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Abstract

We initiate the study of the fundamental group of the group of
Hamiltonian homeomorphisms denoted by Ham(M,ω), i.e. the C0-
closure of the group of Hamiltonian diffeomorphisms Ham(M,ω) in
Homeo(M). We prove that in some situations, namely complex pro-
jective spaces and rational Hirzebruch surfaces, certain Hamiltonian
loops that were known to be non-trivial in π1Ham(M,ω) remain non-
trivial in π1Ham(M,ω). This yields in some cases, including CP2 and
S2 × S2, the injectivity of the map π1Ham(M,ω) → π1Ham(M,ω)
induced by the inclusion.

Our method relies on results from C0 symplectic topology and on
computations of the valuation of Seidel elements and hence of the spec-
tral norm on π1Ham(M,ω). Some of these computations were known
before, but we also present new ones which might be of independent
interest.

1 Introduction

Let (M,ω) be a closed symplectic manifold. We denote by Ham(M,ω) its
group of Hamiltonian diffeomorphisms and by Ham(M,ω) the closure of
Ham(M,ω) with respect to the C0-topology in the set of all homeomor-
phisms of M . The elements of Ham(M,ω) are called Hamiltonian home-
omorphisms. Their behavior is quite well understood on surfaces, in par-
ticular thanks to Le Calvez’s foliation techniques established in [LC05], see
e.g. Le Calvez’s work on the subject starting from [LC06a, LC06b]. In
higher dimension, partial results were obtained very recently by Buhovsky,
Seyfaddini, and the first author, see e.g. [BHS18, BHS21].

In this note, we study the natural map

ι : Ham(M,ω) → Ham(M,ω)

starting at the level of fundamental groups, on some symplectic manifolds
of arbitrary dimension. Indeed, while the homotopy type of Ham(M,ω)
has been extensively studied, see below for some references which are used
here, absolutely nothing is known about Ham(M,ω) beyond the case of
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surfaces where the map ι is known to be a homotopy equivalence. Before
getting to the heart of the matter, let us point out that the analogous map
Symp(M,ω) → Symp(M,ω), between the groups of symplectic diffeomor-
phisms and homeomorphisms, was studied at the π0 level by the second
author [Jan21, Jan22].

1.1 Main results

The upshot of this work is a method which detects non-trivial elements in
the image of ι∗, i.e. non-trivial elements in π1

(
Ham(M,ω)

)
which survive

in the fundamental group after taking the C0-closure. For our method to
work, all symplectic manifolds will be required to be rational, meaning that
their group of periods ⟨ω, π2(M)⟩ is generated by a unique positive element,
which will be denoted by Ω. In other words, ⟨ω, π2(M)⟩ = ΩZ.

The first application of our method concerns Hamiltonian circle actions
and relies on deep work by McDuff and Tolman [MT06]. Recall that a fixed
point component of a circle action is semifree if it admits a neighborhood
in which the stabilizer of every point is either trivial or the whole circle.

Theorem 1. Consider a Hamiltonian circle action Λ on a compact, rational
symplectic manifold (M,ω). Assume that its extremal fixed point components
are semifree. Then ι∗([Λ]) is non-trivial in π1(Ham(M,ω)).

As a direct consequence, we deduce the injectivity of ι∗ in two different
specific situations.

Corollary 2. The map ι∗ : π1
(
Ham(M,ω)

)
→ π1

(
Ham(M,ω)

)
is injective

when (M,ω) is the monotone product S2×S2 and for CP2 endowed with the
Fubini–Study symplectic form.

This consequence is straightforward since, in these two cases, all non-
trivial elements of π1(Ham(M,ω)) may be represented by a Hamiltonian cir-
cle action satisfying the conditions of Theorem 1. Whenever π1(Ham(M,ω))
has an element which does not admit such a representative, our method
needs some extra work to produce an essential loop of Hamiltonian home-
omorphisms. Notice in particular that semifreeness is not preserved under
taking non-trivial powers. Therefore, we cannot directly extract information
from Theorem 1 about elements of the form hk with |k| ≠ 1, even when h
can be represented by a circle action with semifree extremal components.

Example 3. The fundamental group of the Hamiltonian diffeomorphism
group of S2 ×S2 endowed with a non-monotone product symplectic form is
generated by two order-2 elements and the class of a loop Λ of infinite order.
All three are ensured to survive in π1

(
Ham(M,ω)

)
by Theorem 1, however

our method does not detect the even powers of Λ so that, as far as we know,
ι∗([Λ]) might as well be of order 2. ◀
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However, we also have results in these more interesting situations, namely
for complex projective spaces of any dimension and for all rational 1-point
blow-ups of CP2. First, recall that Seidel [Sei97] proved that the group
π1(Ham(CPn, ωFS)) admits a non-trivial element hn of order n+ 1.

Corollary 4. For any n ⩾ 1, the element ι∗(hn) has order n + 1 in the
group π1(Ham(CPn, ωFS)).

Note that the above corollary can also be obtained by non-symplectic
methods, as was pointed out to us by Randal-William. Indeed, Sasao shows
in [Sas74] that the action of U(n + 1) on CPn induces an isomorphism
between Z/(n + 1)Z and the fundamental group of the group of degree-1
continuous maps from CPn to itself. This immediately implies that the
class hn, which is induced by the aforementioned action, is non-trivial in
Ham(CPn, ωFS) and in its closure Ham(CPn, ωFS).

Second, recall that the symplectic 1-point blow-ups Fµ = (CP2#CP
2
, ω′

µ)
of CP2 admit a standard symplectic form ω′

µ parameterized by a positive
real number µ. The fundamental group of their respective Hamiltonian
diffeomorphism groups was computed by Abreu and McDuff [AM00]: it is
generated by a unique Hamiltonian circle action of infinite order.

Theorem 5. The map ι∗ is injective on all rational 1-point blow-ups of CP2.
In other words, whenever µ ∈ Q, the map ι∗ : π1

(
Ham(Fµ)

)
→ π1

(
Ham(Fµ)

)
is injective.

Remark 6. Consider the completion Ĥam(M,ω) of Ham(M,ω) with re-
spect to the spectral norm γ as in [Hum08, Vit22]. It turns out that all the

above results still hold when Ham(M,ω) is replaced with Ĥam(M,ω). This
is thus also true when Ham(M,ω) is replaced by the completion with respect
to Hofer’s metric. Such variations are obtained via minor modifications of
the proof; see Remark 12 below for more details. ◀

1.2 The method

Our method is based on the following proposition of independent interest.
In order to state it, we need to briefly recall a few well-established notions
(necessary preliminaries are given in Section 2). The quantum homology of
(M,ω) is denoted by QH(M,ω). We let ν : QH(M,ω) → ΩZ ∪ {−∞} be
the quantum valuation map, and S : π1(Ham(M,ω)) → QH(M,ω)× be the
Seidel morphism. We consider the map Γ : π1(Ham(M,ω)) → ΩZ defined
by Γ(h) = ν

(
S(h)

)
+ ν

(
S(h−1)

)
.

Proposition 7. Assume that (M,ω) is a rational symplectic manifold. Then,
the map Γ : π1(Ham(M,ω)) → ΩZ factors through π1(Ham(M,ω)), i.e.
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there exists a map Γ : π1(Ham(M,ω)) → ΩZ such that the following dia-
gram commutes

π1(Ham(M,ω)) π1(Ham(M,ω))

ΩZ

Γ

ι∗

Γ

(1)

Based on this proposition, the proof of Theorem 1, Corollary 4, and
Theorem 5 boils down to computing Γ in order to show that it is non-zero
on elements of π1

(
Ham(M,ω)

)
. The diagram above then ensures that their

image via ι∗ in π1(Ham(M,ω)) cannot be trivial.

Remark 8. McDuff already used the map Γ to estimate the length of loops
of Hamiltonian diffeomorphisms of 1-point blow-ups of CP2, see [McD02,
Lemma 5.1]. ◀

Remark 9. All the examples appearing in this work are strongly semi-
positive symplectic manifolds, which is the setting of Seidel’s seminal paper
[Sei97]. However, the method introduced in this note extends to a much
more general setting, see e.g. [LMP99] and [McD00]. ◀

The proof of Proposition 7 has two ingredients. The first one is the
action of the Seidel homomorphism on spectral invariants. Indeed, it is not
hard to see that, when (M,ω) is rational, Γ coincides with the restriction

of the spectral pseudo-norm γ̃ : H̃am(M,ω) → R to π1
(
Ham(M,ω)

)
, see

Section 2.4 for details.
The second ingredient is the following result of C0-continuity of the

spectral pseudo-norm up to the action of the group of periods ⟨ω, π2(M)⟩ =
ΩZ, due to Kawamoto [Kaw22, Theorem 1].

Theorem (Kawamoto). Let (M,ω) be a rational symplectic manifold. For
any ε > 0, there exists δ > 0 such that for any ϕ ∈ Ham(M,ω), if dC0(id, ϕ) <

δ, then for any lift ϕ̃ ∈ H̃am(M,ω) of ϕ there exists an integer ℓ ∈ Z such
that

|γ̃(ϕ̃)− ℓ · Ω| < ε.

Let us now see how these two ingredients are combined to give a proof.

Proof of Proposition 7. The map γ̃ : H̃am(M,ω) → R descends to a map
Ham(M,ω) → R/ΩZ. It follows from Kawamoto’s theorem that this map
extends continuously to Ham(M,ω), hence factors through the inclusion:

Ham(M,ω) → Ham(M,ω) → R/ΩZ .

Applying the functor π1, this yields a factorisation

π1(Ham(M,ω)) → π1(Ham(M,ω)) → ΩZ

of the restriction of γ̃ to π1(Ham(M,ω)), which is nothing but Γ.
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1.3 Computation of the spectral pseudo-norm

As mentioned above, the proof of our main results boils down to comput-
ing the valuation of the Seidel elements associated to the elements of the
fundamental group of Hamiltonian diffeomorphism groups. These compu-
tations are based on work by Entov and Polterovich [EP03] in the case of
complex projective spaces, and on works by McDuff [McD02], by Ostrover
[Ost06], and by Anjos and the third author [AL18, AL17] in the case of the
Hirzebruch surfaces (S2 × S2 and the 1-point blow-ups of CP2).

Since the resulting function Γ coincides with the restriction of the spec-
tral pseudo-norm γ̃ to π1(Ham(M,ω)) when the manifold is rational, we get
explicit computations of the latter. We collect below some phenomena of
independent interest concerning γ̃.

Proposition 10. Let γ̃ : π1
(
Ham(M,ω)

)
→ R denote the restriction of the

spectral pseudo-norm.

(F1) Let (M,ω) = (S2 × S2, ωµ) with ωµ the product symplectic form with
area µ on the first factor and 1 on the second.

When µ ∈ Q and µ ̸= 1, γ̃ is degenerate: γ̃−1({0}) = {h2p | p ∈ Z}
where h is the generator of infinite order of π1

(
Ham(M,ω)

)
.

(F2) Let (M,ω) be any symplectic 1-point blow-up (CP2#CP
2
, ω′

µ) of CP2

or the n-dimensional complex projective space (CPn, ωFS), endowed
with the standard Fubini–Study symplectic form.

When µ ∈ Q, γ̃ is non-degenerate.

We now focus on 1-point blow-ups (CP2#CP
2
, ω′

µ) of CP2. The symplectic
ω′
µ has area µ > 0 on the exceptional divisor, and 1 on the fiber1. Under

these conventions, the only monotone such symplectic manifold is the one
for which µ = 1

2 .

(F3) The spectral norm γ̃ is not bounded on “small” rational 1-point blow-
ups of CP2, for which µ < 1

2 and µ ∈ Q.

(F4) On the monotone 1-point blow-up, that is when µ = 1
2 , we have γ̃(k) =

2 for all non-trivial elements k of π1
(
Ham(CP2#CP

2
, ω′

mon)
)
.

(F5) The image of the spectral norm is bounded on “big” rational 1-point
blow-ups of CP2, for which µ ⩾ 1

2 and µ ∈ Q.

(F6) Let h′ be the generator of π1
(
Ham(CP2#CP

2
, ω′

µ)
)
and p ∈ Z, then

the function µ 7→ Γ(h′p), whose restriction to Q is µ 7→ γ̃(h′p), is
continuous and piecewise linear on R.

1Recall that CP2#CP
2
is the total space of the only non-trivial Hamiltonian fibration

over CP1 with fiber CP1.
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Remark 11. Concerning (F1) above, it was proved in [AL17] that Seidel’s
morphism is injective for all Hirzebruch surfaces. The computations of
Section 3.3 show that ν(S) is also injective. However, ν(S) does not factor
through π1(Ham) a priori and Γ is not injective.

The fact (F2) for 1-point blow-ups of CP2 was proved in [McD02], by
showing that Γ is positive. In the second part of Section 3.3, we compute
the specific values of Γ on the fundamental group of the Hamiltonian diffeo-
morphism group. These computations yield the facts (F2) to (F6). ◀
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a stay of the second author at the Institut Mathématique d’Orsay. We thank
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2 Preliminaries

2.1 Quantum homology

Let k be a field (which will be chosen to be Q in general, except for the
case of CPn in Section 3.2 for which k = C). The (small) quantum homol-
ogy of a strongly semi-positive symplectic manifold (M,ω) is the Z-graded
algebra defined as QH∗(M ; Λ) = H∗(M ; k)⊗k Λ where Λ = Λuniv[q, q−1] has
coefficients in the ring of generalized Laurent series in the degree-0 variable
t:

Λuniv =
{∑

κ∈R

rκt
κ
∣∣∣ rκ ∈ k s.t. ∀c ∈ R, #{κ > c | rκ ̸= 0} < ∞

}
and q is a variable of degree 2. The grading of an element of the form a⊗qdtκ

with a ∈ Hl(M ; k) is simply given by deg(a⊗ qdtκ) = l + 2d.
The quantum intersection product on QH∗(M ; Λ) is a deformation of the

usual intersection product on H∗(M ; k) by counts of certain Gromov–Witten
invariants. More precisely, for a ∈ Hk(M ; k) and b ∈ Hl(M ; k),

a ∗ b =
∑

B∈HS
2 (M ;Z)

(a ∗ b)B ⊗ q−c1(B)t−ω(B)

where the sum runs over all spherical homology classes B, i.e. classes B in
the image HS

2 (M ;Z) of the Hurewicz map π2(M) → H2(M ;Z).
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The class (a ∗ b)B ∈ H∗(M ; k) has degree k + l − dim(M) + 2c1(B)
and is defined by requiring its usual intersection product with any class
c ∈ H∗(M ; k) to be given by the Gromov–Witten invariant

(a ∗ b)B · c = GWM
B,3(a, b, c) ∈ k

which counts the number of spheres in M , in the class B, which meet cycles
representing a, b and c. The specific definition of GWM

B,3 is not necessary in
this note. Only the following facts will be of interest:

(i) As expected, deg(a ∗ b) = deg(a) + deg(b)− dim(M).

(ii) The quantum intersection product turns the ring QH∗(M ; Λ) into a
Z-graded commutative unital algebra.

(iii) The unit of this algebra is the fundamental class [M ] of the symplectic
manifold, seen as an element in QH2n(M ; Λ).

Quantum valuation The quantum homology algebra comes with a nat-
ural valuation ν : QH∗(M ; Λ) → R ∪ {−∞} defined by

ν
(∑

κ∈R

aκ ⊗ qdκtκ
)
= max{κ | aκ ̸= 0} .

Notice that any non-zero class has finite valuation because of the finiteness
condition required in the definition of Λuniv. By convention, the zero class
has valuation −∞.

The monotone case Morally speaking, the variables q and t respectively
remember the first Chern number and the symplectic area of classes of
spheres in π2(M).

In the (positively) monotone case, namely when

∃λ > 0 such that ω|π2(M) = λ · c1|π2(M) ,

the morphisms ω and c1 are linearly dependent on π2(M). Hence there is
no need to carry around two variables: in this case, Λ is usually replaced by
k[[s] where s is of degree 2N , i.e. twice the minimal Chern number N of M
which is the positive generator of ⟨c1, π2(M)⟩ = NZ.

An element of the form a⊗sj thus corresponds to a⊗qjN tjΩ in the above
description, with Ω the positive generator of ⟨ω, π2(M)⟩, which satisfies by
monotonicity Ω = λN . The definition of the valuation has to be adapted
consequently to ν

(∑
j∈Z aj ⊗ sj

)
= Ω ·max{j | aj ̸= 0}.

This is for example the setting of [EP03] whose results are used below.
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2.2 Floer homology

In order to prove Arnold’s conjecture, Floer developed at the end of the
80’s [Flo88a, Flo88b, Flo89a, Flo89b] an infinite dimensional Morse–Bott-
type homology for the symplectic action functional. As Gromov–Witten
invariants, this construction is another striking consequence of Gromov’s
celebrated work on pseudo-holomorphic curves [Gro85]. (And as Gromov–
Witten invariants, it has had countably many applications.)

The upshot of Floer’s construction, as far as this note is concerned, is
that with a generic pair (H,J) formed of a time-dependent, non-degenerate
Hamiltonian function H and a ω-compatible almost complex structure J ,
one can define a Z-graded complex (CF∗(M : H), ∂(H,J)) whose homology
HF∗(M,ω) = H∗(CF(M :H), ∂(H,J)) satisfies the following properties.

(i) There exist canonical continuation isomorphisms between Floer ho-
mologies built from different admissible pairs of Floer data (H,J) and
(H ′, J ′).

(ii) The pair-of-pants product ⋆ turns Floer homology into a graded alge-
bra, with unit [M ] ∈ HF2n(M,ω), the fundamental class of M seen as
a Floer homology class.

(iii) There exist isomorphisms PSS : QH∗(M ; Λ) → HF∗(M,ω) of graded
commutative unital algebras.

(iv) Floer complexes are filtered : any given α ∈ R defines a subcomplex
(CFα

∗ (M :H), ∂(H,J)). Its homology does not depend on the choice of
J and is denoted by HFα

∗ (M :H).

2.3 The Seidel morphism

The Seidel morphism was described in [Sei97] in two quite different but
equivalent ways. On one hand, it can be seen as a morphism

S : π1
(
Ham(M,ω)

)
−→ QH∗(M ; Λ)× , h 7−→ S(h)

where QH∗(M ; Λ)× denotes the multiplicative group of invertible elements of
QH∗(M ; Λ). The quantum class S(h) is called the Seidel element associated
to h. It is defined by counting pseudo-holomorphic sections of a Hamiltonian
fibration over S2 with fibre M obtained from a loop (ϕt)t∈[0,1] ∈ h via the
clutching construction.

On the other hand, it can be seen as a representation

S : π1
(
Ham(M,ω)

)
−→ Aut(HF∗(M,ω)) , h 7−→ Sh .

The relation between these two viewpoints is straightforward: the automor-
phism of Floer homology Sh is nothing but the pair-of-pants multiplication
by S(h) seen as a Floer homology class via the PSS morphism, i.e.

∀b ∈ HF∗(M,ω) , Sh(b) = PSS(S(h)) ⋆ b .
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2.4 The spectral norm

The spectral norm is a norm defined on the universal cover of Hamiltonian
diffeomorphism groups. It is based on the theory of spectral invariants, in-
troduced by Viterbo [Vit92] via generating functions, and adapted to the
Floer-theoretic setting by Schwarz [Sch00] for symplectically aspherical man-
ifolds and Oh [Oh05] for monotone manifolds. Since then, they have been
defined in a wide range of situations (and also had countably many deep
consequences).

Spectral invariants Let a ∈ QH∗(M ; Λ) be a non-zero quantum homol-
ogy class. For any non-degenerate Hamiltonian function H on M , the spec-
tral invariant associated to a with respect to H is the real number

c(a :H) = inf{α ∈ R |PSS(a) belongs to the image of ια}

where ια : HFα
∗ (M :H) → HF∗(M,ω) is the map induced by the inclusion.

These numbers enjoy a list of standard properties. First, they are “spectral”
in the sense that c(a :H) belongs to the set of critical values of the action
functional associated to H; this property which explains their name will not
be needed here. They are also Hofer continuous, namely∫ 1

0
min
M

(Ht −Kt) dt ⩽ c(a :H)− c(a :K) ⩽
∫ 1

0
max
M

(Ht −Kt) dt

for any two Hamiltonians H(t, x) = Ht(x), K(t, x) = Kt(x). In particular,
c(a :H) continuously depends on H and the map c(a : · ) extends continu-
ously to all (possibly degenerate) Hamiltonians.

Recall that a smooth path of Hamiltonian diffeomorphisms (ht)t∈[0,1]
with h0 = id is generated by a unique mean normalized Hamiltonian H, i.e.
satisfying

∫
M Ht ω

n = 0 for all t. Thus we may define spectral invariants of
the isotopy (ht) by setting c(a : (ht)) = c(a :H). These invariants applied
to isotopies have the nice feature that they are invariant by homotopy with
fixed end points. Therefore, we obtain a well-defined map on the universal
cover of Ham(M,ω):

c(a : · ) : H̃am(M,ω) → R .

These maps satisfy the so-called triangle inequality :

c(a ∗ b : h̃k̃) ⩽ c(a : k̃) + c(b : h̃)

for any classes a, b ∈ QH∗(M,Λ) such that a ∗ b ̸= 0, and any h̃, k̃ ∈
H̃am(M,ω).

We will mainly use the spectral invariants associated to the fundamental
class. Therefore, it will be convenient to introduce the notation c+(H) =
c([M ] :H) and c+(h̃) = c([M ] : h̃). Note that the triangle inequality for c+
takes the form

c+(h̃k̃) ⩽ c+(h̃) + c+(k̃) . (2)
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Relation between c, S, and ν In the language of spectral invariants, the
quantum valuation defined in Section 2.1 behaves as the spectral invariant
computed with respect to the zero Hamiltonian / the identity in H̃am. By
this, we mean that for any non-zero quantum homology class a ∈ QH∗(M ; Λ)

c(a : ĩd) = ν(a) . (3)

Moreover, because Seidel’s representation provides automorphisms of fil-
tered Floer complexes, the action of any h ∈ π1(Ham(M,ω)) on H̃am(M,ω)
(or in other words the difference between lifts of ϕ ∈ Ham(M,ω) to the
universal cover) yields, in terms of spectral invariants:

∀a ∈ QH∗(M ; Λ) , c(a : k̃h) = c(S(h) ∗ a : k̃) (4)

for all k̃ ∈ H̃am(M,ω). In the specific situation where k̃ = ĩd and a = [M ],
we get

c+(h) = c([M ] :h) = c(S(h) ∗ [M ] : ĩd) = ν(S(h)) (5)

respectively by definition of c+, by (4), and finally by (3) and the fact that
[M ] is the unit of the quantum homology algebra. If not litterally well-
known, this equality has been successfully used before, see e.g. Proposition
4.1 in [EP03], Section 6.3 of [Ost06], and Property (2.4) of spectral numbers
in [McD10].

The spectral pseudo-norm The spectral pseudo-norm is defined as a
group pseudo-norm γ̃ : H̃am(M,ω) → R by

γ̃(h̃) = c+(h̃) + c+(h̃
−1) = c+(H) + c+(H)

with H generating (ϕt
H)t∈[0,1] ∈ h̃ and H the Hamiltonian function defined

by Ht(x) = −H1−t(x). Standard computations show that H generates the
isotopy ϕ1−t

H (ϕ1
H)−1 ∈ h̃−1. The triangle inequality for γ̃ as well as its non-

negativity follow from (2) and the fact that γ̃(ĩd) = 0.
Notice that (5) yields for any h ∈ π1(Ham(M,ω))

γ̃(h) = c+(h) + c+(h
−1) = ν(S(h)) + ν(S(h−1)) = Γ(h) (6)

where Γ, defined by the last equality, is the central object of Proposition 7
from the introduction. Notice that this implies that

γ̃(h) ∈ ⟨ω, π2(M)⟩, ∀h ∈ π1(Ham(M,ω)).

The pseudo-norm γ̃ induces a genuine (non-degenerate) norm γ on the
group Ham(M,ω), called the spectral norm, by the formula

γ(ϕ) = inf
{
γ̃(h̃)

∣∣ h̃ ∈ H̃am(M,ω), π(h̃) = ϕ
}
.
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Remark 12. Assume (M,ω) is rational and let Ω be the positive generator

of ⟨ω, π2(M)⟩. It is known that if h̃1, h̃2 are two lifts to H̃am(M,ω) of a given
ϕ ∈ Ham(M,ω), then the difference γ̃(h̃1)− γ̃(h̃2) belongs to ⟨ω, π2(M)⟩ =
ΩZ. It follows that for any ϕ ∈ Ham(M,ω) and any lift h̃ of ϕ to H̃am(M,ω),
there exists an integer ℓ ∈ Z such that

γ̃(h̃)− ℓ · Ω = γ(ϕ).

Therefore, Kawamoto’s theorem from Section 1.2 holds after replacing the
C0 distance dC0 with the spectral distance γ. We then deduce that Proposi-

tion 7 similarly holds with the γ-completion Ĥam(M,ω) replacing Ham(M,ω).
We can then use this modified version of Proposition 7 to adapt our proofs
of Theorems 1, 4, 5 as well as Corollary 2 to the case of Ĥam(M,ω). This
justifies the part of Remark 6 related to γ.

For the part related to Hofer’s distance (which we denote here by δ), the
Hofer continuity of spectral invariants yields γ ⩽ δ and thus a natural map

Ĥam
δ
(M,ω) → Ĥam

γ
(M,ω) between the respective completions, and hence

a factorization

π1(Ham(M,ω)) → π1(Ĥam
δ
(M,ω)) → π1(Ĥam

γ
(M,ω)) .

Thus, our claims from Remark 6 for γ yield the same claims for δ. ◀

3 Computations

3.1 Proof of Theorem 1

This is a simple remark based on the following deep result from McDuff and
Tolman which is part of [MT06, Theorem 1.10].

Theorem (McDuff–Tolman). Let Λ be a Hamiltonian circle action on a
compact symplectic manifold (M,ω), generated by the moment map K :
M → R. Assume K to be normalized and let Kmax = maxM K. Assume
that the fixed point component Fmax = K−1(Kmax) is semifree. Then there
are classes aB ∈ H∗(M) so that

S(Λ) = [Fmax]⊗ q−mmaxtKmax +
∑

aB ⊗ q−mmax−c1(B)tKmax−ω(B) (7)

where the sum runs over all spherical class B ∈ HS
2 (M) with ω(B) > 0.

Recall that semifreeness means that the action acts semifreely: the sta-
bilizer of each point is trivial or the whole circle in a neighbourhood of Fmax.
The integer mmax will not be used below. Let us simply mention that it is
determined by the degree of S(Λ) and that it corresponds to the sum of the
weights at a point x ∈ Fmax. Note that McDuff and Tolman were also able
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to specify the structure of the lower order terms in exchange of additional
requirements on ω-compatible almost complex structures.

For our purpose, it is enough to notice that, since [Fmax] and the aB’s
are honest classes in H∗(M), the valuation of S(Λ) is Kmax. Moreover, Λ−1

is generated by −K whose maximal fixed point component is nothing but
(−K)−1(maxM (−K)) = K−1(minM K) = Fmin. Requiring both extremal
fixed point components to be semifree and applying McDuff–Tolman’s The-
orem to K and −K, yield

Γ(Λ̃) = ν(S(Λ)) + ν(S(Λ−1)) = Kmax −Kmin .

Since K is not constant, Γ(Λ̃) > 0. Under the additional assumption
that (M,ω) is rational, Proposition 7 ensures that ι∗(Λ̃) is not trivial in
π1(Ham(M,ω)). □

3.2 Proof of Theorem 4

Recall from [Sei97] that Seidel’s morphism detects an element hn of order
n + 1 in π1(Ham(CPn, ωFS)). We claim that Γ is positive on all classes
detected by Seidel’s morphism. Since (CPn, ωFS) is monotone, it is rational
and Proposition 7 ensures that ι∗(hn) is of order n+ 1 in Ham(CPn, ωFS).

We now proceed and show that

∀h ∈ π1(Ham(CPn, ωFS)), h /∈ ker(S) =⇒ Γ(h) = Ω (8)

where Ω = ωFS([CP1]) > 0 is the generator of ⟨ωFS, π2(CPn)⟩. This obvi-
ously implies our claim, hence concluding the proof.

We recall that the quantum homology algebra of CPn is isomorphic to
the algebra k[A]/{An+1 = s−1} with k = k[[s], see our comment on the
monotone case at the end of Section 2.1. Here, A is the hyperplane class of
degree 2n− 2 and s is of degree 2N = 2(n+ 1). Notice that for any m ∈ Z,
Am has degree 2n− 2m.

Moreover, recall from Proposition 4.2 of [EP03], that all Seidel elements
are monomials of the form Amsβ. Since they belong to QH2n(CP

n; Λ), β =
m

n+1 for degree reasons. Notice that when m is a multiple of n + 1, we get

Amsβ = [CPn] as expected (see Proposition 4.3 of [EP03]).
We now assume that m is not a multiple of n+ 1. We need to compute

ν(Amsβ) + ν(A−ms−β) so that we may assume that m ⩾ 0. Then

m = q · (n+ 1) + r and −m = −(q + 1) · (n+ 1) + (n+ 1− r)

with q = ⌊ m
n+1⌋, and r and n+ 1− r are integers in (0, n+ 1). Hence,

Ams
m

n+1 = (An+1)q ·Ars
m

n+1 = ([CPn]s−1)q ·Ars
m

n+1 = Ars
m

n+1
−q

12



whose valuation is Ω · ( m
n+1 − q) = Ω · ( m

n+1 −⌊ m
n+1⌋) since Ar ∈ H∗(CPn;Q).

Similarly, by replacing q by −(q+1) and r by n+1−r, we get that A−ms
−m
n+1

has valuation Ω · (⌊ m
n+1⌋+ 1− m

n+1), so that ν(Amsβ) + ν(A−ms−β) = Ω.
Hence, Γ(h) = Ω whenever h has a non-trivial associated Seidel element

which proves (8) and ends the proof of Theorem 4. □

3.3 About Example 3 and the proof of Theorem 5

In this section, we compute the Seidel elements associated to all elements
of the fundamental group of the group of Hamiltonian diffeomorphisms of
all Hirzebruch surfaces. This completes partial computations from [McD02],
[Ost06], and [AL17].

Recall that in [AL18], Anjos and the third author computed Seidel ele-
ments of many 4-dimensional toric manifolds starting from the fundamental
aforementioned result from McDuff and Tolman. In [AL17], these compu-
tations were used to prove that Seidel’s morphism detects all the generators
of the fundamental group of the Hamiltonian diffeomorphism group of all
Hirzebruch surfaces, namely all symplectic products of S2 × S2 and 1-point
blow-ups of CP2.

We now show that, when we consider Γ rather than the Seidel elements
themselves, the situation is more subtle:

• Γ vanishes on certain essential loops of Hamiltonian diffeomorphisms
of all products of spheres except the monotone one, this will justify
Example 3 and Fact (F1) of Proposition 10 from the introduction ;

• Γ is positive on all essential loops of Hamiltonian diffeomorphisms of
the 1-point blow-ups of CP2, this will prove Theorem 5 and justify
Fact (F2) of Proposition 10.

The computations done in the latter case will also clarify Facts (F3) to (F6)
of Proposition 10.

Remark 13. Note that all the quantities S, ν, Γ, γ̃ depend on the symplectic
forms, themselves being parameterized by a real number µ in both cases.
However, we omit µ in the notation for short throughout this section. ◀

Even Hirzebruch surfaces. Recall that Fµ
2k is identified to M = S2×S2

endowed with the symplectic form ωµ with area 1 on the first factor and µ
on the second.

We denote by u = [S2 × {pt}] ⊗ q and v = [{pt} × S2] ⊗ q the degree
4 quantum homology classes induced by each component of the product
M = S2 × S2. The quantum homology algebra of (M,ωµ) is

QH∗(M,ωµ) ≃ Λuniv[u, v]/⟨u2 = t−1, v2 = t−µ⟩ .
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The fundamental group of the group of Hamiltonian diffeomorphisms of
Fµ
2k was computed in [AM00].

• When µ = 1, the manifold (M,ω1) is monotone hence rational, and the
fundamental group of Ham(M,ω1) is generated by two elements of order 2,
each generated by one factor of the product. These generators are Hamilto-
nian circle actions which satisfy the assumption of Theorem 1 so that they
induce non-trivial elements in Ham(M,ω1). Since they are of order 2, there
is nothing more to prove.

• When µ > 1 and rational, (M,ωµ) is rational and π1(Ham(M,ωµ)) is gen-
erated by the same order-2 circle actions, together with a third Hamiltonian
circle action of infinite order Λ (denoted Λ2

e1 in [AL17]). The Seidel element
of the latter and of its inverse are given by

S(Λ) = (u+ v)⊗ t
1
2
−ϵ and S(Λ)−1 = (u− v)⊗ t

1
2
+ϵ

1− t1−µ

with ϵ = 1
6µ . Hence, for any positive integer ℓ,

S(Λ)ℓ =
ℓ∑

k=0

( ℓ
k

)
ukvℓ−kt(

1
2
−ϵ)ℓ .

Notice that, depending on the parity of k and ℓ and up to some power of t,
ukvℓ−k is [M ], u, v, or uv, so that no products of powers of u and v vanish.
Moreover, for all k and ℓ,

ν
(
ukvℓ−kt(

1
2
−ϵ)ℓ

)
= −

⌊k
2

⌋
− µ

⌊ℓ− k

2

⌋
−
(1
2
− ϵ

)
ℓ .

Since µ > 1, we get that ν(S(Λ)ℓ) = −⌊ ℓ
2⌋+ (12 − ϵ)ℓ.

The computation of ν(S(Λ)−ℓ) is similar. Only notice additionally that
1

1−t1−µ = 1 + t1−µ + t2(1−µ) + . . . so that, since 1− µ < 0, ν
(
( 1
1−t1−µ )

ℓ
)
= 0.

Hence, we get ν(S(Λ)−ℓ) = −⌊ ℓ
2⌋+ (12 + ϵ)ℓ which yields

Γ(Λℓ) = ℓ− 2
⌊ ℓ
2

⌋
=

{
0 if ℓ is even,
1 if ℓ is odd.

Hence, we see that Γ detects only odd powers of Λ, it follows that ι∗([Λ]) ̸= 0
(but it could be of order 2). □

Odd Hirzebruch surfaces. We follow the conventions from [AL17, Sec-
tion 3.2]: Fµ

2k+1 is identified with CP2#CP2 endowed with the symplectic
form ω′

µ such that

• the exceptional divisor B of self-intersection −1 has area µ > 0,

• the fiber F has area 1,
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• the projective line B + F has area µ+ 1.

As a vector space, its quantum homology is generated by: u0 = [pt] ⊗ q2,
u = F ⊗ q, u3 = B ⊗ q, and 1. It is also convenient to denote by u1 =
(B + F )⊗ q = u+ u3. These classes satisfy the following relations2:

u1 u3 = t−1 , u2 = u3 t
−µ , u−1 = u0 t

µ+1 . (9)

As an algebra, the quantum homology is given as the quotient

QH∗(F
µ
2k+1) ≃ Λuniv[u]/⟨u4t2µ + u3tµ − t−1⟩ .

Last (but not least!), recall from [AM00] that the fundamental group of the
group of Hamiltonian diffeomorphisms of Fµ

2k+1 is generated by a single class
of infinite order. This class is induced by a circle action Λ whose associated

Seidel element is S(Λ) = u−1t−ε where ε = 3µ2+3µ+1
3(1+2µ) . Hence we get, for all

integers p,

Γ(Λp) = ν(S(Λp)) + ν(S(Λ−p)) = ν(u−p) + ν(up) .

The following proposition collects the results of the computations of Γ(Λp)
for all p (greater than some p0) for all possible values of the parameter µ > 0.

Proposition 14. • For 0 < µ ⩽ 1
2 ,

∀p ⩾ 7, Γ(Λp) = −2
(⌊p− 1

3

⌋
− 1

)
· µ+

(⌊p− 1

3

⌋
+ 1

)
. (10)

• For µ > 1
2 , the value of Γ(Λp) depends on the rest ℓ of the Euclidean

division of p by 4, and on the sign of µ−1. Namely, for all p ⩾ 12, Γ(Λp)
is given by the following table:

ℓ 1
2 < µ ⩽ 1 1 < µ

0 2 2
1 2 µ+ 1
2 −2µ+ 3 1
3 2 µ+ 1

(11)

This proposition shows that, for any µ > 0, Γ(Λp) ̸= 0 for p big enough3

which yields that ι∗([Λ]) is of infinite order in π1
(
Ham(Fµ

2k+1)
)
for any pos-

itive, rational number µ. Notice that Theorem 5 and the facts (F2) to (F6)
from Proposition 10 follow from this proposition.

The graph below illustrates Proposition 14.

2The last one does not appear as such in [AL17] as it was not needed to get the
expression of the quantum homology algebra. It is necessary here and can easily be
computed with the methods used there. See also [MT06, Remark 5.6] and [Ost06, Section
3.3] in which it is explicitly computed under different conventions though.

3Computing the first few terms shows that this fact actually holds for all integers p.
The formulas we present below, however, do not hold for small integers p.
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1
2

1 µ

1
p = 7, 8, 9

p = 10, 11, 12

p = 3(n− 1) + k,

k = 1, 2, 3

p ≡ 2 mod 4
p ≡ 1 mod 2 µ+ 1

−2µ+ 3

2

3

4

n The values of γ̃([Λp]) as functions

of the symplectic form ω′
µ.

Remark 15. It is interesting to compare the first item in Proposition
14 with the results of Ostrover [Ost06]. Indeed, he establishes that for
µ > 1

2 , the quantum homology QH4(F
µ
2k+1) is a field, while it splits into

field summands for µ < 1
2 . Moreover, he proves that the restriction of Γ

to any field summand is bounded. Our result shows that Γ is however not
bounded on the whole quantum homology in the case µ < 1

2 . ◀

It remains to prove Proposition 14 which follows from intermediate com-
putations whose results are collected below, depending on the value of µ.

ν(u−p) ν(up)

0 < µ ⩽ 1
2

(
p− 2

⌊p−1
3

⌋)
µ+

(⌊p−1
3

⌋
+ 1

)
−(p− 2)µ

1
2 < µ ⩽ 1

(
p− 2

⌊p+2
4

⌋)
µ+

(⌊p+2
4

⌋
+ 1

)
−
(
p− 2

⌊p+1
4

⌋)
µ−

(⌊p+1
4

⌋
− 1

)
1 < µ

⌊p+1
2

⌋
µ+

(⌊p
4

⌋
+ 1

)
−
⌊p
2

⌋
µ−

⌊p−1
4

⌋
These formulas are proved by induction. Let us first focus on the latter two
cases.

We assume µ > 1
2 .

We wish to show that for p big enough, ν(u−p) and ν(up) are of the form
specified in the table above, depending on the sign of µ − 1. The values of
ν(u−p) will be extracted from the proof of the following lemma.

Lemma 16. For all integers q ⩾ 3, there are polynomials P q
i in t, so that

u−4q = u0 P
q
0 (t) + u1 P

q
1 (t) + uP q

2 (t) + 1P q
3 (t).

These polynomials are of the form

P q
0 (t) = αq

0 t
2qµ+(q+1) + lower order terms

P q
1 (t) = αq

1 t
(2q−1)µ+(q+1) + lower order terms

P q
2 (t) = αq

2 t
(2q−1)µ+(q+1) + lower order terms

P q
3 (t) = αq

3 t
2qµ+q + lower order terms

where all coefficients αq
i are positive.
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Its proof consists of tedious but straigthforward computations. First,
notice that the relations (9), give u−1 = u0 t

µ+1 and the following multipli-
cation table

a u0 u1 u 1

a ∗ u−1 u1 u tµ + 1 1 u0 t
µ+1 (12)

Next, compute explicitly u−4q for q = 3 as initialization:

u−12 = 3u0 t
6µ+4 + 3u1 t

5µ+4 + u t5µ+4 + 1(t6µ+3 + t4µ+4)

which is of the form specified in Lemma 16 since µ ⩾ 1
2 (otherwise P 3

3 would
have valuation 4µ+ 4).

Finally, assume u−4q has the expression given in the lemma and compute
the 4 next powers of u. Up to lower order terms, we get (to ease the reading
we denote P q

i (t) simply by Pi):

u−4q−1 = u0P3t
µ+1 + u1P0 + uP1t

µ + 1(P1 + P2) (13)

u−4q−2 = u0(P1 + P2)t
µ+1 + u1P3t

µ+1 + uP0t
µ + 1(P0 + P1t

µ)

u−4q−3 = u0(P0 + P1t
µ)tµ+1 + u1(P1 + P2)t

µ+1 + uP3t
2µ+1 + 1(P0 + P3t)t

µ

This yields for u−4(q+1):

P q+1
0 (t) = P q

3 (t) · t
2µ+2 + P q

0 (t) · t
2µ+1 + l.o.t.

P q+1
1 (t) = P q

0 (t) · t
µ+1 + P q

1 (t) · t
2µ+1 + l.o.t.

P q+1
2 (t) = (P q

1 (t) + P q
2 (t)) · t

2µ+1 + l.o.t.

P q+1
3 (t) = P q

3 (t) · t
2µ+1 + (P q

1 (t) + P q
2 (t)) · t

µ+1 + l.o.t.

whose respective leading order terms are

P q+1
0 : (αq

0 + αq
3) t

2(q+1)µ+(q+1)+1

P q+1
1 : (αq

0 + αq
1) t

(2(q+1)−1)µ+((q+1)+1)

P q+1
2 : (αq

1 + αq
2) t

(2(q+1)−1)µ+((q+1)+1)

P q+1
3 : αq

3 t
2(q+1)µ+(q+1)

since all the coefficients αq
i are positive and since µ > 1

2 so that (P q
1 (t) +

P q
2 (t)) · tµ+1 only consists of lower order terms of P q+1

3 .

This proves the lemma. The formula giving ν(u−p) now follows from
the lemma together with the valuation of intermediate powers of u−1 which
easily follow from the computations (13). Indeed, depending on the sign of
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µ− 1, we get:

1
2 < µ ⩽ 1 1 < µ

p = 4q 2qµ+ (q + 1)

p = 4q + 1 (2q + 1)µ+ (q + 1)

p = 4q + 2 2qµ+ (q + 2) (2q + 1)µ+ (q + 1)

p = 4q + 3 (2q + 1)µ+ (q + 2) 2(q + 1)µ+ (q + 1)

(14)

We now turn to the valuation of positive powers of u. Symmetrically to
the negative powers, ν(up) will be extracted from the proof of the following
lemma.

Lemma 17. For all integers q ⩾ 2, there are polynomials Qq
i in t, so that

u4q = u0Q
q
0(t) + uQq

2(t) + u3Q
q
3(t) + 1Qq

4(t).

These polynomials are of the form

Qq
0(t) = −βq

0 t
−2qµ−(q−1) + lower order terms

Qq
2(t) = −βq

2 t
−(2q+1)µ−(q−1) + lower order terms

Qq
3(t) = βq

3 t
−(2q+1)µ−(q−1) + lower order terms

Qq
4(t) = βq

4 t
−2qµ−q + lower order terms

where all coefficients βq
i are positive.

Notice that we changed the basis of the cohomology, this yields easier
computations and a slight notational discrepancy. The relevant multiplica-
tion table now is

a u0 u u3 1

a ∗ u 1 t−µ−1 u3 t
−µ u0 − u3 t

−µ u
(15)

We initialize the induction with u4q for q = 2:

u8 = −u0 (2t
−4µ−1 + t−6µ)− u t−5µ−1 + u3 (3t

−5µ−1 + t−7µ) + 1(t−4µ−2 + t−6µ−1)

which is seen to be of the form specified by Lemma 17, again, because µ ⩾ 1
2 .

We now assume u4q has the expression given above and compute the 4
next powers of u. To ease the reading we denote Qq

i (t) simply by Qi and we
introduce the notation Q2,3 for Q2 −Q3. We get, up to lower order terms:

u4q+1 = u0Q3 + uQ4 + u3Q2,3t
−µ + 1Q0t

−µ−1 (16)

u4q+2 = u0Q2,3t
−µ + uQ0t

−µ−1 + u3(Q4t
−µ −Q2,3t

−2µ) + 1Q3t
−µ−1

u4q+3 = u0(Q4t
−µ −Q2,3t

−2µ) + uQ3t
−µ−1

+ u3(Q0t
−2µ−1 −Q4t

−2µ +Q2,3t
−3µ) + 1Q2,3t

−2µ−1
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This yields for u4(q+1) (again, up to lower order terms):

Qq+1
0 (t) = Qq

0(t) · t
−2µ−1 −Qq

4(t) · t
−2µ + (Qq

2(t)−Qq
3(t)) · t

−3µ

Qq+1
2 (t) = (Qq

2(t)−Qq
3(t)) · t

−2µ−1

Qq+1
3 (t) = −Qq

0(t) · t
−3µ−1 +Qq

3(t) · t
−2µ−1 +Qq

4(t) · t
−3µ − (Qq

2(t)−Qq
3(t)) · t

−4µ

Qq+1
4 (t) = Qq

4(t) · t
−2µ−1 − (Qq

2(t)−Qq
3(t)) · t

−3µ−1

whose respective leading order terms are

Qq+1
0 : − (βq

0 + βq
4) t

−2(q+1)µ−((q+1)−1)

Qq+1
2 : − (βq

2 + βq
3) t

−(2(q+1)+1)µ−((q+1)−1)

Qq+1
3 : (βq

0 + βq
3 + βq

4) t
−(2(q+1)+1)µ−((q+1)−1)

Qq+1
4 : βq

4 t
−2(q+1)µ−(q+1)

since all the coefficients βq
i are positive and since µ > 1

2 .

This proves Lemma 17. The expression of ν(up) then follows from it,
together with the valuation of intermediate powers of u which easily follow
from the computations (16). Namely, we get

1
2 < µ ⩽ 1 1 < µ

p = 4q −2qµ− (q − 1)

p = 4q + 1 −(2q + 1)µ− (q − 1) −2qµ− q

p = 4q + 2 −2(q + 1)µ− (q − 1) −(2q + 1)µ− q

p = 4q + 3 −(2q + 1)µ− q

(17)

Together with the expression of ν(u−p) given by Table (14), this con-
cludes the proof of Proposition 14 in the case µ > 1

2 .

We assume 0 < µ ⩽ 1
2 .

The sketch of the proof in this case is similar, the main lemmas only
need a few adjustments.

For negative powers of u, the situation is perfectly similar to the previous
cases, except that the results depend on the rest of the Euclidean division
of p by 3 rather than 4.

Lemma 18. For all integers q ⩾ 3, there are polynomials P q
i in t, so that

u−3q−1 = u0 P
q
0 (t) + u1 P

q
1 (t) + uP q

2 (t) + 1P q
3 (t).
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These polynomials are of the form

P q
0 (t) = t(q+1)µ+(q+1) + lower order terms

P q
1 (t) =

(q−1)(q−2)
2 t(q+2)µ+q + lower order terms

P q
2 (t) = (q − 1) t(q+2)µ+q + lower order terms

P q
3 (t) = q t(q+1)µ+q + lower order terms .

We use the multiplication table (12) to compute

u−10 = u0 t
4µ+4 + u1 t

5µ+3 + 2u t5µ+3 + 31 t4µ+3

which is indeed of the expected form.
The expressions of the following 3 powers u−3q−2, u−3q−3, and u−3(q+1)−1

are given from u−3q−1 by equation (13). From this we conclude that

P q+1
0 : t(q+2)µ+(q+2) + l.o.t.

P q+1
1 :

( (q−1)(q−2)
2 + (q − 1)

)
t(q+3)µ+(q+1) + l.o.t.

P q+1
2 : q t(q+3)µ+(q+1) + l.o.t.

P q+1
3 : (q + 1) t(q+1)µ+(q+1) + l.o.t.

since µ ⩽ 1
2 . Notice that this yields the expected expression of P q+1

1 since
(q−1)(q−2)

2 is the sum of all integers between 1 and q − 2.
This concludes the proof of the lemma, from which we immediately get

that ν(u−3q−1) = (q + 1)µ+ (q + 1). The other necessary valuations can be
extracted from (13):

ν(u−3q−2) = (q + 2)µ+ (q + 1) and ν(u−3q−3) = (q + 3)µ+ (q + 1) .
(18)

For positive powers of u, the situation is somehow easier since we can
directly compute the valuation of each power of u. The relevant lemma is
the following.

Lemma 19. For all integers p ⩾ 5, there are polynomials Qp
i in t, so that

up = u0Q
p
0(t) + uQp

2(t) + u3Q
p
3(t) + 1Qp

4(t).

These polynomials are of the form

Qp
0(t) = (−1)p+1 t−(p−2)µ + lower order terms

Qp
2(t) = (−1)p+1 t−(p−3)µ−1 + lower order terms

Qp
3(t) = (−1)p t−(p−1)µ + lower order terms

Qp
4(t) = (−1)p t−(p−2)µ−1 + lower order terms .
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Using the multiplication table (15), we compute

u5 = u0t
−3µ + ut−2µ−1 − u3t

−4µ − 1t−3µ−1

and we compute up+1 from up

up+1 = u0Q
p
3(t) + uQp

4(t) + u3 (Q
p
2(t)−Qp

3(t)) t
−µ + 1Qp

0(t) t
−µ−1 + l.o.t.

Notice that Qp+1
3 is of the expected form because µ ⩽ 1

2 .

This proves the lemma and, together with (18), end the proof of Propo-
sition 14 in the last remaining case, for 0 < µ ⩽ 1

2 . □
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