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Abstract

We initiate the study of the fundamental group of the group of
Hamiltonian homeomorphisms denoted by Ham(M,w), i.e. the C°-
closure of the group of Hamiltonian diffeomorphisms Ham(M,w) in
Homeo(M). We prove that in some situations, namely complex pro-
jective spaces and rational Hirzebruch surfaces, certain Hamiltonian
loops that were known to be non-trivial in m Ham(M,w) remain non-
trivial in 7y Ham(M,w). This yields in some cases, including CP? and
S? x §2, the injectivity of the map miHam(M,w) — mHam(M,w)
induced by the inclusion.

Our method relies on results from C° symplectic topology and on
computations of the valuation of Seidel elements and hence of the spec-
tral norm on m Ham(M,w). Some of these computations were known
before, but we also present new ones which might be of independent
interest.

1 Introduction

Let (M,w) be a closed symplectic manifold. We denote by Ham(M,w) its
group of Hamiltonian diffeomorphisms and by Ham(M,w) the closure of
Ham(M,w) with respect to the C°-topology in the set of all homeomor-
phisms of M. The elements of Ham(M,w) are called Hamiltonian home-
omorphisms. Their behavior is quite well understood on surfaces, in par-
ticular thanks to Le Calvez’s foliation techniques established in [LCO5], see
e.g. Le Calvez’s work on the subject starting from [LCO6a, [LCOGD]. In
higher dimension, partial results were obtained very recently by Buhovsky,
Seyfaddini, and the first author, see e.g. [BHS18, [BHS21].
In this note, we study the natural map

¢ : Ham(M,w) — Ham(M, w)

starting at the level of fundamental groups, on some symplectic manifolds
of arbitrary dimension. Indeed, while the homotopy type of Ham(M,w)
has been extensively studied, see below for some references which are used
here, absolutely nothing is known about Ham(M,w) beyond the case of



surfaces where the map ¢ is known to be a homotopy equivalence. Before
getting to the heart of the matter, let us point out that the analogous map
Symp(M,w) — Symp(M,w), between the groups of symplectic diffeomor-
phisms and homeomorphisms, was studied at the mg level by the second
author [Jan21l [Jan22].

1.1 Main results

The upshot of this work is a method which detects non-trivial elements in
the image of ¢4, i.e. non-trivial elements in m; (Ham(M ,w)) which survive
in the fundamental group after taking the C%-closure. For our method to
work, all symplectic manifolds will be required to be rational, meaning that
their group of periods (w,ma(M)) is generated by a unique positive element,
which will be denoted by Q. In other words, (w, mo(M)) = QZ.

The first application of our method concerns Hamiltonian circle actions
and relies on deep work by McDuff and Tolman [MTO06]. Recall that a fixed
point component of a circle action is semifree if it admits a neighborhood
in which the stabilizer of every point is either trivial or the whole circle.

Theorem 1. Consider a Hamiltonian circle action A on a compact, rational
symplectic manifold (M,w). Assume that its extremal fized point components
are semifree. Then t.([A]) is non-trivial in m (Ham(M,w)).

As a direct consequence, we deduce the injectivity of ¢, in two different
specific situations.

Corollary 2. The map v, : 71 (Ham(M,w)) — m (Ham(M,w)) is injective
when (M,w) is the monotone product S? x S? and for CP? endowed with the
Fubini-Study symplectic form.

This consequence is straightforward since, in these two cases, all non-
trivial elements of m (Ham(M,w)) may be represented by a Hamiltonian cir-
cle action satisfying the conditions of Theorem[l] Whenever m (Ham(M,w))
has an element which does not admit such a representative, our method
needs some extra work to produce an essential loop of Hamiltonian home-
omorphisms. Notice in particular that semifreeness is not preserved under
taking non-trivial powers. Therefore, we cannot directly extract information
from Theorem |I| about elements of the form h* with |k| # 1, even when h
can be represented by a circle action with semifree extremal components.

Example 3. The fundamental group of the Hamiltonian diffeomorphism
group of S? x S? endowed with a non-monotone product symplectic form is
generated by two order-2 elements and the class of a loop A of infinite order.
All three are ensured to survive in m (Ham(M,w)) by Theorem |1} however
our method does not detect the even powers of A so that, as far as we know,
t«([A]) might as well be of order 2. <



However, we also have results in these more interesting situations, namely
for complex projective spaces of any dimension and for all rational 1-point
blow-ups of CP2. First, recall that Seidel [Sei97] proved that the group
71 (Ham(CP", wpg)) admits a non-trivial element h,, of order n + 1.

Corollary 4. For any n > 1, the element ti«(hy) has order n + 1 in the
group m1(Ham(CP", wrg)).

Note that the above corollary can also be obtained by non-symplectic
methods, as was pointed out to us by Randal-William. Indeed, Sasao shows
in [Sas74] that the action of U(n 4+ 1) on CP" induces an isomorphism
between Z/(n + 1)Z and the fundamental group of the group of degree-1
continuous maps from CP™ to itself. This immediately implies that the
class h,, which is induced by the aforementioned action, is non-trivial in
Ham(CP",wps) and in its closure Ham(CP", wrs).

Second, recall that the symplectic 1-point blow-ups F* = (CPZ#C7P2, OJL)
of CP? admit a standard symplectic form wL parameterized by a positive
real number pu. The fundamental group of their respective Hamiltonian
diffeomorphism groups was computed by Abreu and McDuff [AMO0]: it is
generated by a unique Hamiltonian circle action of infinite order.

Theorem 5. The map v, is injective on all rational 1-point blow-ups of CP2.
In other words, whenever p € Q, the map . : w1 (Ham(F*)) — 71 (Ham(F*))
18 injective.

REMARK 6. Consider the completion @(M,w) of Ham(M,w) with re-
spect to the spectral norm v as in [Hum08, [Vit22]. It turns out that all the
above results still hold when Ham(M,w) is replaced with I—fa?l(M ,w). This
is thus also true when Ham (M, w) is replaced by the completion with respect
to Hofer’s metric. Such variations are obtained via minor modifications of
the proof; see Remark [12| below for more details. |

1.2 The method

Our method is based on the following proposition of independent interest.
In order to state it, we need to briefly recall a few well-established notions
(necessary preliminaries are given in Section . The quantum homology of
(M,w) is denoted by QH(M,w). We let v : QH(M,w) — QZ U {—oc0} be
the quantum valuation map, and S : 7 (Ham(M,w)) — QH (M,w)* be the
Seidel morphism. We consider the map I' : 7 (Ham(M,w)) — QZ defined
by D'(h) =v(S(h)) + v(S(h™1)).

Proposition 7. Assume that (M,w) is a rational symplectic manifold. Then,
the map T' : my(Ham(M,w)) — QZ factors through m (Ham(M,w)), i.e.



there exists a map T : m (Ham(M,w)) — QZ such that the following dia-
gram commutes

1(Ham(M,w)) —=— 7 (Ham (M, w))

l / (1)

Based on this proposition, the proof of Theorem Corollary [, and
Theorem [5| boils down to computing I' in order to show that it is non-zero
on elements of m; (Ham(M , w)) The diagram above then ensures that their
image via t, in m (Ham(M,w)) cannot be trivial.

REMARK 8. McDuff already used the map I' to estimate the length of loops
of Hamiltonian diffeomorphisms of 1-point blow-ups of CP?, see [McD02,
Lemma 5.1]. <

REMARK 9. All the examples appearing in this work are strongly semi-
positive symplectic manifolds, which is the setting of Seidel’s seminal paper
[Sei97]. However, the method introduced in this note extends to a much
more general setting, see e.g. [LMP99] and [McDO00]. <

The proof of Proposition [7] has two ingredients. The first one is the
action of the Seidel homomorphism on spectral invariants. Indeed, it is not
hard to see that, when (M,w) is rational, I coincides with the restriction
of the spectral pseudo-norm 7 : I/{;_r/n(M,w) — R to m (Ham(M,w)), see
Section [2.4] for details.

The second ingredient is the following result of CY-continuity of the
spectral pseudo-norm up to the action of the group of periods (w, ma(M)) =
QZ, due to Kawamoto [Kaw22, Theorem 1].

Theorem (Kawamoto). Let (M,w) be a rational symplectic manifold. For
any e > 0, there exists 6 > 0 such that for any ¢ € Ham(M,w), if dco(id, ¢) <
0, then for any lift 5 € ﬁf;r/n(M,w) of ¢ there exists an integer £ € Z such
that B

7(¢) —€-Q <e.

Let us now see how these two ingredients are combined to give a proof.

Proof of Proposition |7 The map 7 : %(M,w) — R descends to a map
Ham(M,w) — R/QZ. It follows from Kawamoto’s theorem that this map
extends continuously to Ham (M, w), hence factors through the inclusion:

Ham(M,w) — Ham(M,w) — R/QZ.
Applying the functor 7y, this yields a factorisation
71 (Ham(M,w)) — 71 (Ham(M,w)) — QZ
of the restriction of ¥ to m (Ham(M,w)), which is nothing but I'. O



1.3 Computation of the spectral pseudo-norm

As mentioned above, the proof of our main results boils down to comput-
ing the valuation of the Seidel elements associated to the elements of the
fundamental group of Hamiltonian diffeomorphism groups. These compu-
tations are based on work by Entov and Polterovich [EP03] in the case of
complex projective spaces, and on works by McDuff [McDO02], by Ostrover
[Ost06], and by Anjos and the third author [AL18, [AL17] in the case of the
Hirzebruch surfaces (5% x S? and the 1-point blow-ups of CP?).

Since the resulting function I' coincides with the restriction of the spec-
tral pseudo-norm 7 to 7 (Ham (M, w)) when the manifold is rational, we get
explicit computations of the latter. We collect below some phenomena of
independent interest concerning 7.

Proposition 10. Let 7 : m (Ham(M,w)) — R denote the restriction of the
spectral pseudo-norm.

(F1) Let (M,w) = (S% x S%,w,) with w, the product symplectic form with
area 1 on the first factor and 1 on the second.
When € Q and p # 1, 7 is degenerate: ¥y~ 1({0}) = {r? |p € Z}
where h is the generator of infinite order of m (Ham(M,w)).

(F2) Let (M,w) be any symplectic 1-point blow-up (CP2#C7P2,wL) of CP?
or the n-dimensional complex projective space (CP™, wps), endowed
with the standard Fubini—Study symplectic form.

When 1 € Q, & is non-degenerate.

We now focus on 1-point blow-ups (CP2#@2,Q}L) of CP2. The symplectic
wL has area > 0 on the exceptional divisor, and 1 on the ﬁbeﬂ. Under
these conventions, the only monotone such symplectic manifold is the one
for which p = %

(F3) The spectral norm 7 is not bounded on “small” rational 1-point blow-
ups of CP2, for which p < % and p € Q.

(F4) On the monotone 1-point blow-up, that is when p = %, we have Y(k) =
2 for all non-trivial elements k of m (Ham(CP2#C7P2,w/ ))

mon

(F5) The image of the spectral norm is bounded on “big” rational 1-point
blow-ups of CP?, for which pu > % and p € Q.

(F6) Let h' be the generator of m (Ham(CPQ#C7P2,wL)) and p € Z, then
the function p — T(h'P), whose restriction to Q is u — J(h'P), is
continuous and piecewise linear on R.

'Recall that CPQ#@2 is the total space of the only non-trivial Hamiltonian fibration
over CP! with fiber CP!.



REMARK 11. Concerning (F1) above, it was proved in [AL17] that Seidel’s
morphism is injective for all Hirzebruch surfaces. The computations of
Section show that v(S) is also injective. However, v(S) does not factor
through 71 (Ham) a priori and T is not injective.

The fact (F2) for 1-point blow-ups of CP? was proved in [McD02], by
showing that I' is positive. In the second part of Section we compute
the specific values of I' on the fundamental group of the Hamiltonian diffeo-
morphism group. These computations yield the facts (F2) to (F6). <
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2 Preliminaries

2.1 Quantum homology

Let K be a field (which will be chosen to be Q in general, except for the
case of CP" in Section for which k = C). The (small) quantum homol-
ogy of a strongly semi-positive symplectic manifold (M, w) is the Z-graded
algebra defined as QH,(M;A) = H,(M;K) @k A where A = A"™V[q, ¢~!] has
coefficients in the ring of generalized Laurent series in the degree-0 variable

t:
Auniv _ { Z Tﬁtn

KER

1. € K s.t. Ve €R, #{/ﬁ>c|r,.@7é0}<oo}

and ¢ is a variable of degree 2. The grading of an element of the form a®q¢®*t"*
with a € H;(M;K) is simply given by deg(a ® ¢%*) =1 + 2d.

The quantum intersection product on QH,(M; A) is a deformation of the
usual intersection product on H,(M; K) by counts of certain Gromov—Witten
invariants. More precisely, for a € Hy(M;K) and b € H;(M;K),

a*xb= Z (axb)p® g1 B)w(B)
BeHs5 (M;Z)

where the sum runs over all spherical homology classes B, i.e. classes B in
the image H5 (M;Z) of the Hurewicz map mo(M) — Ho(M;Z).



The class (a * b)p € Hi(M;K) has degree k + [ — dim(M) + 2¢1(B)
and is defined by requiring its usual intersection product with any class
c € Hy,(M;K) to be given by the Gromov—-Witten invariant

(axb)p-c= ng?)(a,b,c) ek

which counts the number of spheres in M, in the class B, which meet cycles
representing a, b and c¢. The specific definition of GWAB{ 3 is not necessary in
this note. Only the following facts will be of interest:

(i) As expected, deg(a * b) = deg(a) + deg(b) — dim(M).

(ii) The quantum intersection product turns the ring QH,(M;A) into a
Z-graded commutative unital algebra.

(iii) The unit of this algebra is the fundamental class [M] of the symplectic
manifold, seen as an element in QH,,, (M;A).

Quantum valuation The quantum homology algebra comes with a nat-
ural valuation v : QH,(M;A) - RU {—o0} defined by

V( Z a, @ qd"t’“‘> = max{r|a, # 0} .

KER

Notice that any non-zero class has finite valuation because of the finiteness
condition required in the definition of A"™V. By convention, the zero class
has valuation —oo.

The monotone case Morally speaking, the variables ¢ and ¢ respectively
remember the first Chern number and the symplectic area of classes of
spheres in mo(M).

In the (positively) monotone case, namely when

A >0 such that wlr,man = A cilnon

the morphisms w and c; are linearly dependent on mo(M). Hence there is
no need to carry around two variables: in this case, A is usually replaced by
k[[s] where s is of degree 2N, i.e. twice the minimal Chern number N of M
which is the positive generator of (ci,m2(M)) = NZ.

An element of the form a® s’ thus corresponds to a® ¢Vt in the above
description, with Q the positive generator of (w,me(M)), which satisfies by
monotonicity 2 = AN. The definition of the valuation has to be adapted
consequently to V(Zjez a; ®s7) = Q-max{j|a; # 0}.

This is for example the setting of [EP03] whose results are used below.



2.2 Floer homology

In order to prove Arnold’s conjecture, Floer developed at the end of the
80’s [Flo88al [Flo88b, [Flo89al, [Flo89b] an infinite dimensional Morse-Bott-
type homology for the symplectic action functional. As Gromov—Witten
invariants, this construction is another striking consequence of Gromov’s
celebrated work on pseudo-holomorphic curves |[Gro85]. (And as Gromov—
Witten invariants, it has had countably many applications.)

The upshot of Floer’s construction, as far as this note is concerned, is
that with a generic pair (H, J) formed of a time-dependent, non-degenerate
Hamiltonian function H and a w-compatible almost complex structure .J,
one can define a Z-graded complex (CF.(M : H),0(g,s)) whose homology
HF (M, w) = H«(CF(M: H), 9, 7)) satisfies the following properties.

(i) There exist canonical continuation isomorphisms between Floer ho-
mologies built from different admissible pairs of Floer data (H,.J) and
(H',.J).

(ii) The pair-of-pants product x turns Floer homology into a graded alge-

bra, with unit [M] € HF9,(M,w), the fundamental class of M seen as
a Floer homology class.

(iii) There exist isomorphisms PSS : QH, (M;A) — HF,(M,w) of graded
commutative unital algebras.

(iv) Floer complexes are filtered: any given o € R defines a subcomplex
(CF(M :H),0,r))- Its homology does not depend on the choice of
J and is denoted by HF$ (M : H).

2.3 The Seidel morphism

The Seidel morphism was described in [Sei97] in two quite different but
equivalent ways. On one hand, it can be seen as a morphism

S :m (Ham(M,w)) — QH,(M;A)*, h — S(h)

where QH, (M; A)* denotes the multiplicative group of invertible elements of
QH, (M;A). The quantum class S(h) is called the Seidel element associated
to h. It is defined by counting pseudo-holomorphic sections of a Hamiltonian
fibration over S? with fibre M obtained from a loop (¢');c0,1) € h via the
clutching construction.

On the other hand, it can be seen as a representation

S : m (Ham(M,w)) — Aut(HF (M, w)), h+— Sy
The relation between these two viewpoints is straightforward: the automor-

phism of Floer homology Sy, is nothing but the pair-of-pants multiplication
by S(h) seen as a Floer homology class via the PSS morphism, i.e.

Vb € HF, (M, w), Sp(b) = PSS(S(h))xb.



2.4 The spectral norm

The spectral norm is a norm defined on the universal cover of Hamiltonian
diffeomorphism groups. It is based on the theory of spectral invariants, in-
troduced by Viterbo [Vit92] via generating functions, and adapted to the
Floer-theoretic setting by Schwarz [Sch00] for symplectically aspherical man-
ifolds and Oh [OhO5] for monotone manifolds. Since then, they have been
defined in a wide range of situations (and also had countably many deep
consequences).

Spectral invariants Let a € QH,(M;A) be a non-zero quantum homol-
ogy class. For any non-degenerate Hamiltonian function H on M, the spec-
tral invariant associated to a with respect to H is the real number

c(a:H) = inf{a € R|PSS(a) belongs to the image of .}

where «* : HF*(M :H) — HF.(M,w) is the map induced by the inclusion.
These numbers enjoy a list of standard properties. First, they are “spectral”
in the sense that ¢(a: H) belongs to the set of critical values of the action
functional associated to H; this property which explains their name will not
be needed here. They are also Hofer continuous, namely

1 1
/ min(H; — K;)dt <cla:H)—c(a:K) < / max(H; — K;) dt
o M o M

for any two Hamiltonians H(t,x) = Hy(x), K(t,z) = K{(z). In particular,
c(a: H) continuously depends on H and the map c(a: -) extends continu-
ously to all (possibly degenerate) Hamiltonians.

Recall that a smooth path of Hamiltonian diffeomorphisms (ht)te[()’l}
with h? = id is generated by a unique mean normalized Hamiltonian H, i.e.
satisfying | y Hew™ = 0 for all £. Thus we may define spectral invariants of
the isotopy (h') by setting c(a: (h')) = c(a: H). These invariants applied
to isotopies have the nice feature that they are invariant by homotopy with
fixed end points. Therefore, we obtain a well-defined map on the universal
cover of Ham(M,w):

cla:-): ITI;I/n(M,w) —R.
These maps satisfy the so-called triangle inequality:
claxb:hk) < c(a:k) + c(b:h)
f/o\r/any classes a, b € QH,(M,A) such that a * b # 0, and any 7L, k€
Ham(M,w).

We will mainly use the spectral invariants associated to the fundamental
class. Therefore, it will be convenient to introduce the notation cy(H) =

¢([M]: H) and c4(h) = ¢([M]:h). Note that the triangle inequality for c;
takes the form

e (E) < e (R) + e (B). (2)



Relation between ¢, S, and v In the language of spectral invariants, the
quantum valuation defined in Section behaves as the spectral invariant
computed with respect to the zero Hamiltonian / the identity in Ham. By
this, we mean that for any non-zero quantum homology class a € QH, (M; A)

c(a:id) = v(a). (3)

Moreover, because Seidel’s representation provides automorphisms of fil-
tered Floer complexes, the action of any h € m;(Ham(M,w)) on Ham(M,w)
(or in other words the difference between lifts of ¢ € Ham(M,w) to the
universal cover) yields, in terms of spectral invariants:

Va € QH,(M;A), c(a:kh) = c(S(h) *a:k) (4)

for all k € ﬁ;l’?l(M,w). In the specific situation where k = id and a = [M],
we get _
cr(h) = c([M]:h) = e(S(h) * [M]:id) = v(S(h)) ()

respectively by definition of ¢, by , and finally by and the fact that
[M] is the unit of the quantum homology algebra. If not litterally weli-
known, this equality has been successfully used before, see e.g. Proposition
4.1 in [EP03], Section 6.3 of [Ost06], and Property (2.4) of spectral numbers
in [McD10].

The spectral pseudo-norm The spectral pseudo-norm is defined as a
group pseudo-norm 7 : Ham(M,w) — R by

F(h) = s (h) + e (h™1) = e (H) + c1.(H)

with H generating (Qb?{)te[o,l} € h and H the Hamiltonian function defined
by Hi(x) = —Hi—¢(x). Standard computations show that H generates the
isotopy gb};t(qﬁ{)_l € h™!. The triangle inequality for 7 as well as its non-
negativity follow from and the fact that 5(1?1) =0.

Notice that yields for any h € w1 (Ham(M,w))

F(h) = ci(h) + ey (h™) = v(S(h) + v(S(h™)) =T(h) (6)

where I', defined by the last equality, is the central object of Proposition
from the introduction. Notice that this implies that

F(h) € (w,m2(M)), Vh € m(Ham(M,w)).

The pseudo-norm 7 induces a genuine (non-degenerate) norm « on the
group Ham(M,w), called the spectral norm, by the formula

+(#) = inf {3(%) |7 € Ham(M, w), 7 (h) = ¢>} .

10



REMARK 12. Assume (M, w) is rational and let © be the positive generator
of (w, ma(M)). Tt is known that if hy, 7L2~are two lifts to ﬁ;_I;l(M, w) of a given
¢ € Ham(M,w), then the difference 5(h1) — ¥(hz2) belongs to (w,ma(M)) =
QZ. It follows that for any ¢ € Ham(M,w) and any lift h of ¢ to ﬁz;l?l(]\f7 w),
there exists an integer ¢ € Z such that

Y(h) = £-Q = ~(¢).

Therefore, Kawamoto’s theorem from Section holds after replacing the
CY distance dco with the spectral distance . We then deduce that Proposi-
tionsimilarly holds with the y-completion I‘T&?II(M ,w) replacing Ham(M, w).
We can then use this modified version of Proposition [7] to adapt our proofs
of Theorems as well as Corollary [2| to the case of %(M ,w). This
justifies the part of Remark [6] related to ~.

For the part related to Hofer’s distance (which we denote here by §), the
Hofer continuity of spectral invariants yields v < § and thus a natural map

5 —
Ham (M,w) — Ham'Y(M ,w) between the respective completions, and hence
a factorization

1 (Ham(M, w)) — m (Ham (M, w)) — m (Ham (M, w)) .

Thus, our claims from Remark [6] for v yield the same claims for é. |

3 Computations

3.1 Proof of Theorem [1]

This is a simple remark based on the following deep result from McDuff and
Tolman which is part of [MT06, Theorem 1.10].

Theorem (McDuff-Tolman). Let A be a Hamiltonian circle action on a
compact symplectic manifold (M,w), generated by the moment map K :
M — R. Assume K to be normalized and let K. = maxy K. Assume
that the fized point component Fi.x = K_I(Kmax) 1s semifree. Then there
are classes ap € H. (M) so that

S(A) = [Fmax] R qumaxthax + Z ap ® q*mmaxfcl (B)thax*W(B) (7)

where the sum runs over all spherical class B € H3 (M) with w(B) > 0.

Recall that semifreeness means that the action acts semifreely: the sta-
bilizer of each point is trivial or the whole circle in a neighbourhood of Fi,ax.
The integer muyax will not be used below. Let us simply mention that it is
determined by the degree of S(A) and that it corresponds to the sum of the
weights at a point € Fiax. Note that McDuff and Tolman were also able

11



to specify the structure of the lower order terms in exchange of additional
requirements on w-compatible almost complex structures.

For our purpose, it is enough to notice that, since [Fiax] and the ap’s
are honest classes in H, (M), the valuation of S(A) is Kmax. Moreover, A1
is generated by —K whose maximal fixed point component is nothing but
(—K) (maxp (—K)) = K Y(miny K) = Fpin. Requiring both extremal
fixed point components to be semifree and applying McDuff-Tolman’s The-
orem to K and —K, yield

L(A) = v(S(A)) + v(S(A™)) = Kinax — Kuin -
Since K is not constant, I'(A) > 0. Under the additional assumption
that (M,w) is rational, Proposition |7| ensures that ¢.(A) is not trivial in
m1 (Ham (M, w)). O

3.2 Proof of Theorem [4]

Recall from [Sei97] that Seidel’s morphism detects an element h,, of order
n + 1 in m(Ham(CP", wpg)). We claim that I' is positive on all classes
detected by Seidel’s morphism. Since (CP", wpg) is monotone, it is rational
and Proposition [7| ensures that t.(hy,) is of order n + 1 in Ham(CP", wgg).

We now proceed and show that
Vh € m(Ham(CP", wrg)), h ¢ ker(S) = T'(h) =Q (8)

where Q = wps([CPY]) > 0 is the generator of (wgs, m2(CP™)). This obvi-
ously implies our claim, hence concluding the proof.

We recall that the quantum homology algebra of CP" is isomorphic to
the algebra k[A]/{A""! = s71} with k = K[[s], see our comment on the
monotone case at the end of Section [2.1] Here, A is the hyperplane class of
degree 2n — 2 and s is of degree 2N = 2(n + 1). Notice that for any m € Z,
A™ has degree 2n — 2m.

Moreover, recall from Proposition 4.2 of [EP03], that all Seidel elements
are monomials of the form A™s?. Since they belong to QH,, (CP";A), 8 =
nﬂﬂ for degree reasons. Notice that when m is a multiple of n + 1, we get
A™sP = [CP"] as expected (see Proposition 4.3 of [EP03]).

We now assume that m is not a multiple of n + 1. We need to compute
v(A™sP) + v(A7™578) so that we may assume that m > 0. Then

m=q-(n+1)+r and —-—m=—(¢g+1)-n+1)+(n+1-r)
with ¢ = |

+27l, and r and n + 1 —r are integers in (0,n + 1). Hence,

AMgniT = (AMT)9. ATsn 4T = ([CP™]s 1) - ATsntT = ATgnt1 ¢

12



whose valuation is Q- (725 —¢) = Q- (25 — | ;25 ]) since A” € H.(CP™; Q).

Similarly, by replacing ¢ by —(¢+1) and r by n+1—1r, we get that AMgiT
has valuation Q- (|55 ] +1 — ;), so that v(A™sP) + v(A™ms7P) = Q.
Hence, I'(h) = 2 whenever h has a non-trivial associated Seidel element

which proves and ends the proof of Theorem O

3.3 About Example [3| and the proof of Theorem

In this section, we compute the Seidel elements associated to all elements
of the fundamental group of the group of Hamiltonian diffeomorphisms of
all Hirzebruch surfaces. This completes partial computations from [McD02],
[0st06], and [AL1T].

Recall that in [ALIS8|, Anjos and the third author computed Seidel ele-
ments of many 4-dimensional toric manifolds starting from the fundamental
aforementioned result from McDuff and Tolman. In [ALI7], these compu-
tations were used to prove that Seidel’s morphism detects all the generators
of the fundamental group of the Hamiltonian diffeomorphism group of all
Hirzebruch surfaces, namely all symplectic products of S% x S? and 1-point
blow-ups of CP2.

We now show that, when we consider I' rather than the Seidel elements
themselves, the situation is more subtle:

e I" vanishes on certain essential loops of Hamiltonian diffeomorphisms
of all products of spheres except the monotone one, this will justify
Example |3| and Fact (F1) of Proposition [10| from the introduction ;

e [ is positive on all essential loops of Hamiltonian diffeomorphisms of
the 1-point blow-ups of CP2, this will prove Theorem [5| and justify
Fact (F2) of Proposition

The computations done in the latter case will also clarify Facts (F3) to (F6)
of Proposition

REMARK 13. Note that all the quantities S, v, I', 7 depend on the symplectic
forms, themselves being parameterized by a real number p in both cases.
However, we omit p in the notation for short throughout this section. <«

Even Hirzebruch surfaces. Recall that F}, is identified to M = 52 x 52
endowed with the symplectic form w, with area 1 on the first factor and p
on the second.

We denote by u = [S? x {pt}] ® ¢ and v = [{pt} x S?] ® ¢ the degree
4 quantum homology classes induced by each component of the product
M = 52 x $2. The quantum homology algebra of (M,w,,) is

QH, (M, w,) ~ A"™V[u,v]/(u® =t v? =tH).

13



The fundamental group of the group of Hamiltonian diffeomorphisms of
F., was computed in [AMO0].
e When p = 1, the manifold (M, w;) is monotone hence rational, and the
fundamental group of Ham(M,w,) is generated by two elements of order 2,
each generated by one factor of the product. These generators are Hamilto-
nian circle actions which satisfy the assumption of Theorem [1| so that they
induce non-trivial elements in Ham(M,w;). Since they are of order 2, there
is nothing more to prove.

e When £ > 1 and rational, (M, w,,) is rational and i (Ham(M,w,)) is gen-
erated by the same order-2 circle actions, together with a third Hamiltonian
circle action of infinite order A (denoted A2 in [ALI7]). The Seidel element

of the latter and of its inverse are given by
1_ 1 t3te
S(A) = (u+v)@tz™ and  S(A)T = (u—v)@ T

with € = &. Hence, for any positive integer ¢,

¢
Sy =3 <£)ukvé—kt(%—e)é_

k=0

Notice that, depending on the parity of & and ¢ and up to some power of ¢,
uFvtF is [M], u, v, or uv, so that no products of powers of u and v vanish.
Moreover, for all k and /,

) =[5 -n 5] - G

Since pu > 1, we get that v(S(A)Y) = —| 5] + (3 —e)L.

The computation of v(S(A)~*) is similar. Only notice additionally that
1—t+—# =14 t!7# 42071 4 50 that, since 1 — pu < 0, V((H%_u)é) = 0.
Hence, we get v(S(A)~¢) = —L%J + (3 + €)¢ which yields

€J_{ 0 if £ is even,

ool
P =1 2{2 1if £ is odd.

Hence, we see that I' detects only odd powers of A, it follows that ¢.([A]) # 0
(but it could be of order 2). O

Odd Hirzebruch surfaces. We follow the conventions from [AL17, Sec-

tion 3.2]: ng 41 s identified with CP24CP2? endowed with the symplectic
form wj, such that

e the exceptional divisor B of self-intersection —1 has area p > 0,

e the fiber I has area 1,

14



e the projective line B + F' has area p + 1.

As a vector space, its quantum homology is generated by: ug = [pt] ® ¢2,
u=F®gq us = B®q, and 1. It is also convenient to denote by u; =
(B+ F)® q=u+ us. These classes satisfy the following relationsEl:

wug=t1, u=ust ", ul=uyot't!l. 9)

As an algebra, the quantum homology is given as the quotient

QH., (ng+1

) o AYV[u] /(P udth — 1)

Last (but not least!), recall from [AMO0] that the fundamental group of the

group of Hamiltonian diffeomorphisms of ng 41 1s generated by a single class

of infinite order. This class is induced by a circle action A whose associated
2

Seidel element is S(A) = u~'t¢ where ¢ = 21341 Hence we get, for all

3(14+2p)
integers p,
I'(AP) = v(S(AP)) + v(S(A™P)) =v(u™?) +v(uP).

The following proposition collects the results of the computations of I'(AP)
for all p (greater than some py) for all possible values of the parameter p > 0.

Proposition 14. e For 0 < p < %,

Vp 27, FM@=*4<P%AJ—0'M+(F%AJ+Q- (10)

o For pu > %, the value of T'(AP) depends on the rest { of the Euclidean

division of p by 4, and on the sign of p—1. Namely, for all p > 12, T'(AP)
is given by the following table:

¢ l3<p<l|l<y (11)
0 2 2

1 2 p+1

2 —2u+3 1

3 2 p+1

This proposition shows that, for any p > 0, I'(AP) # 0 for p big enouglﬂ
which yields that ¢.([A]) is of infinite order in 7 (Ham(F%, ,,)) for any pos-
itive, rational number p. Notice that Theorem [5| and the facts (F2) to (F6)
from Proposition [10| follow from this proposition.

The graph below illustrates Proposition

®The last one does not appear as such in [ALI7] as it was not needed to get the
expression of the quantum homology algebra. It is necessary here and can easily be
computed with the methods used there. See also [MT06, Remark 5.6] and [Ost06l, Section
3.3] in which it is explicitly computed under different conventions though.

3Computing the first few terms shows that this fact actually holds for all integers p.
The formulas we present below, however, do not hold for small integers p.
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n p=3n—1)+k, The values of ([AP]) as functions
/k: =1,2,3 of the symplectic form wj,.
4
p =2 mod 4
3 / /p =1 mod 2 ptl
|7 ‘
1 p=10,11,12 5~
p=71,8,9 T
1 1 1
2
REMARK 15. It is interesting to compare the first item in Proposition

[14] with the results of Ostrover [OstOG}

1
w> 3,

Indeed, he establishes that for
the quantum homology QHy(F %% +1) is a field, while it splits into

field summands for u < 5. Moreover, he proves that the restriction of T’
to any field summand is bounded. Our result shows that I" is however not
bounded on the whole quantum homology in the case p < % |

It remains to prove Proposition [14] which follows from intermediate com-
putations whose results are collected below, depending on the value of .

v(u?) v(uf)
0<p<s| (=25 e+ (5] +1) —(p—2)n
p<n<t) (=27 D+ (5] +1) | (=2 e - ("] - 1)
L<p 5 i+ (15] +1) —[8]u- 177

These formulas are proved by induction. Let us first focus on the latter two
cases.

1
We assume 1 > 5.

We wish to show that for p big enough, v(u~P) and v(uP) are of the form
specified in the table above, depending on the sign of u — 1. The values of
v(u~P) will be extracted from the proof of the following lemma.

P% in t, so that

7

w = ug PI(t) + uy P{(t) + u PJ(t) + 1P§(t).

Lemma 16. For all integers q = 3, there are polynomials

These polynomials are of the form

Pi(t) = af $2ap+(g+1)
Pi(t) =
PY(t) = o 7 4(2¢=1D)p+(g+1)

PA(t) = af o

t(2‘1 Dp+(g+1)

where all coefficients o are positive.

16
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Its proof consists of tedious but straigthforward computations. First,
notice that the relations @, give u~! =y t**1 and the following multipli-
cation table

o |Ju| w Jul| 1

a*u! H m ‘ wtt + 1 ‘ 1 ‘ ug thL

(12)

Next, compute explicitly u=% for ¢ = 3 as initialization:
u—12 —_ 3U0 t6u+4 + 3U1 t5u+4 + ut5u+4 i 1(t6u+3 4 t4,u+4)

which is of the form specified in Lemma |16|since p > % (otherwise P§ would
have valuation 4y + 4).

Finally, assume u~%? has the expression given in the lemma and compute
the 4 next powers of u. Up to lower order terms, we get (to ease the reading
we denote P{(t) simply by P;):

w = qugtlH_l + w1 Py + uPt* + 1(P1 + PQ) (13)
w2 = UQ(P1 + PQ)#H_I + U1P3t‘u+1 + uPytHt + l(PO + Pltu)
w973 = g (Py 4+ Pit*) T 4wy (Py + Po)tPT - uPst? T 4 1(Py + Pst)t*

This yields for u=4@+1);

PyTH(t) = Pi(t) - 272 + P(t) - 21! 1 lo.t.
PIFY(t) = P{(t) - 1 4+ Pi(t) - 2T + Lo.t.
PyY(t) = (PI(t) + Pi(t)) - 2 + Lo.t.
Py (t) = PY(t) - 2 4 (P{(t) + P5(t)) -t + Lo.t.

pq+1 : (ag + ag)t2(q+1)u+(q+l)+1
patl. (ag + af{)t(2(fJ+1)*1)u+((q+1)+1)
) 12+ 1) =1)p+((g+1)+1)

p?flJrl . ag 2@+ 1) p+(g+1)

since all the coefficients o are positive and since p > % so that (Pl(t) +
P(t)) - t#+1 only consists of lower order terms of PI™.

This proves the lemma. The formula giving v(u™P) now follows from
the lemma together with the valuation of intermediate powers of ©~! which
easily follow from the computations . Indeed, depending on the sign of
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w—1, we get:

%<u<1 1<p
p=4q 2qu+ (¢ +1)
p=4g+1 (2¢+1p+(g+1) (14)

p=4q+2 21+ (¢ +2) (2¢+1p+ (¢ +1)
p=4¢+3 | 2+ pu+(¢+2)|2(¢+1)p+(g+1)

We now turn to the valuation of positive powers of u. Symmetrically to
the negative powers, v(uP) will be extracted from the proof of the following
lemma.

Lemma 17. For all integers q > 2, there are polynomials Q} in t, so that

utl = ug Q3(t) + u QI (t) + uz Q4(t) + 1Q4(t).

These polynomials are of the form

Qo) = ﬂq ~2an=(a=1) + lower order terms

Q3(t) = ¢~ (@atlu—(a=1) + lower order terms
Q4(t) = 2q+1)“ (a=1) + lower order terms
QZ( ) = —2an—q + lower order terms

where all coefficients ﬁf are positive.

Notice that we changed the basis of the cohomology, this yields easier
computations and a slight notational discrepancy. The relevant multiplica-
tion table now is

a uo ‘ Uu ‘ Uus ‘1 (15)

axu || 1t7H1 ‘ ugt—# ‘ ug — ugt™H ‘ U
We initialize the induction with u%? for ¢ = 2:
U = —ug (27T 7O — T g (BRI (T 4 t‘G“_l)

which is seen to be of the form specified by Lemma., again, because p >

We now assume 4?9 has the expression given above and compute the 4
next powers of u. To ease the reading we denote Qf(t) simply by @Q; and we
introduce the notation Q)2 3 for Q2 — Q3. We get, up to lower order terms:

u4q+1 = upQ3 + uQ4 + U3Q273t7“ + 1Q0t7'u71 (16)
U4Q+2 = UOQ273t_M + qut_u_l + U3(Q4t_u — Q2’3t_zu) + ngt_M_l
uS = g (Qut ™ — Qa5 ) + uQst H

+ uz(Qot T — Qut T + Qo gt M) + 1Qo 5t !

18



This yields for u*@t1) (again, up to lower order terms):

ST = Q4t) -t — Q) -t + (QS() — Q4(t)) -t

QI (1) = (Q5(t) — Q4(1)) -t~

) = —Qi(t) -t Q4t) - T+ Q1) -t — (QY(1) — Q4(t)) -
1) = QY1) 72 — (Q3(1) — Q1)) - I

whose respective leading order terms are

g+1 : (/30 +5‘1) 2(g+1)p—((g+1)—-1)
Qg-%l: (52 +/33) 2(g+1)+1)p—((g+1)-1)

gH: (ﬁ0+ﬁ3+ﬁ4)t 2(g+1)+1)p—((g+1)—-1)

Z+1 : 5:11 t—2(¢+1)p—=(g+1)

since all the coefficients Bg are positive and since p > %

This proves Lemma The expression of v(uP) then follows from it,
together with the valuation of intermediate powers of u which easily follow
from the computations . Namely, we get

%<,u<1 1<p
p=4q —2qu— (g —1)
p=4q+1|-Q2¢+Du—-(¢-1)| —2qu—gq (17)
p=4¢+2 | 20q+u—(¢—1) | =(2¢+1)pn—q
p=4q+3 —(2¢+ 1)p —

Together with the expression of v(u~P) given by Table , this con-
cludes the proof of Proposition |14]in the case u > %

We assume 0 < p < %

The sketch of the proof in this case is similar, the main lemmas only
need a few adjustments.

For negative powers of u, the situation is perfectly similar to the previous
cases, except that the results depend on the rest of the Euclidean division
of p by 3 rather than 4.

Lemma 18. For all integers q > 3, there are polynomials P! in t, so that

(2

w3 = g PY(t) + uy P{(t) +u Pg(t) + 1P{(t).
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These polynomials are of the form

+ lower order terms
+ lower order terms
+ lower order terms

+ lower order terms.
We use the multiplication table to compute
w0 = g ¢ g 1OR3  2qu PR 4 31 ¢S

which is indeed of the expected form.
The expressions of the following 3 powers © 3472, 4 =3¢=3 and ¢ 3(@+1)-1
are given from u 39~ by equation . From this we conclude that

p61+1 o pla2)pt(g+2) + lLo.t.
AR (% + (g — 1)) tlatDutlaty) + Lo.t.
P2‘1+1 . qt(q+3)u+(q+1) + lL.o.t.
Py (g4 1) et bt + Lot

since p < % Notice that this yields the expected expression of quH since

% is the sum of all integers between 1 and ¢ — 2.

This concludes the proof of the lemma, from which we immediately get
that v(u=3971) = (¢+ 1)+ (¢ + 1). The other necessary valuations can be
extracted from :

p(u32) = (g + 2+ (g+1) and u(u—?’q—?’):(q”)“*(“n( )
18

For positive powers of u, the situation is somehow easier since we can
directly compute the valuation of each power of u. The relevant lemma is
the following.

Lemma 19. For all integers p > 5, there are polynomials QY in t, so that
uP = up QY (t) + uQh(t) + us Q4(t) + 1Q%(2).

These polynomials are of the form

Qh(t) = (—1)Ptt ¢~ (p=2)p + lower order terms
Qb(t) = (1)t (P=3n—1 + lower order terms
Qh(t) = (—1)P ¢~ P~ Dr + lower order terms
Qh(t) = (—1)P¢~P=2n-1 + lower order terms.
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Using the multiplication table , we compute

u® = ugt T2 gt — 1t

and we compute vP*! from uP

uPt =g QB(t) +u QY(t) + uz (Q5(1) — QR t M +1Qh(t) t# 1 + lo.t.

Notice that Q§+1 is of the expected form because u < %
This proves the lemma and, together with , end the proof of Propo-

sition 14} in the last remaining case, for 0 < p < % O
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