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Abstract
We show that local times of super-Brownian motion, or of Brownian motion indexed by the

Brownian tree, satisfy an explicit stochastic differential equation. Our proofs rely on both excursion
theory for the Brownian snake and tools from the theory of superprocesses.

1 Introduction
The main purpose of the present work is to derive a stochastic differential equation for the local times
of super-Brownian motion, or equivalently for the local times of Brownian motion indexed by the
Brownian tree. Consider a super-Brownian motion whose initial value is a constant multiple of the
Dirac measure at 0. Informally, the local time La at level a ∈ R counts how many “particles” visit
the point a. It was shown recently [19] that, although the process (La)a≥0 is not Markov, the pair
consisting of La and its derivative, L̇a, is a Markov process (when a = 0 we need to consider the
right derivative at 0). However, the transition kernel of this Markov process is identified in [19] in a
complicated manner. Our goal here is to characterize this transition kernel in terms of a stochastic
differential equation. There is an obvious analogy between our main result and the classical Ray-Knight
theorems showing that the local times of a linear Brownian motion taken at certain particular stopping
times, and viewed as processes in the space variable, are squared Bessel processes which satisfy simple
stochastic differential equations. In the setting of the present paper, it is remarkable that the relevant
stochastic differential equation involves the derivative of the local time.

Let us give a more precise description of our main result. On a given probability space, we consider
a super-Brownian motion X = (Xt)t≥0 with initial value X0 = α δ0, where α > 0 is a constant. The
associated total occupation measure is defined by

Y :=
∫ ∞

0
Xt dt.

Since X becomes extinct a.s., the measure Y is finite. Sugitani [25] proved that the measure Y has
a.s. a continuous density (La)a∈R, which is even continuously differentiable on (−∞, 0) ∪ (0,∞). We
write L̇a for the derivative of this function at a ∈ R\{0}. Moreover, the function a 7→ La has a right
derivative L̇0+ and a left derivative L̇0− at 0, and, by convention, we set L̇0 = L̇0+. In order to state
our result, let U = (Ut)t≥0 be a stable Lévy process with index 3/2 and no negative jumps. The
distribution of U is characterized by specifying its Laplace exponent ψ(λ) =

√
2/3λ3/2 (see Section

2.5). For every t > 0, let (pt(x))x∈R be the continuous density of Ut, which is determined by its Fourier
transform ∫

R
eiux pt(x) dx = exp(−c0t |u|3/2 (1 + i sgn(u))),

where c0 = 1/
√

3 and sgn(u) = 1{u>0} − 1{u<0}. Then x 7→ pt(x) = t−2/3p1(xt−2/3) is strictly positive,
infinitely differentiable and has bounded derivatives for each t (see Ch. 2 of [26] for these and other
properties of stable densities). Write p′t(x) for the derivative of this function.
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Theorem 1. For every y ∈ R, set g(0, y) = 0 and, for every t > 0,

g(t, y) = 8t p
′
t(y)
pt(y) .

Then ∫ ∞
0
|g
(
Ly,

1
2 L̇

y
)
|dy <∞, a.s.

and the pair (Lx, L̇x)x≥0 satisfies the two-dimensional stochastic differential equation

L̇x = L̇0 + 4
∫ x

0

√
Ly dBy +

∫ x

0
g
(
Ly,

1
2 L̇

y
)

dy

Lx = L0 +
∫ x

0
L̇y dy,

(1)

where B is a linear Brownian motion. Moreover if R = inf{x ≥ 0 : Lx = 0}, then (Lx, L̇x) is the
pathwise unique solution to (1) which satisfies (Lx, L̇x) = (Lx∧R, L̇x∧R) for all x ≥ 0 a.s.

Remark. The fact that the local time satisfies the last property stated in the Theorem follows from
Theorem 1.7 in [23] where it is shown that if R is as above and G = sup{x ≤ 0 : Lx = 0}, then

−∞ < G < 0 < R <∞ and {x ∈ R : Lx > 0} = (G,R) a.s. (2)

Strictly speaking, in order to write equation (1), it may be necessary to enlarge the underlying
probability space. The point is that the Brownian motion B will be determined from the pair
(Lx, L̇x)x≥0 only up to the “time” R (for x > R we have Lx = L̇x = 0). So a more precise statement
would be the existence of an enlarged probability space (Ω,F ,P) equipped with a filtration (Ft)t≥0
and an (Ft)-Brownian motion B such that (Lt, L̇t)t≥0 is adapted to the filtration (Ft)t≥0 and (1) holds
(see the proof in Section 6).

Interestingly, the functions pt and p′t have explicit expressions in terms of the classical Airy function
Ai and its derivative Ai′. In fact, x → pt(−x) is called the Airy map distribution in [9]. For every
t > 0 and x ∈ R, we have

pt(x) = 6−1/3 t−2/3A(6−1/3t−2/3x),

where
A(x) = −2 e2x3/3

(
xAi(x2) + Ai′(x2)

)
.

See [9, Section IX.11], or [7] and the references therein, and note that our choice of pt differs from that
in [7] by a scaling constant. It follows that

g(t, x) = 8× 6−1/3 t1/3
A′

A
(6−1/3 t−2/3x),

with (the Airy equation Ai′′(x) = xAi(x) helps here)

A′

A
(x) = 4x2 + Ai(x2)

xAi(x2) + Ai′(x2) . (3)

One useful application of this representation and known asymptotics for Ai and Ai′ (see p. 448 of [2])
is that

p′1
p1

(y) = 6−1/3 A′

A
(6−1/3y) = − 5

2y +O
( 1
y4

)
as y → +∞, (4)

and so
for all y0 ∈ R, sup

y≥y0

∣∣∣p′1
p1

(y)
∣∣∣ = C(y0) <∞. (5)

We can reformulate our theorem in terms of the model called Brownian motion indexed by the
Brownian tree. Here the Brownian tree T is a “free” version of Aldous’ Continuum Random Tree [3]
and may be defined as the tree coded by a Brownian excursion under the (σ-finite) Itô measure. Points
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of T are assigned “Brownian labels” (Vu)u∈T , in such a way that the label of the root is 0 and labels
evolve like linear Brownian motion along the line segments of the tree. It is convenient to assume that
both the tree T and the labels (Vu)u∈T are defined on the canonical space of snake trajectories under
the “excursion measure” N0 (see Section 2 below for a more precise presentation). If Vol denotes the
volume measure on the tree T , we are interested in the total occupation measure, which is the finite
measure Y on R defined by

Y(f) =
∫
T
f(Vu) Vol(du), (6)

for every nonnegative Borel function f on R. The measure Y has a continuously differentiable density
(`x)x∈R with respect to Lebesgue measure on R, and we write ( ˙̀x)x∈R for its derivative. We can then
state an analog of Theorem 1. There is a technical difficulty due to the fact that N0 is an infinite
measure, and for this reason we need to make an appropriate conditioning.

Theorem 2. Let δ > 0, and consider the probability measure N(δ)
0 := N0(· | `0 > δ). Then,∫ ∞

0
|g
(
`y,

1
2

˙̀y
)
|dy <∞, N(δ)

0 a.s.

and, under N(δ)
0 , the pair (`x, ˙̀x)x≥0 satisfies the two-dimensional stochastic differential equation

˙̀x = ˙̀0 + 4
∫ x

0

√
`y dβy +

∫ x

0
g
(
`y,

1
2

˙̀y
)

dy

`x = `0 +
∫ x

0
˙̀y dy,

where β is a linear Brownian motion. Moreover if ρ = inf{x ≥ 0 : `x = 0}, then (`x, ˙̀x) is the pathwise
unique solution to the above equation which satisfies (`x, ˙̀x) = (`x∧ρ, ˙̀x∧ρ) for all x ≥ 0 a.s.

In the language of superprocesses, Theorem 2 corresponds to a version of Theorem 1 under the
so-called canonical measure. In what follows, we will only deal with Theorem 1. Theorem 2 then
follows since it is shown in [19] that the process (`t, ˙̀t)t≥0 is Markov with the same transition kernels
as the process (Lt, L̇t)t≥0 considered in Theorem 1 (the pathwise uniqueness in either equation will
follow easily from a classical result for locally Lipschitz coefficients). Still the formulation of Theorem
2 is useful to understand our approach, as we will rely on the Brownian snake representation of
super-Brownian motion, which involves considering a Poisson collection of Brownian trees equipped
with Brownian labels. The same remark as for Theorem 1 applies also to Theorem 2 (see Theorem 1.4
of [10] for the analogue of (2)).

One motivation for deriving a stochastic differential equation for (Lx, L̇x) is to allow one access to
the tools of stochastic analysis for a more detailed analysis of these processes. To this end, we use a
transformation of the state space and a random time change to effectively transform the solution to
(1) into an explicit one-dimensional diffusion which can be studied in detail, and from which one can
reconstruct (Lx, L̇x) (see Propositions 18 and 19). The diffusion will be a time change of L̇x/(Lx)2/3

and is the unique solution of (78) below.
Our proofs depend on both the excursion theory for the Brownian snake [1] and tools coming

from the theory of superprocesses [24, 10]. Excursion theory for the Brownian snake was the key
ingredient for getting the Markov property of the process (Lx, L̇x)x≥0 in [19]. The transition kernel of
this process was described in terms of the “positive excursion measures” N∗,z0 , which roughly speaking
give the distribution of the labeled tree (T , (Vu)u∈T ) conditioned to have only nonnegative labels, with
a parameter z > 0 that in some sense prescribes how many points u of T have the label zero. Local
times still make sense under the measures N∗,z0 and, for every h > 0, one can compute the expected
value of the derivative of local time at level h in the form

N∗,z0 ( ˙̀h) = z γ
( 3h

2z2

)
,

where the function γ has an explicit expression in terms of the (complementary) error function erfc
(Proposition 13). For every a ≥ 0 and t > 0, y ∈ R, excursion theory then leads to the formula

E
[
L̇a+h

∣∣∣La = t,
1
2 L̇

a = y
]

= E
[ ∞∑
j=1

Zj γ
(3Zj

2h2

)]
,
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where (Zj)j≥1 are the jumps of the bridge from 0 to y in time t associated with the Lévy process U
(Proposition 14) and listed in decreasing order. The precise justification of the formulas of the last
two displays requires certain bounds on moments of the derivatives of local time (Lemmas 10 and 12).
We obtain these bounds via a stochastic integral representation of the derivative L̇x in terms of the
martingale measure associated with X, which is due to Hong [10]. Here the use of these techniques
from the theory of superprocesses is crucial since the excursion measures N∗,z0 do not seem to provide a
tractable setting for a direct derivation of the required bounds.

It turns out that one can explicitly compute the right-hand side of the last display in terms of an
integral involving the density pt (Proposition 15) and it is then an easy matter to obtain

lim
h→0

1
h
E
[
L̇a+h − L̇a

∣∣∣La = t,
1
2 L̇

a = y
]

= 8 t p
′
t(y)
pt(y) = g(t, y).

From this, one can infer that, for every ε > 0, the process

M ε
x := L̇x∧Sε − L̇0 −

∫ x∧Sε

0
g(Ly, 1

2 L̇
y) dy

is a local martingale, where we have written Sε := inf{x ≥ 0 : Lx ≤ ε}. At that point, we again use the
stochastic integral representation of Hong [10], from which we can deduce that the quadratic variation
of M ε

x is 16
∫ x∧Sε
0 Ly dy. Although there are some additional technicalites to handle, often due to the

unboundedness of g(Ly, L̇y/2), we then can use standard tools of stochastic calculus to derive the
stochastic differential equation (1).

We note that the recent paper of Chapuy and Marckert [6] addresses similar questions for the
model called ISE (integrated super-Brownian excursion). This model, which was introduced by Aldous
[4], corresponds to conditioning the Brownian tree T to have total volume equal to 1. Under this
conditioning, local times are still well defined and continuously differentiable. On the basis of discrete
approximations, [6] conjectures a stochastic differential equation for local times of ISE, which is similar
to (1) but with a more complicated drift term involving also the integrals

∫ x
−∞ L

y dy — the reason why
these integrals appear is of course the special conditioning which forces

∫∞
−∞ L

y dy = 1. It is likely that
Theorem 2 can be used to also derive a stochastic differential equation for local times of ISE, but we
do not pursue this matter here.

The paper is organized as follows. Section 2 gathers a number of preliminaries. In particular, we
introduce the positive excursion measures N∗,z0 , and we recall the main result of the excursion theory
of [1]. In Section 3, we briefly recall the Brownian snake construction of the super-Brownian motion X,
and we state a key result from [19] giving the conditional distribution of the collection of “excursions”
of X above a level a ≥ 0 knowing (Lx, L̇x)x≤a (Proposition 9). This conditional distribution knowing
La = t and L̇a = y is given in terms of the measures N∗,z0 and the collection of jumps of the Lévy
bridge from 0 to y in time t. In Section 4, we rely on Hong’s representation to derive our estimates on
moments of the increments of L̇x, and then to evaluate the quadratic variation of this process. Section
5 is devoted to the calculation of the conditonal expected value of L̇a+h − L̇a knowing La = t and
L̇a = y. Finally, Section 6 gives the proof of Theorem 1 and also establishes the connection between
(Lx, L̇x) and the simple diffusion in (78).

2 Preliminaries

2.1 Snake trajectories

The proof of our main result relies in part on the Brownian snake representation of super-Brownian
motion. We start by recalling the formalism of snake trajectories, referring to [1] for more details. A
(one-dimensional) finite path w is a continuous mapping w : [0, ζ] −→ R, where ζ = ζ(w) ∈ [0,∞) is
called the lifetime of w. The space W of all finite paths is a Polish space when equipped with the
distance

dW(w,w′) = |ζ(w) − ζ(w′)|+ sup
t≥0
|w(t ∧ ζ(w))− w′(t ∧ ζ(w′))|.

4



The endpoint or tip of the path w is denoted by ŵ = w(ζ(w)). For every x ∈ R, we set Wx = {w ∈ W :
w(0) = x}. The trivial element of Wx with zero lifetime is identified with the point x of R.

Definition 3. Let x ∈ R. A snake trajectory with initial point x is a continuous mapping s 7→ ωs from
R+ into Wx which satisfies the following two properties:

(i) We have ω0 = x and the number σ(ω) := sup{s ≥ 0 : ωs 6= x}, called the duration of the snake
trajectory ω, is finite (by convention σ(ω) = 0 if ωs = x for every s ≥ 0).

(ii) (Snake property) For every 0 ≤ s ≤ s′, we have ωs(t) = ωs′(t) for every t ∈ [0, min
s≤r≤s′

ζ(ωr)].

We will write Sx for the set of all snake trajectories with initial point x, and S for the union of the
sets Sx for all x ∈ R. If ω ∈ S, we often write Ws(ω) = ωs and ζs(ω) = ζ(ωs) for every s ≥ 0, and we
omit ω in the notation. The sets S and Sx are equipped with the distance

dS(ω, ω′) = |σ(ω)− σ(ω′)|+ sup
s≥0

dW(Ws(ω),Ws(ω′)).

For ω ∈ Sx and a ∈ R, we will use the obvious notation ω+a ∈ Sx+a for the translated snake trajectory.
It is easy to verify [1, Proposition 8] that a snake trajectory ω is determined by the two functions
s 7→ ζs(ω) and s 7→ Ŵs(ω) (the latter is sometimes called the tip function).

Let ω ∈ S be a snake trajectory and σ = σ(ω). We define a pseudo-distance on [0, σ]2 by setting

dζ(s, s′) = ζs + ζs′ − 2 min
s∧s′≤r≤s∨s′

ζr.

We then consider the associated equivalence relation s ∼ s′ if and only if dζ(s, s′) = 0 (or equivalently
ζs = ζs′ = mins∧s′≤r≤s∨s′ ζr), and the quotient space T (ω) := [0, σ]/∼ , which is equipped with the
distance induced by dζ . The metric space (T (ω), dζ) is a compact R-tree called the genealogical tree of
the snake trajectory ω (we refer to [16] for more information about the coding of R-trees by continuous
functions). Let p(ω) : [0, σ] −→ T (ω) stand for the canonical projection. By convention, the tree
T = T (ω) is rooted at the point ρ(ω) := p(ω)(0) = p(ω)(σ), and the volume measure Vol(·) on T is
defined as the pushforward of Lebesgue measure on [0, σ] under p(ω). As usual, for u, v ∈ T , we say
that u is an ancestor of v, or v is a descendant of u, if u belongs to the line segment from ρ(ω) to v in
T .

The snake property shows that the condition p(ω)(s) = p(ω)(s′) implies that Ws(ω) = Ws′(ω).
So the mapping s 7→ Ws(ω) can be viewed as defined on the quotient space T . For u ∈ T , we set
Vu := Ŵs(ω), for any s ∈ [0, σ] such that u = p(ω)(s). We interpret Vu as a “label” assigned to the
“vertex” u of T , and each path Ws records the labels along the line segment from ρ(ω) to p(ω)(s) in T .

We will use the notation

W ∗ := max{Ws(t) : s ≥ 0, t ∈ [0, ζs]} = max{Ŵs : 0 ≤ s ≤ σ} = max{Vu : u ∈ T },
W∗ := min{Ws(t) : s ≥ 0, t ∈ [0, ζs]} = min{Ŵs : 0 ≤ s ≤ σ} = min{Vu : u ∈ T },

and we also let Y = Y(ω) be the occupation measure of ω, which is the finite measure on R defined by
setting

Y(f) =
∫ σ

0
f(Ŵs) ds =

∫
T
f(Vu) Vol(du), (7)

for any Borel function f : R −→ R+. Trivially, Y is supported on [W∗,W ∗].
We next introduce the truncation of snake trajectories. For any w ∈ Wx and y ∈ R, we set

τy(w) := inf{t ∈ (0, ζ(w)] : w(t) = y} ,

with the usual convention inf ∅ =∞. Then if ω ∈ Sx and y ∈ R, we set, for every s ≥ 0,

νs(ω) := inf
{
t ≥ 0 :

∫ t

0
du1{ζ(ωu)≤τy(ωu)} > s

}
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(note that the condition ζ(ωu) ≤ τy(ωu) holds if and only if τy(ωu) = ∞ or τy(ωu) = ζ(ωu)). Then,
setting ω′s = ωνs(ω) for every s ≥ 0 defines an element ω′ of Sx, which will be denoted by try(ω) and
called the truncation of ω at y (see [1, Proposition 10]). The effect of the time change νs(ω) is to
“eliminate” those paths ωs that hit y and then survive for a positive amount of time. The genealogical
tree of try(ω) is canonically and isometrically identified with the closed subset of T (ω) consisting of all
u such that Vv(ω) 6= y for every strict ancestor v of u (different from ρ(ω) when y = x).

Finally, for ω ∈ Sx and y ∈ R\{x}, we define the excursions of ω away from y. In contrast with the
truncation try(ω), these excursions now account for the paths ωs that hit y and survive for a positive
amount of time. More precisely, let (αj , βj), j ∈ J , be the connected components of the open set
{s ∈ [0, σ] : τy(ωs) < ζ(ωs)} (note that the indexing set J may be empty). We notice that ωαj = ωβj
for every j ∈ J , by the snake property, and ω̂αj = y. For every j ∈ J , we define a snake trajectory
ωj ∈ Sy by setting

ωjs(t) := ω(αj+s)∧βj (ζ(ωαj ) + t) , for 0 ≤ t ≤ ζ(ωjs) := ζ(ω(αj+s)∧βj ) − ζ(ωαj ) and s ≥ 0.

We say that ωj , j ∈ J , are the excursions of ω away from y.

2.2 The Brownian snake excursion measure

Let x ∈ R. The Brownian snake excursion measure Nx is the σ-finite measure on Sx that is characterized
by the following two properties: Under Nx,

(i) the distribution of the lifetime function (ζs)s≥0 is the Itô measure of positive excursions of linear
Brownian motion, normalized so that, for every ε > 0,

Nx
(

sup
s≥0

ζs > ε
)

= 1
2ε ;

(ii) conditionally on (ζs)s≥0, the tip function (Ŵs)s≥0 is a Gaussian process with mean x and
covariance function

K(s, s′) = min
s∧s′≤r≤s∨s′

ζr.

Conditionally on the lifetime process (ζs)s≥0, each path Wr is a linear Brownian path started from x
with lifetime ζr. When r varies, the evolution of the path Wr is described informally as follows. When
ζr decreases, the path Wr is “erased” from its tip, and when ζr increases, the path Wr is “extended” by
adding little pieces of Brownian motion at its tip. The measure Nx can be interpreted as the excursion
measure away from x for the Markov process in Wx called the (one-dimensional) Brownian snake. We
refer to [15] for a detailed study of the Brownian snake with a more general underlying spatial motion.

For every r > 0, we have

Nx(W ∗ > x+ r) = Nx(W∗ < x− r) = 3
2r2

(see e.g. [15, Section VI.1]). In particular, Nx(y ∈ [W∗,W ∗]) <∞ if y 6= x.
The following scaling property is often useful. For λ > 0, for every ω ∈ Sx, we define θλ(ω) ∈ Sx√λ

by θλ(ω) = ω′, with

ω′s(t) :=
√
λωs/λ2(t/λ) , for s ≥ 0 and 0 ≤ t ≤ ζ ′s := λζs/λ2 . (8)

Then θλ(Nx) = λNx√λ.
Let us introduce the local times, (`y)y∈R, under Nx. The next proposition follows from [6] (a slightly

weaker statement had been obtained in [5]), and is also closely related to the results of [25] concerning
super-Brownian motion.

Proposition 4. Let x ∈ R. Then, Nx(dω) a.e. the occupation measure Y(ω) has a continuously
differentiable density with respect to Lebesgue measure. This density is denoted by (`y(ω))y∈R and its
derivative is denoted by ( ˙̀y(ω))y∈R
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We now introduce exit measures. We argue under Nx, and fix y ∈ R\{x}. One shows that the limit

Zy := lim
ε→0

1
ε

∫ σ

0
ds1{τy(Ws)≤ζs≤τy(Ws)+ε} (9)

exists Nx a.e., and Zy is called the exit measure from (y,∞) (if x > y) or from (−∞, y) (if y > x).
Roughly speaking, Zy counts how many pathsWs hit y and are stopped at that moment. The definition
of Zy is a particular case of the theory of exit measures, see [15, Chapter V]. We have Zy > 0 if and
only if y ∈ [W∗,W ∗], Nx a.e. (recall y is fixed).

Let us recall the special Markov property of the Brownian snake under N0 (see, for example, the
appendix of [17]).

Proposition 5 (Special Markov property). Let x ∈ R and y ∈ R\{x}. Under the measure Nx(dω), let
ωj, j ∈ J , be the excursions of ω away from y and consider the point measure

Ny =
∑
j∈J

δωj .

Then, under the probability measure Nx(dω | y ∈ [W∗,W ∗]) and conditionally on Zy, the point measure
Ny is Poisson with intensity Zy Ny(·) and is independent of try(ω).

We now introduce a process called the exit measure process at a point, which will play an important
role in the excursion theory discussed below. Let x ∈ R and argue under the excursion measure Nx.
Also fix another point y ∈ R (which may be equal to x). Since, conditionally on ζs, Ws is just a
Brownian path with lifetime ζs, we can make sense of its local time at level y, which we denote by
Ly(Ws) = (Lyt (Ws))0≤t≤ζs , and the mapping s 7→ Ly(Ws), with values in (W, dW), is continuous (note
that (Ws,Ly(Ws)) can be viewed as the Brownian snake whose spatial motion is the pair formed by
Brownian motion and its local time at y). Then, for every r ≥ 0 and s ∈ [0, σ], set

ηyr (Ws) = inf{t ∈ [0, ζs] : Lyt (Ws) ≥ r},

with the usual convention inf ∅ =∞. From the general theory of exit measures [15, Chapter V], we
get, for every r > 0, the existence of the almost sure limit

X yr = lim
ε→0

1
ε

∫ σ

0
ds1{ηyr (Ws)≤ζs≤ηyr (Ws)+ε}.

Roughly speaking, X yr measures the “quantity” of paths Ws that end at y after having accumulated a
local time at y exactly equal to r. See the discussion in the introduction of [1] for more details.

Suppose that y 6= x. In that case, we also take X y0 = Zy (compare the last display with (9)). Then
under the probability measure Nx(· | y ∈ [W∗,W ∗]) = Nx(· | Zy > 0), conditionally on Zy, the process
(X yr )r≥0 is a continuous-state branching process with branching mechanism ϕ(u) =

√
8/3u3/2 (in short,

a ϕ-CSBP) started at Zy. In particular, (X yr )r≥0 has a càdlàg modification, which we consider from
now on. We refer to [15, Chapter II] for basic facts about continuous-state branching processes, and to
[1] for the preceding facts.

In the case y = x, we take X x0 = 0 by convention, and the process (X xr )r≥0 is distributed under Nx
according to the excursion measure of the ϕ-CSBP. This means that, if N =

∑
k∈K δωk is a Poisson

point measure with intensity αNx, the process X defined by X0 = α and, for every r > 0,

Xr :=
∑
k∈K
X xr (ωk),

is a ϕ-CSBP started at α (see [20, Section 2.4]).
In all cases, we call (X yr )r≥0 the exit measure process at y. Local times are related to this process

by the formula
`y =

∫ ∞
0

drX yr , (10)

which holds Nx a.e., for every y ∈ R. See [20, Proposition 26] when y 6= x, and [21, Proposition 3.1]
when y = x.
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2.3 The positive excursion measure

We now introduce another important measure on S0. There exists a σ-finite measure N∗0 on S0, which
is supported on the set S+

0 of nonnegative snake trajectories, such that, for every bounded continuous
function G on S+

0 that vanishes on {ω ∈ S+
0 : W ∗(ω) ≤ δ} for some δ > 0, we have

N∗0(G) = lim
ε→0

1
ε
Nε(G(tr0(ω))).

See [1, Theorem 23]. Under N∗0(dω), each path ωs, for 0 < s < σ, starts from 0, then stays positive
during some time interval (0, u), and is stopped immediately when it returns to 0, if it does return to 0.

Similarly to the definition of exit measures, one can make sense of the “quantity” of paths ωs that
return to 0 under N∗0. To this end, one proves that the limit

Z∗0 := lim
ε→0

1
ε2

∫ σ

0
ds1{Ŵs<ε}

(11)

exists N∗0 a.e. See [18, Section 10]. Notice that replacing the limit by a liminf in (11) allows us to make
sense of Z∗0 (ω) for every ω ∈ S+

0 .
We can then define conditional versions of the measure N∗0, which play a fundamental role in the

present work. Recall the definition of the scaling operators θλ in (8). According to [1, Proposition 33],
there exists a unique collection (N∗,z0 )z>0 of probability measures on S+

0 such that:

(i) N∗0 =
√

3
2π

∫ ∞
0

dz z−5/2 N∗,z0 .

(ii) For every z > 0, N∗,z0 is supported on {Z∗0 = z}. (12)

(iii) For every z, z′ > 0, N∗,z
′

0 = θz′/z(N
∗,z
0 ).

Informally, N∗,z0 = N∗0(· | Z∗0 = z). Note that the “law” of Z∗0 under N∗0 is the σ-finite measure

n(dz) = 1{z>0}

√
3

2π z
−5/2 dz. (13)

It will be convenient to write Ň∗,z0 for the pushforward of N∗,z0 under the mapping ω → −ω. Furthermore,
for every a ∈ R, we write N∗,za , resp. Ň∗,za for the pushforward of N∗,z0 , resp. of Ň∗,z0 , under the shift
ω 7→ ω + a.

We state a useful technical lemma.

Lemma 6. For every z > 0 and ε > 0, N∗,z0 (W ∗ < ε) > 0. Moreover, there exists a constant C such
that, for every z > 0 and x > 0,

N∗,z0 (W ∗ > x) ≤ C z3

x6 .

We omit the proof of the first assertion. For the second one, see [20, Corollary 5].
Recall the notation Y(ω) for the occupation measure of ω ∈ S from (7).

Lemma 7. Let z > 0. Then, N∗,z0 (dω) a.s. the measure Y(ω) has a continuous density with respect to
Lebesgue measure on R. This density vanishes on (−∞, 0] and is continuously differentiable on (0,∞).

Proof. Via scaling arguments, it is enough to prove this with N∗,z0 replaced by N∗0. Then, we can use
the re-rooting property of N∗0 (see [1, Theorem 28] or [19, Theorem 5]) to obtain that it suffices to prove
the following claim: For every b > 0, Nb(dω) a.e., the occupation measure Y(tr0(ω)) has a continuous
density, which vanishes on (−∞, 0] and is continuously differentiable on (0,∞). Note that, Nb(dω) a.e.,
Y(tr0(ω)) is supported on [0,∞) and thus, once we know that Y(tr0(ω)) has a continuous density it is
obvious that this density vanishes on (−∞, 0].

Let us fix b > 0 and argue under Nb. Writing (ωj)j∈J for the excursions of ω away from 0, one
easily verifies that, Nb(dω) a.e.,

Y(ω) = Y(tr0(ω)) +
∑
j∈J
Y(ωj). (14)
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We know that Nb(dω) a.e., the measure Y(ω) has a continuously differentiable density (`x(ω))x∈R
and the same holds for the measures Y(ωj) since we know that (conditionally on Z0(ω)) the snake
trajectories ωj , j ∈ J are the atoms of a Poisson point measure with intensity Z0N0. Note that, for
every fixed x 6= 0, there are only finitely many indices j such that `x(ωj) > 0. It then follows that
the measure

∑
j∈J Y(ωj) has a density, and this density is given for x 6= 0 by the function

∑
j∈J `

x(ωj),
which is continuously differentiable on R\{0}. However, Nb(dω) a.e., the function

x 7→
∑
j∈J

`x(ωj)

is continuous on R: we already know that it is continuous on R\{0}, and for the continuity at 0 we
refer to formula (3.9) and the subsequent discussion in [21]. From (14), we now deduce that Y(tr0(ω))
has a continuous density on R, which is given by

x 7→ `x(ω)−
∑
j∈J

`x(ωj).

This completes the proof.

In what follows, we will use the same notation (`x(ω))x∈R to denote the density of Y(ω) under
N∗,z0 (dω) or under N∗,za (dω) for any a ∈ R.

2.4 Excursion theory

Let us now recall the main theorem of the excursion theory developed in [1]. We fix x ∈ R and
y ∈ [x,∞), and we argue under Nx(dω). As in the classical setting of excursion theory for linear
Brownian motion, our goal is to describe the evolution of the labels Vu on the connected components of
{u ∈ T (ω) : Vu(ω) 6= y}. So, let C be such a connected component and write C for the closure of C. We
leave aside the case where C contains the root ρ(ω) of T (ω) (this case does not occur if y = x). Then,
there is a unique point u of C at minimal distance from ρ(ω), such that all points of C are descendants
of u, and we have Vu = y. Following [1], we say that u is an excursion debut (from y). We can then
define a snake trajectory ω(u) that accounts for the connected component C and the labels on C. To this
end, we first observe that the set of all descendants of u in T (ω) can be written as p(ω)([s0, s

′
0]) , where

s0 and s′0 are such that p(ω)(s0) = p(ω)(s′0) = u. Then, we first define a snake trajectory ω̃(u) ∈ Sy
coding the subtree p(ω)([s0, s

′
0]) (and its labels) by setting

ω̃(u)
s (t) := ω(s0+s)∧s′0(ζs0 + t) for 0 ≤ t ≤ ζ(s0+s)∧s′0 − ζs0 .

The set C is the subset of p(ω)([s0, s
′
0]) consisting of all v such that labels stay greater than y along the

line segment from u to v, except at u and possibly at v. This leads us to define

ω(u) := try(ω̃(u)).

Then one can check (see [1] for more details) that the compact R-tree C is identified isometrically to
the tree T (ω(u)), and moreover this identification preserves labels. Also, the restriction of the volume
measure of T (ω) to C corresponds to the volume measure of T(ω(u)) via the latter identification.

We say that ω(u) is an excursion above y if the values of Vv for v ∈ C are greater than y and that
ω(u) is an excursion below y if the values of Vv for v ∈ C are smaller than y. Note that an excursion
away from y, as considered in Proposition 5, will contain infinitely many excursions above or below
y. Let Y(y,∞)

(ω) denote the restriction of Y(ω) to (y,∞). Then, the preceding identification of volume
measures entails that

Y(y,∞)
(ω) =

∑
u∈D+

y

Y(ω(u)), (15)

where D+
y is the set of all debuts of excursions above y.

Recall that the exit measure process (X yr )r≥0 was defined in Section 2.2. By Proposition 3 of
[1] (and an application of the special Markov property when y 6= x), excursion debuts from y are in
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one-to-one correspondence with the jump times of the process (X yr )r≥0, or equivalently with the jumps
of this process, in such a way that, if u is an excursion debut and s ∈ [0, σ] is such that p(ω)(s) = u,
the associated jump time of the exit measure process at y is the total local time at y accumulated
by the path Ws. We can rank the jumps of (X yr )r≥0 in a sequence (δi)i∈N in decreasing order. For
every i ∈ N, we write ui for the excursion debut associated with the jump δi. The following theorem is
essentially Theorem 4 in [1]. We write N(y)

x = Nx(· | Zy > 0) when y 6= x, and N(x)
x = Nx.

Theorem 8. Under N(y)
x , conditionally on (X yr )r≥0, the excursions ω(ui), i ∈ N, are independent, and

independent of try(ω), and, for every i ∈ N, the conditional distribution of ω(ui) is

1
2
(
N∗,δiy + Ň∗,δiy

)
.

We say that δi is the boundary size of the excursion ω(ui).
The case y = x of Theorem 8 is Theorem 4 of [1] and the case y 6= x can then be derived by an

application of the special Markov property (Proposition 5).

2.5 The Lévy bridge

Recall from the Introduction and Section 2.2 that for λ ≥ 0, ψ(λ) = 1
2ϕ(λ) =

√
2/3λ3/2, and that

(Ut)t≥0 denotes a stable Lévy process with index 3/2, without negative jumps, and scaled so that its
Laplace exponent is ψ(λ). This means that for every t ≥ 0 and λ > 0, we have

E[exp(−λUt)] = exp(tψ(λ)).

The Lévy measure of U is 1
2n(dz), where n(dz) was defined in (13), and Us has characteristic function

E[eiuUs ] = e−sΨ(u),

where
Ψ(u) = c0|u|3/2 (1 + i sgn(u)), (16)

and c0 = 1/
√

3. Recall also that Us has a density, ps(x), which by Fourier inversion is given by

ps(x) = 1
2π

∫
e−iux−sΨ(u)du.

Several properties of ps(x) were recalled in the Introduction. Another property we use is that the
distribution of Us is known to be unimodal, in the sense that there exists a ∈ R such that both functions
x 7→ ps(a− x) and x 7→ ps(a+ x) are nonincreasing on R+ (cf. [26, Theorem 2.7.5]).

For every t > 0 and y ∈ R, we can make sense of the process (Us)0≤s≤t conditioned on {Ut = y},
which is called the ψ-Lévy bridge from 0 to y in time t (see [8] for a construction in a much more general
setting). Write (Ubr,t,y)0≤s≤t for a ψ-Lévy bridge from 0 to y in time t. Then, for every r ∈ (0, t) and
every nonnegative measurable function F on the Skorokhod space D([0, r],R), we have

E
[
F
(
(Ubr,t,y)0≤s≤r

)]
= E

[
pt−r(y − Ur)

pt(y) F
(
(Us)0≤s≤r

)]
. (17)

See [8, Proposition 1]. In particular, the law of (Ubr,t,y
s )0≤s≤r has a bounded density with respect to the

law of (Us)0≤s≤r. Via a simple time-reversal argument, the same holds for the law of (y−Ubr,t,y
(t−s)−)0≤s≤r.

In what follows, when we write

E
[
F
(
(Us)0≤s≤t

) ∣∣∣Ut = y
]
,

this should always be understood as E[F ((Ubr,t,y)0≤s≤t)] (which makes sense for every choice of y ∈ R).
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3 The connection with super-Brownian motion
Let us briefly recall the connection between the Brownian snake excursion measures Nx and super-
Brownian motion, referring to [15] for more details. We fix α > 0, and consider a Poisson point measure
on S,

N =
∑
k∈K

δωk

with intensity αN0. Then one can construct a one-dimensional super-Brownian motion (Xt)t≥0
with branching mechanism Φ(u) = 2u2 and initial value X0 = α δ0, such that, for any nonnegative
measurable function f on R, ∫ ∞

0
Xt(f) dt =

∑
k∈K
Y(ωk)(f) (18)

where Y(ωk) is defined in formula (7). In a more precise way, the process (Xt)t≥0 is defined by setting,
for every t > 0 and every nonnegative Borel function f on R,

Xt(f) :=
∑
k∈K

∫ σ(ωk)

0
f(Ŵr(ωk)) drltr(ωk),

where ltr(ωk) denotes the local time of the process s 7→ ζs(ωk) at level t and at time r, and the notation
drltr(ωk) refers to integration with respect to the nondecreasing function r 7→ ltr(ωk) (see Chapter 4 of
[15]).

The preceding representation of X allows us to consider excursions above and below a, for any
a ∈ R. Consider for simplicity the case a = 0. We define the exit measure process (X0

t )t≥0 at 0 by
setting X0

0 = α and, for t > 0,
X0
t =

∑
k∈K
X 0
t (ωk). (19)

As was already mentioned in Section 2.2, the process (X0
t )t≥0 is a ϕ-CSBP started at α. Write (δi)i∈N

for the sequence of its jumps ordered in decreasing size. Then the collection of all excursions of ωk
above and below 0, combined for all k ∈ K, is in one-to-one correspondence with the collection (δi)i∈N.
Moreover, if ωi denotes the excursion associated with the jump δi, then:

The excursions ωi, i ∈ N, are independent conditionally on (X0
t )t≥0, (20)

and the conditional distribution of ωi is
1
2
(
N∗,δiy + Ň∗,δiy

)
.

All these facts are immediate consequences of Theorem 8 and the discussion preceding it.
We are primarily interested in the total occupation measure

Y :=
∫ ∞

0
Xt dt.

Recall from the Introduction, the notation Lx, L̇x for its continuous density, and its continuous
derivative on {x 6= 0}, and L̇0+, L̇0− for the right and left derivatives at 0, respectively, and L̇0 := L̇0+.
It also follows from Sugitani [25, Theorem 4] and its proof that

L̇0+ = lim
x→0,x>0

L̇x , L̇0− = lim
x→0,x<0

L̇x ,

and
L̇0+ − L̇0− = −2α. (21)

Fix a ≥ 0, and write Y(a,∞) for the restriction of Y to (a,∞), and similarly Y(a,∞)
(ωk) for the restriction

of Y(ωk) to (a,∞). In what follows, we assume that {k ∈ K : W ∗(ωk) > a} is not empty. In view of
our applications, we are interested in excursions of ωk above level a, combined for all k ∈ K, such
that W ∗(ωk) > a. We can order these excursions in a sequence (ωa,+j )j∈N in decreasing order of their
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boundary sizes (Theorem 8 implies that these boundary sizes are distinct a.s.). From (15) and (18),
we have

Y(a,∞) =
∑
k∈K
Y(a,∞)

(ωk) =
∑
j∈N
Y(ωa,+j ).

Consequently, for every h > 0, we have

La+h =
∞∑
j=1

`a+h(ωa,+j ) , L̇a+h =
∞∑
j=1

˙̀a+h(ωa,+j ) . (22)

Note that there are only finitely many nonzero terms in the sums of the last display.
The next proposition will be a key ingredient of our approach. We can write the supremum of the

support of Y as R = sup{W ∗(ωk) : k ∈ K}. By (2), we have for any a ≥ 0, {La > 0} = {R > a}, a.s.

Proposition 9. Let a ≥ 0, let F be a nonnegative measurable function on the space C((−∞, a],R+×R),
and let G be a nonnegative measurable function on (Sa)N. Then,

E
[
1{R>a} F

(
(Lx, L̇x)x∈(−∞,a]

)
G
(
(ωa,+j )j∈N

)]
= E

[
F
(
(Lx, L̇x)x∈(−∞,a]

)
ΦG(La, 1

2 L̇
a)
]

where ΦG(0, y) = 0 for every y ∈ R, and, for every t > 0 and y ∈ R, ΦG(t, y) is defined as follows. Let
Ubr,t,y be a ψ-Lévy bridge from 0 to y in time t, and let (Zj)j∈N be the collection of jumps of Ubr,t,y

ordered in nonincreasing size. Then,

ΦG(t, y) = E
[
G
(
($j)j∈N

)]
,

where, conditionally on (Zj)j∈N, the random snake trajectories ($j)j∈N are independent, and, for every
j, $j is distributed according to N∗,Zja .

See [19, Section 6] for a proof of this proposition (cf. formula (38) in [19]). Proposition 9 is basically
a consequence of Theorem 8, but one needs to understand the conditional distribution of the boundary
sizes of excursions above level a given the collection of boundary sizes of excursions below a, see in
particular formula (24) in [19].

Thanks to formula (22), Proposition 9 immediately gives the (time-homogeneous) Markov property
of the process (Lx, L̇x)x≥0. Moreover, this proposition shows that, for every t > 0 and y ∈ R, the
conditional distribution of (ωa,+j )j∈N knowing La = t and 1

2 L̇
a = y is the law of the sequence ($j)j∈N,

as described in the statement. We emphasize that this conditional distribution makes sense for every
choice of t > 0 and y ∈ R. Later, when we consider expressions of the form

E
[
G
(
(ωa,+j )j∈N

) ∣∣∣La = t,
1
2 L̇

a = y
]
, (23)

this will always mean that we integrate G with respect to the conditional distribution described above.

4 Moment Bounds and Quadratic Variation
In this section, we use a representation due to Hong [10] to derive certain estimates for moments of the
derivatives L̇x introduced in the previous section. We consider the super-Brownian motion X with
X0 = αδ0, constructed as above, and write M for the associated martingale measure (see [24, Section
II.5]. For every function φ : R −→ R of class C2,

Mt(φ) := Xt(φ)−X0(φ)−
∫ t

0
Xs(φ′′/2) ds

is a (continuous) local martingale (with respect to the canonical filtration of X) with quadratic variation

〈M(φ),M(φ)〉t = 4
∫ t

0
Xs(φ2) ds. (24)
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There is a linear extension of the definition of the local martingale Mt(φ) to locally bounded Borel
functions φ and (24) remains valid (e.g., see Proposition II.5.4 and Corollary III.1.7 of [24]).

Let ξ := inf{t ≥ 0 : Xt = 0} stand for the (a.s. finite) extinction time of X and let x > 0. According
to [10, Proposition 2.2], we have a.s. for every t ≥ ξ,

L̇x = −α−Mt(sgn(x− ·)), (25)

where sgn(x−·) stands for the function y 7→ 1{x>y}−1{x<y}. With our convention for L̇0, this formula
remains valid for x = 0. We use this representation to derive the following lemma.

Lemma 10. (i) For every q ∈ [1, 4/3), for every x, y ∈ R,

E[|L̇x − L̇y|q] <∞.

(ii) Let q ∈ [1, 4/3). There exists a constant β > 0 such that, for every 0 < u < v,

E
[

sup
x,y∈[u,v],x 6=y

( |L̇x − L̇y|
|x− y|β

)q]
<∞. (26)

Proof. (i) We first verify that, for every x > 0 and every q ∈ (0, 2/3),

E
[( ∫ ∞

0
Xs([0, x]) ds

)q]
<∞. (27)

To see this, recall the well-known formula P(ξ > t) = 1− exp(− α
2t) (which is easily derived from the

representation of the preceding section), and write for every λ > 0 and r > 0,

P
((∫ ∞

0
Xs([0, x]) ds

)q
> λ

)
≤ P(ξ > λr) + P

( ∫ λr

0
Xs([0, x]) ds > λ1/q

)
≤ α

2λr + 1
λ1/q

∫ λr

0
E[Xs([0, x])] ds

= α

2λr + α

λ1/q

∫ λr

0
P(Bs ∈ [0, x]) ds

≤ α
(1

2 λ
−r + xλr/2−1/q

)
,

where we wrote (Bt)t≥0 for a linear Brownian motion started at 0, and we used the trivial bound
P(Bs ∈ [0, x]) ≤ x/

√
2πs. If we take r = 2/(3q), the right-hand side of the previous display becomes a

constant, depending on x, times λ−2/(3q), which is integrable in λ with respect to Lebesgue measure on
[1,∞) if 0 < q < 2/3. Our claim (27) follows.

Next let K > 0 and 0 ≤ x < y ≤ K. We observe thatMt(sgn(x−·))−Mt(sgn(y−·)) is a continuous
local martingale with quadratic variation

4
∫ t

0
Xs((sgn(x− ·)− sgn(y − ·))2) ds = 16

∫ t

0
Xs([x, y]) ds.

From (27) and the Burkholder-Davis-Gundy inequalities, we obtain that, for every q ∈ [1, 4/3),

E
[∣∣∣Mt(sgn(x− ·))−Mt(sgn(y − ·))

∣∣∣q] ≤ C(q,K),

where the constant C(q,K) only depends on K and q. Letting t tend to infinity and using (25) together
with Fatou’s lemma, we get that E[|L̇x − L̇y|q] ≤ C(q,K). By symmetry, we have for every x > 0,
E[|L̇−x − L̇0−|q] = E[|L̇x − L̇0|q] <∞, and, by (21), |L0 − L0−| = 2α. Assertion (i) follows.
(ii) We first observe that, for every δ > 0, there is a constant Cδ (depending on α) such that, for every
δ ≤ x ≤ y and every s > 0,

E[Xs([x, y])2] ≤ Cδ (y − x)2. (28)
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To see this first use the explicit formula

E[Xs([x, y])2] = α2
(∫ y

x
qs(u)du

)2

+ 4α
∫ s

0
dr
∫
R

du qr(u)
(∫ y

x
dv qs−r(v − u)

)2

,

where qs(u) is the Brownian transition density (see e.g. Proposition II.11 in [15]). To handle the
second term of the right-hand side, bound qs−r(v − u) by C/

√
s when r < s/2, and when r > s/2 use∫

du qs−r(v − u)qs−r(v′ − u) = q2(s−r)(v − v′). The bound (28) now follows from a short calculation.
To simplify notation, set L̂xt = −α−Mt(sgn(x−·)). From the Burkholder-Davis-Gundy inequalities

and the bound in (28), we get the existence of a constant C such that, for every δ ≤ x ≤ y,

E[(L̂yt − L̂xt )4] ≤ C E
[( ∫ t

0
Xs([x, y]) ds

)2]
≤ C tE

[ ∫ t

0
(Xs([x, y]))2 ds

]
≤ C Cδ t2(y − x)2.

Let a > 0 and λ > 0. For every n ∈ N, we can bound

P
(

sup
1≤k≤2n

|L̂1+k2−n
t − L̂1+(k−1)2−n

t | > λan
)
≤ 2n × (λan)−4 × C C1 t

22−2n = C C1 t
2λ−4a−4n2−n.

We fix a ∈ (0, 1) such that a−4 < 2. Consider the event

A :=
⋃
n∈N

{
sup

1≤k≤2n
|L̂1+k2−n
t − L̂1+(k−1)2−n

t | > λan
}
.

We get P(A) ≤ C̃ t2λ−4, where C̃ is a constant. Let D be the set of all real numbers of the form
1 +k2−n with n ∈ N and k ∈ {0, 1, . . . , 2n} On the complement of the set A, simple chaining arguments
show that we have |L̂xt − L̂

y
t | ≤ K λ |x− y|β for every x, y ∈ D, where β = − log a/ log 2 > 0 and K is

a constant (which does not depend on λ). Finally, since L̇y − L̇x = L̂yt − L̂xt on {ξ ≤ t}, we have

P
(

sup
x,y∈[1,2],x 6=y

|L̇x − L̇y|
|x− y|β

> K λ

)
= P

(
sup

x,y∈D,x6=y

|L̇x − L̇y|
|x− y|β

> K λ

)
≤ P(ξ > t)+C̃ t2λ−4 ≤ α

2t+C̃ t
2λ−4.

We apply this bound with t = λ4/3, and it follows that

E
[(

sup
x,y∈[1,2],x 6=y

( |L̇x − L̇y|
|x− y|β

)q]
<∞

for every q ∈ [1, 4/3). By a minor modification of the argument, the last display still holds if we replace
[1, 2] by any interval [u, v] with 0 < u < v.

The following proposition determines the quadratic variation of (L̇x)x≥0. We will see later that
this process is a semimartingale (for an appropriate filtration).

Proposition 11. Let x > 0, and, for every integer n ∈ N, let πn = {0 = xn0 < xn1 < · · · < xnmn = x}
be a subdivision of [0, x]. Set ‖πn‖ := max{xni − xni−1 : 1 ≤ i ≤ mn}, and

Q(πn) =
mn∑
i=1

(L̇xni − L̇x
n
i−1)2.

Assume that ‖πn‖ −→ 0 as n→∞. Then,

Q(πn) −→
n→∞

16
∫ x

0
Lx dx in probability.
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Proof. We use the same notation L̂xt = −α−Mt(sgn(x− ·)), for x ≥ 0 and t ≥ 0, as in the previous
proof, and we recall that L̇x = L̂xt when t ≥ ξ, by (25). If 0 ≤ x ≤ y, we have

L̂yt − L̂xt = −2Mt(1[x,y]).

Fix a subdivision π = {0 = x0 < x1 < · · · < xm = x} of [0, x]. We will use the last display to evaluate

Qt(π) :=
m∑
i=1

(L̂xit − L̂
xi−1
t )2.

For every i ∈ {1, . . . ,m}, set
M i
t := −2Mt(1[xi−1,xi])

so that M i is a local martingale with quadratic variation

〈M i,M i〉t = 16
∫ t

0
Xs([xi−1, xi]) ds.

Also set
N i
t := (M i

t )2 − 〈M i,M i〉t = 2
∫ t

0
M i
s dM i

s.

Then,

E
[(
Qt(π)− 16

∫ t

0
Xs([0, x]) ds

)2]
= E

[( m∑
i=1

(
(M i

t )2 − 〈M i,M i〉t
))2]

= E
[ m∑
i=1

(N i
t )2
]

+ 2
∑

1≤i<j≤m
E[N i

tN
j
t ]. (29)

On one hand, we have E[N i
tN

j
t ] = 0 if i 6= j, because

〈M i,M j〉t = 16
∫ t

0
Xs([xi−1, xi] ∩ [xj−1, xj ]) ds = 0

and N i
t is a stochastic integral with respect to M i Note that integrability issues are trivial here

because the random variables Xs(R), 0 ≤ s ≤ t, are uniformly bounded in Lp, for any p < ∞ (e.g.,
see Lemma III.3.6 of [24]). On the other hand, we can estimate E[(N i

t )2] as follows. Using the
Burkholder-Davis-Gundy inequalities and writing C1 and C2 for the appropriate constants, we have

E[(N i
t )2] ≤ 2

(
E[(M i

t )4] + E[(〈M i,M i〉t)2]
)

≤ C1 E[(〈M i,M i〉t)2]

= C2 E
[ ∫ t

0
ds
∫ t

s
drXs([xi−1, xi])Xr([xi−1, xi])

]
= C2

∫ t

0
ds
∫ t

s
drE

[
Xs([xi−1, xi])EXs [Xr−s([xi−1, xi])]

]
≤ C2

∫ t

0
ds
∫ t

s
dr xi − xi−1

2
√
r − s

E
[
Xs([xi−1, xi])Xs(R)

]
≤ C2 (xi − xi−1)

√
t

∫ t

0
dsE

[
Xs([xi−1, xi])Xs(R)

]
.

In the fourth line of this calculation, we applied the Markov property of X, writing Pµ for a probability
measure under which X starts from µ, and, in the next line, we used the first-moment formula for X.
By summing the estimate of the last display over i ∈ {1, . . . ,m}, we get

E
[ m∑
i=1

(N i
t )2
]
≤ C2 ‖π‖

√
t

∫ t

0
E[Xs(R)2] ds ≤ C2 ‖π‖

√
t (α2t+ 2αt2),
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using the simple estimate E[Xs(R)2] ≤ α2 + 4αs. Finally, we deduce from (29) that, for t ≥ 1,

E
[(
Qt(π)− 16

∫ t

0
Xs([0, x]) ds

)2]
≤ C3 t

5/2 ‖π‖.

We apply the latter estimate to π = πn for every n ≥ 1, and it follows that, for every t ≥ 1,

lim
n→∞

E
[(
Qt(πn)− 16

∫ t

0
Xs([0, x]) ds

)2]
= 0.

Since
P
(
Qt(πn) = Q(πn),

∫ t

0
Xs([0, x]) ds =

∫ ∞
0

Xs([0, x]) ds
)
≥ P(ξ ≤ t) −→

t→∞
1,

this immediately gives the convergence in probability

Q(πn) −→
n→∞

16
∫ ∞

0
Xs([0, x]) ds = 16

∫ x

0
Lx dx. �

5 The expected value of increments of the derivative of local time

5.1 The case of the positive excursion measure

Our goal in this section is to compute the quantities N∗,z( ˙̀a) for z > 0 and a > 0. We start with a
technical estimate.

Lemma 12. Let q ∈ [1, 4/3). Then, for every 0 < u < v, and n ∈ N,

sup
1/n≤z≤n

N∗,z0

((
sup
u≤x≤v

| ˙̀x|
)q)

<∞.

Proof. We will derive this result from Lemma 10, using the construction of the super-Brownian motion
(Xt)t≥0 in Section 3. Recall the definition of the exit measure process (X0

t )t≥0 in (19) and that it is a
ϕ-CSBP, where ϕ = 2ψ. By the Lamperti transformation [13], we can write X0 as a (continuous) time
change of a Lévy process with no negative jumps and Laplace exponent ϕ, started at α, up to its first
hitting time of 0. Up to enlarging the probability space, we may assume that this Lévy process (Ut)t≥0
is defined for all t ≥ 0 and we write T0 = inf{t ≥ 0 : Ut = 0}. Notice that the jumps of X0 are exactly
the jumps of U on the time interval [0, T0].

Let us fix 0 < u < v. Let b > 0, and let U (1) be the Lévy process that only records the jumps of U
of size greater than b,

U (1)
t :=

∑
s≤t

∆Us 1{∆Us>b}.

Also set U (0)
t := Ut − U (1)

t , so that U (0) and U (1) are two independent Lévy processes, with U (1)
0 = 0

and U (0)
0 = α. We can find a constant t1 > 0 such that the probability of the event A where U (1) has

exactly one jump during [0, t1] and U (0) does not hit 0 before t1 is positive. On the event A, let ∆0
be the unique jump of U (1) on the time interval [0, t1]. Then, conditionally on the event A, ∆0 is
distributed according to the probability measure (3b3/2/2) 1(b,∞)(z)z−5/2 dz. On the event A, let ω0 be
the excursion of X (above or below 0) associated with the jump ∆0. Here, recall the definition of these
excursions in Section 3, and the fact that they are in one-to-one correspondence with the jumps of
X0, or equivalently the jumps of U on [0, T0] (see especially (20) and the discussion prior to it). Also
let A′ be the event where all excursions of X above or below 0, except possibly the excursion ω0 (if
it is defined), stay in the interval (−1, u). On the event B = A ∩ A′, we have La = `a(ω0) for every
a /∈ (−1, u). Then, on one hand, it follows from Lemma 10 that

E
[
1B
(

sup
x∈[u,v]

|L̇x − L̇−1|
)q]

<∞. (30)
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On the other hand, the preceding remarks give

E
[
1B
(

sup
x∈[u,v]

|L̇x − L̇−1|
)q]

= E
[
1B
(

sup
x∈[u,v]

| ˙̀x(ω0)− ˙̀−1(ω0)|
)q]

= E
[
1A P(A′ | (Ut)0≤t≤T0)× E

[
1A
(

sup
x∈[u,v]

| ˙̀x(ω0)− ˙̀−1(ω0)|
)q ∣∣∣ (Ut)0≤t≤T0

]]
(31)

where we use the conditional independence of the excursions of X given (X0
t )t≥0 (equivalently, given

(Ut)0≤t≤T0) from (20). From Lemma 6, one easily verifies that

P(A′ | (Ut)0≤t≤T0) > 0 a.s.

Furthermore by (20),

E
[
1A
(

sup
x∈[u,v]

| ˙̀x(ω0)− ˙̀−1(ω0)|
)q ∣∣∣ (Ut)0≤t≤T0

]
= 1A

(
1
2N
∗,∆0

((
sup
x∈[u,v]

| ˙̀x|
)q)

+ 1
2 Ň
∗,∆0(| ˙̀−1(ω0)|q)

)
,

and, from (30) and (31), it follows that

1AN∗,∆0
((

sup
x∈[u,v]

| ˙̀x|
)q)

<∞ a.s.

Using the conditional distribution of ∆0 given A, we conclude that

N∗,z0

((
sup
x∈[u,v]

| ˙̀x|
)q)

<∞, for a.e. z > 0,

We have thus proved that, for a.e. z > 0,

N∗,z0

((
sup
x∈[u,v]

| ˙̀x|
)q)

<∞, for every 0 < u < v.

However, if the last display holds for one value of z > 0, the scaling in (12)(iii) shows that it must hold
for every z > 0 and in fact has a uniform bound for z ∈ [1/n, n].

Thanks to the above, the quantity N∗,z( ˙̀a) is well defined for every a > 0 and z > 0. It can in fact
be computed explicitly.

Proposition 13. For every z > 0 and a > 0, we have

N∗,z0 (`a) =
√

6π a−2 z5/2 χ( 3z
2a2 ) (32)

where, for every x > 0,

χ(x) = 2√
π

(x3/2 + x1/2)− 2x(x+ 3
2) ex erfc(

√
x),

with the notation erfc(y) = 2√
π

∫∞
y e−x

2dx. Moreover, for every z > 0 and a > 0,

N∗,z0 ( ˙̀a) = z γ
( 3z

2a2

)
(33)

where, for every u > 0,
γ(u) = −8

3
√
π u3/2

(
χ(u) + uχ′(u)

)
.

Remark. The function χ is positive on (0,∞) and its Laplace transform is
∫∞
0 χ(z) e−λz dz =

(1 +
√
λ)−3, cf. the appendix of [22].
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Proof. By [22, Proposition 3], we have, for every nonnegative Borel function f on [0,∞),

N∗,z0

(∫ ∞
0

f(a) `a da
)

= N∗,z0

(∫ σ

0
f(Ŵs) ds

)
=
∫ ∞

0
f(a)πz(a) da

where
πz(a) =

√
6π a−2 z5/2 χ( 3z

2a2 ),

and χ(·) is as in the statement. So, we have∫ ∞
0

f(a)N∗,z0 (`a) da =
∫ ∞

0
f(a)πz(a) da. (34)

It follows that N∗,z0 (`a) = πz(a) for a.e. a > 0, and Fatou’s lemma then gives N∗,z0 (`a) ≤ πz(a) <∞ for
every a > 0.

If a > 0 is fixed, we have N∗,z0 a.s.

1
b− a

∫ b

a

˙̀c dc = 1
b− a

(`b − `a) −→
b→a,b 6=a

˙̀a. (35)

From Lemma 12 and dominated convergence, we get that the convergence (35) holds in L1(N∗,z0 ).
Consequently,

1
b− a

(N∗,z0 (`b)− N∗,z0 (`a)) −→
b→a,b 6=a

N∗,z0 ( ˙̀a).

It follows that the function a 7→ N∗,z0 (`a) is differentiable on (0,∞), and

d
daN

∗,z
0 (`a) = N∗,z0 ( ˙̀a).

In particular, since a 7→ N∗,z0 (`a) is continuous on (0,∞), we deduce from (34) that N∗,z0 (`a) = πz(a)
for every a ∈ (0,∞), which give (32). Then

N∗,z0 ( ˙̀a) = d
daN

∗,z
0 (`a) =

√
6π
(
− 2a−3z5/2 χ( 3z

2a2 )− 3 a−5z7/2 χ′( 3z
2a2 )

)
,

and formula (33) follows.

We now record some asymptotics of the function γ(u) introduced in the proposition, which will be
useful in the next sections. We first note that

χ′(x) = 2√
π

(
x3/2 + 3x1/2 + 1

2x
−1/2

)
+
(
− 2x2 − 7x− 3

)
exerfc(

√
x), (36)

and, for every integer N ≥ 0,

exerfc(
√
x) = 1√

π

N∑
n=0

(−1)n 1× 3× · · · × (2n− 1)
2n x−n−1/2 +O(x−N−3/2),

as x→∞. By simple calculations it follows that, as x→∞,

χ(x) = 1√
π

(3
2x
−3/2 − 15

2 x
−5/2 +O(x−7/2)

)
(37)

and
χ′(x) = 1√

π

(
− 9

4x
−5/2 + 75

4 x
−7/2 +O(x−9/2)

)
. (38)

Consequently,
γ(x) = 2− 30

x
+O(x−2) as x→∞, (39)
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and so by (33), N∗,z0 ( ˙̀a) = 2z +O(a2) as a→ 0. Moreover, from the formulas for χ and χ′, one has

γ(x) = −8x2 + o(x2) as x→ 0, (40)

and therefore N∗,z0 ( ˙̀a) = −18a−4 z3 + o(z3) as z → 0.
We can also estimate

γ′(x) = 3
2
γ(x)
x

+ (−8
3
√
π)x3/2(2χ′(x) + xχ′′(x)) = 15

x
+ (−8

3
√
π)x5/2χ′′(x) +O(x−2), (41)

as x→∞. Noting that

χ′′(x) = 2√
π

(
x3/2 + 5x1/2 + 3x−1/2 − 1

4x
−3/2

)
+
(
− 2x2 − 11x− 10

)
exerfc(

√
x),

we can verify that
x5/2χ′′(x) = 1√

π

45
8x +O(x−2)

and consequently γ′(x) = O(x−2) as x→∞. From the first equality in (41), (36), the above expression
for χ′′, and (40), one gets that γ′(x) = −16x + o(x) when x → 0. It follows from the preceding
estimates for γ′ that if γ′(0) := 0, then

γ′ is continuous on [0,∞), (42)

and ∫ ∞
0
|γ′(x)|(1 ∨ x−1) dx <∞. (43)

5.2 The derivative of local times of super-Brownian motion

We now consider the super-Brownian motion X started at X0 = α δ0 constructed as in Section 3, and
its local times (La)a∈R. We fix a ≥ 0 and h > 0. Let Θa denote the law of the pair (La, 1

2 L̇
a) under

P(· ∩ {La > 0}). Our goal is to compute the conditional expectation

E
[
L̇a+h

∣∣∣La = t,
1
2 L̇

a = y
]

for t > 0 and y ∈ R. Recall that we will interpret this conditional expectation as in (23), using (22).
Therefore we can unambiguously make assertions for all h > 0 simultaneously.

Proposition 14. Let a ≥ 0. Then, for Θa-almost every (t, y), for every h > 0, we have

E[|L̇a+h| |La = t,
1
2 L̇

a = y] <∞

and
E
[
L̇a+h

∣∣∣La = t,
1
2 L̇

a = y
]

= E
[ ∞∑
j=1

Zj γ
(3Zj

2h2

)]
, (44)

where (Zj)j≥1 is the sequence of jumps of the ψ-Lévy bridge Ubr,t,y, listed in decreasing order, and

E
[ ∞∑
j=1

Zj
∣∣∣γ(3Zj

2h2

)∣∣∣] <∞, for every h > 0. (45)

Proof. From the asymptotics derived at the end of Section 5.1, we have |γ(z)| ≤ C(1 ∧ z2) for some
constant C. Hence, using the absolute continuity relation (17), we claim it is easy to verify (45), so that
the right-hand side of (44) makes sense. To see this, write the sum inside the expectation in (45) as
S1 + S2, where S1 corresponds to the contribution from jumps occurring in [0, t/2] and S2 corresponds
to those which occurred in [t/2, t]. Apply (17) to show that E[S1] <∞, and its counterpart for the
time-reversed process (y − Ubr,t,y

(t−s)−)0≤s≤t/2 to show E[S2] <∞.
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Let h > 0. By Lemma 10 (i), E[|L̇a+h − L̇a|] <∞, and therefore we have

E[|L̇a+h| | La = t,
1
2 L̇

a = y] <∞, for Θa-a.e. (t, y). (46)

By the convention noted before the Proposition, the quantity E[|L̇a+h| | La = t, 1
2 L̇

a = y] is well defined
simultaneously for every choice of t > 0, y ∈ R, and h > 0. Lemma 10 (ii) shows that (46) holds
simultaneously for every h > 0, for Θa-a.e. (t, y), giving the first required result. In what follows,
we fix t > 0 and y ∈ R such that (46) holds for every h > 0.

Recall the notation introduced before Proposition 9. By (22), we have

L̇a+h =
∑
j∈N

˙̀a+h(ωa,+j ). (47)

where the sum involves only a finite number of nonzero terms. We know from Proposition 9 that
the conditional distribution of (ωa,+j )j∈N knowing La = t and 1

2 L̇
a = y, is the law of ($j)j∈N, where,

conditionally on the (ordered) sequence (Zj)j∈N of jumps of a ψ-Lévy bridge Ubr,t,y, the snake
trajectories $j are independent and $j is distributed according to N∗,Zja . Therefore, (47) gives

E
[
L̇a+h

∣∣∣La = t,
1
2 L̇

a = y
]

= E
[ ∞∑
j=1

˙̀a+h($j)
]
,

where ($j)j∈N and (Zj)j∈N are as described above. Note that the (a.s. finite) sum
∑∞
j=1

˙̀a+h($j) is an
integrable random variable, as a consequence of (46) and (47). To get (44) it then suffices to show that

E
[ ∞∑
j=1

˙̀a+h($j)
]

= E
[ ∞∑
j=1

Zj γ
(3Zj

2h2

)]
. (48)

For every integer n ≥ 1, set Nn := max{j ∈ N : Zj ≥ 1/n}, with the convention max∅ = 0. Let
Hn stand for the event where Zj ≤ n for every j ∈ N, and W ∗($j) < a+ h for every j > Nn. Then,

E
[
1Hn

Nn∑
j=1
| ˙̀a+h($j)|

]
= E

[
E
[
1Hn

Nn∑
j=1
| ˙̀a+h($j)|

∣∣∣ (Zj)j∈N]] ≤ E
[
1{Zj≤n,∀j∈N}

Nn∑
j=1

N∗,Zja (| ˙̀a+h|)
]
<∞

because we know that N∗,za (| ˙̀a+h|) is bounded by a constant if 1/n ≤ z ≤ n (Lemma 12), and it is easy
to verify that E[Nn |La = t, L̇a = y] < ∞. For the latter we again may use the absolute continuity
of the law of the Lévy bridge Ubr,t,y with respect to the law of the Lévy process U in (17), and the
analogue for the time-reversed processes, to count the jumps occurring in [0, t/2] and [t/2, t] separately.
The preceding display allows us to interchange sum and expected value in the following calculation,

E
[
1Hn

Nn∑
j=1

˙̀a+h($j)
]

=
∞∑
j=1

E
[
1Hn1{j≤Nn} ˙̀a+h($j)

]
=
∞∑
j=1

E
[
1Hn1{j≤Nn}N

∗,Zj
a ( ˙̀a+h)

]

=
∞∑
j=1

E
[
1Hn1{j≤Nn} Zjγ

(3Zj
2h2

)]
,

where (33) is used in the last. In the second equality, we also use the conditional independence of the
excursions $j given their boundary sizes Zj . The left-hand side of the last display is equal to

E
[
1Hn

∞∑
j=1

˙̀a+h($j)
]
−→
n→∞

E
[ ∞∑
j=1

˙̀a+h($j)
]

by dominated convergence (recall that the variable
∑∞
j=1

˙̀a+h($j) is integrable). On the other hand,
the right-hand side is

E
[
1Hn

Nn∑
j=1

Zjγ
(3Zj

2h2

)]
−→
n→∞

E
[ ∞∑
j=1

Zjγ
(3Zj

2h2

)]
by dominated convergence again, using (45). This completes the proof of (48), and hence of the
proposition.
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Remark. The preceding proof would be much shorter if one could verify that E
[∑∞

j=1 | ˙̀a+h($j)|
]
<∞.

However, this does not seem to follow from our estimates.
Recall the notation pt(y) for the density at time t of the Lévy process U in Section 2.5. To simplify

notation, we also set c1 :=
√

3/8π, so that the Lévy measure of U is 1
2n(dz) = c1z

−5/2 1(0,∞)(z) dz.
For h, t > 0 and y ∈ R, we introduce

gh(t, y) = 1
h

c1t

pt(y)

∫ ∞
0

(
pt(y)− pt(y − h2z)

)(
2− γ

(3z
2
)) dz

z3/2 , (49)

and set gh(0, y) = 0. The boundedness of pt, |p′t| and |γ| (the latter from (39) and (40)), and the Mean
Value Theorem, show that the above integrand is integrable on [0,∞).

Proposition 15. Let a ≥ 0. For Θa-almost every (t, y) ∈ (0,∞)× R, we have, for every h > 0,

E
[
L̇a+h − L̇a

∣∣∣La = t,
1
2 L̇

a = y
]

= gh(t, y),

and
lim
h→0

1
h
E
[
L̇a+h − L̇a

∣∣∣La = t,
1
2 L̇

a = y
]

= 8 t p
′
t(y)
pt(y) .

Proof. From now on we fix t > 0 and y ∈ R such that (44) holds for every h > 0, and we let the
sequence (Zj)j∈N be as in Proposition 14. The first statement of Proposition 15 will follow from the
computation of

E
[∑
j∈N

Zj γ
(3Zj

2h2

)]
.

We consider the Lévy process U with Laplace exponent ψ described in the Introduction and Section 2.5.
Write (Yj)j∈N for the collection of jumps of U over [0, t] (ranked in decreasing size), so that we have

E
[∑
j∈N

Zj γ
(3Zj

2h2

)]
= E

[∑
j∈N

Yj γ
(3Yj

2h2

) ∣∣∣Ut = y
]
. (50)

(Recall that, when we write E[· | Ut = y], this means that we integrate with respect to the law of the
ψ-Lévy bridge from 0 to y in time t.) We will first compute, for every ε > 0,

E
[∑
j∈N

Yj 1{Yj>ε}
∣∣∣Ut = y

]
.

To this end, we evaluate, for every u ∈ R,

E
[(∑

j∈N
Yj 1{Yj>ε}

)
eiuUt

]
.

Set
Rε =

∑
j∈N

Yj 1{Yj>ε} − 2 c1 t ε
−1/2 − Ut.

The facts that E[|Ut|] <∞ and E[
∑
j∈N Yj 1{Yj>ε}] = t

2
∫∞
ε xn(dx) <∞ imply

E[|Rε|] <∞. (51)

Recall that E[eiuUt ] = e−tΨ(u), where Ψ(u) = c0|u|3/2 (1 + i sgn(u)), with c0 = 1/
√

3. Then

E[Rε eiuUt ] = E
[(∑

j∈N
Yj 1{Yj>ε}

)
eiuUt

]
− 2 c1 t ε

−1/2 e−tΨ(u) − i tΨ′(u) e−tΨ(u), (52)

because
E[Ut eiuUt ] = −i d

duE[eiuUt ] = i tΨ′(u) e−tΨ(u).

21



By a classical formula for Poisson measures (Mecke’s formula, cf. Theorem 4.1 in [14]), we have

E
[(∑

j∈N
Yj 1{Yj>ε}

)
eiuUt

]
= c1t

∫ ∞
ε

eiuz dz
z3/2 × e

−tΨ(u).

Now note that ∫ ∞
ε

eiuz dz
z3/2 = 2 ε−1/2 −

∫ ∞
ε

(1− eiuz) dz
z3/2 ,

and

−
∫ ∞
ε

(1− eiuz) dz
z3/2 = −

∫ ∞
0

(1− eiuz) dz
z3/2 +

∫ ε

0
(1− eiuz) dz

z3/2

= −
√

2π(1− i sgn(u)) |u|1/2 +
∫ ε

0
(1− eiuz) dz

z3/2 .

On the other hand, since Ψ′(u) = 3
2c0|u|1/2(1 + i sgn(u))× sgn(u) = 3

2c0|u|1/2(i + sgn(u)), we have

i tΨ′(u) = 3
2c0 t|u|1/2(−1 + i sgn(u)) = −c1 t

√
2π|u|1/2 (1− i sgn(u)).

By substituting the preceding calculations in (52), we get after simplifications

E[Rε eiuUt ] = c1 t
( ∫ ε

0
(1− eiuz) dz

z3/2

)
e−tΨ(u). (53)

Let ϕε(x) = E[Rε | Ut = x] for x ∈ R. Use (51) to see that∫
R
|ϕε(x)| pt(x) dx ≤

∫
R
E[|Rε| |Ut = x] pt(x) dx = E[|Rε|] <∞. (54)

We have
E[RεeiuUt ] = E[E[Rε | Ut] eiuUt ] =

∫
R
ϕε(x) pt(x) eiux dx. (55)

On the other hand, for 0 < δ < ε, we can write

e−tΨ(u)
∫ ε

δ
eiuz dz

z3/2 =
∫ ε

δ

( ∫
R
pt(x) eiux dx

)
eiuz dz

z3/2 =
∫ ε

δ

( ∫
R
pt(x− z) eiux dx

) dz
z3/2 ,

and

e−tΨ(u)
∫ ε

δ
(1−eiuz) dz

z3/2 =
∫ ε

δ

( ∫
R

(pt(x)−pt(x−z))eiux dx
) dz
z3/2 =

∫
R

( ∫ ε

δ
(pt(x)−pt(x−z))

dz
z3/2

)
eiuxdx.

The last display remains valid for δ = 0 as we now show. By dominated convergence to justify the
passage to the limit δ → 0, it suffices to show∫

R

( ∫ ε

0
|pt(x)− pt(x− z)|

dz
z3/2

)
dx <∞. (56)

For this, use the fact that x 7→ pt(x) is unimodal (see Section 2.5) to observe that for K large, for
x ≥ K, and 0 ≤ z ≤ ε, one has |pt(x)− pt(x− z)| = pt(x− z)− pt(x) and thus∫

[K,∞)

( ∫ ε

0
|pt(x)− pt(x− z)|

dz
z3/2

)
dx =

∫ ε

0

( ∫
[K−z,K]

pt(x) dx
) dz
z3/2 <∞

because pt is bounded, argue similarly for x ≤ −K, and use the bound |pt(x)− pt(x− z)| ≤ Cz when
−K ≤ x ≤ K, where C is a bound for |p′t|. So we have shown (56), and therefore,

e−tΨ(u)
∫ ε

0
(1− eiuz) dz

z3/2 =
∫
R

( ∫ ε

0
(pt(x)− pt(x− z))

dz
z3/2

)
eiux dx. (57)
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From (55),(53), and then (57), we get∫
R
ϕε(x) pt(x) eiux dx = c1 t

∫
R

( ∫ ε

0
(pt(x)− pt(x− z))

dz
z3/2

)
eiux dx. (58)

Observe that both functions x 7→ pt(x)ϕε(x) and

x 7→
∫ ε

0
(pt(x)− pt(x− z))

dz
z3/2

are integrable with respect to Lebesgue measure and continuous. For the second function, we use (56)
for integrability, and for continuity we apply the dominated convergence theorem (with the bound
|pt(x)− pt(x− z)| ≤ C z). For the first one, we use (54) for integrability, but we have to check that ϕε
is continuous. This is however easy thanks to the the absolute continuity relation between the Lévy
bridge and the Lévy process. In fact, write tj for the time at which the jump Yj occurs. Then, we
have from (17) that

E
[ ∑
j∈N,tj∈[0,t/2]

Yj1{Yj>ε}

∣∣∣∣∣Ut = x

]
= E

[( ∑
j∈N,tj∈[0,t/2]

Yj1{Yj>ε}

)
pt/2(x− Ut/2)

pt(x)

]
,

where the right-hand side is clearly a continuous function of x. A time-reversal argument shows the
same conclusion if we instead take tj ∈ [t/2, t], and the desired continuity property of ϕε follows.

From (58) and the above regularity, we conclude that, for every x ∈ R,

ϕε(x) = c1 t
1

pt(x)

∫ ε

0
(pt(x)− pt(x− z))

dz
z3/2 .

Therefore, from the definition of Rε we have

E
[∑
j∈N

Yj 1{Yj>ε}
∣∣∣Ut = y

]
= y + 2 c1 t ε

−1/2 + c1 t
1

pt(y)

∫ ε

0
(pt(y)− pt(y − z))

dz
z3/2 . (59)

The facts that limx→0 γ(x) = 0 and γ′ is continuous on [0,∞) (i.e., (40) and (42)) imply

∑
j∈N

Yj γ
(3Yj

2h2

)
=
∑
j∈N

Yj

∫ 3Yj
2h2

0
γ′(u) du =

∫ ∞
0

(∑
j∈N

Yj 1{Yj>2h2u/3}
)
γ′(u) du,

where the interchange between summation and integration holds by the bound |γ′(u)| ≤ C u and the
fact that P(

∑
j∈N Y

2
j <∞|Ut = y) = 1. (The latter again holds for our fixed value of y by the usual

Radon-Nikodym argument.) From the last display, we get

E
[∑
j∈N

Yj γ
(3Yj

2h2

) ∣∣∣Ut = y
]

=
∫ ∞

0
E
[∑
j∈N

Yj 1{Yj>2h2u/3}

∣∣∣Ut = y
]
γ′(u) du, (60)

where now the interchange between expectation and Lebesgue integration is justified by the fact that∫ ∞
0

E
[∑
j∈N

Yj 1{Yj>2h2u/3}

∣∣∣Ut = y
]
|γ′(u)|du <∞.

This holds thanks to (59), the fact that
∫∞

0 |γ′(u)| (1 ∨ u−1/2) du <∞ (by (43)), and∫ ∞
0
|pt(y)− pt(y − z)| z−3/2 dz <∞, (61)

where the last follows from the boundedness of |p′t|. It follows from (60) and (59) that

E
[∑
j∈N

Yj γ
(3Yj

2h2

) ∣∣∣Ut = y
]

= 2y + c1t

pt(y)

∫ ∞
0

(∫ 2h2u/3

0
(pt(y)− pt(y − z))

dz
z3/2

)
γ′(u)du, (62)
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where we used the equalities ∫ ∞
0

γ′(u) du = lim
K→∞

(γ(K)− γ(1/K)) = 2

(by (39) and (40)), and ∫ ∞
0

γ′(u)√
u

du = 0.

To get the last equality, first note that

γ′(u)√
u

= −8
3
√
π
(3

2(χ(u) + uχ′(u)) + u(2χ′(u) + uχ′′(u))
)

= −8
3
√
π

d
du
(3

2uχ(u) + u2χ′(u)
)
,

and then apply the asymptotics for χ and χ′ from Section 5.1, namely (37) and (38). Finally, by
γ(K)→ 2 as K →∞ (by (39) again), we have

∫ ∞
0

(∫ 2h2u/3

0
(pt(y)− pt(y − z))

dz
z3/2

)
γ′(u)du =

∫ ∞
0

(pt(y)− pt(y − z))
(
2− γ

( 3z
2h2

)) dz
z3/2 .

(The interchange of integrals is justified by (61) and (43).) Insert this into the right-hand side of (62),
and then recall (44) and (50), to obtain the explicit formula

E[L̇a+h − L̇a | La = t,
1
2 L̇

a = y] = c1t

pt(y)

∫ ∞
0

(pt(y)− pt(y − z))
(
2− γ

( 3z
2h2

)) dz
z3/2

= 1
h

c1t

pt(y)

∫ ∞
0

(pt(y)− pt(y − h2z))
(
2− γ

(3z
2
)) dz

z3/2 .

This gives the first part of the proposition. The second part is then immediate from the following
elementary lemma.

Recall the definition of the function g in Theorem 1.

Lemma 16. There is a function δ(h)→ 0 as h→ 0, so that for any K ∈ N and some constant C(K),

sup
K−1≤t≤K,|y|≤K

∣∣∣1
h
gh(t, y)− g(t, y)

∣∣∣ ≤ C(K)δ(h).

Proof. Note that

1
h
gh(t, y) = c1t

pt(y)

∫ ∞
0

pt(y)− pt(y − h2z)
h2z

(
2− γ

(3z
2
)) dz√

z
, (63)

while (39) and (40) imply that ∫ ∞
0
|2− γ

(3z
2
)
| dz√

z
<∞. (64)

A tedious but straightforward calculation, left for the reader, gives

c1

∫ ∞
0

(
2− γ

(3z
2
)) dz√

z
= 8.

Using the above in (63), we conclude that

∣∣∣1
h
gh(t, y)− g(t, y)

∣∣∣ ≤ c1t

pt(y)

∫ ∞
0

∣∣∣pt(y)− pt(y − h2z)
h2z

− p′t(y)
∣∣∣ |2− γ(3z

2
)
| dz√

z
. (65)

The mean value theorem implies that

∣∣∣pt(y)− pt(y − h2z)
h2z

− p′t(y)
∣∣∣ ≤ (‖p′′t ‖∞h2z) ∧ (2‖p′t‖∞).
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The boundedness of |p′1| and |p′′1| (Section 2 of [26]) and scaling imply that ‖p′t‖∞ ≤ ct−4/3 and
‖p′′t ‖∞ ≤ ct−2. Moreover, pt(y) is bounded below by a positive constant (depending on K) when
1/K ≤ t ≤ K and |y| ≤ K. Now use the above bounds in (65) to bound the right-hand side of (65),
and hence also the left-hand side, for |y| ≤ K and 1/K ≤ t ≤ K by

C(K)
∫ ∞

0
((h2z) ∧ 1)|2− γ

(3z
2
)
| dz√

z
.

To complete the proof, define δ(h) to be the above integral and use (64) to see that δ(h)→ 0 as h→ 0
by dominated convergence.

6 A stochastic differential equation
In this section, we derive the stochastic differential equation satisfied by the process (Lx, L̇x)x≥0. Recall
that for every t > 0 and y ∈ R,

g(t, y) := 8 t p
′
t(y)
pt(y) ,

and g(0, y) = 0 for every y ∈ R. Recall also the notation R for the supremum of the support of Y. By
(2), we have R = inf{x ≥ 0 : Lx = 0}.

Lemma 17. We have
∫ R

0
|g(Lx, 1

2 L̇
x)|1{g(Lx, 1

2 L̇
x)<0} dx <∞ a.s.

Proof. By scaling, we have, for every t > 0 and y ∈ R,

g(t, y) = 8 t p
′
t(y)
pt(y) = 8 t1/3 p

′
1(yt−2/3)
p1(yt−2/3)

. (66)

The unimodality of the function p1 (Theorem 2.7.5 of [26]) shows there is a constant y0 ∈ R such that
p′1(y) ≥ 0 for every y ≤ y0. Recall from (5) that |p′1(y)/p1(y)| is bounded above by a constant C when
y ≥ y0. Hence, if g(t, y) < 0 (forcing p′1(yt−2/3) < 0 and thus yt−2/3 > y0), we obtain from the above
that |g(t, y)| ≤ 8C t1/3. Finally, we get∫ R

0
|g(Lx, 1

2 L̇
x)|1{g(Lx, 1

2 L̇
x)<0} dx ≤

∫ R

0
8C (Lx)1/3 dx <∞ a.s.,

which completes the proof.

We now turn to the proof of our main result.

Proof of Theorem 1. Let n ∈ N. By Proposition 15 (and the known Markov property of (Lx, L̇x)x≥0),
we have for every u ≥ 0,

E[ L̇u+ 1
n − L̇u | (Lr, L̇r)r≤u] = E[ L̇u+ 1

n − L̇u | Lu, L̇u] = g1/n(Lu, 1
2 L̇

u) a.s. (67)

Note that the equality of the last display is trivial on the event {Lu = 0} = {u ≥ R}.
For every real K > 1, set

TK := inf{x ≥ 0 : Lx ∨ |L̇x| ≥ K or Lx ≤ 1/K}, (68)

and for every real a ≥ 0, let [a]n be the largest number of the form j/n, j ∈ Z, smaller than or equal
to a. Fix 0 < s < t, and let f be a bounded continuous function on [0,∞)× R. We evaluate

RKn (s, t) := E
[(
L̇[t]n∧TK−L̇[s]n∧TK−

n[t]n−n[s]n−1∑
j=0

1{[s]n+ j
n
<TK}g1/n

(
L[s]n+j/n,

1
2 L̇

[s]n+j/n)
))
f(L[s]n , L̇[s]n)

]
,
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where g1/n is defined in (49). To this end, we observe that

L̇[t]n∧TK − L̇[s]n∧TK =
n[t]n−n[s]n−1∑

j=0
1{[s]n+ j

n
<TK}

(
L̇[s]n+ j+1

n − L̇[s]n+ j
n

)
−1{[s]n≤TK<[t]n}

(
L̇[s]n+ jn

n − L̇TK
)

(69)
where jn = inf{j ∈ Z+ : [s]n + j

n ≥ TK}. Note that, on the event {[s]n ≤ TK < [t]n}, we have
0 ≤ [s]n + jn

n − TK ≤
1
n .

Thanks to (69), we can rewrite the definition of RKn (s, t) in the form

RKn (s, t) =
n[t]n−n[s]n−1∑

j=0
E
[
1{[s]n+ j

n
<TK}

(
L̇[s]n+ j+1

n − L̇[s]n+ j
n − g1/n

(
L[s]n+j/n,

1
2 L̇

[s]n+j/n
))
f(L[s]n , L̇[s]n)

]
− E

[
1{[s]n≤TK<[t]n}

(
L̇[s]n+ jn

n − L̇TK
)
f(L[s]n , L̇[s]n)

]
. (70)

For every 0 ≤ j ≤ n[t]n − n[s]n − 1, (67) gives

E
[
L̇[s]n+ j+1

n − L̇[s]n+ j
n

∣∣∣ (Lr, L̇r)r≤[s]n+ j
n

]
= g1/n

(
L[s]n+ j

n ,
1
2 L̇

[s]n+ j
n

)
,

so that

E
[(
L̇[s]n+ j+1

n − L̇[s]n+ j
n − g1/n

(
L[s]n+ j

n ,
1
2 L̇

[s]n+ j
n

))
× 1{[s]n+ j

n
<TK}f(L[s]n , L̇[s]n)

]
= 0,

and thus, by (70),

RKn (s, t) = −E
[
1{[s]n≤TK<[t]n}

(
L̇[s]n+ jn

n − L̇TK
)
f(L[s]n , L̇[s]n)

]
.

By Lemma 10(ii), we have

E
[

sup
s/2≤x<y≤t+1

( |L̇y − L̇x|
|y − x|β

)]
<∞

where β > 0. Provided that n is sufficiently large so that [s]n > s/2, we thus get

|RKn (s, t)| ≤ C n−β, (71)

where C is a constant. When n→∞, we have

(L̇[t]n∧TK , L̇[s]n∧TK ) a.s.−→ (L̇t∧TK , L̇s∧TK ), (72)

and we claim that

n[t]n−n[s]n−1∑
j=0

1{[s]n+ j
n
<TK}g1/n

(
L[s]n+j/n,

1
2 L̇

[s]n+j/n
) a.s.−→

∫ t∧TK

s∧TK
g
(
Lu,

1
2 L̇

u
)

du. (73)

To justify (73), note that

n[t]n−n[s]n−1∑
j=0

1{[s]n+ j
n
<TK}g1/n(L[s]n+j/n,

1
2 L̇

[s]n+j/n) =
∫ [t]n

[s]n
n g1/n(L[r]n ,

1
2 L̇

[r]n) 1{[r]n<TK} dr.

Lemma 16 implies that

lim
n→∞

sup
r<TK

|ng1/n(L[r]n ,
1
2 L̇

[r]n)− g(Lr, 1
2 L̇

r)| = 0,

and (73) now follows.
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It follows from (71), (72), (73) and the definition of RKn (s, t) (justification is simple because stopping
at time TK makes the dominated convergence theorem easy to apply) that

E
[(
L̇t∧TK − L̇s∧TK −

∫ t∧TK

s∧TK
g(Lu, 1

2 L̇
u) du

)
f(Ls, L̇s)

]
= 0.

We have assumed that s > 0, but clearly we can pass to the limit s ↓ 0 to derive the last display for
s = 0. Hence,

L̇t∧TK − L̇0 −
∫ t∧TK

0
g(Lu, 1

2 L̇
u) du

is a martingale with respect to the filtration F◦t := σ
(
(Lr, L̇t)r≤t

)
.

For ε ∈ (0, 1), set Sε = inf{r ≥ 0 : Lr ≤ ε}. We get that

M ε
t := L̇t∧Sε − L̇0 −

∫ t∧Sε

0
g(Lu, 1

2 L̇
u) du

is a local martingale (note that, if RK := inf{x ≥ 0 : Lx ∨ |L̇x| ≥ K}, M ε
t∧RK is a martingale, and

RK ↑ ∞ as K ↑ ∞).
We next claim the quadratic variation of M ε is

〈M ε,M ε〉t = 16
∫ t∧Sε

0
Lr dr. (74)

To derive this from Proposition 11, first fix t > 0 and let πn = {0 = tn0 < tn1 < · · · < tnmn = t} be a
sequence of subdivisions of [0, t] such that ‖πn‖ = max1≤i≤mn(tni − tni−1) → 0 as n → ∞. If X is a
stochastic process let Q(πn, X) =

∑mn
i=1(X(tni ) −X(tni−1))2. Then, taking limits in probability with

respect to P(·|Sε ≥ t) we have,

〈M ε,M ε〉t = lim
n→∞

Q(πn,M ε) = lim
n→∞

Q(πn, L̇) = 16
∫ t

0
Lr dr,

where we use Proposition 11 in the last equality, and the fact that t ≤ Sε in the second equality. This
shows that 〈M ε,M ε〉t = 16

∫ t∧Sε
0 Lr dr a.s. on {t ≤ Sε} (this conclusion is trivial if this latter set is

null, so the implicit assumption above that it is not null is justified). By taking left limits through
rational values, it follows that

〈M ε,M ε〉t = 16
∫ t∧Sε

0
Lr dr for every t ≤ Sε a.s.

Since 〈M ε,M ε〉t is constant for t ≥ Sε, (74) follows.
If we set

B̃ε
t =

∫ t

0

1
4
√
Lr

dM ε
r

then B̃ε is a local martingale with quadratic variation

〈B̃ε, B̃ε〉t = t ∧ Sε. (75)

In particular, B̃ε is a (true) martingale. Up to enlarging the probability space, we can find a linear
Brownian motion B′ with B′0 = 0, which is independent of X, and thus also of (Lx, L̇x)x∈R. We
introduce the (completion of the) filtration Ft := F◦t ∨ σ(B′r : 0 ≤ r ≤ t), so that B̃ε remains a
martingale in this filtration. If we set

Bε
t = B̃ε

t +
∫ t

t∧Sε
dB′s

then one immediately verifies that Bε is a martingale of (Ft)t≥0 and

〈Bε, Bε〉t = t.
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Therefore Bε is a linear Brownian motion.
Next, suppose that 0 < ε′ < ε < 1. By construction, we have B̃ε

t = B̃ε′
t∧Sε . We can deduce from

this that B̃ε
Sε

converges in probability when ε→ 0. Indeed, for every t > 0,

E[(B̃ε
Sε∧t − B̃

ε′
Sε′∧t)

2] = E[(B̃ε′
Sε∧t − B̃

ε′
Sε′∧t)

2] = E[Sε ∧ t− Sε′ ∧ t] −→
ε,ε′→0,ε′<ε

0,

since we know that Sε ↑ R as ε ↓ 0. Let Γ stand for the limit in probability of B̃ε
Sε

when ε→ 0.
Define a process B̃0 by setting B̃0

t = B̃ε
t on the event {t < Sε} (note this does not depend on the

choice of ε) and B̃0
t = Γ on the event {t ≥ R}. Finally set

Bt := B̃0
t∧R +

∫ t

t∧R
dB′s.

Then, it is straightforward to verify that Bε
t converges in probability to Bt when ε→ 0, for every t ≥ 0

(on the event {t ≥ R} use the convergence in probability of B̃ε
Sε

to Γ = B̃0
R). The process (Bt)t≥0 has

right-continuous sample paths and the same finite-dimensional marginals as a linear Brownian motion,
hence (Bt)t≥0 is a linear Brownian motion. More precisely, it is not hard to verify that (Bt)t≥0 is an
(Ft)-Brownian motion.

Next note that
M ε
t = 4

∫ t∧Sε

0

√
Ls dB̃ε

s = 4
∫ t∧Sε

0

√
Ls dBs,

since B̃ε
·∧Sε = Bε

·∧Sε = B·∧Sε . Therefore, we get

L̇t∧Sε = L̇0 + 4
∫ t∧Sε

0

√
Ls dBs +

∫ t∧Sε

0
g(Ls, 1

2 L̇
s) ds. (76)

When ε→ 0, L̇t∧Sε converges to L̇t∧R and
∫ t∧Sε

0
√
Ls dBs converges to

∫ t∧R
0
√
Ls dBs in probability. It

follows that
∫ t∧Sε

0 g(Ls, 1
2 L̇

s) ds also converges in probability to a finite random variable. By Lemma
17, this is only possible if ∫ t∧R

0
g(Ls, 1

2 L̇
s) 1{g(Ls, 1

2 L̇
s)>0} ds <∞ a.s.,

and therefore by the same lemma,∫ t∧R

0
|g(Ls, 1

2 L̇
s)|ds <∞ a.s.,

which by (2) gives the first assertion in Theorem 1. We may now let ε→ 0 in (76), to conclude that

L̇t∧R = L̇0 + 4
∫ t∧R

0

√
Ls dBs +

∫ t∧R

0
g(Ls, 1

2 L̇
s) ds.

Since Ls = L̇s = 0 when s > R by (2), this implies the stochastic differential equation (1).
It remains to establish the pathwise uniqueness claim. Let (Xx, Y x) be any solution to (1) such

that (X0, Y 0) = (L0, L̇0) and (Xx, Y x) = (XR′ , Y R′) for all x > R′ = inf{x ≥ 0 : Xx = 0}. The
smoothness of pt(y) in (t, y) ∈ (0,∞) × R and strict positivity of pt(y) for t > 0 show that g(t, y)
is Lipschitz on [1/K,K] × [−K,K], as is (t, y) →

√
t. The classical proof of pathwise uniqueness

in Itô equations with locally Lipschitz coefficients (e.g. Theorem 3.1 in Chapter IV of [11]) now
shows that if TK is as in (68) and T ′K is the analogous stopping time for (X,Y ), then TK = T ′K and
(Xx∧T ′K , Y x∧T ′K ) = (Lx∧TK , L̇x∧TK ) for all x ≥ 0 a.s. Then T ′K = TK ↑ R <∞ a.s., and taking limits
along {TK}, we see that R = R′, (XR, Y R) = (LR, L̇R) = (0, 0) and (Xx∧R, Y x∧R) = (Lx∧R, L̇x∧R) for
all x ≥ 0 a.s. It therefore follows that (X,Y ) = (L, L̇) a.s. (both are (0, 0) for x > R) and the pathwise
uniqueness claim is proved.

We now show how a transformation of the state space and random time change can reduce the SDE
(1) to a simple one-dimensional diffusion. We will only use the equation (1) and standard stochastic
analysis in this discussion. In particular, we could replace (Lx, L̇x) by any solution to (1) in [0,∞)×R
starting from an arbitrary initial condition in (0,∞)× R. Recall that R = inf{x ≥ 0 : Lx = 0}.
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Proposition 18. (a) We have ∫ R

0
(Lx)−1/3dx =∞ a.s., (77)

and therefore can introduce the time change

τ(t) = inf{x ≥ 0 :
∫ x

0
(Ly)−1/3dy ≥ t} < R, t ≥ 0.

(b) Set Zx := L̇x(Lx)−2/3 for every x ∈ [0, R), and Z̃t := Zτ(t) and L̃t := Lτ(t) for every t ≥ 0. The
process (Z̃t, L̃t)t≥0 is the pathwise unique solution of the equation

Z̃t = Z̃0 + 4Wt +
∫ t

0
b(Z̃s) ds (78)

L̃t = L̃0 +
∫ t

0
L̃sZ̃s ds, (79)

where W is a linear Brownian motion, and, for z ∈ R,

b(z) := 8 p
′
1
p1

(z
2
)
−2

3 z
2 = −2

3sgn(z)z2 +O
( 1
|z|

)
as z → ±∞. (80)

(c) The process (Z̃t)t≥0 is the pathwise unique solution of (78) and is a recurrent one-dimensional
diffusion process. As t→∞, Z̃t converges weakly (in fact, in total variation) to its unique invariant
probability measure ν(dz) = Cp1( z2)2 exp(− z3

36) dz, where C > 0. Moreover,

L̃t = L̃0 exp
(∫ t

0
Z̃s ds

)
for all t ≥ 0. (81)

Remark. It is interesting to compare (77) with Hong’s results [10] showing that

lim
y↑R

log(Ly)
log(R− y) = 3 a.s.

Proof. It will be useful to analyze the left tail of p′1/p1 and so give a counterpart of the O(1/y) right
tail behavior in (4). One argues just as before, using the representation in terms of Airy functions
(see (3) and (4)). In fact the calculation using the asymptotics of Ai and Ai′, is now easier, but the
behavior is quite different:

p′1
p1

(y) = 2
3y

2 + 1
2y +O

( 1
y4

)
as y → −∞. (82)

From (4) and (82), we obtain the asymptotics in (80). Then, by (66) we may write (1) as

L̇x = L̇0 + 4
∫ x

0

√
Ly dBy +

∫ x

0
8(Ly)1/3 p

′
1
p1

(Zy
2
)

dy

Lx = L0 +
∫ x

0
L̇y dy,

(83)

where Zx = 0 for x ≥ R by convention. We analyze the above using the coordinates (Zx, Lx), which
by Itô calculus satisfy for x < R,

Zx = Z0 + 4
∫ x

0
(Ly)−1/6 dBy +

∫ x

0
(Ly)−1/3 b(Zy) dy

Lx = L0 +
∫ x

0
(Ly)−1/3LyZy dy.

(84)

The precise meaning of the above is that it holds for the equation stopped at Rε = inf{y ≥ 0 : Ly ≤ ε}
for all ε > 0. We set ρ :=

∫ R
0 (Lx)−1/3dx and now use the random time change τ(t) introduced in part
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(a) of the proposition, observing that this random change makes sense only for t < ρ (at present, we do
not yet know that ρ =∞ a.s.). If Z̃t := Zτ(t) and L̃t := Lτ(t) for t < ρ, it follows that

Z̃t = Z̃0 + 4Wt +
∫ t

0
b(Z̃s) ds (85)

L̃t = L̃0 +
∫ t

0
L̃sZ̃s ds, (86)

where Wt =
∫ τ(t)
0 (Ly)−1/6 dBy. Again the above equation means that for all ε > 0, it holds for

the equation stopped at ρε := τ−1(Rε) =
∫ Rε

0 (Lx)−1/3dx = inf{t ≥ 0 : L̃t ≤ ε}. Then Wt∧ρε =∫ τ(t∧ρε)
0 (Ly)−1/6 dBy is a continuous local martingale, with quadratic variation

〈W·∧ρε ,W·∧ρε〉t =
∫ τ(t∧ρε)

0
(Ly)−1/3 dy = t ∧ ρε. (87)

Note that (86) implies that (81) holds for t < ρ.
By the same method as in the proof of Theorem 1 (compare (87) with (75)), we may assume that

Wt is defined for every t ≥ 0 and is a linear Brownian motion. It follows from the definition of ρ
that lim inft↑ρ L̃t = 0, and therefore by (81) (for t < ρ) we have lim inft↑ρ Z̃t = −∞ a.s. on {ρ <∞}.
Therefore Z̃ is the unique solution of (78) up to its explosion time ρ ≤ ∞ (again use Theorem 3.1
in Chapter IV of [11]). By (80) the explosion time of Z̃ must be infinite a.s. (see Theorem 3.1(1) of
Chapter VI of [11]). We conclude that ρ =∞ a.s., giving part (a) of the proposition, as well as (81)
and the fact that Z̃ is the pathwise unique solution of (78) in (c).

The other assertions are now easily derived. Equations (78) and (79) are just (85) and (86) written
for every t ≥ 0. Pathwise uniqueness for the system (78), (79) again follows from Theorem 3.1 in
Chapter IV of [11] by the local Lipschitz nature of the drift coefficient. This completes the proof of (b).

By (78) above and (2) of Chapter 33 of [12], Z̃ is a one-dimensional diffusion with scale function

s(x) =
∫ x

0
exp

(
−
∫ y

0

b(z)
8 dz

)
dy = c

∫ x

0
p1
(y

2
)−2

exp
(y3

36
)

dy,

where c > 0 is a constant. The scale function maps R onto R (as is clear from the above asymptotics for
b in (80)), and in particular, Z̃ is a recurrent diffusion (all points are visited w.p. 1 from every starting
point). From Chapter 33 of [12] (see the discussions prior to Theorem 33.1 and after Theorem 33.9 in
[12]), the speed measure of the diffusion s(Z̃t) has density (4s′ ◦ s−1(y))−2, and is thus a finite measure
since ∫

R
(s′ ◦ s−1(y))−2 dy =

∫
R

(s′(x))−1 dx <∞,

using (80) for the last. By Lemmas 33.17 and 33.19 in [12], the diffusion s(Z̃t) has a unique invariant
measure which is proportional to its speed measure, and starting at any initial point, will converge
weakly to it (in fact in total variation) as t → ∞. Therefore Z̃t has a unique invariant probability
with density proportional to 1/s′(x), and will converge to it in the same sense. The proof of (c) is
complete.

The asymptotics for p1 are p1(x) ∼ c−
√
|x| exp

(
−2

9 |x|
3
)
as x → −∞ and p1(x) ∼ c+|x|−5/2 as

x → ∞, where c± > 0, and ∼ means the ratio approaches 1 (e.g. [7] but recall our p1 differs by a
scaling constant). This shows that the invariant density of Z̃ satisfies

f(x) ∼

C−|x| exp
(
− |x|

3

36

)
as x→ −∞

C+|x|−5 exp
(
− |x|

3

36

)
as x→ +∞,

where C± > 0.
In terms of our original local time the weak convergence in (c) means that

L̇τ(t)

(Lτ(t))2/3 converges weakly to Cp1
(x

2
)2

exp
(
−x

3

36
)
dx as t→∞,
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where τ(t) ↑ R as t→∞. Again this can be compared with the cubic behavior of Lx near its extinction
time from [10].

Note in the above that τ ′(t) = L̃
1/3
t is recoverable from (L0, Z̃) by (81), and so one can reverse the

above construction and build (Lx, L̇x) from the diffusion Z̃ and a given initial condition L0 > 0. The
following proposition is immediate from the discussion above and uniqueness in law in (78).

Proposition 19. On a filtered probability space (Ω,F , (Ft), P ), let W be an (Ft)-Brownian motion
and let (Λ0, Z̃0) be a pair of F0-measurable random variables with values in (0,∞) × R. There is a
pathwise unique solution, (Z̃t)t≥0, to dZ̃t = 4dWt + b(Z̃t)dt with initial value Z̃0. For every t > 0, set

Λ̃t = Λ0 exp
(∫ t

0
Z̃s ds

)
.

Then the following holds.
(a) Λ̃∞ := limt→∞ Λ̃t = 0, limt→∞(Λ̃t)2/3Z̃t = 0, and R =

∫∞
0 (Λ̃s)1/3 ds <∞ a.s.

(b) Introduce the random time change∫ σ(x)

0
(Λ̃s)1/3 ds = x for x < R, and set σ(x) =∞ for x ≥ R.

Define Λx = Λ̃σ(x) for x > 0 and

Zx =
{
Z̃σ(x) if x < R

0 if x ≥ R.

Then R = inf{x ≥ 0 : Λx = 0} and x 7→ Λx is continuously differentiable on [0,∞) with derivative
Λ̇x = Zx(Λx)2/3 for x ≥ 0, where we take the right-hand derivative at x = 0.
(c) By enlarging our probability space, if necessary, we may assume there is a filtration (Gx)x≥0 and a
(Gx)-Brownian motion (Bx)x≥0 such that (Λx, Λ̇x)x≥0 is the (Gx)-adapted solution of (1), stopped at R.
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