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In this talk, I reported on work in progress on a possible characterization of Hassett
divisors on the moduli space of cubic fourfolds by the property of containing special
surfaces. I sketched the construction of such special surfaces for infinitely many
divisors and the relation with the work of Russo and Staglianò on rationality of
such cubics in low discriminant.

1. The Main Theorem

Let Y ⊂ P5 denote a complex smooth cubic fourfold and let h := [OY (1)] be
the class of a hyperplane section. By following [7], we say that Y is special of
discriminant d, and use the notation Y ∈ Cd, if there exists a surface Σ ⊂ Y not
homologous to a complete intersection such that the determinant of the intersection
matrix (

h2 h.Σ
h.Σ Σ2

)
is equal to d. The locus Cd is non-empty if and only if d ≡ 0, 2 (mod 6) and d > 6;
moreover, in such a case, Cd is an irreducible divisor in the moduli space of cubic
fourfolds, which can also be described purely in terms of Hodge theory and periods
(by the Global Torelli Theorem [17] and the surjectivity of the period map [10, 13];
we refer to the book in progress [8] for the general theory of cubic fourfolds).

The main result gives an actual surface defining the divisor Cd, for special values
of d.

Theorem 1. Let a ≥ 1 be an integer and let d := 6a2 +6a+2. Let Y be a general
cubic fourfold in Cd. Then there exists a surface Σ ⊂ Y such that

• deg(Σ) := h.Σ = 1 + 3
2a(a+ 1) and Σ2 = d+deg(Σ)2

3 ;
• H∗(Y, IΣ(a− j)) = 0, for all j = 0, 1, 2.

For discriminant d as in Theorem 1, by [1, 2] there is a polarized K3 surface S
of degree d associated to each cubic fourfold in Cd. To be precise the surface Σ
is not unique but it is a family of surfaces in Y , parameterized by the K3 surface
S. Moreover, if the cubic fourfold deforms in the divisor Cd, the K3 surface S and
the family of surfaces Σ deform along as well.

Example 2. Let Σ be the surface in Theorem 1.
(1) Let a = 1, and so d = 14. Then the surface Σ is a smooth quartic scroll,

whose existence was observed in [5, 6, 16]; explicitly, in the general case, this is
P1 × P1 embedded in P5 by the linear system |O(1, 2)|.

(2) Let a = 2, and so d = 38. Then the surface Σ is a smooth “generalized”
Coble surface, whose existence was observed in [14]; explicitly, this is the blow-up
of P2 in 10 general points embedded in P5 by the linear system |10L−3(E1 + . . .+
E10)|.
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A geometric description for the surfaces Σ is not known when a ≥ 3. In par-
ticular, we currently do not know whether the surface is smooth or even integral.
If it is smooth, all numerical invariants can be computed; in particular, it will
not be rational for any a ≥ 3. On the positive side, the construction does con-
jecturally generalize to any d ≡ 2 (mod 6). In particular, it works in general for
small discriminant (e.g., d ≤ 44) and recovers well known surfaces (e.g., the ones
in [14]). Moreover, it does provide as well many rational morphisms from the cubic
fourfold, which can be described and studied by using the associated K3 surface
S and [4]. For example, in the case a = 2, this recovers completely the picture
described in [15].

The key insight in our construction comes from derived categories; in particular,
the construction of Σ arises from understanding the Kuznetsov component Ku(Y )
of Y ([9]) and moduli spaces therein ([3, 2]). For d as in Theorem 1, the K3 surface
S associated to Y has indeed the property that Ku(Y ) ∼= Db(S) and the surface
Σ arises from a Brill–Noether locus in a special moduli space of stable objects
in Ku(Y ). The second property in the statement of the theorem can in fact be
rephrased by saying that the ideal sheaf IΣ(a) belongs to Ku(Y ).

In what follows, we will give an outline of the construction of Σ in Section 2
and how to induce rational morphisms from Y in Section 3.

2. K3 categories and Brill–Noether loci

Let Y be a cubic fourfold and let Db(Y ) denote the bounded derived category
of coherent sheaves on Y . The Kuznetsov component Ku(Y ) of Y is defined as
the right orthogonal

Ku(Y ) := 〈OY ,OY (1),OY (2)〉⊥ ⊂ Db(Y ).

We denote by i∗ the inclusion functor Ku(Y ) ! Db(Y ) and by i∗ its left adjoint
Db(Y )! Ku(Y ).

The basic properties of the Kuznetsov component are the following.

• Ku(Y ) is a K3 category, i.e., it is smooth, proper triangulated category
over C, with Serre functor given by [2], the shift by 2 functor ([9]).
• There is a cohomology lattice (H(Ku(Y ),Z), (−,−)) naturally associated

to Ku(Y ), given by topological K-theory

H(Ku(Y ),Z) := Ktop(Ku(Y )) := 〈[OY ], [OY (1)], [OY (2)]〉⊥ ⊂ Ktop(Y ),

where (−,−) denotes the Mukai pairing. It has a Hodge structure of weight
2, given by Hochschild homology, and the Mukai vector gives a morphism
K(Ku(Y ))! Halg(Ku(Y ),Z) ([1]).
• The classes

λ1 := i∗[Oline(1)] λ2 := i∗[Oline(2)]

define a sublattice A2 := 〈λ1, λ2〉 ⊂ Halg(Ku(Y ),Z) ([7, 1]).
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• There is a “canonical” (orbit of) stability condition σ0 which deforms over
all cubics; we denote by Stab(Ku(Y )) the connected component of the
space of Bridgeland stability conditions containing σ0 ([3]).
• Given a Mukai vector v ∈ Halg(Ku(Y ),Z) and σ ∈ Stab(Ku(Y )), the

moduli space Mσ(v) behaves “as nice as” a moduli space of semistable
sheaves on a K3 surface. In particular, if v is primitive and σ generic
with respect to v, then Mσ(v) 6= ∅ if and only if v2 + 2 ≥ 0; in such a
case, Mσ(v) is a projective irreducible holomorphic symplectic manifold
of dimension v2 + 2, deformation equivalent to a Hilbert scheme of points
on a K3 surface ([2]).
• If Y does not contain a plane, then for all y ∈ Y , the projection of the

skyscraper sheaf i∗k(y) is σ0-stable of Mukai vector λ2 − λ1; in partic-
ular, we obtain an embedding Y ↪! Mσ0

(λ2 − λ1) ([12]; the geometric
construction is in [11]).

The last property is the starting point for our construction. Indeed, let us fix
v := λ2−λ1. If we could find another Mukai vector u ∈ Halg(Ku(Y ),Z) such that
(u, v) = −1, u2 + 2 ≥ 0, and the slope of u with respect to σ0 is larger than the
slope of v, then for F ∈Mσ0

(u), the Brill–Noether locus

BNF :=
{
E ∈Mσ0

(v) : min(hom(E,F ), ext1(E,F )) ≥ 1
}
⊂Mσ0

(v)

has expected codimension 2; in particular, the intersection Y ∩BNF has expected
codimension 2 as well, and so it could define a surface ΣF (parameterized by
Mσ0(u)).

To make this argument work, we need to prove the existence of such u and
study the non-triviality of BNF and its intersection with Y . The existence of u is
a straightforward computation: u exists if and only if d ≡ 2 (mod 6).

This Brill–Noether locus can be studied directly in low discriminant; in general,
we have to assume that d = 6a2 + 6a+ 2, a ≥ 1. In such a case, we can choose u
such that u2 = 0. Let S := Mσ0(u). Then (up to in case slightly deform σ0) S is
a smooth projective K3 surface and the universal family U (which exists) gives a
Fourier–Mukai equivalence

ΦU : Db(S)
∼=−! Ku(Y ).

Lemma 3. Let a ≥ 2. Then, for all E ∈ Mσ0
(v), we have Φ−1

U (E) ∼= IΓ, where
Γ ⊂ S is a 0-dimensional closed subscheme of length 4.

In particular, by Lemma 3, we can identify Mσ0(v) with the Hilbert scheme S[4]

(in the case a = 1 this is not true; this case has to be studied separately). We can
use this to show the following.

Lemma 4. Let F ∈ Mσ0(u) general. Then (up to shift and taking derived dual)
we have

i∗F ∼= IΣF
(a),

where ΣF ⊂ Y is a surface.

Theorem 1 follows then directly from Lemma 4.
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3. Morphisms

We keep the notation as in the previous section, with v = λ2 − λ1, u, and
F ∈ Mσ0

(u). Then in “optimal situations” by taking extensions with F gives a
well-defined rational map

g = gF : Mσ0(v) 99KMσ0(v − u)

which induces a diagram

BlΣF
Y //

σ

��

BlBNF
Mσ0(v)

�� ''
Y // Mσ0

(v)
g // Mσ0

(v − u)

and so a closed embedding f : BlΣF
Y ↪!Mσ0

(v − u).
If this is the case, and we let ∆ denote the exceptional divisor of σ, we have

the following result.

Lemma 5. For a divisor classe D ∈ NS(Mσ0(v−u)) ∼= (v−u)⊥ ⊂ Halg(Ku(Y ),Z),
we have

f∗D = − (D + (D,u)u, λ1 + λ2)

2
σ∗h+ (D,u) ∆.

If d = 6a2+6a+2 as in Theorem 1, then g is indeed well-defined: F corresponds
to a skyscraper sheaf at a point p ∈ S, and the morphism g is nothing but the
map

S[4] 99K S[5], Γ 7! p+ Γ.

Moreover, by fixing p, the morphism f gives a closed embedding BlΣY ↪! S[5].
To get rational maps from Y , we can study morphisms from S[5] and these can

be studied by simply looking at the base locus decomposition of the movable cone
Mov(S[5]), which has been completely described in [4].

In the example when a = 2 (and so, d = 38), we have the following diagram:

S[5] oo ∼= //

!!

M1

}}

oo ∼= //

!!

M2

}}

oo ∼= //

""

. . .

M1 M2 . . .

where the leftmost diagram is a Mukai flop at a P3-bundle over the Fano variety
of lines F (Y ) of Y , and the next diagram is a Mukai flop at a P2-bundle over the
product S × F (Y ).

By taking the restriction of the above sequence of morphisms to Y , we find
exactly the “trisecant flop” description in [15]

S[5] ⊃ BlΣY oo
∼= //

σ

zz ''

Y1 ⊂M1

xx ''
Y Y 1 ⊂M1 Y 2

∼= P4 ⊂M2.
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The divisors associated to the two birational maps from Y to Y 1, respectively Y 2,
correspond, by using Lemma 5, to the linear systems |IΣ(3)|, respectively |I2

Σ(5)|
on Y . Concretely, trisecant lines and 5-secant conics to Σ in Y .

In [15] this was used to show the rationality of Y in C38. Conjecturally ([9]) all
cubic fourfolds in Cd, where d = 6a2+6a+2, should be rational. The corresponding
picture already in the case a = 3 (d = 74) is not understood: S[5] has only one
interesting morphism, which corresponds to the linear system |I3

Σ(10)| on Y , and
the rationality of Y in C74 is not known.

I would like to thank Arend Bayer, Aaron Bertram and Alex Perry for the very
nice and pleasant collaboration, Giulia Saccà, Paolo Stellari, and Sandro Verra
for very useful discussions, and Christopher Hacon, Daniel Huybrechts, Richard
Thomas and Chenyang Xu for the invitation and for the possibility of presenting
the talk.1
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