estimates which will be used in the sequel.
Notice first that the equation (A? + A2)® = 0 is equivalent to the equation

(4.22) (82 + aly + - V0, —~0,)® = 0,
where
0.p)? 9.pV . 1
(4.23) (9:p) B i= g 2P YzP = = (0%p+ alyp+ B V.d.p).

NS PR 1+ Va2 77 0p

Corollary 4.9. Let sp > 1+ % and J = (—1,0). There exists a non decreasing function
F:R" — R7 such that

4.24 V.0 . <F , .
(4.24) Ve, qul%u) (H"”H;(;*%(Rd))WHHj(Rd)

ProoOF. First of all the estimate
Voot 1 <C
[Va, %qul%u) < HwHHé
follows from Corollary 3.11 with 6 =1,m =0,1 and o = 0.
On the other hand we notice that 0, = (9,p)A; and V, = Ag + (Vyp)A1. Let Y €

Cs°(RY), X = 1 on the support of x. Since s > 1+ g, using Corollary 3.11 with o = s we
can write

/
LOO(J,Hsf%) < C HV”E’ZPHLOQ(J,HS*%)M
1
< L il )

ul
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It follows from (4.11) that
(4.25) Va2l r2(r.02), < F(0l oy )W ub-
ul

Now using Lemma 3.12 we have

X%V 2ul| ClIxkVaull r20,r2) + X602 Vati| 1205 m-1))-

Loo(J,H™ f) =
The first term in the right hand side is estimated using (4.25). For the second term
using (4.25) we have

IXk0:Vatllp2(rm-1) < (Vaxw) 0zl p2rm-1) + Xkl L2 L2)

(4.26) < €10 25 < Flnl e N3
Therefore

(4.27) ||v:cﬁHLoo(J7H*%) (HUH s+ )HT/}H

Eventually

(4.28) ekl g -ty < CUDrdztll 22y + ezl g1 )-

The first term in the right hand side is estimated using (4.25). For the second term
using (4.23) we have

X020 20 g m-1) < A1+ Ag + As
A = HXkaAaHL?(J,H—l)
Az = |IxkB0V i L2y 1)
As = |Ixe0:ull 25,11y
Now using (3.5), (4.25) and (4.26) we obtain

Arv<ledl o go-ty AUz -1, < F I et DIl g
Az BN e -3y, NOVatill 20 -1),, S}"(IIHH et )IWJH b
A S0 ety NOT 2200 < P ku
Therefore using (4.28) we obtain
107, -1y, < F o)1
which completes the proof of Corollary 4.9. O

4.4. Higher estimates for the Dirichlet—Neumann operator. In this section
we prove the following results.

Theorem 4.10. Letd > 1 and sp > 1+ %.
Case 1. There exists F : RT™ — R™* non decreasing such that for —% <o <sy—1,

every n € H O+2(Rd) satisfying (4.2) and every ¢ € H%TH(R?) we have
g, < F(nlyo) Il ams

ul
ul
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Case 2. For every s > sy, there exists F : Rt — R non decreasing such that for every
s+%

ne€ H, (RY) satisfying (4.2) everysp—1 < o < s— % and every Y € Hgl+1(Rd) we have

ul

1Glz, < FUO ey I g + 10 o + 1}

ul ul ul

We set
(4.29) Ry =Gy — Ty

where

NI

A= (1 +|Van)EP = (Van - €)%)2.

Theorem 4.11. Letd > 1 and sp > 1+ %.

Case 1. There exists F : R™ — R non decreasing such that for 0 < t < sy — %,
So—&-%

neH, (RY) satisfying (4.2) we have
IRl < F ()16 1

t+3
for everyp € H ; ? (R%).
Case 2. For all s > sy there exists F : Rt — R non decreasing such that for every
s+%

1
ne€ H, (RY) satisfying (4.2), every sp —% <t< s—% and every i € Hil+2 (R%) we have

IRl s, < F(1ln. )] YU ey + 1901y +1}-

1
so+5 S
HO 2 xH)Y H

ul

The main step in the proof of the above theorems is the following elliptic regularity
result.

Theorem 4.12. Letd > 1,J = (—1,0),5 > 1 + g. Let © be a solution of the problem
{(83+an+6'vxaz—yaz)a:F in RY x J,

4.30
( ) ’6‘2':0 = ¢

a1
Case 1. For —% <o <sy—1letne HZ(I)+2
Y5 (J) and

(4.31) IVasdll < +oo.

Xul2 (J)
Then for every zo €] — 1,0[ one has ViU € Xgl(zo,(]) and one can find F : RT — RT
non decreasing, depending only on (sp,d) such that

(RY) satisfying (4.2), 1 € HG'(RY), F €

IV20.23] 2 (20.0) < f(||n||H3+;){erHgl+1 + I Fllygon + IVasll (J)}.

ul
1 S+% d . .
Case 2. Fors > s, and so —1 < 0 < s—5 let n € H,; *(R?) satisfying (4.2), ¢ €
HS (RY), F e Y5(J) and
(4.32) HV%ZﬁHXz(;fl(J
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Then for every zp €] — 1,0[ one has V.0 € X%(20,0) and one can find F : Rt — R*
non decreasing, depending only on (sg,s,d) such that

|’vx,25HXgl(zo,0)

< PN ey Ules + IFvgn + (Il oy + DIVl goi -

ul

Corollary 4.13. Let so > 1+ g. Let @ be defined in Proposition 4.5.
1
Case 1. For —1 < o < sy — 1 assume that n € Hz(l)+2 (RY) satisfying (4.2) and
(NS Hgl+1(Rd). Then there exists F : Rt — R™ non decreasing depending only on (so,d)
such that N N
H(I)HXZerl(ZO,O) + ||vx,z(1)||X;’l(zo,0) < f(|’77HHs0+%) HwHHZ;Ll
ul

1 1
Case 2. Fors > sy, so — 1 < 0 < s— % assume that 7j € HZ;FQ(Rd), n e HZ;FZ(Rd)

satisfying (4.2) and ¢ € HZ[H(RC[). Then there exists F : Rt — R™ non decreasing
depending only on (sp,s,d) such that

19 X1 (2,00 F I Ve, 2@l x, (20,00

< F(l(n. %) Yl ey + lllggr + 1}

ul

i bcny
PROOF. Indeed & satisfies (4.30) with F' = 0 and it is proved in Corollary 4.9 that

IVl g o S F e I3 < oo

wl \R0; )

ul

Moreover the estimate of ® in X ?(20,0) is obtained by the Poincaré inequality from the
estimate of 0,9P. ]

PROOF OF THEOREM 4.10 GIVEN COROLLARY 4.13. Let us set

(4.33) H=M®—V,p- A
By (4.18) we have H|,—o = G(n)y and by (4.21)
(4.34) 8. H = —V,((0:p)A2®) = —V,((0:p) Vi — (V)0 ) .

Using Lemma 3.12 with f = x,H, (4.34) we deduce that

I G@lae < CIxaH ot + Ixa0:H]

Moreover by (4.34) we have

LQ(J,H‘”'%)} ’

g0 H]| < C'[1(0:0) 9. A+ 1(2p)0-8

1 1 .
L2(JH " 2) L2(JHT2), LZ(J,H"*?)J

Case 1. If —% <o < sy — 1 we use the estimate
HngLZ(JyHUJr%))ul S CHfHLOO(J7H507%)ul HgHLZ(J,HGJr%)ul

which follows from Proposition 3.3 with g = o + %, o1 = Sg— %, o9 =0+ %, the estimates
on p and Corollary 4.13.
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Case2. If sp—1 <o <s— % we use the inequality
190 oy ey, = WFllioe o), 9l g o) gl oe (o1, 1 xg 00
the estimates on p and again Corollary 4.13 to obtain Theorem 4.10. U
Theorem 4.12 will be a consequence of the following two results.

Proposition 4.14. Let sp > 1+ g. There exists F : RT — R™ non decreasing such that
for =1 < zg < 21 <0, —%Sagso—l and k € Z% we have

(o) Vel xrer0y S F Wl {180z + 1 Fllygo) + Vsl

ul

X—%(zo,())}’
where U = YiU.

Proposition 4.15. Let sy > 1 + %l, and s > sg. Then there exists F : Rt — R* non
decreasing such that for —1 < zp <21 <0,5—-1<0<s— % and k € Z¢ we have

(Ka) N VasBillxo o) < FIlyey) {191e0 + 1 Fllvg
ul

Il ) IVl
where U = YiU.

We shall prove these two results by induction on ¢ and by the same method. However
we have to distinguish them since we want the right hand side of these estimates to be
linear with respect to the higher norms of (¢,n). Since (H_1) and (Kg,—1) are trivially

2

satisfied if F > 1 these propositions will be a consequence of the following one.

Proposition 4.16. Case 1.  Let sy > 1—1—%. If (H) is satisfied for some —% <o <s—1
then (M, 1) is true as long as o + 3 <s—1.
2
Case 2. Letsy>1+ g and s > so. If (Ky) is satisfied for some sp—1 <o <s— %

1

then (K, 1) is true as long as c+i<s—1.
2

In the sequel, case 1 will refer to Proposition 4.14 and case 2 to Proposition 4.15.

4.5. Non linear estimates. We begin by estimating the coefficients «, (3, v, defined
in (4.23). We set J = (20,0).

Lemma 4.17. Case 1.  Let sy > 1"’%- Then there ezists F : Rt — R non decreasing
such that
el -3 ot 1611 o3

ul (

g < F )

(J ul ( ) ul

ul

Case 2. Let sp > 1+ %. Then for s > sy there exists F1 : RT — R™T non decreasing
such that

al .1+ 1+ 3
o gy )+ 181 )+ 00
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PROOF. Since
p=(1+2)e%Paly — 5(e=01+2)Dalyy _ p)
Lemma 3.11 shows that that for all £ € R,k € N and all a € ST, we have

(4.35) 105 a(D)pllxt, () < CQA ll gt prosmsns).
Then according to (4.23) we write
0 = (0:p)* ~ (-0 Ca(Vp), Ga(6) = ol
’ 1+ [¢[?
Case 1: The estimate for a follows from (3.3) and (3.5) with g = sy — 5. The estimate
for 3 is similar. Now we can write
0%p £

Y= +(azp - (azp)Gl (vaﬁp))Aa:p + GQ(VJJP) : vzazpa GZ (f) =

0.p

To estimate ~ we first use the embedding

14 [¢)2

1 3
So—35 so— so—
X, 2xX : cX, ’

ul ul

which is a consequence of Lemma 3.5 with p = 400,090 = 01 = 59 — %,02 = 50 — % and
p=2,00 =09 =5 —1,00 =sy)— % Then we use (3.5) and (4.35). Case 2: The estimates
of a and B follow from (3.3) and (3.5) with g = s — £ and from (4.35). The estimate of ~
follow from (3.4) with = s — 3 and (4.35) with t = sy — 3, m + k = 2. O

According to (4.30) we have

(02 + al, + - V20.) (i) = \u F + Fo + F
(4.36) Fo:=aVuxr - Ve + 0-Vexg - 0,0
= yxi0,0.

Lemma 4.18. Case 1. Let sy > 1+ g. There exists F : RT™ — R non decreasing such
thatfor—%gagso—l witha—k%gso—l

ZHF lyoss sy < F (Il <0+g)||szvllxv J)-

Case 2. Assume sy > 1+ %. Then for all s > sy there exists F : RT — R non

decreasing such that for sp —1 <o <s— % with o + % < s—1 we have

2
1
Z ||F]||YU+%(J)
7=0

= f(””HHEJr%){HVI,Z:‘;HX&(J) + (HHHH;J[% + 1)||vx,zﬁ”xitgfl(g])}’
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PROOF. Case 1: The terms Fjy and F} have the same structure but Fj is worse since,
according to Lemma 4.17, v is bounded in a weaker norm.

Let us look at the term Fj. We can use Proposition 3.5 with p = 2,09 = 0,01 =
Ssg — 1,09 = 0. Indeed we have o1 + 09 > 0 since s5p > 1 + %,Jg = 01, 0g < 09 due to the

definition of o, eventually oy < o1 + 09 — % since sg > 1+ %. We obtain

||7Xkaz5HL2(J,HU) < ||>7k7||L2(J,Hso—1)||Xkaz5\|L°°(J,HU)
and we use Lemma 4.17 to conclude.
Case 2: Using (3.4) with u = o — 3 we obtain
v xx0-0l 2,1y < C (Y]] i 10011 591 + (1] -3 5 0.0 x<).

ul ul

Since o — < s — % we can use Lemma 4.17 to conclude. O

Our next step is to replace the multiplication by « (resp. ) by the paramultiplication
by Ti, (resp.Tp). Recall that we see that the equation (4.36) can be written as

(4.37) (02 + A, + - Vi0,)0, = F + Fy + Fy.
Then we have the following result.

Lemma 4.19. Let J = (20,0),s0 > 1 +%l and s > sy. There exists F : Rt — Rt non
decreasing such that, for all I C J, Uy satisfies the paradifferential equation

(4.38) (02 + Ty +T5-Vi0,) 0, = F + Fo + F1 + Fy

for some remainder Fs satisfying
Casel: if 0<oc<s—1 wz’tha+l<so—1

(4.39) [F2l F(nll o) 1Va0lxz, 1

ul

yots (1)

Case 2. if so—lgags—fwitha—i—%gs—%

(4.40) 12l sy ) < F(lInl sﬁ%)(llnllHj% + DIVazll o1

ul
Proor. Case 1: Using Proposition 3.18 with v = 0,7 = sy — %, = a—% which satisfy
all the conditions we obtain

(o = To) A r2 (s, 1wy < Claa] NV kll o) ovdy

||sz k”

Loo(J,H0" %),
(8 —Tp) - VaO:Vk | p2(g,10) < C||ﬁ||Loo
The result follows then from Lemma 4.17.

Case 2. By Theorem 2.10 in [3] we have the following estimate for o > 0
It = Ta)ulla < Cllull -y lled

JH%0~ z H"+?)'

HOtE
Let X € C§°(R?) equal to one on the support of y. We write
(@ = To) As¥k = (Xe — Tx,.0) AcVk + Tz —1)a Dz Uk
It follows from Lemma (3.13) and the above inequality that
(e = To) Aatiellr < CllATRN g Xkl oy
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1 1 .
Since H*72 C C2 and 0 < s — 1 we obtain

(e~ T) il 210y < OV sl oy

wich in view of Lemma 4.17 Case 2, proves (4.40). O
Then as in [3] we perform a decoupling in a forward and a backward parabolic evolution
1
equations. Recall that n € H 272 (R%), in particular n € W%’W(Rd). We can apply Lemma
3.29 in [3] to obtain the following result.

Lemma 4.20. Let sy > 1+ %. There exist two symbols a, A in T} (R4 x J), F: R — R*

2
non decreasing and a remainder term F3 such that

(441) (6Z _Ta(z))(az —TA(Z))ﬁk = F+F0+F1 —|—F2+F3
with
4.42 ] (A <F
(1.42) s (M} (a(e) + M} (ACD) < F Il g,
and
(4.43) 1By gy < F Uy g )IVT
for allo € R.
PRrROOF. We follow closely the proof of Lemma 3.29 in [3]. We set
1 .
a=3(-i8-6~ VialgP = (3-¢P)
(4.44) 2
A=3( =8¢+ VaalP = (B-97).
We claim the there exists ¢ > 0 depending only on ||n|| _ .1 such that
HO 2 (Re)
(4.45) Viaalg? - (8-€)? = clgl.
Indeed according to (4.23) we see by an elementary computation that
9:p)°
dalel? — (8. €)2 > (0: 2
e = (39> 4 2 aale

Then our claim follows from (4.16).
Since we have sy > 1+ g we deduce from the paradifferential symbolic calculus that

0y, —T )0y, —Ta) =02 +ToAy +Ts- V0, + Ro+ Ry
z B8

where

3
Ro(2) :== Ty Taz) — TaAy  is of order B

3
Ri(z) == =Ty a(») s of order 3
together with the estimates

S(ull)()) (HRO(Z)HHH%_,Ht + ||R1(Z)||Ht+%_>Ht) < F(M
ze(—1,

(4) + Mi (a)).

2

N
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Now the seminorms M’ (A) and M! (a) are bounded by the W%’C’O(Rd) norms of « and (.
2

Since for f = «, 0 we h2ave

5w sy < OV
we deduce from Lemma 4.17 and the fact that the symbols of R; vanish near the origin
that for j =0,1

1 ()0l < FCUll g3 )V 2Tk

ul

HOtS
The proof is complete. 0

4.6. Proof of Proposition 4.16. Case 1.  Assume that (H,) is satisfied, which
means that there exists Iy = (29, 0) such that

(146)  I¥aBilxoag < Pl o) {Ilgen +1F g + 19231y -

ul

From this estimate and the Poincaré inequality we deduce that
@) IVasley < Fl ) {0l + 1Flvgon + 1970y |}
ul ul

We want to prove that

(448) 1Vl o ) S Ty {0 0P ey 19y
Introduce a cutoff function 6 such that 6(zp) =0, 6(z) =1 for z > z;. Set
(4.49) wi(z,+) = 0(2)(0; — Ta)vg(z, ).
It follows from Lemma 4.20 for z > 2y that
3
(4.50) 0ty — Ty, = 0(2) (F+ Y Fj) + Fi
j=0

where
Fy=0'(2)(0. — Ta)vg.
We deduce from Lemma 4.18, Lemma 4.19, Lemma 4.20 and (4.47) that

3

@5 S IOE ey gy < ) { Il + 19270y
i=0 u u

and we see easily using (4.46) that

@52) Wil gy < F Ol o) {0l + 1F Mg + 1900y -

ul
Now using Proposition 2.18 in [3] and (4.50), (4.51) and (4.52) we see, since Wi|,—», = 0,
that

453) 100l gy S F g ) {1l + Wl + Vsl -y

ul

Now notice that on I; := (21,0) we have 6(z) = 1 so that

(4.54) (9, — Ta) 0y = wp.
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We may apply again Proposition 2.19 in [3] and write

||v$ k”Xd-!—g ) — ||:5I€HXU+1+%(II)
< F([|nl proth )(I\@z~cllya+2 + |9 pot 3)
< ~
f(H/r]H s()Jr%)(HwkHXoJr%(Il) kuH:'le%)
<F 3 + || F +||Ve?|| _1 .
(10 )00 + Iy + 19T )

The same estimate for 0,vy, follows then from (4.54) and (4.53). Thus we have proved (4.48)
which completes the induction.
Case 2. Assuming that (K,) is true, the exact same method shows that (X, 1) holds
2

as long as o + % <s-— % Details are left to the reader.

4.7. Proof of Theorem 4.11. Let 0 <t < s — 5. Recall that
~ ~ 1+ V 2
Gy = 910:® — g2 - Vo | ey 91 = gpmp', g2 = Vap.
4

We shall set
Gjl=0 = 9?, =12, Al.—o= Ay, a|.—0=ao.
We recall that we have set y;® = ®j, where ®|,— = ¢ and @y, = (9, — Ta) Dy, (see (4.49))
for z € I. It follows that we can write
(4.55) XkG )Y = g(8: 1) |20 — XkgSV ¥
= g?ﬁk|z:0 + g?[Ton Xk]w + Xk (g?TAO - gg : VW

We shall set

(4.56) Ry = (Xi90) [Tags Xk, R = (Xrg?)Wi|2=0
where x € Cg° (R%) is equal to one on the support of x so
(4.57) XkG(MY = xk (99T, — 95 - V) + R1 + Ro.

1
Let us set U = [Ta,, xx]t. By the symbolic calculus, since HZ(Z)+2 C W2 we have for all
ceR

(4.58) 1Tz < F(llnl m)nwn

ul

fo<t<sy)— 1 the product law in Proposition 3.3 gives

Xkt Ul < IRk01 -3 101zt < F (Il )T e
ul

H

If sp — % <t<s-— % we use the estimation

Xk ULt < C(I1Xk97 | oo 11U e + [1X097 e 1 U | oo 1) -
Therefore using (4.58) and (3.5) we obtain

IXkg?Ullme < F(Il(n. )] oo+h qu+§){||?7|| g+§+||¢|| o+ y + 1}

ul ul
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It follows that we have

(4.59) [ R[] e SF(||(7771/})”H50+2 H50+2){||77|| =+ + [l utth y + 1}

ul

By the same argument as above we have

(4.60) IRellre < F(Inll gy {NDela=olle, + il g l1e]=oll g1}

ul ul

Now using (4.53) with o = ¢ — 1 we obtain in particular
(4.61) Nkll o f, ety < F(lInl s0+2)(||¢|| aerd T 1).

Moreover we deduce from (4.50) that

18- w| < || Towgll

LQI Ht +Z” ]HLQI Ht
It follows from (4.61) and the estimates already obtained on the F/s that

(4.62) 19kl oy -ty = F Nl gy )Nl gy + 1)

Applying Lemma 3.12 to x,wi we obtain, for 0 <t <s— 35

L2(I,H'™ é)

;
(4.63) Ils-ollg, < F (Il gy )19, g + )
Combining with (4.60) we obtain
4.64 Rl < F (10,0 . . L+ L+ 1
469 Wl < FU e ) Dy 00y 1),

Now we have
Xk (99T a0 — 98 - V) = X6Ty0 4, —ie. g0 + Ra + Ru,
(4.65) Ry = xi{(9) — Tyo)Tagth — (95 — Tyg) - Vi)
Ry = xu{TyTay — Tyoa,}-

fo<t<s— % we use Proposition 3.18 with v = ¢, = sy —
the conditions and we obtain

Ixi{ (97 — Tyo)Tao®llmre < llg1 o-3 1Ta0¥ll oy

ul ul

%7 pw=t-— % which satisfy

and an analogue estimate for the term containing ¢9, from which we deduce
(4.66) IRl < F (il )0

From Theorem 3.16, (ii) with p = § we have

(4.67) [Rall e < F([Inl] proth )] otk

Summing up, using (4.57), (4.59), (4.64), (4.66), and (4.67), we obtain

XkG(n)d} = XkTg?Aofi@ggw + R5
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with
sl < F O et i) LIy g +13
So Theorem 4.11 follows from the fact that
9 Ao — i - g3 = /(1 + [Van )€ = (Van - §)2.

5. A priori estimates in the uniformly local Sobolev space

5.1. Reformulation of the equations. We introduce the following unknowns
(5.1) (=Vaon, B=(9y®)ly=y, V= (Va®)ly—y, a=—(0yP)ly—

where @ is the velocity potential and the pressure P is given by
1
P=Q- §|v$,yq)’2 —9Y.

where @ is obtained from B,V,n by solving a variational problem (see §7.2 below for
details).
We begin by a useful formula.

Lemma 5.1. Let I = [0,T] and sp > 1+ 4. For all s > sy one can find F : R* — R*
non decreasing such that

Gn)B = —divV +~
with

It o ey = WM g b ey, ) {1+ ”””Lw(I,H”%(Rd»M}'

PRrROOF. The estimate of the lemma will be proved first with fixed ¢ which therefore
will be skipped. Let 6 be the variational solution of the problem

DNpyf=0 inQ Oy =B

Then G(1)B = (9y0 — Van - Val)|y—y(z)- On the other hand since Vi(x) = 0;®(z,n(x)) we

have
div V = (A ®(2,n) + Van - V. 0,®)(z,1(z))

(
= (—85@(33, n) + Van - Va0, ®)(x,n(x))
= —(9y — Van - V)0, ®(z, n(z)).
It follows that
G)B+divV =7y, v=(8, = Ven-Va)(l — 9,®)(x,n(x)).

Setting © = 0 — 0, ® we see that A, ,© = 01in , and ©|y—, = 0. Therefore we may apply
Theorem 4.12 with 0 = s — % to deduce that

BTN % (((CRD ey (R ey

ul 205 ) ul ul

where O(z, 2) = O(x, p(x, 2)). Using (3.3) with = s — 3 we deduce that

Vil g gy S FUD s e )
Now using the equation satified by ©, Lemma 4.17 and Lemma 3.12 we obtain the desired
conclusion. g

36



Proposition 5.2. Let so > 1+ g. Then for all s > sy we have

(5.2) (O +V-Vi)B=a—g,
(5.3) Oy +V Vo)V +al =0,
(5.4) (O +V - Vg)( =GV +(Gn)B+ R,

where the remainder term R = R(n,,V, B) satisfies the estimate

5:5) IRl ety S FO0D VN et SO Pl )

where H° = H° (RY).
PROOF. According to Proposition 4.3 in [3] the only point to be proved is the esti-

mate (5.5). Let us recall how R is defined. Let 6;, ® be the variationnal solutions of the
problems

(5.6) Dpyli =0inQ, Oy =Vi, i=1,....d

(5.7) Apylasr =0in Q, Ogpilyn = B,

(5.8) Apy®=0inQ, ®f,_y =,

Then, (see [3] Proposition 4.3)

(5.9) Ri = (0y — Van - V)Uily=y, Ui=0;®—6;, i=1...,d
(5.10) Rgi1=(0y — Van - Vo)Uasily=p, U1 = 0y® — Ogp1.

First of all for i = 1,...,d we have Az, U; = 0 in Q and Usfy—y = 0 since 9;®|y—, = V.
Denoting by U; the image of U; by the diffeomorphism (4.15) we see that U satisfies the
equation (4.30) with F' =1 = 0. It follows from Theorem 4.12 wit o = s —  that

GA) VTl g ) < FNO N e )L+ 100 IVTl I .
We are left with the condltlon (4.31), that is,
Hvx zU H _1 < +o00.
2 J)

Indeed, since 6; is the variationnal solution of (5.6) Corollary 4.13 shows that

HVx,Z@HXj(J) SF(IIUIIHT L) IVill b

Now ;@ = (8; — gi’; d,)®. It follows that

[vo02 <ol

2
ul(

<[lod] ,  +]5
ul

, ”’a <I>H
X2() x2(

1 1
Now we use the following facts: since sy > 1+ 2 one has X M (J) C lel(t]); moreover

1
X72(J) is an algebra and eventually ||61p|| 9-1(g) < .7-"(||7]HH50+%). We deduce using
ul

ul

Corollary 4.13 that

2

Hvxa@uX;l 5= fl(”””Hjﬁ%)W”H;ff%‘
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To estimate the term HBZEI{;H we follow the same path using furthermore the equa-

1
Xul2 (J)

tion (4.30) with F = 0 satisfied by ®. We obtain eventually
VoGl oy < F(lln e,V
IVe-Uil -3 ) < F2 (02 0.V)

I o o )
2 S0tz rr0ta So)
! H, =xH, *“xH;

Using (5.11) we obtain

(5.12) Vo0l s, < F>I0 e ey o Hso){1+|nuﬂsl+5}.

ul

Now from (5.9) we have

1+ |Vapl
0zp

Using (3.3) with 4 = s — 1 and (5.12) with s and sy we obtain

(513)  Ri:=TRil,eo, Ri= ( 9, — Vaup - V:p)ffi = (A0, + B -V,)U;.

G10) Rl oy S F(0 s s ) {15 W0

Now we claim that
(5.15) |0-

3y SE0 0N s s ) {1100 b

Indeed we can write

0.R; = (8.A)8.U; + (0,B) - V,U; — (divB)d.U; + V, - (B8, U;) + Ad*U;
The first three terms are bounded using (3.4) with g = s — 3 and (5.12), the fourth is
estimated using (3.3) with = s — 1 and (5.12), eventually for the last term we use the
fact that 92U; = —(al, + 3 - VO, —~9.)U; together with (3.3), (3.4), and (5.12). Finally
from (5.14) and (5.15), using Lemma 3.12 we obtain (5.5) for R;.

We use exactly the same argument to estimate || Rgj41]| 1 e This completes the
'u.l

proof of Proposition 5.2 O

5.2. Estimate of the Taylor coefficient.

Proposition 5.3. Let I = [0,T),50 > 1+ 4. For all s > sy there exists F : Rt — R*
non decreasing such that, with H° = H°(R%)

(516) ||a_gHLoo IHbij) <f(”( ¢7V7B)||Loo IH‘SO+2><H50+2><HSO><HSO)M)
AL Ul g ey, + 1Bl + IVl |-
For convenience we shall set in what follows
(5.17) Fo = F(10 0 VB g otk cgros o erron,)

where F : Rt — R™ is a non decreasing function which may change from line to line.
Before giving the proof of this result let us recall how a is defined. As is [3] the pressure
is defined as follows. Le @ be the variationnal solution of the problem

1 1
(5.18) AryQ=0 inQ Qly—y =3B+ 5|V +gn.
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Then

(519) P=Q- Vey® — gy

It is shown in [3] that Q@ = —0;®. Then

(5.20) @ =—0,P|y—p.

We deduce from (5.18), (5.19) that P is solution of the problem
(5.21) ApyP =—|V2 @ Ply—;=0.

Denoting, as usual, by ]3, @, ® the images of P, @, ® by the diffeomorphism (4.15) we have,
using the notation (4.17),

~ o~ 1 =~ 1 ~

P=Q- §(A1‘I))2 - §’A2‘b|2 —9p
and we see that P is a solution of the problem in R% x J,

2
(5.22) (02 + 0y + B V0. —70:) P = —a Y |[AA;®%, Pl.—g=0.
ij=1
Notice that we have
(5.23) M®|.—g=B, A®|._oq=V.
PROOF OF PROPOSITION 5.3. Below the time is fixed and we will skip it. We want

to apply Theorem 4.12 with 0 = s — %, so we must estimate the source term and show
that the condition (4.31) is satisfied. We claim that (see (5.17))

(5.24) HV:,;,ZISHX_Z%(J) < Fo

First of all since @ is a the variationnal solution of (5.18) we have according to Corollary 4.9

192-Ql 3 < F(ll i) U] 3+ NVELs 0l ).

ul ul
1
Using the fact that H>(R?) is an algebra contained in H2(R?) we obtain
(5.25) V2@l -3 < Fo.

ul

" by the right hand side of (5.24) is straightforward. Now,

1
Hf

ul

The estimate of |V, .p|| _
X

1
2

ul

1 1
for j = 1,2 since XZ(Z) *(J) is an algebra contained in X (J) we have

VA g, < CIABRYy <l

2 1
J) X 2

so using Corollary 4.13 with ¢ = sy — % and the estimates on p we obtain

(5.26) HVIIAJ@I?HX < F(In O ey ).

1 sot 1
0
'u.l2(J) Hul XHul ?

The same kind of arguments show that

(5.27) ||az\Aj§>|2}|X_%

< F .
w2 3("77’w||HZOl+%XHZ?+%)
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Using (5.25), (5.26), and (5.27) we obtain the claim (5.24). Now we estimate the source

term F' = —« Zij:l ’AiA]E)‘Q in equation (5.22). Since s — 3 > 4 we can write
<
”FHY:?%(J) SN g,
2 ~
< A D2
< Ol p oy, ,Zl T
Z?]:

Since (A3 + A2)® = 0 an Ay, Ay commute, we have for j = 1,2
(A2 4+ ADA;® =0, (A, A2®)|.—0 = (B,V) € HS, x HE,.

Since we have (see (5.17))

A;d < F
A, iju)— 0

we can apply Theorem 4.12 with ¢ = s — 1 and conclude that

IVa:A2l, S Fo- (14 ol oy + 1B, + Vllas,)-

H2)
ul

Since A1 = ép@z, A=V, — %}az, using (3.3), the estimates on p, the above inequality
for s = sp and for s we obtain

(5.28) [AiA; Pl <Fo-(1+ Il oy + 1B, + IVias,)-

ul

L2(JH° 3 (RY),,
It follows easily that

(529) IF0 g ) € Fo (Ll ey + 1Bl + IV

a1
2
ul ( ul

_1
Using (5.22), (5.24), (5.29), Theorem 4.12 and the fact that le 2(20,0) C L?((20,0), H%)
we obtain, using (5.17)
630 IVasPlina < Fo- (L Il oy + 1Bl + Vi),

ul

We claim that
.
102 Py -ty < o~ (Ll ey + 1Bl + IV )

Indeed this follows from (5.22), (5.28), (3.3), (3.4), (5.30). Noticing that a = ép@zﬁlzzo
and applying Lemma 3.12 we obtain the conclusion of Proposition 5.3. ]

5.3. Paralinearization of the system. As in [3] for s > 1+ ¢ we set

Us = (Dz)*V + T¢(Dy)°B,
(5.31) s

(s = <Dx> ¢
and we recall that we have set (see the statement of Theorem 4.11)
(5:32) At 2,€) = V(L4 [Van(t 2) P)EP = (Van(t, ) - €)%
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Proposition 5.4. Let sy > 1—1—%. For all s > sg there exists F : RT — R™ non decreasing
such that

(5.33) (O +Tv - Va)Us + TuGs = fr,
(5.34) (O +Tv - V)G — ToUs = fa,
where for each time t € [0, T

H(fl(t)va(t))HLQ -

<F (Il (). (6), V(£), B
(5.35) “

1
so+5
xH "2

ul

1
s+ 5
HO"2

ul

{1+ IOy + 1B, + 1V Olla,

ul

NI

x H*0 xHSO)
ul ul

ul

Proor. We follow the proof of Proposition 4.9 in [3]. First of all we shall say that a
positive quantity A(t) is controlled if it is bounded by the right hand side of (5.35). Here
t will be fixed so we will skip it, taking care that the estimates are uniform with respect
to t € [0,T]. We also set

Lo=0+Ty -V,

5.3.1. Paralinearization of the first equation. We begin by proving that
(536) LoV +T,¢+ TcﬁgB = hy
where ||h1][ps, is controlled. Indeed using (5.2), (5.3) and the fact that Tcg = 0 we see
that hy = (Ty — V) - V.,V — R(a, (). By Proposition 3.18 with v = s, 7 =s,u =59 — 1 we
see that [[(Ty — V) -V, V|ms, < C”VHHZZHV”HSQ' On the other hand since sy > 1 + 4,
Proposition 3.17 with o = s — %, 0 =sy— % shows that

IR0 Oll ey < Cllal oy IV

These estimates together with Proposition 5.3 prove that h; is controlled.

5.3.2. Higher order energy estimates. Now we apply the operator (D,)° = (I — A,)2
to the equation (5.36) and we commute. We claim that we obtain

(5.37) Lo(Dy)*V + To(Dy)*C + T Lo(Dy)*B = hy

where [|ha(t)]| 12 (a) is controlled. Indeed this is a consequence of the following estimates
[Ty - Vo (D) 2 < CIV e < CIV .
ITa, (D)W ey, < Cllally o < Cllall

2 2
ul *)Lul

S /
L [ (e e

QHL2

o-b>
ul

ul

which follow from Theorem 3.16. Now Lemma 3.20 shows that
IT¢, Lo](D)* Bl 12, < CCIzoe IV Iwr+eco 4 [ £o€ll o) | Bl s, -

Since sop > 1 + % one can find € > 0 such that H. (R%) is continuously embedded in
Wteo(R9). Therefore we obtain
1176, £6)(D2) Bl 2, < F(ll(n, B, V)]

41
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which shows that |HT¢,£0](DI>SBHL21 is controlled. Using (5.37) and (5.31) we ob-
tain (5.33).
5.3.3. Paralinearization of the second equation.

(5.38) 0+ V-V)(=G(n)V +(G(n)B + R.
We first replace V' by T3, modulo a controlled term. To do this we use Proposition 3.18

with v =s — %,r:s,u:so — % and we obtain
(539 IV =TVl g < IV

Next we paralinearize the Dirichlet-Neumann part. To achieve this paralinearization we
use the analysis performed in Section 2. Using Theorem 4.11 with ¢t = s — % we can write

(5.40) GV +(GnB=T\U+TR
where
(5.41) U=V +1T:B
' R = [T¢, TA]B + R(n)V + CR(n)B + (¢ — T¢)ThB.
and
IROOVy +ICROBI .y
SFNO B,y O 100 ey + Bl + 1V )

Using again Proposition 3.18 with v = s — %, r=s-— %,
we can write

I = TTABI ey < Clll ey MY By < F (1Bl

ul

p = sop — 1 and Theorem 3.16 (7)

which shows that this term is controlled. Eventually, by Theorem 3.16 (ii), the term
[[T¢, TA1B|| .- is also controlled. Therefore we have the equality (5.40) with [[R[| .1
H H

ul ul
controlled. It follows from (5.38), (5.39) and (5.40) that
LoC=TNU+R
where ||R[| .1 controlled. As in the second step by commuting the equation (5.39) with
H

ul
(D3)® we obtain equation (5.34). This completes the proof of Proposition 5.4. O

5.4. Symmetrization of the equations. As in [3] before proving an L? estimate
for our system we begin by performing a symmetrization of the non diagonal part. Recall
that Lo =0, + Ty - V.

Proposition 5.5. Introduce the symbols

Y= Va, q:\/f,
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where a is the Taylor coefficient and X is recalled in (5.32). Set 0s = Ty(s and Ly =
8t + Tv -V. Then

(5.42) LoUs + Tyfs = Fy
(5.43) Loy — T, Uy = Fy
where F1, Fy satisfy, with L2, = Lil(Rd)7 H? = HZI(RCI)7
I 0. PaDlz ez, < OO BOV O s )

(LN iy + 1B, + 1V ,)
ul

for some non decreasing function F : Rt — R* and all t € [0,T].
ProoFr. We follow [3]. From (5.33) and (5.34) we have

F1 = fl + (T'qu - TGL)CS
Fy =T, fo + (T,T\ — T,)Us — [Ty, Lo)Cs.

Then the Proposition follows from Lemma 3.20 and from the symbolic calculus. 0

We can now state our L? estimate. Let us set with H?, = HZ(R?)

M(0) = 0),4(0), B(0),V (0 . . ,

( ) H(n( ) 1/}( ) ( ) ( ))‘HJ%XHJ%XHZZXHZI

M(T)= sup |[(n(t),v(t),B(t), V(¢ PR | .
) t€[0,7] ICr(2), 9 (2), B(E) ())HHJ?XHJ?XHLXH&

Proposition 5.6. There exists F : R™ — R™ non decreasing such that
() WUz, + 10:(0) 2. < FMy(O)Mt), ¢ € 1= [0,7],

(1) WUl oo (r,22),0 + 106l 2oer 22y, < F(TM (T){ M(0) + VTML(T) |

PROOF. (i) This follows easily from the definition of Us and 65 given in (5.31) and in
Proposition 5.5.
(7i) Let xx be as in (2.3). Then we have

{ Lo(xkUs) + T (xxbs) = G1

(5.44) Lo(xxbs) — Ty (x1Us) = Go

where G1,Go are given by
G1 = xkF1 + V- (Vxu)Us + [Ty, xk0s
G2 = xeF2 +V - (Vxi)bs — [Ty, x»]Us.
We claim that for all ¢ € [0,7] we have

(5.45) [I(G1(t), G2(t))llL2xzz < F([[(n(t), B(t), V()]

(1 [In(t)
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ul

1
so+ )
0o 7><Hfﬁ><Hfﬁ



According to Proposition 5.5 this is true for the terms coming from x;Fj,j = 1,2. Now
according to (5.31) we have (for fixed ¢ which is skipped)

V- (Vxa)Usliz < IV [z |Usll 2,
< WVl NV Lz, ey + 1V g 1 Bllazg,)

ul
< F(I0 V) ey )1+ 1Bl
ul ul

i, + VIag,)-

The same estimate holds for ||V - (Vxg)0s|| 2. Eventually we have
1Ty, xk)0s ]|z < F([I(n, B, V) o) (Ul ey + 1Bl + 1V y,)-

ul ul

SO+%
ul

HH xH O x H

This proves our claim.
Now we compute the quantity

(1) = S{ It + b0l )
Using the equations (5.42), (5.43), the point (7), the fact that
I(Tv - V)" + Ty - Ve < CMg, (1)
1Ty = (Ty)) [l 222 < C My, (1)
and (5.45) we obtain easily (i). O

5.5. Back to the original unknowns. Recall that
Us = (D)*V + Ty, (D,)° B,

From the estimate in Proposition 5.6 we would like to recover estimates of the original
unknowns ¢, n, V, B. We follow closely [3]. The result is as follows.

Proposition 5.7. Let s > 1 + %. For all s > sy one can find F : Rt — R™ non
decreasing such that

My(T) < F(Myy (0) + TMy (T)){ My (0) + TM(T) }.
The Proposition will be implied by the following Lemmas.

Lemma 5.8. There exists F : RT — R" non decreasing such that with I = [0,T] and

H? = H(RY) we have
TR [0:2 0T ——
< F(Msy (0) + VT Mgy (T)){ Ms(0) + VT M(T)}.

PROOF. Set £1 = 0; +V - V. According to Proposition 5.2 we have £1B = a —
g, L1V = —aVn and from the definition of V, B and the equations we have £in = B.
Then the lemma follows from Lemma 3.19 with = s, 4 =5 — % and Proposition 5.3. [
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Lemma 5.9. Letsg > 1+ g. For s > sy one can find F : R™ — R non decreasing such
that, with H%, = HZ(R%), we have

() 1l ety S FOM(0) 4 VIM(T)M(0) + VTML(T)},

(i) (|(V, B)||poo(r.mre)y < F (Mg (0) + VT My, (T)){ Ms(0) + VT My(T) },

() N vty < F (Mo (0) + VT My (T)){M(0) + VT M(T) }.
PRrROOF. (i) By Lemma 5.8 it is sufficient to bound A = ||V77HL " Hsf%). Recall that
ul

q=+/%, s = T,Cs, and (s = (D)*Vn. By Theorem 3.16 (ii) we can write (s = T1 Ty s+ R(s
q
where [|R||

have

LOQ IH/‘) *)LOO(I,HH+%)UI < (HG/HLQO IHbO %) + ”n”Lm(17H50+%)ul) Then we

1 1 it
A= |(D)"2¢s| poo 1,02y, < (D) QT%GSHL‘X’(I,LQ)M + (D)2 R¢sl| Lo (1,22).,

Using Theorem 3.16, (i), the above estimate on the norm of R with ¢ = —1, Lemma 5.8
and Proposition 5.3 we deduce that

A < F(Mgy (0) + VT My (T)) {105l oo (1,12),,, + 1l o0 1, 115),. }-

Then the conclusion follows from Proposition 5.6 and Lemma 5.8.

(ii) Recall that U = V +T;B. The commutator [(D)*, T¢] is of order s — 3 which norm

from L>(I, L*),; to L*=(I, L?),, is bounded by C|in ach thus by C’HnH
Lo (1,C.

9~k

Loo(I H50+2) .
Therefore we deduce from Proposition 5.6 and Lemma 5.8 that

(5.46) U | oo,y < F (Mg (0) + VT Moo (T)) (M(0) + VT My(T)).
Now by Lemma 5.1 we have
divU = div V + Taw (B + T¢ - VB = ~G(1)B + Tices aiv ¢ B+
= —T\B+ R(n)B + Tic.¢4 div B+ v =TeB + Taiy ¢ B+
where e = =\ +i( - £&. Writing B = TéTeB +(I- TéTe)B we obtain
B =Tidiv U~ Tiy + SB.

Then using (5.46), Lemma 5.1 we obtain the desired estimate on B and since V = U —T;B
the estimate on V follows as well. )

(7i1) We have V¢ = V + BVn. Since the L*°(I, H*"2),; norm of (Vn,V,B) has
been already estimated, it remains to bound [|%[| Lo (s 12),,- Now from (2.1) and (2.2) by
a simple computation we see that

1 1
(O +V -V =—gn+ §|V\2 - 5BQ.

Then the conclusion follows from Lemma 3.19 with y = s and (ii). O
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6. Contraction and well posedness

6.1. Contraction. In this section we shall prove estimates on the difference of two
solutions of the system described in (5.2), (5.3), (5.4) which will prove the uniqueness and
also enter in the proof by contraction of the existence. Let (n;,;,V}, Bj),j = 1,2 be two
solutions of the system

(&5 -+ V V )B] — 49,
(6.1) (O +V;-Vo)Vj+a;¢; =0,
(O +V; Vo) = G(m)V + (iG(nj)Bj + Ry,

on [0, Tp] such that with H?, = HZ(R?) we have
Mj = sup ||(n;(t),¢;(t), V;(t), B; (1))

< +00.
€+ €+
t€[0,10) H, 2xH, 2xHS xH?,

We also assume the Taylor sign condition satisfied that is that there exist ¢; > 0 for
j = 1,2 such that a;(t,x) > ¢; for all t € [0,Ty]. We set
n=m-—mnm, Y=v1—1v2, V=Vi—-Vy B=DB;— By,
N(T) = t),¥(t),
(1) = sup 10000 VOBON,y s
Theorem 6.1. Let (nj,v;), j = 1,2, be two solutions of (2.1) such that
41 41
(7,5, V3, Bj) € CO([0, To], Hyy * x Hy ® x Hyy x Hy),

for some fized To > 0,d>1 ands > 1+ %. We also assume that the condition (4.2) holds
for 0 <t < Ty and that there exists a positive constant ¢ such that for all 0 <t < Ty and
for all x € R?, we have a;(t,z) > ¢ for j = 1,2, ¢t € [0,T]. Set

M;:= s ) 7V7B s+ = s+ 35 ’
= s 105 Vi BYON d e
ni=mn-—"1m, Y=tY1—1, V:=Vi-Vs, B=DB— DB
Then we have

(62) ||(777 ¢) V7 B)||L°°((O,T),H57% XHSi%XHsleHsfl)ul

< K(My, My)|[(n, %, V, B) |i=o | I M
Let us recall that
(0 +V;-V)Bj =a; — g,
(6.3) (O + Vj - V)Vj 4 a;¢ =0,
(0 +Vj - V)G = Gnj)Vi + GGG (nj) B +5, ¢ = Vi,
where ~; is the remainder term given by (5.4). Let

N(T) := su 0, V. B . o .
()= s N s VBN o d s

[

Our goal is to prove an estimate of the form

(6.4) N(T) < K(M;, M)N(0) + T K(My, Ma)N(T),
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for some non-decreasing function K depending only on s and d. Then, by choosing T" small
enough, this implies N(T') < 2KC(M;, M2)N(0) for T; smaller than the minimum of Tj
and 1/2KC(My, M), and iterating the estimate between [T1,2T4],..., [T' — T1,T1] implies
Theorem 6.1.

Remark 6.2. Notice that we prove a Lipschitz property in weak norms. This is a general
fact related to the fact that the flow map of a quasi-linear equation is not expected to
be Lipschitz in the highest norms (this means that one does not expect to control the

difference (1,1, V, B) in L=([0, Tp], H**2 x H5"2 x H® x H¥),).

The proof of Theorem 6.1 follows the same lines as the proof of the similar result [3,
Theorem 5.1]. 11 follows 4 steps: first we prove a Lipschitz estimate for the Dirichlet-
Neumann operator. Then we paralinearize the system satisfied by (n, ¥, V, B), symmetrize
this system, estimate the good unknowns of the symmetrized system and finally estimate
(n,v,V,B). The Lipschitz estimate of the Dirichlet-Neumann operator is the crucial
one and we shall give some details. Having established the paradifferential calculus in
uniformly local spaces, the other steps are identical mutatis mutandi as in [3] and we shall
skip the proofs.

6.2. Contraction for the Dirichlet-Neumann operator. In this section the time
being fixed we will skip it.

Lemma 6.3. Assume s > 1+ %. Then there exists F : RT — R non decreasing such
1

that for all ny,no € HZ?_5 and all f € HY; we have
(6.5) I(GOm) = Gl .-g < F U002, £l

ul

Mo =mn2ll .y

i l
where HS, = HY,(RY).

Proor. We follow closely [3]. As in (4.15), (4.23) we introduce pj, u;, o, 55, v, for
j =1,2. Then if uj|,—o = f we have
1+ |Vapj|?

(66) Gon)f = (g

8217]‘ - prj : vxﬁ]) ’z:().

We set @ = u; — uy. Then
(02 + 1Ay + B1 - V0, — 110,)U = F
where
F={(az —an)A; + (B2 = £1) - V0 — (v2 — 1)0: Ja.
Since s > 1 + %, Lemma 3.5 with s = s — 2,81 = s — 2,8 = s — 1,p = 2 gives (with
J = (20,0) and H", = H" (R?))
|l 252y, < E{llaa — aallpz(g,ms—1y,, | A2l Lo (5, 15-2)
+ 1182 = Bull L2 (g, m5-1),, [ VO22 oo (1, Fr5-2).,,

+ 12 = nllz2(ms-2),, 19:02 Loo (1,151, }-
47



Using (4.23) and Lemma 3.5 we can find a non decreasing function F : Rt — R* such
that

laz — arllp2g,m5-1),, B2 = Bull2 i1y, + 112 — MllL20,m5-2),
< f(ll(mﬂ?z)llHj% o )lm - 772”

ul ul

On the other hand by Theorem 4.12 with ¢ = s — 1 we have

|V 2U2l| Loo ((20,0), H 1) < 7'"(!!772HH5+%) | £l s, -
ul

Combining these estimates we obtain eventually

1F a2y, < (Il(m,m,f)llHj? whone )
Since 4 vanishes at z = 0 Theorem 4.12 with 0 =s — 5 g1ves
Vo, g < F(lltn,m2, Mem =mall -y

C0((20,0),H " 2 B2y If+2 e,

ul ul

Using (6.6) and Proposition 3.3 (i) we obtain (6.5). O

6.3. Paralinearization of the equations. Notice that it is enough to estimate
.3
n, B, V. Indeed, since V; = Vi); — B;Vn;, one can estimate the L>°([0, T, H*™ 2),;-norm
of V1 from the identity

Vi =V + BVn + BaVn.
Lemma 6.4 ([3, Lemma 5.6]). The differences ¢, B,V satisfy a system of the form
{ (@ + Vi V)V +QB) + ax¢ = fi,
O+ V2 V)C=G(m)V — GG(m)B = fo,
for some remainders such that

1(f1s f2)l

6.4. Estimates for the good unknown. In this section we introduce the good-
unknown of Alinhac in [5, 1, 6, 7] and symmetrize the system. Let I = [0, 7.

(6.7)

Lo ([0,T),Hs~ 1><H§7§) < ]C(Ml,MQ)N(T)

Lemma 6.5 ([3, Lemma 5.7]). Set
Ci=~/Mag, ¢=T,/V+aB), ¥:=T /5

Then
(6.8) (O +Tv, - V) +Tod = g1,
(6.9) (O + T, - V)I = Top = go,
where

<
H (917 92) HLOO(I,H57% XHS?%)ul — IC(M17 M2)N(T)
Once this symmetrization has been performed, simple energy estimates allow to prove

48



Lemma 6.6 ([3, Lemma 5.8]). Let
N'(T) = Sup {9, +lle®I .5 -

N

We have
(6.10) N'(T) < K(My, M) (N(0) + TN(T)).

6.5. Back to the original unknowns. From the estimates in Lemma 6.6, it is fairly
easy to recover estimates for 7.

Lemma 6.7 ([3, Lemma 5.9]).
(6.11) il

We now estimate (V, B).

Loo(rr=3y, = K(My, Ma){N(0) + TN(T)}.

Proposition 6.8 ([3, Proposition 5.10]).
(6.12) 1OV, Bl etz < KMy, Ma){N(0) + TN(T)}.

The proof will require several preliminary lemmas. We begin by noticing that it is
enough to estimate B. Indeed, if
1Bl poo (1, 1r5-1),, < K(My, Ma){N(0) + TN(T)}.

then, the estimate of ¢ in (6.10) above allows to recover an estimate for V + (1B (by
applying T' W_l)’ which in turn implies the estimate for V.

Let v = 51 — %2, where % is the harmonic extension in Q of the function ; and set

6252
by = =v—"Ty,p.
2 8z,027 w v ba P
We have
(6.13) Wz=0 = ¥ — T,1.

We first state the following result.

Lemma 6.9 ([3, Lemma 5.11]). We have

(6.14) 1 — Tyl oo (1,15),, < K (M1, M){N(0)+TN(T)}
We next relate w, p and B.

Lemma 6.10 ([3, Lemma 5.12]). We have

321p1 (azw — (by — Ty,)9:p + T, p)} ]

a- |

Lemma 6.11 ([3, Lemma 5.13]). Recall that by := 002 oy fo = 0,1,2, we have

- azp? .
|5 <Ol ey
Hul

CO([—l,o],Loo(LHS—%—k)ul)

for some constant C' depending only on ||nz|| -

ul
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Notice that n and hence p are estimated in L ([; Hs_%) (see (6.11)). To complete the
proof of the Proposition 6.8, it remains only to estimate d,w|,—¢ in L*°(I, H Zl_l)

Lemma 6.12 ([3, Lemma 5.14]). Fort € [0,T] we have
(6.15) IV cwllco(1,00,m5-1),, < KMy, M2){N(0) + TN(T)}.

6.6. Well posedness. The proof goes as follows. In a first step we prove the main
theorem for very smooth data, using a parabolic regularization. Then, when the data are
rough, we regularize them, thus obtaining a sequence of solutions living on an interval
depending on a small parameter . In a second step, using the tame estimates proved
in Proposition 5.7, we show that this sequence exists on a fixed interval. In the last
step, using the results stated in section 7, we prove that it is a Cauchy sequence and we
conclude. Let us notice that most of this work has been already done in [3] in the case of
the classical Sobolev spaces. Therefore we will only sketch here the main points.

6.7. Parabolic regularization. We assume first that (1o, o) € HS, x HS, for s >
ng + g, ng large enough. and we consider for € > 0 the problem

o = Gy + eAgn,

1 1 (vxn i wa + G(U)?/))2
6.16 = V.02 + = — A,
(1,%) lt=0 = (10, Yo)-
Setting U = (n,1) we can rewrite this problem as
t
(6.17) U(t) = AUy + / SR AU (7))] dr.
0
We set I = [0,7T] and we introduce the space
Es = L®(I,H%) N L*(I, H5),.
According to Lemma 3.10 we have ||ef®=Up||p, < Cel|Uo|lms, == R. Then using the
estimates
(6.18) LA 21,15y, < FUU N poo (1,19, Ul 221,551,

[A) = AU 21,15y, < FUUL U zoo (1,55 x55),) U = Ul 21,5541,
we can show that, if 7' = T is small enough, the right hand side of (6.17) maps the ball
of radius 2R in Ej into itself and is contracting. By the Banach principle the equation
(6.17) has a maximal solution on [0, 7). Moreover if T, < +oo then

(6.19) i (11, 9) (1) s, = o0

Now with this large s we set
M (T) = S[%%] [(n%, 9=, V=, BE)(LL)||Hsleslesl71><Hslfl-

tE , u u u u
Using the same computations as in [3] and the method of proof of Proposition 5.7 (but
in an easier way since here s is large) we deduce that one can find F : Rt — R strictly
increasing such that

ME(T) < F(ME(0) + VT ME(T)).
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Since M£(0) = Ms(0) does not depend on e, this will imply that there exists Tp > 0
independent of e such that M:(T') < F(2Ms(0)) for T € [0, Tp]. Using this uniform bound
on this fixed interval and the arguments of [3] we can pass to the limit in the equations 6.16
to obtain a solution (n,1) of the water wave system.

6.8. Regularizing the data, a priori estimates. . Assume that (1o, %o, Vo, Bo)

4l oL
belong to HZTL? X H;(l)+2 x HY x HY where sp > 1+ %. Let j € CP(RY),j(¢) =1

when [¢] < 1. We regularize the data in setting f§ = j(eD) fo if fo is one of them. Then
the regularized data belong to H}, for s large. Therefore we can apply Step 1. to get a
maximal solution (7, e, Vz, Be) of the water wave system, on an interval [0, 7)), wich is
very regular. Moreover we know that if 7" < 400 then

(6.20) Jim ME(T) = +oo.

We first apply Proposition 5.7 with s = sy and we obtain
Mg, (T) < F(Mg,(0) + VT M (T)).
Since there exists Ag > 0, independent of ¢, such that Mg (0) < Ao, for all € > 0 small,
we deduce that one can find Ty > 0 independent of ¢ such that Mg (T') < F(2Ap) for all
T < min(Ty, 7). We apply again Proposition 5.7 with s large and we get
M;(T) < F(Ao + v/ ToF (240)) (M5 (0) + VT M (T)).
Let 71 > 0 be such that /T1F(Ag + vVTpF(240)) < i. Then
MSE(T) < 2.7:<A() + v T[)f(QAo))Ms(O),VO <T< min(Tl, T;)

Using (6.20) we deduce that 7 > T for all ¢ > 0 small. This shows that our solu-
tion (7, e, Ve, Be) exists on a fixed interval [0,71]. Moreover, as seen above, Mg (T') is
uniformly bounded on this interval.

6.9. Passing to the limit. According to Theorem 6.1, the sequence (7, ¥e, Vz, B:)
which is, according to Section 6.8, bounded in

1
SO+§

Lo((0,T): B2 5 B2 5 HY < H™),
is convergent in
LR x 1 F iy g,
and hence also for any § > 0 in

so+35-98 so+1—8 -5 =5
L*°((0,T);H,; * xH, * xH3Y°xHY").
To get the existence of solutions, it remains to pass to the limit in the equations (the
uniqueness follows once again from Theorem 6.1). For this step, we rewrite the sys-
tem (2.1), (2.2) as
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Ome = G(n:)e,
1
Ope + Ve - Ve = S (V2 + B2) — g1

vxns : Vx¢z—: + G(n€)¢s
L+ [Vaene? ’
Ve = Vacwe - Bevmna-

(6.21)
B. =

Choosing § > 0 such that s —§ — 1 > % ( so that H 9 % is an algebra), we deduce that
e — 9 in D'((0,T) x RY)
Onpe — O in D'((0,T) x RY)

1
s—6—3

Ve-Vype =V -Vepin L>((0,T); H,,  *)
V24 B2 - V24 B%in L((0,T); H®)

1
s—6—3

(6.22)

Vatle - Vathe = Van - Vatp in L=((0,T); Hy, -~ 2) € L((0,7T); L))

ul

1
s—6—3

(Vane|? = |Ven|? in L°((0,T); H ) € L*=((0,7); C° N L°(R%))

ul

On the other hand, according to Lemma 6.3, we get

G(ne)vpe = G(np = G(ne) (e — ) + (G(ne) — G(n))p — 0,
in s
L0, T): Hy ') € L2((0,1): L),
which allows to pass to he limit in (6.21) and show that the same system of equations is
satisfied by (1,9, V, B) in D'((0,T) x R%).

6.10. Continuity in time. We now prove that (1,1, V, B) is continuous in time with

. so+3—6 so+1—6 - - . .
values in H, u(l) 2 "xH u(l) 2 Ox HY SxH o 9. From the equation, and product rules, its

time derivative is clearly in
- VT JUS S
L*((0,T);H, *xH, *xH,6 >xH, ?)

and consequently (interpolating with the a priori estimate), for any ¢ > 0,

+l,5 +l7§ L s —
(6.23) (0,0, V,B) € C°((0,T); Hyy 27" x Hoy 27 x HY ™0 x H9™?).
7. The canal

We consider now the case of a canal a canal having vertical walls near the free surface
or the case of a rectangular basin. The propagation of waves whose crests are orthogonal to
the walls is one of the main motivation for the analysis of 2D waves. It was historically at
the heart of the analysis of water waves. The study of the propagation of three-dimensional
water waves for the linearized equations goes back to Boussinesq (see [13]). However, there
are no existence results for the nonlinear equations in the general case where the waves can

be reflected on the walls of the canals (except the analysis of 3D-periodic travelling waves
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which correspond to the reflexion of a 2D-wave off a vertical wall, see Reeder-Shinbrot [34],
Craig and Nicholls [17] and Iooss-Plotnikov [26]). We hence consider a fluid domain which
at time ¢ is of the form

Q(t) = {(z1,22,y) e M xR : b(z) <y <n(t,x), x = (r1,22)},

where M = (0,1) x R in the case of the canal and M = (0,1) x (0, L) in the case of a
rectangular basin, and b is a fixed continuous function on M describing the bottom.
Denote by X the free surface and by I' the fixed boundary of the canal:

Y(t) = {(z1,22,9y) € M xR : y =n(t,z)},
and we set I' = 9Q(t) \ X(¢) (which does not depend on time). We have
F - Fl U P27
]._‘2 = { (x17x27y) € OM x :E{,7 b(x) <y < 77(‘,1:1?:1:/) }

Denote by n the normal to the boundary I' and denote by v the normal to the free
surface Y. The irrotational water-waves system is then the following: the Eulerian velocity
field v: Q — R3 solves the incompressible Euler equation

(7.2) Ow+v-Veyv+VyyP=—gey, divyyv=0 curl,,v=0 in,

(7.1)

where —ge,, is the acceleration of gravity (¢ > 0) and where the pressure term P can be
recovered from the velocity by solving an elliptic equation. The problem is then given by
three boundary conditions. They are

v-n=>0 on I,
(7.3) om=+1+|Vn2v-v  onX,
P=0 on X.

We notice that the first condition in (7.3) expresses the fact that the particles in contact
with the rigid bottom remain in contact with it. Notice that to fully make sense, this
condition requires some smoothness on I', but in general it has a weak variational meaning

(see [3]).
Finally we impose the initial condition
(7.4) (1, v)]e=0 = (10, v0),
where vy satisfies
divgyvo =0 curl,yvo =0 inQy, wvo-n=0,onT".
It follows that there exists a function ¢g : 29 — R such that
vg = VeyPo in Qy, with Ay ydo = 0.
We set
Y0 = P0ly=no(2)

and introduce the trace of the velocity field vg = (vo 4, , V0,44, V0y) 00 X = {(z,70(2))} in
setting

V0,1 ‘y:no = Vo215 Uvaz‘y:no = V0,225 UO7y|y:no = By, Vo = (VO,mu VO,xz)‘
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Similarly, to a solution v of (7.2)-(7.3) we associate ¢, and (V, B) = v|y—, as above.
The stability of the waves is dictated by the Taylor sign condition, which is the as-
sumption that there exists a positive constant ¢ such that

(7.5) a(t,z) == —(0yP)(t,z,n(t,x)) > c> 0.

7.1. A simple observation. We begin with a elementary calculation showing that,
at least for regular enough solutions, as soon as the Taylor sign condition (7.5) is satisfied,
in the case of vertical walls, it is necessary that at the points where the free surface and the
boundary of the canal meet (X(¢)NT"), the scalar product between the two normals (to the
free surface and to the boundary of the canal) vanishes : v-n =0 on ¥ NI, which means
that the free surface ¥ necessarily makes a right-angle with the rigid walls (see Figure 1).

FIGURE 1. Two-dimensional section of the fluid domain, exhibiting the
right-angles at the interface ¥ N T°

Proposition 7.1. Let (n,v) € C’O([07T];C%([0, 1] x R) x CY()) be a solution of Sys-
tem (7.2), (7.3) such that the Taylor coefficient a is continuous and non-vanishing and
n(t,z) > b(z) + h for some positive constant h. Then the angle between the free sur-
face, X(t) and the boundary of the canal I is a right angle:

Vte[0,T],Ve e X(t)NT, n-v(t,z)=0,
which is equivalent to

(7.6) axln(tamlv$2) ‘$1=071: 0.

PRrROOF. We give the proof in the case of a canal, the proof for the rectangular basin
is similar. Since ng(z) > b(x) + h at a point mg where 3(¢) and I' meet we have my =
(e,29,y") where ¢ = 0 or 1. Let m = (g, z2,y) be a point on I' near mg. At m the normal
n to I'is n = (£1,0,0). Taking the scalar product of the equation (7.2) with n we obtain,
since ey, - n = 0,

(7.7) (VayP) n=—=(0w) n—((v-Vay)v)-n atm.

Denote by (vy,,Va,, vy) the three components of the velocity field v. The first condition in
(7.3) implies that (v-n)(m) = vy, (t, &, x2,y) = 0. It follows that (O;v) -n = 0(v-n) =0
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at m. Moreover on I' near mg we have
[((v - Vay)v) - n] (t,e,x9,y) = :l:[((v . Vw,y)vwl] (t,e,x2,y)
= i[(vma@ + vyﬁy)vwl] (t,e,x2,9)
= £ [ (V23 0py + vy0y)] (Vg, (t,€,22,y)) = 0.
It follows from (7.7) that
(7.8) (VayP) n=0 atm.

Now by the third condition in (7.3) we have P = 0 on ¥ and by (7.5) and our hypothesis
on the Taylor coefficient we have V, ,P # 0 on 3. It follows that V, ,P is proportional
to the normal v at ¥ and by continuity at X N I". We deduce from (7.8) that v-n =0 at
my. ]

Once this right angle property is ensured, it is easy to show that some additional
compatibility conditions have also to be fulfilled. Namely, for f = Bo, V. 4,, 0z, V0,4, , using
(7.3), as soon as the function ¢ is smooth enough so that all terms below are defined, we
have with m = (e,22) (¢ =0 or 1).

Oz, ¥0(m) = Oz, do(m, no(m)) + Oydo(m, 1mo(m)) 0z, mo(m) = 0,
O, Bo(m) = 0z, 0y¢0(m,mo(m)) + 0y bo(m, no(m)) Dy mo(m) = 0,
19) 6leO 22 (M) = Oy, Oy o (m, mo(m)) + 0y0py o (m, mo(m))dz,mo(m) = 0,
2 Vozs (m) = 85, go(m, mo(m)) + 20,03, do(m, no(m))yno(m)
+ 070, do(m, 10 (m) (D, m0(m)) + 0y, do(m, no(m))d2, no(m)
-0,

\

where in the last equality, we used that 92 ¢ = —(02, + 83)8961@ since ¢ is harmonic.

7.2. The result. As before, we denote by x; (resp. x2) the variable in (0,1) (resp.
in R). To state our results we need to introduce the uniformly local Sobolev spaces in the
3 direction (these spaces are introduced by Kato in [27]). Let 1 =3, 5 x(z2 — k) be a
partition of unity and define for any s € R,

5((0,1) x R) = {u € Hio((0,1) x R) : sup (w2 ~ K)ull s .1 m) < +oo}.
These are Banach spaces when endowed with the norm
”UHH;l = SI;P Ix(z2 — k)u”HS((O,l)xR)-

In Section 7.1 we showed that in order to get smooth solutions, a set of compatibility
conditions (7.6), (7.9) have to be assumed. Here we prove that these conditions are not
only necessary, but they are sufficient.

Theorem 7.2. Set M = (0,1) x R. Let s € (2,3), s # 5, and

1 1
HS (M) = Hp 2 (M) x Hop 2 (M) x Hyy(M) x H3(M).

Consider (no, vo, Vo, Bo) € H’(M) and assume that, with € = 0,1
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(H1) Voa,(e,22) = 0 and 0y, f(e,z2) = 0 when f = no, o, Bo, Vo,z,. Furthermore,
02 Vo, (e,22) =0 if s > 5/2.

(H2)  The Taylor sign condition, ag(x) > ¢ > 0 is satisfied at time t = 0.

(H3) mo(x) > b(z) + h for some positive constant h.

Then there exists a time T > 0 and a unique solution (n,v = Vg,¢) of the system
(7.2), (7.3), (7.4) such that

Z) (777 ¢|Ea VY, B) € C([07 T), HS(M)))
i1) the Taylor sign condition is satisfied at time t and n(t) > b+ h/2.

In the case of a rectangular basin we have the following result.

Theorem 7.3. Set M = (0,1) x (0,L). Let s € (2,3), s # 3, and
HS(M) = H5T2(M) x H* 2 (M) x HS(M) x H¥(M).

Consider initial data (no, Yo, Vo, Bo) € H*(M), such that

(C1) Vo (e,22) = 0 and 0y, f(e,22) = 0 when f = no, Yo, Bo, Vou,. Furthermore,
92 Vo, (e,22) =0 if s >5/2. Heree =0 or 1.

(C2)  Vou(21,0) = 0 and Oy, f(x1,6) = 0 when f = no, o, Bo, Vo,z,. Furthermore,
92 Vo2, (21,0) =0 if s > 5/2. Here 6 =0 or L.

(C3)  The Taylor sign condition, ag(x) > ¢ > 0 is satisfied at time t = 0,

(Cy)  mo(x) > b(x) + h for some positive constant h.

Then there exists T > 0 and a unique solution (1, v = Vg y¢) of the system (7.2) (7.3),
(7.4) such that

(1) (n,¢ls, v, B) € C([0,T); H*(M)),
(2) the Taylor sign condition is satisfied at time t and n(t) > b+ h/2.

Remark 7.4. (i) Our results exclude the case s = % for technical reasons. It would be
possible (but unnecessarily complicated) to include this case.

(7i) In the case of a flat bottom (say b(z) = —1) we do not need assumption (Hz) (and
(C3)) which is in this case always satisfied as proved by Wu ([36, 35]), see also [29]. Also,
this condition is satisfied under a smallness assumption.

(797) Condition (Hi), when f = ng, says that at ¢ = 0 the fluid has to be orthogonal
to the fixed vertical walls.

7.3. Proof of the result. Following Boussinesq (see [13, page 37]) the strategy of
proof is to perform a symmetrization process (following the process which is illustrated
on Figure 2 below).

Once this symmetrization process is performed, we will apply our result [4, Theorem
2.3] to conclude.

7.3.1. The periodization process. Without additional assumptions, the reflection pro-
cedure should yield in general a Lipschitz singularity. However, here the possible singu-
larities are weaker according to the physical hypothesis (Hj).
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FIGURE 2. Two-dimensional section of the extended fluid domain.

For a function v defined on (0, +c0), define v*" and v°? to be the even and odd

extensions of v to (—oo, +00) defined by

(7.10)

&Y — U(_y)a if y < 0
) { v(y) if y > 0.
UOd — —v(—y), if y < 0
) { v(y) if y > 0.

We have the following result

Proposition 7.5. We have

(1) Assume that 0 < s < % Then the map v — v’ is continuous from H®(0,+00) to
H5(R).

(2) Assume that % <8< % Then the map v — v is continuous from the space
{v e H*(0,+0) : v'(0) = 0} to H*(R).

(8) Assume that 0 < s < % Then the map v — v°% is continuous from H(0,+o00)
to H(R).

(4) Assume that & < s < 5. Then the map v — v°® is continuous from the space
{v e H*(0,+0o0) : v(0) = 0} to H*(R).

(5) Assume that g < s < 4. Then the map v — v°% is continuous from the space
{v e H%(0,+0) : v(0) =v"(0) = 0} to H(R).

PROOF. Let I = (0, +00). Then C§°(1) is dense in H3(I) for all s € R.

1) The case s = 0 is trivial since [|veV]|2, = 2|lv||2,, .. Consider now the case
L*(R) L3(1)

0 < s < 1. Then the square of the H*(R)-norm of v®¥ is equivalent to

v (@) — v (y)[?
[|v® ||L2 ®) T4 A= //RXR ]:c ~ ’1+2S dxdy.

Then we can write

_2// |U Ol da:dy+2// |U v(y)” dxdy := Ay + As.
IxI |x - y|1+25 Ix1 |7 + ?/|1+25

We have

A1 < 2oy, A2 < 200l
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since 1)1 = < = y1|1 . The case s = 1 being straightforward consider the case 1 < s <

(z+y
3.Set 0 =s—1€(0,3). Then

HUeVH%{S(R) = ||Uev||2L2(R) + HaerVH?{o(R)
Since 0 < o < 1 we have

10207 |30 () < C(Ao + A1 + Ag)
Ao = 10,0 [[72my < CillV' 1721y < CillollFsry

2
i
A= [ =tk H(zj' dudy < Collo' o1y < Calloll sy
IxI |37 - \

[0/ (z) + ' (y)]?
Ay = dxdy.
//IXI |‘T+y‘1+20 Y

Eventually we have

v
Ay < C / V@E 4o < o < Crllollas

by Theorem 11.2 in [32], since 0 < o < 3. This completes the proof of (1).
(2) If % <s<2leto=s—-1¢ (%, 1); arguing as above we see that

/ 2
ev(|2 . < 2 . / "l) (.’L‘)’ ]
0 ey < O (el + R drdy)

Now since v € H?(I) and v'(0) = 0 we can apply Theorem 11.3 in [32] which ensures
that the integral in the right hand side can be estimated by C|v||? sy The case s = 2

being straightforward let 2 < s < % Then

1o sy < CU™ 2 gy + 1020 72 m))-

Since 0 < s — 22< %Qand v'(0) =0 vge may apply the same argument as in the case (1) to
ensure that H@xve"HHS_Q(R) < C’HUHHS(I).
The cases (3) to (5) are proved by exactly the same arguments. O

To state the reflection procedure in higher dimension we need to introduce the uni-
formly local Sobolev spaces in R™, n > 2.
Let 1 =3,z x(z — k) be a partition of unity in R" and define for any s € R,

(R") = {u € Hiyo(R") s sup (- = Kull e < +oc).

These are Banach spaces when endowed with the norm

[ullmgs, = Sup Ix(: = k)ull gs(rr)-
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Now, if v is a function on M = (0,1) x R? we define the even (resp. odd) periodic
extensions on T x R?, vV (resp. v°%), by

v(—x1,2), if —1<x; <0,
vV(x1,2) = S v(x, o), if0<z <1,
v(zy —2k,2"). ifxy —2ke(-1,1), k€ Z.
- ( ) (-1,1)
—v(—z1,2), if —1<x <0,
vz, ') = v(xy, ), if0<z <1,

v(zy —2k,2"). ifax—2ke(-1,1), keZ.

Corollary 7.6. Let M = (0,1) x R.
(1) Assume 0 < s < 3 then the map v +— v is continuous from HS,(M) to HS,(R?).
(2) Assume 3 < s < %. Let
Es={ue H;;(M): 0zu(e,xz2) = 0,6 =0,1,Vzs € R}.
Then the map v — v® is continuous from Es to HS,(R?).
(3) Assume 0 < s < 1 then the map v +— v°? is continuous from HS (M) to H5,(R?).
(4) Assume 3 <s < 3. Let
Fs={ue H,;(M):u(e,z2) =0,e =0,1,Vza € R}.

Then the map v — v°? is continuous from Fy to HS,(R?).

(5) Assume 2 < s < 4. Let

Gs={ue H;;(M):u(e,x2) = 8glu(6,m2) =0,e =0,1,Vze € R}.

d

Then the map v — v°® is continuous from G to HS,(R?).

PROOF. Since (Dg,v)® = D, (v*), (D$,v)°? = D% (v°?) the result is clearly a one
dimensional result and it is enough to prove it for the one dimensional case, in which case
it is a direct consequence of Proposition 7.5 and a localization argument. O

Consider now an initial data (n9,%0 = ¢o|s,, Vo, Bo) satisfying the assumptions in
Theorem 7.2 and define

~ __ . ev O ev 7 __ ysod T _1rev D pev
o =T » on — ¢o ) %,:E1 — ‘/073317 %,wz — %7322, BO — B[)

on T x R.
Recall (see Theorem 7.2) that, with M = (0,1) x R, we have set
s st+3 s s
H(M) = H, > (M) x Ly (M) x Hy (M) x Hy (M),
and introduce
s st+3 S s
H*(R?) = H,, *(R?) x Lyy(R?) x Hy(R*) x Hy(R?).

Then we have the following lemma.

Lemma 7.7. Let 2 < s < 3,8 # % and (no, Yo, Vo, Bo) € H5(M) satisfying the hypothesis

(H,) in Theorem 7.2. Then (i, o, Vo, Bo) € H*(R2) and are 2- periodic with respect to
the x1 wvariable.
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PrOOF. This follows immediately from the hypothesis (H;) and Corollary 7.6. O

In the case of a rectangular basin, performing both reflection and periodizations with
respect to the x1 and the x5 variables leads similarly to extensions

~ ~ ~ 1
(7o, o, Vo, Bo) € Hiy * (R?) x Ly (R?) x H3y(R?) x Hyy (R?)
which are 2- periodic with respect to the x; variable and 2L periodic with respect to the
x9 variable ).

7.3.2. Conclusion. We are now in position to apply Theorem 2.3. We consider first the
case of the canal. Starting from (7o, ¥o, Vo, Bo), we define (1o, ¥o, Vo, Bp) their periodized
extensions following the process in Section 7.3.1. Let (7,7) be the solution of the free
surface water waves system given by Theorem 2.3. Since the initial data (7, {Dvo, ‘70’, Eo)
are even while %m is odd, our uniqueness result guaranties that the solution satisfies the
same symmetry property (because if we consider our solution, the function obtained by
symmetrization is also a solution with same initial data). The same argument shows that
as the initial data are 2-periodic with respect to the variable z1, so is the solution. As
a consequence if we define v, 7, P as the trace of v,7, P on (0,1) x R, we get that they
satisfy trivially the system free boundary Euler equation

0w +v-Vyyv+ VP =—ge,, divzyv=0 inQ,

(7.12) on=+1+|Vnfv-v onXx,
P=0 on¥,

and to conclude on the existence point in Theorem 7.2, it only remains to check that the
”solid wall condition”

(7.13) v.n=0,on=T1UTy

is satisfied. On I'y it is a straightforward consequence of the condition v - [ = 0, while on
I’y it is simply consequence of the fact that the component of the velocity field along 1,
Uz, is odd and 2-periodic. To prove the uniqueness part in Theorem 7.2, starting from a
a solution of (7.12), (7.13), on the time interval [—7, T, if we define the function v, 7 at
each time ¢ following the same procedure, we end up with a solution of (7.2), (7.3) in the

domain {(t,z,y);t € (=T, T), (x,y) € Q(t)}, at the same level of regularity. Indeed, the
jump formula gives

O+ Vv + Vm,ﬁ = —gey + [z, - 02,0] ® O, = —gey,

where in the last equality we used that the component of the velocity field along x1 vanishes
on I's. The uniqueness part in Theorem 7.2 consequently follows from the uniqueness part
in Theorem 2.3. The case of a rectangular basin is similar.

8. Appendix

Let o €]0,+00[,,a # 1 and S(t) = e~*P=I" Our aim is to prove the following result.

Proposition 8.1. Let s,0 € R. Assume that there exists ty # 0 such that S(ty) is con-
tinuous from CZ(R?) to C$(RY). Then s < o — %a.
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ProoF. Without loss of generality we can assume that tg = —1. Our hypothesis reads
(81) 3C' > 0: HS(_l)u”Ci(Rd) < C‘|U|’05(Rd), Yu € Cf(Rd)
Now if u € L>®(R%) we set EJ\U(S) = p(279¢)u(¢), where ¢ € C°(R?), with supp ¢ C {¢ :
+ <[] < 2}. Then for fixed j € N we have Aju € C7(R?) and
18julloe mey < CP7NAjull fooray < C"277||ul| oo (ra)-

This follows from the fact that |Ajul|coma) = sSupgen 2k“||AkAju||Loo(Rd) and ApA; =0
if |j — k| > 2. Since A; commutes with S(—1), we see that

2 S(=1)AjAjull oo (ray < 18(=1)Aull s (ma)-

It follows from (8.1) applied to Aju with u € L°(R?) that one can find a positive constant
C such that

(8.2) 251 S(=1) A Ajul| oo (ray < C27||ufl oo (ray  Vu € L¥(RY), VjeN.
Let us set T'= S(—1)A;A;. Then

Tu(a) = (2n) 4 [ [ oD 02 T uty) dy ds.
We shall set h = 277 and take j large enough. Then setting n = h€ we obtain

Tu(x) = " Kn(z —y)uly) dy
where
Kn(2) = (2mh) ™ /Rd kel g2 ) iy,
We shall use the following well known lemma.

Lemma 8.2. Let K € C°(R? x RY) be such that sup,egpa [ |K(2,y)|dy < +oo. Then the
operator T defined by Tu(z) = [ K(x,y)u(y)dy is continuous from L>®°(R?) to L>°(RY)
and ||T|| oo = supyera [ |K (2, y)|dy.

It follows from this lemma that in our case we have
Tl oo oo = / K (2)] dz.
Rd

Setting z = '~ and Kj(s) = Kx(h'~“s) we find that

(8.3) 1T || Lo z00 = hd(l_a)/ | Kn(s)| ds
Rd
with
B4 Rl = @en [ TR dn (s =50+ ol

Recall that supp ¢ C {n: % < |n| <2}. We have %j; = S+a\nl2%'
61



Oé

Case 1: [s] <

7~ Here, on the support of ¢, we have

¢ « 1 «
> > =,
’87] (s,n)‘ ~ n|t-e Is1 = 2 2l1-a

1
22

Therefore integrating by parts in the right hand side of (8.4) using the vector field L =

09 9
e \371¢|2 Zk | G e We obtain

(8.5) |Kp(s)] < CnhN, VN eN.
Case 2: |s| > 2'**=1q. On the support of ¢ we have
o¢
_ > 9la—1],,
S|z~ s >

Then using the same vector field as in the first case and noticing that J'¢ is independent
of s when || > 2 we obtain

(8.6) |Kp(s)| < Cnls| VRN, VN eN.

Case 3: % e < 8| < 21+|°‘_1‘0z Here the function ¢ has a critical point given by
w% = . Tt follows that |77| = |s| , which implies that 7. = cas]s|a 1. Moreover we
have

82¢ 2 n
=aln|*Tmip mip =0 — (0 — 2wjwg, W= —.
On;jOn R ! |

1 (a—2)d
Since det(my;) = co # 0 we obtain ( ‘det (%(S, nc)) ’ ) * = ¢oals|?@ D . The station-
nary phase formula implies that there exists Cy > 0 such that

~ - ’L¢(S ne)
(8.7) Ri(s) = Caah™ % { 6% (n) + 0(h) }.

|S| 2(a—1)

Using (8.3), (8.5), (8.6), (8.7) we can conclude that
T || oo oo > CRET D= S — Oy > C'h= %
Recalling that A = 277 we obtain
T oo oo > C2I5.
Thus for any € > 0 one can find ug € L>(R?), non identically zero, such that
da

| Tuol| oo (mray = (€272 — &) ||uol| oo (ma)-

Taking € small and using (8.2) with ug we obtain
. da .

Ci2/ ) |lug|| oo (ray < O ||uol| oo (me)

for all j > jg large enough which proves the Proposition. U
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