Hoang-Chinh Lu

Maître de Conférences

Mathématiques,
Bât. 307 (IMO)
Université Paris-Sud
91405 Orsay Cedex
France


Courrier électronique :
Bureau : 2A12
Téléphone : (+33) 1 69 15 57 37
Photo

Preprints

  1. T. Darvas, E. Di Nezza, C. H. Lu. Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity. arXiv:1807.00276.
  2. T. Darvas, C. H. Lu, Y. A. Rubinstein. Quantization in geometric pluripotential theory. arXiv:1806.03800.
  3. T. Darvas, E. Di Nezza, C. H. Lu. L1 metric geometry of big cohomology classes. arXiv:1802.00087 .
  4. V. Guedj, C.H. Lu, A. Zeriahi. Stability of solutions to complex Monge-Ampère flows, Accepted in Annales de l'Institut Fourier.
  5. V. Guedj, C.H. Lu, A. Zeriahi. Weak subsolutions to complex Monge-Ampère equation, arXiv:1703.06728. Accepted in Journal of the Mathematical Society of Japan.
  6. R. Berman,T. Darvas, C.H. Lu. Regularity of weak minimizers of the K-energy and applications to properness and K-stability, arXiv:1602.03114. Accepted in Annales scientifiques de l'ENS.
  7. V. Guedj, C.H. Lu, A. Zeriahi. Plurisubharmonic envelopes and supersolutions, arXiv:1703.05254, Accepted in Journal of Differential Geometry.

Publications (MR Author ID: 1009081)

  1. R. Berman, C.H. Lu. From the Kähler-Ricci flow to moving free boundaries and shocks, arXiv:1604.03259. Journal de l'École polytechnique-Mathématiques, 5 (2018), p. 519--563
  2. T. Darvas, E. Di Nezza, C.H. Lu. Monotonicity of non-pluripolar products and complex Monge-Ampère equations with prescribed singularity, arXiv:1705.05796. Analysis & PDE, Vol. 11 (2018), No. 8, 2049--2087. MR3812864
  3. T. Darvas, E. Di Nezza, C.H. Lu. On the singularity type of full mass currents in big cohomology classes, arXiv:1606.01527, Compos. Math. 154 (2018), no. 2, 380–409. MR3738831.
  4. R. Berman,T. Darvas, C.H. Lu. Convexity of the extended K-energy and the large time behavior of the weak Calabi flow, arXiv:1510.01260, Geometry & Topology, 21 (2017) 2945–2988. MR3687111.
  5. E. Di Nezza, C.H. Lu. Complex Monge-Ampère equations on quasi-projective varieties. J. Reine Angew. 727 (2017), 145–167. MR3652249.
  6. E. Di Nezza, C.H. Lu. Uniqueness and short time regularity of the weak Kähler-Ricci flow. Adv. Math. , 305 (2017), 953–993. MR3570152.
  7. C.H. Lu, V.D. Nguyen. Degenerate complex Hessian equations on compact Kähler manifolds, Indiana Univ. Math. J., 64 No. 6 (2015), 1721–1745. MR3436233.
  8. E. Di Nezza, C.H. Lu. Generalized Monge-Ampère capacities, Int. Math. Res. Not. IMRN, 2015, no. 16, 7287–7322. MR3428962.
  9. C.H. Lu. A variational approach to complex Hessian equations in $\mathbb{C}^n$, J. Math. Anal. Appl. 431 (2015), no. 1, 228–259. MR3357584.
  10. S. Dinew, C.H. Lu. Mixed Hessian inequalities and uniqueness in the class $\mathcal{E}(X,\omega,m)$. Math Z. , 279 (2015), no. 3-4, 753–766. MR3318249.
  11. C.H. Lu. Solutions to degenerate complex Hessian equations, J. Math. Pures Appl., (9) 100 (2013), no. 6, 785–805. MR3125268.
  12. C.H. Lu. Viscosity solutions to complex Hessian equations, J. Funct. Anal., 264 (2013), no. 6, 1355–1379. MR3017267.

Enseignement 2017-2018

    TDs pour le cours M2 AAG: Géométrie analytique complexe de Joël Merker. Les feuilles de TD sont disponibles ici :
    TD1. TD2. TD3. TD4. TD5. TD6. TD7. TD8. TD9.



Logo
Département de Mathématiques
, Université Paris-Sud, Bât. 425, F-91405 Orsay Cedex ,France