# FINITE FIELDS 

PIERRE-LOÏC MÉLIOT

Abstract. In this short note, we prove the fundamental theorem of the theory of finite fields: every prime power $q=p^{n}$ gives rise to a unique finite field $\mathbb{F}_{q}$, which can be obtained as a quotient of the ring of polynomials $\mathbb{F}_{p}[X]$.

Characteristic of a field. Recall that a field $k$ is a commutative ring with $0_{k} \neq 1_{k}$, and such that every element $x \neq 0_{k}$ in $k$ is invertible for the multiplication. Given a field $k$, there is a unique morphism of rings

$$
\begin{aligned}
\phi: & \mathbb{Z} \\
& \rightarrow k \\
m & \mapsto m \cdot 1_{k}=\underbrace{1_{k}+1_{k}+\cdots+1_{k}}_{m \text { times }} .
\end{aligned}
$$

The definition of $\phi$ extends to negative integers by setting $\phi(-m)=-\phi(m)$. The kernel of $\phi$ is an ideal of $\mathbb{Z}$, so it writes as $\operatorname{ker} \phi=d \mathbb{Z}$ with $d$ non-negative integer. We can then distinguish two cases:

- $d=0, \phi$ injective. We can then extend $\phi$ to the field of rational numbers $\mathbb{Q}$ :

$$
\phi\left(\frac{a}{b}\right)=\frac{\phi(a)}{\phi(b)}
$$

because if $b \neq 0$, then $\phi(b) \neq 0_{k}$ and is invertible in $k$. We then obtain a morphism of fields $\phi: \mathbb{Q} \rightarrow k$, which is injective (remark: any morphism of rings $\phi: k_{1} \rightarrow k_{2}$ between fields is injective, because the kernel is an ideal of $k_{1}$ and is not $k_{1}$ itself, as $1_{k_{1}}$ is sent by $\phi$ to $1_{k_{2}} \neq 0_{k_{2}}$; we conclude that $\operatorname{ker} \phi=\left\{0_{k_{1}}\right\}$, since the only ideals of a field $k$ are $\left\{0_{k}\right\}$ and $k$ ). In this setting, one says that $k$ is a field with characteristic $\mathbf{0}$, and $k$ contains $\mathbb{Q}$ (called the prime subfield of $k$ ).

- $d>0$. We cannot have $d=1$ since $\phi(1)=1_{k} \neq 0_{k}$. In fact, $d$ is necessarily a prime number: if $d=d_{1} d_{2}$, then $\phi\left(d_{1}\right) \phi\left(d_{2}\right)=0_{k}$, so $\phi\left(d_{1}\right)=0_{k}$ or $\phi\left(d_{2}\right)=0_{k}$, and by minimality of $d$, $d=d_{1}$ or $d=d_{2}$. So, $\operatorname{ker} \phi=p \mathbb{Z}$ for some prime number $p$, and we then say that $k$ is a field with characteristic $\mathbf{p}$. The morphism $\phi$ descends to a morphism of fields

$$
\phi: \mathbb{Z} / p \mathbb{Z} \rightarrow k
$$

so $k$ contains as a prime subfield the field $\mathbb{Z} / p \mathbb{Z}$, which we also denote $\mathbb{F}_{p}$ in the sequel.
If $k$ is a field with finite cardinality, then obviously we cannot have an injective morphism from $\mathbb{Z}$ (infinite) to $k$, so $k$ has positive characteristic $p \in \mathbb{P}$. This implies the following:

Proposition 1. Every finite field $k$ has for cardinality a power $p^{n \geq 1}$ of a prime number $p$.
Proof. Given two fields $k \subset K$, the larger field $K$ is a $k$-vector space for the scalar product

$$
\begin{aligned}
k \times K & \rightarrow K \\
(\lambda, x) & \mapsto \lambda \times_{K} x .
\end{aligned}
$$

If $k$ is a finite field with characteristic $p$, then it is a $\mathbb{Z} / p \mathbb{Z}$-vector space with finite dimension $n \geq 1$, whence the result.

Group of invertibles. Given a finite field $k$, we denote $k^{*}=k \backslash\left\{0_{k}\right\}$ the set of non-zero elements, which by definition of a field is a group for the multiplication.

Proposition 2. If $k$ is a finite field, its group of invertible elements $k^{*}$ is a cyclic group (isomorphic as a group to $\mathbb{Z} /(q-1) \mathbb{Z}$ if $q=\operatorname{card} k)$.

Proof. Consider a finite commutative group $G$, and denote $e$ the least common multiple of all the orders of the elements of $G$. We claim that $G$ contains an element with order $e$. In order to prove this, consider the prime numbers $p_{1}, \ldots, p_{s}$ that appear as factors of the orders of the elements of $G$, and denote $r_{1}, \ldots, r_{s} \geq 1$ the maximal powers of these prime numbers as factors of orders of elements. By considering adequate powers of elements of $G$, we therefore have for each $i$ an element $g_{i} \in G$ with order equal to $\left(p_{i}\right)^{r_{i}}$, and on the other hand,

$$
e=\left(p_{1}\right)^{r_{1}}\left(p_{2}\right)^{r_{2}} \cdots\left(p_{s}\right)^{r_{s}} .
$$

It now suffices to prove that if $g$ and $h$ have orders $\omega(g)$ and $\omega(h)$ which are coprime, then $g h$ has order $\omega(g) \omega(h)$. By applying this result recursively to the $g_{i}$ 's, we shall then obtain an element $g=g_{1} g_{2} \cdots g_{r}$ with order $e$. Obviously, given $g$ and $h$ with $\omega(g) \wedge \omega(h)=1$, we have

$$
(g h)^{\omega(g) \omega(h)}=\left(g^{\omega(g)}\right)^{\omega(h)}\left(h^{\omega(h)}\right)^{\omega(g)}=e_{G} e_{G}=e_{G},
$$

so $\omega(g h)$ divides $\omega(g) \omega(h)$. Conversely, note that

$$
g^{\omega(h) \omega(g h)}=(g h)^{\omega(h) \omega(g h)} h^{-\omega(h) \omega(g h)}=e_{G} e_{G}=e_{G},
$$

so $\omega(h) \omega(g h)$ divides $\omega(g)$. Since $\omega(g)$ and $\omega(h)$ are coprime, $\omega(g h)$ divides $\omega(g)$, and by symmetry it also divides $\omega(h)$, so $\omega(g h)$ divides $\omega(g) \omega(h)$. We conclude that $\omega(g h)=\omega(g) \omega(h)$.

Let us consider the group of invertibles $G=k^{*}$ of a finite field with cardinality $q$, and let us use the existence of an element $g$ with maximal order $e$ with respect to the relation of divisibility. We have for any element $x \in k \backslash\{0\}$ the identity $x^{e}=1_{k}$. This is a polynomial equation in a field, so its number of solutions is smaller than the degree $e$. Therefore, $q-1 \leq e$, and we have proved the existence of an element $g$ with multiplicative order at least equal to $q-1$. As $q-1=\operatorname{card} k^{*}$, e cannot be larger, so $e=q-1$ and $g$ is a cyclic generator of $k^{*}$.

This result can be used to prove the first part of the fundamental theorem on finite fields. In the sequel, we call a polynomial $P(X)$ with coefficients in $\mathbb{F}_{q}$ monic if its leading term $X^{n}+\cdots$ has coefficient 1 , and irreducible if it is not the product of two polynomials with degree larger than 1.

Theorem 3. Let $q$ be a prime power $p^{n \geq 1}$.
(1) If $P(X)$ is a monic irreducible polynomial with degree $n$ in $\mathbb{F}_{p}[X]$, then the quotient ring $\mathbb{F}_{p}[X] /(P)$ is a finite field with cardinality $q=p^{n}$.
(2) Conversely, if $k$ is a finite field with cardinality $q=p^{n}$, then there exists a monic polynomial $P$ with degree $n$ and irreducible in $\mathbb{F}_{p}[X]$ and an isomorphism of fields $k \simeq \mathbb{F}_{p}[X] /(P)$.

Note that at this point, we do not know whether there exists for each $n \geq 1$ an irreducible polynomial with degree $n$ in $\mathbb{F}_{p}[X]$. This existence result will be shown later (Theorem 7).

Proof. The first part of the theorem is an immediate consequence of the existence of Bezout relations. Consider a non-zero element $[Q]$ in the quotient ring $\mathbb{F}_{p}[X] /(P)$, with $P$ monic irreducible polynomial of degree $n$. It is represented by a non-zero polynomial $Q$ with degree $\operatorname{deg} Q \in$ $\llbracket 0, n-1 \rrbracket$. Since $P$ is irreducible, $P$ and $Q$ are coprime and there exists a Bezout relation

$$
U P+V Q=1
$$

If we project this relation in $\mathbb{F}_{p}[X] /(P)$, we obtain $[V][Q]=[1]$, so $[Q]$ is invertible and the quotient ring $\mathbb{F}_{p}[X] /(P)$ is a field. Its number of elements is the number of polynomials over $\mathbb{F}_{p}$ with degree smaller than $n-1$, that is $p^{n}$.

Conversely, consider a finite field $k$ with cardinality $q=p^{n}$, and an element $\alpha_{0}$ in $k$ which is a cyclic generator of $k^{*}$. We have a morphism of rings

$$
\begin{aligned}
\psi: \mathbb{F}_{p}[X] & \rightarrow k \\
P & \mapsto P\left(\alpha_{0}\right) .
\end{aligned}
$$

This morphism is surjective, because every non-zero element of $k$ is a power of $\alpha_{0}$, hence attained by $\psi$; of course, $0_{k}$ is also attained as $\psi(0)$. The kernel of $\psi$ is an ideal of $\mathbb{F}_{p}[X]$, hence of the form $(P)=P(X) \mathbb{F}_{p}[X]$; we can assume without loss of generality that $P$ is monic. The polynomial $P$ is necessarily irreducible, because if $P=P_{1} P_{2}$, then $P_{1}\left(\alpha_{0}\right) P_{2}\left(\alpha_{0}\right)=0_{k}$, so $P_{1}\left(\alpha_{0}\right)=0_{k}$ or $P_{2}\left(\alpha_{0}\right)=0_{k}$. The morphism $\psi$ descends to an isomorphism of rings (and in fact of fields) between $\mathbb{F}_{p}[X] /(P)$ and $k$.

Automorphisms. We now investigate the group of automorphisms $\operatorname{Aut}(k)$ of a finite field $k$ with characteristic $p$ and cardinality $q=p^{n}$.

Lemma 4. Consider the Frobenius morphism $F: x \mapsto x^{p}$. It is an automorphism of the field $k$.
Proof. This map sends $0_{k}$ to $0_{k}, 1_{k}$ to $1_{k}$, and it is obviously compatible with the multiplication. The compatibility with the addition is a bit more surprising, and it is due to the positive characteristic. Given $x$ and $y$, we have

$$
F(x+y)=(x+y)^{p}=x^{p}+y^{p}+\sum_{k=1}^{p-1}\binom{p}{k} x^{k} y^{p-k}
$$

However, all the non-trivial binomial coefficients above vanish in characteristic $p$ :

$$
\binom{p}{k}=\frac{p(p-1) \cdots(p-k+1)}{12 \cdots k}
$$

contains $p$ in the numerator, and no number larger than or equal to $p$ in the denominator, so it is divisible by $p$; hence, $F(x+y)=F(x)+F(y)$.

We have $F^{\circ n}=\operatorname{id}_{k}$ : for any $x \neq 0_{k}, x^{q-1}=1_{k}$, so $F^{\circ n}(x)=x^{q}=x$, and this is also true if $x=0_{k}$. On the other hand, if $m<n$, then we do not have $F^{\circ m}=\mathrm{id}_{k}$, because this would amount to a polynomial equation with degree $p^{m}$ and $p^{n}$ solutions. So, we have a group of automorphisms

$$
\langle F\rangle=\left\{\mathrm{id}_{k}, F, F^{\circ 2}, \ldots, F^{\circ(n-1)}\right\}
$$

with $n$ distinct maps, which is isomorphic to $\mathbb{Z} / n \mathbb{Z}$ as a group (for the operation of composition of automorphisms).

Proposition 5. The set above is the full group of automorphisms of $k$ : $\operatorname{Aut}(k) \simeq \mathbb{Z} / n \mathbb{Z}$, and it consists of the powers of the Frobenius morphism.

Proof. We already have the inclusion $\langle F\rangle \subset \operatorname{Aut}(k)$, so we have to prove that conversely, if $G \in$ $\operatorname{Aut}(k)$, then it is equal to some power of the Frobenius morphism. Consider as in the proof of Theorem 3 an element $\alpha_{0}$ which spans the cyclic group $k^{*}$, and its minimal polynomial $P$ (monic polynomial which spans the ideal of polynomials of $\mathbb{F}_{p}[X]$ which vanish on $\alpha_{0}$ ). We write $P(X)=$
$X^{n}+c_{n-1} X^{n-1}+\cdots+c_{0}$, with the $c_{i}$ 's in $\mathbb{F}_{p}$. Note that if $x \in k$ is a root of $P$, then the same holds for $F(x)$, because:

$$
0_{k}=F\left(0_{k}\right)=F(P(x))=\sum_{k=0}^{n} F\left(c_{k} x^{k}\right)=\sum_{k=0}^{n} c_{k}(F(x))^{k}=P(F(x)) .
$$

Indeed, if $c \in \mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$, then $F(c)=c^{p}=c$ by the Fermat theorem. It follows that $\alpha_{1}=F\left(\alpha_{0}\right)$, $\alpha_{2}=F^{\circ 2}\left(\alpha_{0}\right)$, etc., $\alpha_{n-1}=F^{\circ(n-1)}\left(\alpha_{0}\right)$ are roots of $P$. All these roots are distinct, because otherwise $\alpha_{0}$ would have a multiplicative order smaller than $q-1$. Therefore, the factorisation of $P$ viewed as a polynomial in $k[X] \supset \mathbb{F}_{p}[X]$ is:

$$
P(X)=\prod_{i=0}^{n-1}\left(X-F^{\circ i}\left(\alpha_{0}\right)\right)
$$

Consider now an automorphism $G$ of $k$. Notice that it must be the identity on the prime subfield $\mathbb{F}_{p}$, because $G\left(m \cdot 1_{k}\right)=m \cdot 1_{k}$ for any $m \in \mathbb{N}$. As a consequence, if $x$ is a root of $P$, then for the same reasons as above, $G(x)$ is again a root of $P$. In particular, there is an index $i \in \llbracket 0, n-1 \rrbracket$ such that $G\left(\alpha_{0}\right)=\alpha_{i}=\left(\alpha_{0}\right)^{p^{i}}$. But then, for any power of $\alpha_{0}$, we have

$$
G\left(\left(\alpha_{0}\right)^{m}\right)=\left(G\left(\alpha_{0}\right)\right)^{m}=\left(\alpha_{0}\right)^{p^{i} m}=F^{\circ i}\left(\left(\alpha_{0}\right)^{m}\right) .
$$

Since $\alpha_{0}$ is a cyclic generator, $G$ and $F^{i}$ correspond on $k^{*}$; they also obviously correspond on $0_{k}$. Thus, $G=F^{i}$.

An important argument used in the proof above is that if $P \in \mathbb{F}_{p}[X]$, then the Frobenius morphism acts by permutation of the roots of $P$ in $k$. Above, the action was cyclic; for a general polynomial $P$ (not necessarily irreducible over $\mathbb{F}_{p}$ ), the action can split in several orbits.

Classification of the subfields. Consider a finite field $K$ with cardinality $q=p^{n \geq 1}$; it contains the prime subfield $k=\mathbb{Z} / p \mathbb{Z}$. We want to describe all the intermediary subfields $L$ with $k \subset L \subset K$. In the setting of finite fields, this is easy:

Proposition 6. If $L$ is an intermediary subfield with cardinality $p^{d}$, then $d$ divides $n$. Conversely, for any divisor $d$ of $n$, there exists a unique subfield $L$ of $K$, which can be obtained as the set of fixed points of $F^{\circ d}: K \rightarrow K$.

Proof. If $k \subset L \subset K$, then card $L$ is a power $p^{d}$ of $p$, and as $K$ is a $L$-vector field, $p^{n}$ is a power of $p^{d}$, so $d$ must divide $n$. Notice then that the relation $x^{p^{d}}=x$ holds for any $x \in L$, so we have the inclusion

$$
L \subset \operatorname{Fix}\left(F^{\circ d}\right)
$$

Since we are looking at a set determined by a polynomial equation with degree $d$, the cardinality of the right-hand side is at most $p^{d}$, so by cardinality, $L=\operatorname{Fix}\left(F^{\circ d}\right)$. This proves the uniqueness of a subfield with cardinality $p^{d}$, and it remains to prove that for every divisor $d$ of $n$, the set Fix $\left(F^{\circ d}\right)$ has exactly cardinality $p^{d}$ (this is the existence part of the proof). Equivalently, we need to show that the polynomial $X^{p^{d}}-X$ splits over $K$, with simple roots. However, we already know that this is true for $d=n$, because the set of roots of this polynomial is $K$. It suffices then to see that if $d$ divides $n$, then $X^{p^{d}}-X$ divides $X^{p^{n}}-X$ in $\mathbb{F}_{p}[X]$ :

$$
X^{p^{n}}-X=\left(X^{p^{d}}-X\right)\left(\sum_{k=0}^{\frac{p^{n}-p^{d}}{p^{d}-1}} X^{\left(p^{d}-1\right) k}\right)
$$

Note that the divisors of $n$ correspond bijectively to the subgroups of the group of automorphisms $\operatorname{Aut}(K) \simeq \mathbb{Z} / n \mathbb{Z}$. Therefore, the previous proposition can be restated as a correspondence between intermediary subfields $k \subset L \subset K$, and intermediary subgroups $\mathbb{Z} / n \mathbb{Z} \supset \mathbb{Z} / \frac{n}{d} \mathbb{Z} \supset\{1\}$, the correspondence being

$$
L \mapsto \operatorname{Fix}(L)=\{G \in \operatorname{Aut}(K) \mid G(l)=l \text { for all } l \in L\} .
$$

In pompous terms, we have an anti-equivalence of categories; in the diagram below, the arrows correspond to injective morphisms (of fields or of groups), and the correspondence reverses the arrows. This is a particular case of the Galois correspondence between field extensions and groups of automorphisms.


The main identity. We are now ready to prove the remaining part of the fundamental theorem:
Theorem 7. For every prime power $q=p^{n \geq 1}$, there exists a finite field with cardinality $q$, and it is unique up to isomorphisms. We denote it $\mathbb{F}_{q}$.

Lemma 8. Denote $\operatorname{Irr}\left(n, \mathbb{F}_{p}\right)$ the set of monic irreducible polynomials with degree $n$ over $\mathbb{F}_{p}$. We bave the following factorisation in $\mathbb{F}_{p}[X]$ :

$$
X^{p^{n}}-X=\prod_{d \mid n} \prod_{P \in \operatorname{Irr}\left(d, \mathbb{F}_{p}\right)} P(X) .
$$

Proof. Notice first that $Q(X)=X^{p^{n}}-X$ does not have a multiple irreducible factor. Indeed, we can compute the greatest common divisor of $Q$ and $Q^{\prime}$ :

$$
\operatorname{gcd}\left(Q, Q^{\prime}\right)=\operatorname{gcd}\left(X^{p^{n}}-X,-1\right)=1
$$

Let $P$ be an irreducible factor of $Q$ in $\mathbb{F}_{p}[X]$. In the finite field $k_{P}=\mathbb{F}_{p}[X] /(P)$, we have the relation $\left[X^{p^{n}}-X\right]=0$, so, if $\alpha=[X]$, then $F^{\circ n}(\alpha)=\alpha$. The same relation holds for $\alpha^{2}, \alpha^{3}, \ldots, \alpha^{n-1}$ since the Frobenius morphism $F$ is a morphism of fields. Therefore, $F^{\circ n}=\mathrm{id}_{k_{P}}$ holds over the $\mathbb{F}_{p}$-linear basis

$$
\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}
$$

of $k_{P}$; therefore, $F^{\circ n}=\operatorname{id}_{k_{P}}$. This implies that the dimension $d=\operatorname{deg} P$ of $k_{P}$ over $\mathbb{F}_{p}$ divides $n$ (by using the description of the group of automorphisms of a finite field). Conversely, if $P \in \operatorname{Irr}\left(d, \mathbb{F}_{p}\right)$ with $d \mid n$, then we have the relation $x^{p^{d}}=x$ in $k_{P}$, so in particular, $\left[X^{p^{d}}-X\right]=[0]$. In other words, $P(X)$ divides $X^{p^{d}}-X$. A fortiori, it divides $X^{p^{n}}-X$, because we have seen that $X^{p^{d}}-X$ divides $X^{p^{n}}-X$ if $d$ divides $n$.

Proof of Theorem 7. Let $I(d, p)$ be the cardinality of $\operatorname{Irr}\left(d, \mathbb{F}_{p}\right)$. The main identity implies that

$$
\forall n \geq 1, \quad p^{n}=\sum_{d \mid n} d I(d, p)
$$

by looking at the degrees. We can invert this relation by using the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{r} & \text { if } n=p_{1} p_{2} \cdots p_{r} \text { has no square factor }, \\ 0 & \text { otherwise }\end{cases}
$$

Thus,

$$
I(n, p)=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) p^{d}
$$

In particular, by isolating the term $d=n$, we see that

$$
I(n, p) \geq \frac{1}{n}\left(p^{n}-\sum_{\substack{d \mid n \\ d<n}} p^{d}\right) \geq \frac{p^{n}-\left(1+p+\cdots+p^{n-1}\right)}{n}>0
$$

So, for any $p \in \mathbb{P}$ and any $n \geq 1$, there exists at least one irreducible polynomial over $\mathbb{F}_{p}$ with degree $n$, hence a finite field with cardinality $p^{n}$.

It remains to prove the unicity up to isomorphisms. To this purpose, let us modify a bit the proof of Theorem 3. We fix a finite field $k$ with cardinality $p^{n}$ and an arbitrary polynomial $P \in \operatorname{Irr}\left(n, \mathbb{F}_{p}\right)$, and we are going to exhibit an isomorphism of fields $k \simeq \mathbb{F}_{p}[X] /(P)$. The polynomial $X^{p^{n}}-X$ splits over $k$, and it has simple roots (all the elements of $k$ ). Because of the main identity, the same is true for $P$ : there exists distinct elements $\alpha_{0}, \ldots, \alpha_{n-1}$ such that $P(X)=\prod_{i=0}^{n-1}\left(X-\alpha_{i}\right)$ in $k[X]$. Consider then the morphism of rings

$$
\begin{aligned}
\psi: \mathbb{F}_{p}[X] & \rightarrow k \\
R & \mapsto R\left(\alpha_{0}\right) .
\end{aligned}
$$

It vanishes on the ideal spanned by $P$, hence it descends to a morphism of fields between $\mathbb{F}_{p}[X] /(P)$ and $k$. This morphism is necessarily injective (morphism of fields), and it is also surjective by a cardinality argument, so it is an isomorphism.

