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The purpose of these lectures is to provide an introduction to some re-
cent developments concerning certain old questions and conjectures in étale
cohomology. We have chosen three main themes :

(a) Galois actions and traces,
(b) vanishing cycles,
(c) finiteness theorems.
In §1 we recall basic definitions and results in étale cohomology. Theme

(a) is considered in §2. We explain some variations, due to Serre, on the
trace formula of Grothendieck and divisibility of traces by powers of `, with
applications to bounding the orders of finite subgroups of reductive groups.
Theme (b) is dealt with in §§3, 4, 5. After reviewing classical material in §3,
in §4 we present Deligne’s construction of oriented products of toposes used
for the definition of nearby and vanishing cycles over bases of arbitrary di-
mension. In §5 we state Orgogozo’s theorem on the good behavior of nearby
cycles after suitable modifications of the base, as predicted by Deligne, and
give some highlights on the proof. §§6, 7, 8 are devoted to theme (c). The
central result is Gabber’s recent finiteness theorem, on the constructibility
of higher direct images of constructible sheaves of torsion prime to the char-
acteristics under finite type morphisms between quasi-excellent schemes, as
conjectured by Artin and Grothendieck. The proof relies on the absolute pu-
rity theorem, proved earlier by Gabber, and a new, crucial ingredient, a local
uniformization theorem, which we discuss in §7. Oriented products reappear
in §8 as a useful technical tool in the proof.

These notes overlap with other surveys ([I 4], [I 5], [I 7]), in which the
reader will find complements on the topics discussed here and related ones.
They cover the contents of talks given at the UMIST between October 25
and November 1, 2006, at the invitation of Prof. Martin Taylor FRS. I wish
to thank him heartily for his warm hospitality and generous support. I also
thank Kay Rülling for many helpful comments on a first draft.

[Added in May, 2014 ] These notes were written in the fall of 2006, and
slightly revised in the spring of 2007. A detailed account of the results
and proofs presented in §§ 6, 7, 8 together with several refinements and
complements will appear in

(1) Travaux de Gabber sur l’uniformisation locale et la cohomologie étale
des schémas quasi-excellents, Séminaire à l’École polytechnique 2006-2008,
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1. A quick review of étale cohomology ([SGA 4], [SGA 5], [SGA
4 1/2])

1.1. A morphism of schemes f : X → Y is called étale if it is locally
of finite presentation, flat, and unramified (net, in another terminology),
unramified meaning that Ω1

X/Y = 0. There are several other equivalent defi-

nitions, see [SGA 1 I], [EGA IV 17]. The (small) étale site of a scheme X is
the category of étale morphisms u : U → X, endowed with the étale topology,
i. e. the topology defined by the pretopology whose covering families are the
surjective families (fi : Ui → U)i∈I (note that any X-morphism between étale
X-schemes is étale). The étale topos of X is the category of sheaves of sets
on the étale site of X. The étale site of X is sometimes denoted by Xét, and
often simply by X when no confusion can arise. The structural sheaf OX
uniquely extends to an étale sheaf of rings on X, still denoted OX , such that
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OX(U) = Γ(U,OU) for U étale over X.
If f : X → Y is a morphism of schemes, then f defines a morphism

of étale toposes, usually still denoted f , given by a pair of adjoint functors
(f ∗, f∗), such that f ∗(V ) = V ×Y X for V étale over Y . 1.2. A geometric

point of a scheme X is a morphism u : x → X, where x is the spectrum of
a separably closed field. One says that u is above (or localized at) u(x) ∈ X.
The morphism u uniquely factorizes into x → Spec k(u(x)) → X, where
the second map is the canonical one. One sometimes omits, by abuse, the
mention of u and calls x the geometric point u. An étale neighborhood of u (or,
by abuse, x) is an étale morphism U → X together with a lifting v : x→ U
of u. Etale neighborhoods of x form a decreasing filtering category, and, for
an étale sheaf F on X, the stalk of F at x, i. e. u∗F , is the inductive limit

Fx = lim−→F (U),

where U runs through the étale neighborhoods of x. The functors F 7→ Fx
thus defined form a conservative system, and any point of the topos X (i. e.
morphism from the punctual topos to X) is of this form [SGA 4 VIII 7.9].
The stalk of OX at x is the strict henselization of OX,x0 at the extension k(x)
of k(x0), where x0 = u(x) [SGA 4 VIII 4.3]. Its spectrum is called the strict
localization of X at x and denoted X(x) :

X(x) = SpecOX,x.

It is the projective limit of affine étale neighborhoods of x. It can be viewed
as the analogue of a small ball around x. We will sometimes call X(x) the
Milnor ball at x. If F is an étale sheaf on X, then

Fx = Γ(X(x), F |X(x)),

where F |X(x) denotes the inverse image of F on X(x) by the canonical mor-

phism X(x) → X. 1.3. Let k be a field, x = Spec k, k a separable closure

of k, x = Spec k, G the Galois group of k over k. If F is a sheaf on x, by
transportation of structure G acts continuously on the stalk Fx (on the left)
and the functor F 7→ Fx is an equivalence between the étale topos of x and
the topos of continuous G-sets. It follows that, if Λ is a ring, then for any
sheaf of Λ-modules F on x, the cohomology of x with coefficients in F is
identified with the Galois cohomology of Fx :

RΓ(x, F ) = RΓ(G,Fx).

1.4. Let f : X → Y be a morphism of schemes and y → Y a geometric point
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of Y . The fiber product
X(y) := Y(y) ×Y X

can be thought of as a tubular neighborhood of the fiber Xy = y ×Y X of f
at y, and for this reason is sometimes called the tube of X over y. Assume
that f is coherent, i. e. quasi-compact and quasi-separated. Then, for any
sheaf F on X, the stalk of f∗F at y can be calculated as the set of global
sections of F on this tube :

(1.4.1) (f∗F )y = Γ(X(y), F |X(y)),

where F |X(y) denotes the inverse image of F on X(y). This extends to the
cohomology : if Λ is a ring, and F ∈ D+(X,Λ), then ([SGA 4 VII 5.8, VIII
5.2])

(1.4.2) Rf∗(F )y = RΓ(X(y), F |X(y)).

There is a natural closed immersion

Xy → X(y)

above the inclusion of the closed point y in Y(y), hence a restriction map

(1.4.3) (f∗F )y → Γ(Xy, F )

and similarly

(1.4.4) Rf∗(F )y → RΓ(Xy, F )

for F ∈ D+(X,Λ), where for brevity we have omitted the symbols of restric-
tion. It is not true, in general, that (1.4.3) (resp. (1.4.4)) an isomorphism.
By analogy with the analogous case of proper maps between locally compact
spaces, this is, however, the case when f is proper (resp. when f is proper
and Λ is torsion). This is the content of the proper base change theorem,
whose statement we recall in the abelian context :

Theorem 1.5 [SGA 4 XII 5.1] Let

(1.5.1) X ′ h //

f ′

��

X

f
��

Y ′
g // Y

be a cartesian square of schemes, with f proper, and let Λ be a torsion ring.
Then for any F ∈ D+(X,Λ), the base change map

g∗Rf∗F → Rf ′∗(h
∗F )
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is an isomorphism.

It is easily seen that 1.5 (for all cartesian squares (1.5.1)) is in fact equiv-
alent to (1.4.4) being an isomorphism for all proper maps f and all geometric
points y. The conclusion may be wrong if one doesn’t assume Λ to be torsion
([SGA 4 XII 2]).

1.6. Let Λ be a torsion ring. From 1.5 one derives a formalism of direct
images with proper support and cohomology with compact support. Namely,
let f : X → Y be a compactifiable morphism, i. e. admitting a factorization
f = gj, with g : Z → Y proper and j : X → Z an open immersion. For
F ∈ D+(X,Λ), one defines

(1.6.1) Rf!F := Rg∗(j!F ),

where j! denotes the extension by zero. It follows from 1.5 that, up to a
canonical system of isomorphisms, the right hand side of (1.6.1) does not
depend on the choice of the factorization. The functor

Rf! : D+(X,Λ)→ D+(Y,Λ)

thus obtained is called direct image with proper support. It commutes with
any base change. It is not the derived functor of R0f!. When Y is the
spectrum of a separably closed field, one writes RΓc(X,F ) for Rf!F . If
y → Y is a geometric point of Y , then one has

(1.6.2) Rf!(F )y = RΓc(Xy, F )

and if y is a separable closure of its image y0 in Y , the Galois group Gal(k(y)/k(y0))
acts continuously on the cohomology groups with compact supportHq

c (Xy, F ).
If the dimension of the fibers f−1(y) of f is bounded by d, then Rf! is of co-
homological dimension ≤ 2d, i. e. Rif!F = 0 for all sheaves of Λ-modules F
and i > 2d [SGA 4 XVII 5.2.8.1]. For Y quasi-compact and quasi-separated,
Rf! admits a right adjoint

(1.6.3) Rf ! : D+(Y,Λ)→ D+(X,Λ)

([SGA 4 XVIII 3.1]). The pairs of adjoint functors

(f ∗, Rf∗) , (Rf!, Rf
!)

together with the bifunctors

−⊗LΛ − , RHomΛ(−,−)
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form the so-called Grothendieck’s six operations.

1.7. If i : S → S ′ is a closed immersion defined by a nilideal, then i∗

gives an equivalence (with quasi-inverse i∗) from the topos of étale sheaves
on S ′ to that of étale sheaves on S (this holds more generally if i is a universal
homeomorphism, this is the so-called topological invariance of the étale topos
[SGA 4 VIII 1.1]). Thanks to this, one can define a notion of constructibility
for étale sheaves. For simplicity, we will limit ourselves to noetherian bases.
Let X be a noetherian scheme and Λ a noetherian, torsion ring. A sheaf of Λ-
modules F on X is called constructible if X is a finite disjoint union of locally
closed subsets Xi such that the restriction of F to Xi is locally constant of
finite type. Constructible sheaves of Λ-modules form a thick subcategory of
that of all sheaves of Λ-modules (i. e. constructibility is stable under kernel,
cokernel and extension), so that the subcategory

Dc(X,Λ) ⊂ D(X,Λ)

consisting of complexes whose cohomology sheaves are constructible is a tri-
angulated subcategory. Any sheaf of Λ-modules on X is a filtering direct
limit of constructible ones. The constructible sheaves of Λ-modules are the
noetherian objects of the category of sheaves of Λ-modules on X [SGA 4 IX
2.4].

One of the main issues addressed in [SGA 4] is that of the stability of
Dc under the six operations. An easy and basic corollary of the proper base
change theorem is the following finiteness theorem ([SGA 4 XIV 1.1, XVII
5.3.6]) :

Theorem 1.8. Let Λ be a noetherian, torsion ring and f : X → Y a
compactifiable morphism, with Y noetherian. Then Rf! sends D+

c (X,Λ) into
D+
c (Y,Λ) (and Db

c(X,Λ) into Db
c(Y,Λ)).

The second assertion comes from the fact that Rf! is of finite cohomolog-
ical dimension.

One cannot expect a similar result for Rf∗ as is already shown by the
Artin-Schreier sequence for the cohomology of A1

k with coefficients in Z/pZ,
where k is an algebraically closed field of characteristic p > 0. It was hoped
by Grothendieck, however, that under mild restrictions on the schemes (such
as excellency), finiteness should hold for Rf∗ as well, for f of finite type,
provided that one would impose to Λ to be annihilated by an integer prime to
the residual characteristics. Such a finiteness result was established by Artin
in [SGA 4 XIX 5] for Y excellent of characteristic zero, using Hironaka’s
resolution of singularities. The extension to schemes of positive or mixed
characteristics seemed to strongly depend on a generalization of Hironaka’s
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theorem. In 1973, though, Deligne proved the following basic theorem [SGA
4 1/2 Th. finitude, 1.1] :

Theorem 1.9. Let S be a noetherian regular scheme, of dimension ≤ 1,
and f : X → Y an S-morphism between S-schemes of finite type. Let Λ be
a noetherian ring annihilated by an integer invertible on S. Then, for any
constructible sheaf F of Λ-modules on X, Rqf∗F is constructible for all q,
and there exists an integer N such that Rqf∗F = 0 for q > N . In other words,
Rf∗ : D+(X,Λ) → D+(Y,Λ) sends D+

c (X,Λ) into D+
c (Y,Λ), and Db

c(X,Λ)
into Db

c(Y,Λ).

The second assertion follows from the fact that under the hypotheses of
1.9, Rf∗ is of finite cohomological dimension : one can take N independent
of F , but in general N is larger that 2d, if d bounds the dimension of the
fibers of f ([SGA 4 X 3]).

It follows from 1.9 that, for schemes separated and of finite type over
a regular base S of dimension ≤ 1, and Λ of torsion invertible on S, con-
structibility is stable under the six operations ([SGA 4 Th. finitude, 2.9]).
However, the problem of extending Artin’s finiteness theorem of [SGA 4 XIX]
to excellent schemes with no restriction of characteristics remained open, un-
til, quite recently, Gabber solved it positively, see §6.

1.10. The calculation of étale cohomology of “classical” schemes and
the proof that, ultimately, `-adic cohomology yields a Weil cohomology for
schemes of finite type over a field of characteristic 6= ` rely on two basic results
: (a) the structure theorem for the étale cohomology of proper smooth curves
over an algebraically closed field (1.11), (b) the local acyclicity of smooth
morphisms (1.12).

In what follows we will assume that Λ = Z/nZ, where n is an integer
≥ 1. If n is invertible on the scheme X, the étale sheaf (µn)X of nth-roots
of unity, kernel of a 7→ an on O∗X , is a locally constant, invertible Λ-module,
often denoted Λ(1). Its powers Λ(i) := (Λ(1))⊗i, for i ∈ Z, are called the
Tate sheaves. The exact sequence of abelian sheaves on X :

(1.10.1) 1 // µn // O∗X
a7→an // O∗X // 1

is called the Kummer sequence. From it and Tsen’s theorem (cf. [SGA 4 XI]
and [SGA 4 1/2, Cohomologie étale : les points de départ]) one deduces :

Theorem 1.11. Let k be an algebraically closed field, n an integer
invertible in k, Λ = Z/nZ, X a proper, smooth connected curve of genus g
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over k. Then one has :

Hq(X,Λ) =


Λ if q = 0

nPic
0(X)(−1) if q = 1

Λ(−1) if q = 2

0 if q > 2

where n(−) denotes the kernel of the multiplication by n. Moreover, nPic
0(X)

is a free Λ-module of rank 2g, and the pairing

Hq(X,Λ)⊗H2−q(X,Λ(1))→ H2(X,Λ(1)) = Λ

defined by cup-product is perfect.

(For the assertion about duality (Poincaré duality), see [SGA 4 1/2, Co-
homologie étale : les points de départ].)

Theorem 1.12. Let f : X → S be a smooth morphism. Let Λ = Z/nZ
with n invertible on S. Let x be a geometric point of X, s the geometric
point of S image of x. Consider the morphism of Milnor balls induced by f :

f(s) : X(x) → S(s),

and let t be a geometric point of S(s). Then

RΓ(X(x)t,Λ) = Λ,

where X(x)t is the fiber of f(s) at t.

In other words, Milnor fibers of smooth morphisms are acyclic. For the
proof, as well as variants and generalizations, see [SGA 4 XV] and [SGA 4
1/2, Cohomologie étale : les points de départ, Th. finitude].

1.13. The proper base change theorem 1.5 and the two previous theorems
1.11, 1.12 are the pillars over which étale cohomology is built. Here’s a list
of some of their most important consequences (with again Λ = Z/nZ, n
invertible on the schemes considered) :

- relative purity for closed immersions i : Y → X between S-smooth
schemes, i. e. the calculation of Ri!Λ as Λ(−d)[−2d] where d is the codimen-
sion of i [SGA 4 XVI]

- base change by smooth morphisms (smooth base change theorem ) [SGA
4 XVI]

- Poincaré (or global) duality, in the form of the construction of a canonical
isomorphism between Rf !Λ and Λ(d)[2d] for f : X → S smooth of relative
dimension d [SGA 4 XVIII]
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- local duality, for S-schemes X separated and finite type, with S regular
of dimension ≤ 1, in the form of a biduality isomorphism F

∼−→ DDF ,
for F ∈ Db

c(X,Λ), where D = RHom(−, Rf !Λ) (f : X → S) [SGA 4 1/2
Dualité]

- for schemes of finite type over C, a comparison theorem between étale
and Betti cohomology [SGA 4 XVI]

- a weak (or affine) Lefschetz theorem [SGA 4 XIV]
- the construction of cycle and Chern classes, calculation of the étale

cohomology (with coefficients in Λ) of classical schemes (e. g. standard
affine or projective spaces, punctured affine spaces, flag varieties, reductive
groups) ([SGA 4 1/2 Cycle], [SGA 5 VII], [SGA 4 1/2 Sommes trig. p. 230])

- a general Lefschetz formula for schemes separated and of finite type over
an algebraically closed field (Lefschetz-Verdier formula) [SGA 5 III].

1.14. However, in order to deal with arithmetic questions, such as those
involving zeta or L functions, étale cohomology with coefficients in Z/nZ does
not suffice. One needs to obtain vector spaces over fields of characteristic
zero. This is the purpose of `-adic cohomology, which is derived from étale
cohomology with torsion coefficients by taking certain projective limits.

Let ` be a prime number. If X is a noetherian scheme over which ` is
invertible, a constructible Z`-sheaf F on X is an inverse system (Fn), n ≥ 1,
of constructible sheaves of Z/`nZ-modules on X such that, for each n ≥ 1,
the transition map Z/`nZ⊗Z/`n+1Z Fn+1 → Fn is an isomorphism. One often
says “Z`-sheaf” for “constructible Z`-sheaf”. One says that F is lisse if each
Fn is locally constant. Typical examples are the Tate sheaves : the Z`-sheaf

Z`(1)X = (Z/`nZ(1))X ,

with transition maps x 7→ x` : µ`n+1 → µ`n , (often denoted simply Z`(1)), is
lisse and locally free of rank one, as well as its tensor powers Z`(i) := Z`(1)⊗i

for i ∈ Z. If F is a Z`-sheaf on X, then X is the disjoint union of a finite
number of locally closed subsets Xi over which F is lisse. If F , G are Z`-
sheaves on X, the group of homomorphisms from F to G is defined as

Hom(F,G) = lim←−Hom(Fn, Gn)

(this is the same as the group of homomorphisms of projective systems).
Z`-sheaves on X form an abelian category. If X is connected, and x is a
geometric point of X, then the fiber functor F 7→ Fx gives an equivalence
between the category of lisse Z`-sheaves on X and that of continuous repre-
sentations of the fundamental group π1(X, x) (in the sense of [SGA 1 V 7])
in Z`-modules of finite type. The category of Q`-sheaves has for objects the
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Z`-sheaves and the group of morphisms from a Q`-sheaf L into a Q`-sheaf M
is defined as Q` ⊗ Hom(L,M). One usually writes F ⊗ Q` for the Q`-sheaf
defined by a Z`-sheaf F . There are variants with Q` replaced by a finite ex-
tension of Q` and Z` by its rings of integers, and also with Q` replaced by an
algebraic closure Q`. For all this, see [SGA 5 V, VI], [SGA 4 1/2 Rapport],
[Weil II].

It is not easy to extend the cohomological formalism from Z/`nZ to Z`.
In [SGA 5 VI] higher direct images with proper support Rqf! are discussed,
but no derived category formalism is introduced. One solution is proposed in
[Weil II], and discussed in more details in [BBD, 2.2.16]. It suffices, when one
works with schemes of finite type over a finite field or an algebraically closed
field. A satisfactory general definition was proposed by Gabber (unpub-
lished). A variant is developed by Ekedahl [Ek] (and independently, Gabber
(unpublished)). The theory he constructs is valid for schemes X separated
and of finite type over a base scheme S, which is regular of dimension ≤ 1,
and over which ` is invertible. With such an X is associated a triangulated
category

Db
c(X,Z`),

equipped with a t-structure whose heart is the category of Z`-sheaves. Its
objects are not complexes of Z`-sheaves, but projective systems of complexes
of Z/`nZ-modules satisfying certain conditions, and morphisms are defined
by a certain localization procedure. Moreover, there is a compatible family
of reduction mod `n functors

Db
c(X,Z`)→ Db

c(X,Z/`nZ), F 7→ Fn,

which are triangulated and induce the “usual” reduction functor F 7→ F ⊗L
Z/`nZ on the category of Z`-sheaves ; each Fn is of finite tor-dimension.
An important property is that the reduction mod ` functor, F 7→ F1 is
conservative. For E, F in Db

c(X,Z`), one has a short exact sequence

0→ lim←−
1Ext−1(En, Fn)→ Hom(E,F )→ lim←−Hom(En, Fn)→ 0.

It follows that, when, for each n, and each E, F in Db
c(X,Z`), Hom(En, Fn)

is finite, for example, when S is the spectrum of a finite or algebraically
closed field, the reduction mod `n functors define an equivalence between
Db
c(X,Z`) and the category defined by Deligne in (loc. cit.). In general, for

schemes separated and of finite type over S, Ekedahl constructs a formal-
ism of Grothendieck’s six operations in Db

c(−,Z`), compatible with those in
Db
c(−,Z/`nZ) via the reduction mod `n functors. There is a variant of this

formalism with Z` replaced by Q`, or Eλ (a finite extension of Q`), or Q`
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(see [BBD 2.2.18]). In view of Gabber’s recent results [Ga 3], this formal-
ism should extend to quasi-excellent schemes (or even algebraic stacks) over
which ` is invertible. The case of algebraic stacks of finite type over an S as
above has been treated by Laszlo-Olsson [La-Ol].

1.15. Let k be a separable closure of a field k and X a scheme sepa-
rated and of finite type over k. For E ∈ Db

c(X,Z`), the cohomology groups
Hq(Xk, E|Xk) (resp. Hq

c (Xk, E|Xk)) are finitely generated over Z` and zero
for q large. One has

Hq(Xk, E|Xk) = lim←−H
q(Xk, En|Xk)

(resp.
Hq
c (Xk, E|Xk) = lim←−H

q
c (Xk, En|Xk)).

The Galois group Gk = Gal(k/k) acts continuously on them : for g ∈ Gk, g
defines an isomorphism Xk

∼−→ Xk, still denoted g, above Spec g : Spec k
∼−→

Spec k, hence an isomorphism

g∗ : Hq(Xk, E|Xk)
∼−→ Hq(Xk, E|Xk)

(resp.
g∗ : Hq

c (Xk, E|Xk)
∼−→ Hq

c (Xk, E|Xk)),

sometimes still denoted g. For the image Q`⊗E of E in Db
c(X,Q`), one has

Hq(Xk,Q` ⊗ E|Xk) = Q` ⊗Hq(Xk, E|Xk)

and a similar formula for Hq
c . When E is a Z`-sheaf (i. e. is cohomologically

concentrated in degree zero), the preceding groups are zero for q > 2 dim(X).
For g ∈ Gk, and L ∈ Db

c(X,Q`), one can consider the eigenvalues (in
Q`) of g∗ on the finite dimensional Q`-vector spaces H i(Xk, L) (we write L
instead of L|Xk for short) (resp. H i

c(Xk, L)) (they are integral over Z`), the
traces Tr(g,H i(Xk, L)) (resp. Tr(g,H i

c(Xk, L)), or their alternate sums

Tr(g,H∗(Xk, L)) =
∑

(−1)i Tr(g,H i(Xk, L))

(resp.

Tr(g,H∗c (Xk, L)) =
∑

(−1)i Tr(g,H i
c(Xk, L)),

which are in Z`. The properties of these numbers and longstanding conjec-
tures about them have been the focus of several recent works on which I will
give a few glimpses. See [I 4] for a more detailed survey.
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1.16. Before coming to this, let me recall a fundamental result, Grothendieck’s
trace formula. Let k be a finite field Fq, of characteristic p, k an algebraic
closure of k, ` a prime 6= p. For n ≥ 1, denote by kn (' Fqn) the extension

of degree n of k in k. The Galois group Gk = Gal(k/k) is isomorphic to Ẑ
and has a distinguished topological generator, the Frobenius substitution or
arithmetic Frobenius, a 7→ aq. Its inverse, denoted F , is called the geometric
Frobenius. Let X be a scheme separated and of finite type over k. The set
X(k) of its k-points (or rational, or closed points of Xk) is acted on by Gk,
and, for n ≥ 1, those fixed by F n are exactly those rational over kn ; their
number is finite. Grothendieck’s trace formula is the following :

Theorem 1.17. (Grothendieck [SGA 5 XIV]) With the notations of 1.16,
let L ∈ Db

c(X,Q`). Then, for all n ≥ 1, one has :

(1.17.1) Tr(F n, H∗c (Xk, L)) =
∑

x∈X(kn)

Tr(F n, Lx).

On the right hand side, the geometric point x ∈ X(k) is fixed by F n,
hence F n acts on the stalk of L at x, and by definition,

Tr(F n, Lx) =
∑

(−1)i Tr(F n,Hi(Lx)).

The left hand side of (1.17.1) can also be viewed as the trace of the cohomolog-
ical correspondence defined by F n

X : X → X and the Frobenius isomorphism
F n
X : (F n

X)∗L→ L. Here FX : X → X is the morphism which is the identity
on the underlying space and a 7→ aq on OX ; the Frobenius isomorphism FX
extends the inverse of the natural isomorphism E

∼−→ F−1
X (E) for a repre-

sentable étale sheaf E (see [SGA 5 XIV], [SGA 4 1/2, Rapport]). When X
is not proper, there is no analogous formula for H∗(Xk, L), as contributions
at infinity must be taken into account.

In particular :

Corollary 1.18.

(1.18.1) Tr(F n, H∗c (Xk,Q`)) = |X(kn)|,

where | | denotes a cardinality.

Consider the zeta function of X

Z(X/k, t) =
∏

(1− tdeg(x))−1,

where the product is extended to the closed points x of X and deg(x) =
deg(k(x)/k). Formula (1.18.1) implies the famous cohomological expression
for Z(X/k, t) as a rational function of t, namely :
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Corollary 1.19.

(1.19.1) Z(X/k, t) =
∏

det(1− Ft,H i
c(Xk,Q`))

(−1)i+1

.

It follows from (1.19.1) that the Euler-Poincaré characteristic of Xk with
compact support :

χc(Xk,Q`) =
∑

(−1)i dimH i
c(Xk,Q`)

can be extracted from the zeta function as

(1.19.2) χc(Xk,Q`) = −degree Z(X/k, t),

and, in particular, is independent of `. By a standard spreading out argument,
this property extends to arbitrary fields of characteristic p (write such a field
K as the inductive limit of its finitely generated Fp-sub-algebras Ai, take a
model of X over a suitable Ai, i. e. a scheme X separated and of finite type
over SpecAi such that SpecK ×SpecAi

X = X, and apply (1.6.2) and 1.8).
We can also consider the Euler-Poincaré characteristic (with no supports)

χ(Xk,Q`) =
∑

(−1)idimH i(Xk,Q`).

By a result of Laumon [La 1] (and independently, Gabber), first proved by
Grothendieck in characteristic zero, these two characteristics are the same :

(1.19.3) χc(Xk,Q`) = χ(Xk,Q`).

Laumon’s result is in fact more general, and works for Q` replaced by an
object of Db

c(X,Q`) (or Db
c(X,Eλ) for Eλ a finite extension of Q`), and in a

relative setting (an equality of f∗ and f! in suitable K-groups).

1.20. When X is proper and smooth over k, then, by the fundamental
theorem of Deligne ([Weil I] for X projective, [Weil II] in general), each
characteristic polynomial in (1.19.1)

det(1− Ft,H i(Xk,Q`))

belongs to Z[t], is independent of `, and its reciprocal roots (eigenvalues of F )
are pure of weight i, i. e. are algebraic numbers whose complex conjugates
are all of absolute value qi/2. In particular, for each i, the Betti number
bi = dimH i(Xk,Q`) is independent of `. By the spreading out argument
sketched above, this independence holds for any field k of characteristic p.

Gabber has generalized Deligne’s theorem to proper, equidimensional
schemes X over k, but with H∗(−,Q`) replaced by intersection cohomology.
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This is derived from a general result of stability of rationality and indepen-
dence of ` under the six operations for families of objects of Db

c(−,Q`), see
[F 2], and [I 4] for a brief survey. As before, this implies that the intersection
`-adic Betti numbers of such an X, over a finite field, or more generally over
any field of characteristic p, are independent of `.

Outside of Gabber’s theorem, not much is known about the independence
of ` of Betti numbers, or the rationality and independence of ` of traces of
endomorphisms, or cohomological correspondences. See [I 4] for a discussion
of some problems and partial results. Let us mention that Zheng [Z 2] has
quite recently proved the analogue of Gabber’s theorem of stability of ratio-
nality and independence of ` for schemes separated and of finite type over
local fields with finite residue fields.

2. `-divisibility : Serre’s bounds [Se 2]

2.1. Let k be a field. Then k is the filtering inductive limit of its Z-
subalgebras of finite type R. If X is a scheme over k, separated and of finite
type, there exists an R and a scheme X over S = SpecR, separated and of
finite type, such that X ×S Spec k = X. Such an X/S is called a model of
X/k over R (or S). Any two models X1/S1, X2/S2 become isomorphic over
an S above both S1 and S2. When k is of characteristic p > 0, models of X
over finitely generated sub-Fp-algebras of k form a cofinal family.

Theorem 2.2. (Serre [I 4, 2.3]) Let k be a field, k a separable closure
of k, Gk = Gal(k/k), ` a prime number different from the characteristic of
k, n an integer ≥ 1, X a scheme over k, separated and of finite type. The
following conditions are equivalent :

(i) There exists a model X/S, S = SpecR, of X/k having the following
property : for all points s : Spec k′ → S of S with value in a finite field k′ of
characteristic 6= `, one has

|X (s)| ≡ 0 mod `n

(where X (s) denotes the set of points of X above s, i. e. rational points over
k′ of the pull-back of X by s).

(ii) For all g ∈ Gk, one has

Tr(g,H∗c (Xk,Q`)) ≡ 0 mod `n.

Recall (1.15) that Tr(g,H∗c (Xk,Q`)) belongs to Z`, so that its divisibility
by `n makes sense.

2.3. There are two main ingredients in the proof :
(a) Grothendieck’s trace formula (1.18.1)
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(b) Chebotarev’s density theorem, in the following form ([Se 1, th. 7], [P,
App. B]) :

Let S be an integral, normal scheme of finite type over Z, t a geometric
point of S. Then, if G is a finite quotient of the fundamental group π1(S, t),
any conjugacy class in G contains the image of a geometric Frobenius Fs ∈
Gal(k(s)/k(s)) associated to a point s → S of S with value in a finite field,
an algebraic closure k(s) of k(s) and a path from s to t.

Recall ([SGA 1 V] that a path c from s to t is an isomorphism from the
fiber functor at t (on the category of finite étale covers of S) to that at s,
and that the induced isomorphism π1(S, s)

∼−→ π1(S, t) does not depend on
c up to conjugacy by an element of π1(S, t) ; if t is localized at the generic
point of S, such a path can be given by a lifting of t to the strict localization
of S at s.

Note that the above statement is implied by that in [Se 1, th. 7] when
dimS ≥ 1, and if S is of dimension zero, i. e. is the spectrum of a finite field
k0, just says that the powers of the geometric Frobenius of k0 are dense in
its Galois group.

Here is a sketch of the proof of 2.2. By an easy dévissage, using the
fact that Db

c(−,Z`) is stable under Rf! (1.14), one is reduced to proving the
following lemma :

Lemma 2.4. ([I 4, 7.1]) Let S be an integral, normal scheme, separated
and of finite type over Z, f : X → S a morphism which is separated and of
finite type, ` a prime number invertible on S, and n an integer ≥ 1. Assume
that all the `-adic sheaves Rif!Q` are lisse. Let η be the generic point of S,
η a geometric point over it. The following conditions are equivalent :

(1) For every point s of S with value in a finite field, we have |X (s)| ≡
0 mod `n.

(2) For every g ∈ π1(S, η), we have Tr(g,H∗c (Xη,Q`)) ≡ 0 mod `n.

The implication (2)⇒ (1) follows immediately from Grothendieck’s trace
formula (1.18.1) and the smoothness of the sheaves Rqf!Z`. For the converse,
assume that there exists g ∈ π1(S, η) such that t 6≡ 0 mod `n, where t =
Tr(g,H∗c (Xη,Q`)). As the map π1(S, η)→ Z/`nZ, σ 7→ Tr(σ,H i

c(Xη,Q`)) mod `n

is continuous, there exists an open invariant subgroup H of π1(S, η) such that
Tr(gh,H i

c(Zη,Q`)) = t mod `n for all h ∈ H. By Chebotarev’s density the-
orem (b), there exists a point s of S with value in a finite field such that,
after choosing a path c as above, the image of the geometric Frobenius of
s in π1(S, η)/H is conjugate to the image of g. By Grothendieck’s trace
formula again (and the smoothness of the sheaves Rqf!Z`) we then get a
contradiction.

Remark 2.4.1. In [I 4, 7.1] the assumption normal is missing. Counter-
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examples to the implication (1) ⇒ (2) of (loc. cit.) in the non geometrically
unibranch case can be given, see [I 8]. However, the proof of the main result
[I 4, 2.3] uses only the normal case.

Corollary 2.5. With the notations of 2.2, assume that a finite group A
acts freely on X/k (by k-automorphisms). Then one has :

(2.5.1) v`(A) ≤ inf
g∈Gk

v`(Tr(g,H∗c (Xk,Q`))),

where v` denotes the `-adic valuation of an integer (or `-adic integer), and
v`(A) stands for v`(|A|).

We may assume A of order `n, n ≥ 1. One can choose a model X/S of
X/k on which A acts freely by S-automorphisms. Condition 2.2 (i) is then
satisfied, so the conclusion follows from 2.2.

Remark 2.6. If X/k is smooth and equidimensional of dimension d, by
Poincaré duality one has, for g ∈ Gk,

Tr(g,H∗(Xk,Q`)) = χ(g−1)dTr(g−1, H∗c (Xk,Q`)),

where χ : Gal(k/k) → Z∗` is the cyclotomic character. Therefore in 2.5 one
gets the bound

(2.6.1) v`(A) ≤ inf
g∈Gk

v`(Tr(g,H∗(Xk,Q`))).

2.7. If X is a group scheme over k and A a finite subgroup of X(k), A
acts freely on X/k (by translations). When X is reductive, the cohomology
of Xk with coefficients in Q` is known (cf. [SGA 4 1/2, Somme trig. 8.2, p.
230]) and the action of the Galois group Gk on it can be made explicit. The
bounds (2.6.1) thus obtained are studied in detail in [Se 2] (and established
by alternate, non cohomological methods).

Suppose, for example, that X = GLn. Then, by the formula of [SGA 4
1/2, Sommes trig. 8.2, p. 230], we get

H∗(Xk,Q`) = ΛV,

where V is the graded Q`-vector space

V = ⊕1≤i≤nV2i−1, V2i−1 = Q`(−i).

Therefore

Tr(g−1, H∗(Xk,Q`)) = (−1)n det(1− g−1, V ) = (−1)n
∏

1≤i≤n

(1− χ(g)i),
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where, as above, χ : Gal(k/k)→ Z∗` is the cyclotomic character. Suppose for
simplicity that ` 6= 2. Then, following Serre ([Se 2, 4.1], [I 4, 9]), let us write

(2.7.1) Im(χ) = Ct × (1 + `mZ`),

where Ct is a cyclic group of order t dividing `− 1 and m an integer ≥ 1 (or
∞, with `∞ = 0). Then

inf
g∈Gk

v`(Tr(g,H∗(Xk,Q`))) = inf
g∈Gk

∑
v`(1− χ(g)i),

and an elementary calculation [I 4, 7.10] shows that the right hand side is
equal to ∑

t|i

(m+ v`(i)).

For k = Q, χ is surjective : t = ` − 1, m = 1. After some rewriting, one
recovers Minkowski’s bound [Se 2, 1.1] for finite subgroups A of GLn(Q) :

(∗) v`(A) ≤ [
n

`− 1
] + [

n

`(`− 1)
] + [

n

`2(`− 1)
] + · · · ,

where [x] denotes the integral part of a real number x. See [Se 2 §1] for the
presentation of Minkowski’s original argument (using Dirichlet’s theorem on
primes in arithmetic progressions, a particular case of Chebotarev’s theorem).
The previous bound also holds for ` = 2, and can be obtained similarly. It
is a sharp bound : there exists a finite `-subgroup A of GLn(Q) for which
v`(A) is equal to the right hand side of (*), see (loc. cit.).

If X is a torus over k with character group C (' Zn), then

H∗(Xk,Q`) = Λ(C ⊗Q`(−1)).

The action of Gk on Xk defines a representation σ : Gk → Aut(C) and

Tr(g,H∗(Xk,Q`) = det(1− σ(g)χ(g−1), C ⊗Q`).

The bound

v`(A) ≤ inf
g∈Gk

v`(det(1− σ(g)χ(g−1), C ⊗Q`))

given by (2.6.1) is elementary in this case (see [Se 2, 5.2, Lemma 5], where
ρ is the contragredient representation of σ). Unraveling the right hand side
gives the bound (loc. cit.) :

v`(A) ≤ m[
dimX

ϕ(t)
],
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where t and m are the integers defined in (2.7.1) for ` 6= 2 (and in (loc. cit.,
4.2) for ` = 2), [-] denotes an integral part, and ϕ is Euler’s indicator.

As a last example, let X be a semisimple group over k, with maximal
torus T and Weyl group W . Let r be the rank of T and 1 ≤ d1 ≤ · · · ≤ dr
be the invariant degrees of W acting on the symmetric algebra S(C ⊗ Q),
where C, considered as homogeneous of degree 1, is the character group of
T , i. e. the di’s are the degrees of homogeneous polynomials P1, · · · , Pr
such that S(C ⊗Q)W = Q[P1, · · · , Pr]. Now, let C ⊗Q`(−1)[−2] be the Q`-
graded module concentrated in degree 2 defined by C⊗Q`(−1). Let I be the
augmentation ideal of S(C ⊗ Q`(−1)[−2])W . The indecomposable quotient
I/I2 is a graded module, concentrated in even degrees :

I/I2 = ⊕d∈DL2d(−d),

where
D = {d1, · · · , dr}

is the set of invariant degrees. Here L2d is the homogeneous part of degree d
of the corresponding indecomposable quotient of S(C ⊗Q)W , tensored with
Q` ; its dimension is the number of indices i for which di = d. The action
of Gk respects this grading. By [SGA 4 1/2, Sommes trig., 8.2, p. 230], the
Hopf algebra H∗(Xk,Q`) is the (graded) exterior algebra of its primitive part
V :

H∗(Xk,Q`) = ΛV.

Moreover, the graded module V is endowed with a Gk-equivariant isomor-
phism

V
∼−→ I/I2[1]

(this is an `-adic analogue of the transgression studied by Borel, cf. [Bo, 13.1,
19.1]). In other words, V is a graded module, concentrated in odd degrees,

V = ⊕d∈DV2d−1,

with V2d−1 = L2d(−d). In particular, the 1-dimensional, top cohomology
group is Hn(Xk,Q`) = ΛnV , with

n =
∑
d∈D

(2d− 1) dimV2d−1 =
∑

1≤i≤r

(2di − 1) = dimX.

The action of Gk on V2d−1 is given by εd ⊗ χ−d, where χ is the cyclotomic
character and εd : Gk → Aut(L2d) is the representation deduced from the
action of Gk on the Dynkin diagram of X. Therefore, one has

Tr(g,H∗(X,Q`)) =
∏
d∈D

det(1− εd(g)⊗ χ(g)−d, L2d),
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and by (2.6.1), for finite subgroups A of X(k) one gets the bound [Se 2, 6.6.
th. 6’] :

v`(A) ≤ inf
g∈Gk

∑
d∈D

v`(det(1− εd(g)⊗ χ(g)−d, L2d)).

When X is of inner type, i. e. when Gk acts trivially on the Dynkin diagram
(so that Gk acts by inner automorphisms on X), the above formula simplifies
:

v`(A) ≤ inf
g∈Gk

∑
1≤i≤r

v`(χ(g)di − 1),

and, unraveling the right hand side, one gets, for ` 6= 2,

v`(A) ≤
∑
t|di

(m+ v`(di)),

with m and t as in (2.7.1), cf. [Se 2, 6.1 th. 6, prop. 4].

2.8. Let k be a finite field with q elements, k an algebraic closure of k,
F ∈ Gk = Gal(k/k) the geometric Frobenius, X/k a scheme separated an of
finite type, and ` a prime different from the characteristic of k. By definition
of H∗c (Xk,Q`), the `-adic numbers Tr(F,H∗c (Xk,Q`)) are in Z`, and this holds
more generally for F replaced by any g ∈ Gk. For F a stronger result holds :
by a theorem of Deligne [SGA 7 XIX, App.], for each i ∈ Z, the eigenvalues
of F on H i

c(Xk,Q`) (in Q`) are algebraic integers. It makes sense, then, to
study their divisibility by powers of q. This question has been reconsidered
recently by several authors, and significant results of arithmetic or geometric
flavor have been obtained. See [I 4, 4] for a survey.

Deligne’s result in (loc.cit.) is a corollary of the stability of integrality
under Rf!. A Q`-sheaf L on X is called integral if for each closed point x
of X the eigenvalues of the geometric Frobenius Fx ∈ Gal(k(x)/k(x)) acting
on Lx (k(x) an algebraic closure of k(x)) are algebraic integers. A complex
K ∈ Db

c(X,Q`) is called integral if its cohomology sheavesHi(K) are integral.
Deligne’s theorem is that for f : X → Y a k-morphism between k-schemes
separated and of finite type, then if K ∈ Db

c(X,Q`) is integral, so is Rf!K.
Other stabilities have been recently established by Zheng [Z 1], for example
the stability of integrality under Rf∗.

3. Basics on classical étale nearby cycles

3.1. Let S be a henselian trait, i. e. the spectrum of a henselian discrete
valuation ring, with closed point s and generic point η. Let s be a geometric
point above s, S(s) the corresponding strict localization, and η a geometric
generic point of S(s) (thus defining a geometric point of S above η). We will
assume s (resp. η) algebraic over s (resp. η). Fix some coefficients ring Λ,
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which for simplicity we choose to be Z/`ν (` a prime invertible on S, ν ≥ 1)
(there are variants with Z`, Q`, Q`). Let f : X → S be a morphism of
schemes. For F ∈ D+(Xη,Λ), the complex of nearby cycles RΨF (of (F ,f))
is a complex on the geometric special fiber Xs defined by

(3.1.1) RΨF = i
∗
Rj∗(F |Xη),

where i : Xs → X(s) and j : Xη → X(s) are deduced by pull-back from the
maps i : s→ S(s), j : η → S(s), with S(s) the strict localization of S at s. If x
is a geometric point of X over s, and X(x) denotes the strict localization of
X at x (a Milnor ball), the fibre (X(x))η of X(x) → S(s) at η plays the role of
a Milnor fiber, and

(3.1.2) (RΨF )x = RΓ((X(x))η, F ).

The complex RΨF comes equipped with more structure : if G is the Galois
group of η over η, RΨF underlies a complex of sheaves of Λ-modules endowed
with a continuous action of G compatible with its action on Xs (an object of
D+(Xs×s η,Λ) in Deligne’s notations in [SGA 7 XIII]). This action plays the
role of the monodromy action of π1 of the punctured disc on the cohomology
of a Milnor fiber in the analytic context.

For F ∈ D+(X,Λ), the adjunction map defines an equivariant triangle

(3.1.3) F |Xs → RΨ(F |Xη)→ RΦF →,

where RΦF is by definition the complex of vanishing cycles of (F ,f). This
complex measures the non local acyclicity of (F ,f) : by definition, the stalk
of RΦF at x vanishes if and only if (F ,f) is locally acyclic at x ; this is the
case, for example, if F is lisse and f is smooth at x.

3.2. The functor RΨ enjoys the following basic properties :
(a) Let f : X → S, g : Y → S, h : X → Y be S-morphisms, with gh = f .
(i) If h is proper, then, for F ∈ D+(Xη,Λ),

(3.2.1) RΨ(R(hη)∗F )
∼−→ R(hs)∗RΨF.

This is an immediate consequence of the proper base change theorem [SGA
4 XI] (cf. 1.5).

(ii) If h is smooth, then, for F ∈ D+(Yη,Λ),

(3.2.2) h∗sRΨF
∼−→ RΨ(h∗ηF ).

(b) Suppose f is of finite type. Then RΨ preserves constructibility (1.7),
i. e. sends D+

c (Xη,Λ) (resp. Db
c(Xη,Λ)) into D+

c (Xs,Λ) (resp. Db
c(Xs,Λ)).
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Moreover, the formation of RΨF commutes with any dominant change of
traits S ′ → S ([SGA 4 1/2, Th. finitude, 3.2, 3.7]).

(c) Suppose f is separated and of finite type. Then RΨ commutes with
duality, in the following sense. Let Ds = RHom(−, Rf !

sΛ) (resp. Dη =
RHom(−, Rf !

ηΛ)) be the dualizing functor on Xs (resp. Xη) (cf. [SGA 4

1/2 Th. finitude, 4] (if D is Ds (resp. Dη), D sends Db
c to Db

c and Id
∼−→

DD). Then, for F ∈ Db
c(Xη,Λ), of finite tor-dimension, there is a natural

isomorphism [I 2, 4.2]

(3.2.3) RΨ(DηF )
∼−→ Ds(RΨF ).

This implies that RΨ preserves perversity, i. e. is t-exact [I 2, 4.5]. In
(loc. cit.) it is shown along the same lines that RΨ commutes with external
products.

3.3. As a typical example, in which nearby cycles can be explicitly cal-
culated, consider the case where f : X → S has strict semistable reduction.
This means that X is regular, Xη is smooth and the special fiber Xs is a divi-
sor with strict normal crossings (see 6.3 for the definition). Write Y = Xs as
the sum of its irreductible components Y =

∑
1≤i≤r Yi. Then, R0ΨΛ = ΛY ,

there is a canonical exact sequence

0→ ΛY →
⊕

ΛYi → R1ΨΛ(1)→ 0,

where the first map is the diagonal, and the cup-product defines isomor-
phisms

ΛqR1ΨΛ
∼−→ RqΨΛ.

The inertia subgroup I of G (3.1) acts trivially on the sheaves RqΨΛ, and
unipotently on RΨΛ (as an object of Db

c(Xs,Λ)). These results were first
proven by Rapoport-Zink [RZ], see [I 3, 3.3, 3.4] for an alternate exposition.

3.4. In general, complexes of nearby cycles do not behave well in families,
as is shown by the following elementary example, discussed by Deligne [D].
Let Y be the affine plane A2

C, f : X → Y the blow-up of the origin in Y ,
E = f−1(0) = P1

C the exceptional divisor. Lines in Y passing through 0 are
parametrized by E ; for t in E, let Dt be the corresponding line. Fix t ∈ E.
Let U be an open neighborhood of t ∈ E in X, sent by f into some open
neighborhood V of the origin in Y . Then R(f |U)∗Z|V = (f |U)∗Z|V is Z on
some sector around Dt ∩ V and zero elsewhere. These sectors shrink as U ,
V do. Therefore the cohomologies of the (generalized) Milnor fibers around
the origin in Y do not form a nice family : the inductive system R(f |U)∗Z|V
around 0 in Y , is not essentially constant (and, in addition, each member
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is, in general, not analytically constructible, because of the shape of these
sectors).

The morphism f above is not flat, but other examples with f flat and
with the same bad properties were given by Deligne [D] and Lê [Lê]. Lê
(loc. cit) showed that morphisms “without blow-ups”, i. e. admitting suit-
able Thom-Whitney stratifications, had a good theory of ”punctual” nearby
cycles, i. e. the inductive systems considered above were constructible and
essentially constant. Deligne [D] asked whether such good properties could
be obtained after a suitable modification of the base (for instance, in the ex-
ample discussed above, the modification by f itself works). This was proven
by Sabbah [S], at least for f proper.

It was not at all clear how to proceed in the étale set-up. While trying to
prove the product formula for the constants of the functional equations of L
functions for function fields, in the tamely ramified case, Deligne conceived
a theory of nearby and vanishing cycles valid over general bases. A short
summary, without proofs, was written by Laumon [La 2]. This topic long
remained untouched, because Laumon’s proof of the product formula using
the `-adic Fourier transform [La 3] rendered Deligne’s approach useless. But
it has been recently revisited by Orgogozo [O 1], who (with the help of
Gabber for certain points) proved an analogue of Sabbah’s theorem in the
étale context. We will outline this in section 5. In the next section, we
summarize the abstract constructions needed to state the results. Some of
them turned out to have quite different, unexpected applications, see 8.5-8.7.

4. Oriented products and vanishing toposes

4.1. Let f : X → S, g : Y → S be morphisms of toposes defined by
functors f ∗, g∗ between small defining sites having finite projective limits,
such that f ∗, g∗ are continuous and commute with finite projective limits.
Here “small” refers to a fixed universe U . Unless otherwise stated all sites
(resp. toposes) will be U -sites (resp. toposes). In practise, f and g will be
morphisms of étale toposes defined by morphisms of schemes.

A basic construction, due to Deligne [La 2], associates with the pair (f ,g)
a topos, denoted

(4.1.1) X
←
× SY,

called the oriented product of f and g, together with morphisms of toposes

p1 : X
←
× SY → X, p2 : X

←
× SY → Y,

and a morphism
τ : gp2 → fp1,
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i. e. a morphism of functors (gp2)∗ → (fp1)∗ (or equivalently (fp1)∗ →
(gp2)∗), having the following universal property : let T be a topos equipped
with morphisms a : T → X, b : T → Y , t : gb → fa. Then there exists a

unique triple (h : T → X̃
←
× SY, α : p1h ' a, β : p2h ' b) making τh equal to

t.
The topos X

←
× SY is constructed as the topos of sheaves on the following

site C. Let C be the category of pairs of morphisms U → V ← W above
X → S ← Y , where U → V (resp. V ← W ) means a morphism U → f ∗V
(resp. g∗V ← W ) of the defining site of X (resp. Y ) and V is an object
of the defining site of S. Endow C with the topology generated by covering
families (Ui → Vi ← Wi)→ (U → V ← W ) (i ∈ I) of the following types :

(a) Vi = V , Wi = W for all i and (Ui → U) is covering,
(b) Ui = U , Vi = V for all i and (Wi → W ) is covering,
(c) (U ′ → V ′ ← W ′) → (U → V ← W ), where U ′ = U and W ′ → W is

obtained by base change from a map V ′ → V of the defining site of S.
The projections p1, p2 are defined by p∗1(U) = (U → eS ← eY ), p∗2(W ) =

(eX → eS ← W ), where eX , eS, eY are the final objects of the defining sites
of X, S, Y respectively.

To define τ , observe first that if F is a sheaf on C, i. e. an object of

X
←
× SY , then for any covering (U → V ′ ← W ′) → (U → V ← W ) of type

(c), the restriction map

(∗) F (U → V ← W )→ F (U → V ′ ← W ′)

is bijective (this follows from the fact that the morphism

(U → V ′ ← W ′)→ (U → V ′ ×V V ′ ← W ′ ×W W ′)

given by the diagonal maps is a covering of type (c)). Then τ is given by the
following morphism of functors τ : (gp2)∗ → (fp1)∗ : for a sheaf F on C, and
an object V of S,

τ : (gp2)∗F (V )→ (fp1)∗F (V )

is the composition

F (eX → eS ← g∗V )→ F (f ∗V → V ← g∗V )← F (f ∗V → eS ← eY ),

where the second map is an isomorphism of the form (*).

The verification that (X
←
× SY, p1, p2, τ) satisfies the required universal

property is straightforward [I 6, 1.2].

4.2. In most applications, f : X → S, g : Y → S will be the morphisms
of étale toposes associated with morphisms of schemes. In this case, however,
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the oriented product X
←
× SY is not, in general, the étale topos of a scheme.

Geometric, topological or cohomological properties of such objects are far
from being well understood. Here are a few elementary facts and examples
(see [I 6]).

(a) By the universal property, points of T = X
←
× SY , i. e. morphisms

from the punctual topos to T are triples (x, y, u), where x (resp. y) is a
geometric point of X (resp. Y ) (1.2) and u is a morphism from gy to fx,
i. e. a lifting of gy : Spec k → S (k a separably closed field) to the strict
localization S(fx) of S at the image of x by f , in other words, a specialization
morphism from gy to fx in the sense of [SGA 4 VIII 7.2]. it follows from a
general result of Deligne [SGA 4 VI 9.0] that if f and g are coherent, i. e.
quasi-compact and quasi-separated, then T has enough points.

(b) By the universal property again, there is a unique morphism

(4.2.1) Ψ : X ×S Y → X
←
× SY

such that piΨ = pri (i = 1, 2) and τΨ = Id : gpr2 → fpr1, where the left
hand side is the étale topos of the fiber product X×S Y . With the notations
of 4.1, one has

Ψ∗(U → V ← W ) = U ×V W,

and for a sheaf F on X ×S Y , the stalk of Ψ∗F at (x, y, u) is Γ(X(x) ×S(fx)

Y(y), F ), where Y(y) → S(fx) is the composition Y(y) → S(gy) → S(fx), the sec-
ond map being given by u. This identification is derived into an isomorphism

(4.2.2) RΨ∗F(x,y,u) ' RΓ(X(x) ×S(fx)
Y(y), F )

for F ∈ D+(X ×S Y,Λ), Λ a ring. We will abbreviate (x, y, u) to (x, y) when
no confusion can arise. For brevity, we will usually write RΨ instead of RΨ∗.

If S is the spectrum of a field (or more generally a finite scheme), then
Ψ is an equivalence. In general, Ψ is far from being an equivalence. For
example, if Y is a closed subscheme of a scheme S, with open complement

U , the fiber product Y ×S U is empty, while the oriented product Y
←
× SU is

an interesting object, playing the role of a punctured tubular neighborhood of
Y in S, see 8.6.

4.3. Let f : X → S be a morphism of schemes, and take g : Y → S to
be the identity morphism of S. The corresponding oriented product (for the
associated morphisms of étale toposes)

(4.3.1) X
←
× SS
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is called the vanishing topos of f . We have the following relations

(4.3.2) X ×S S = X , p1Ψ = IdX , p2Ψ = f,

and there is a structural morphism τ : p2 → fp1.
Fix a ring Λ as in 3.1, but for the beginning not assuming ` invertible on

S. The functor
RΨ : D+(X,Λ)→ D+(X

←
× SS,Λ)

is called the functor of nearby cycles of f . We denote it sometimes by RΨf or

RΨX to avoid confusion. Let (x, t) = (x, t, u : t→ fx) be a point of X
←
× SS.

Consider the fiber product

(4.3.3) X(x,t) = X(x) ×S(s)
S(t),

which one might call the Milnor tube at (x, t), with center the Milnor fiber
(X(x))t. It follows from the definitions that for a sheaf F on X, the stalk of
ΨF at (x, t) is given by

(ΨF )(x,t) = Γ(X(x,t), F ),

and this is derived into

(4.3.4) RΨF(x,t) = RΓ(X(x,t), F ),

for F ∈ D+(X,Λ). Note that the restriction to the Milnor fiber

RΓ(X(x,t), F )→ RΓ((X(x))t, F )

is not an isomorphism in general, see 5.2 for more about this problem.
By construction, p1Ψ = Id (4.3.2). The map

(4.3.5) p1∗ → Ψ∗

obtained by applying p1∗ to the adjunction map Id → Ψ∗Ψ
∗ is an isomor-

phism [I 6, 3.2]. On the other hand, the identity of F , for F ∈ D+(X,Λ),
gives a canonical map

p∗1F → RΨF,

and a triangle

(4.3.6), p∗1F → RΨF → RΦF → .

which can be made functorial by the usual techniques of filtered complexes
(cf. [SGA 7 XIII]). The functor RΦ is called the functor of vanishing cycles
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of f . When S is the spectrum of a field, the morphism Ψ is an equivalence
(4.2 (b)), hence RΦF = 0 for all F ∈ D+(X,Λ).

When S is a trait, as in 3.1, the topos denoted Xs×sS (resp. Xs×s η) by

Deligne in [SGA 7 XIII] can be identified with the sub-topos Xs

←
× SS (resp.

Xs

←
× Sη) of X

←
× SS, and (4.3.6) induces the usual triangle relating (classical)

nearby and vanishing cycles.
The vanishing toposes and the functors Ψ, Φ satisfy various formal prop-

erties with respect to composition and base change, whose description we
will omit, see [I 5, 2.4] for some of them.

4.4. On oriented products of schemes there are good notions of finiteness
and constructibility ([O 1, 7]). Assume, for simplicity, that S is noetherian

and X and Y are of finite type over S. A sheaf F of Λ-modules on X
←
× SY

is called constructible if there exist finite partitions of X and Y into disjoint
locally closed subsets : X = ∪Xi, Y = ∪Yj, such that, for all (i, j), the

restriction of F to the sub-topos Xi

←
× SYj is locally constant of finite type.

The constructible sheaves of Λ-modules form a thick subcategory of the cate-

gory of all sheaves of Λ-modules, so that the full subcategory Db
c(X

←
× SY,Λ)

consisting of complexes with bounded, constructible cohomology sheaves is
a triangulated subcategory. Constructible sheaves are the noetherian ob-
jects of the category of Λ-modules and any sheaf of Λ-modules is a filtering
inductive limit of constructible sheaves.

5. Main results on nearby cycles over general bases

5.1. Properties 3.2 (a) are easy to generalize. Let S be a scheme and
Λ = Z/`νZ, with ` a prime invertible on S and ν ≥ 1.

(i) Let f : X → Y be a morphism of S-schemes. We then get a commu-
tative diagram

(5.1.1) X
f //

ΨX��

Y

ΨY��

X
←
× SS

←
f // Y

←
× SS

which induces an isomorphism

R
←
f ∗RΨXF

∼−→ RΨYRf∗F

for F ∈ Db
c(X,Λ). Moreover, if f is proper, it follows from the proper base

change theorem 1.5 that R
←
f ∗ commutes with any “base change” X ′ → X,
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S ′ → S, so that, taking into account the compatibility (4.3) between the
general RΨ and the classical one when S is a trait, we recover 3.2 (a) (i).

(ii) If f in (5.1.1) is smooth, it follows from the local acyclicity of smooth
maps (1.12) that the base change map associated with (5.1.1)

←
f ∗RΨY F → RΨXf

∗F

is an isomorphism. This generalizes 3.2 (a) (ii).
Properties (b) of 3.2 turn out to be false in general. As shown by Or-

gogozo [O 1, 9], in the case of the blow-up discussed in 3.4, RΨfΛ has not
constructible cohomology, and its formation does not commute with the base
change by f itself. Additional assumptions are necessary.

We call a morphism g : S ′ → S a modification (resp. an alteration) if g is
proper, surjective and induces an isomorphism (resp. a finite morphism) over
an everywhere dense open subscheme, with the property that each maximal
point of S ′ is sent to a maximal point of S. Orgogozo proved the following
theorem, conjectured by Deligne :

Theorem 5.2. [O 1, 1.1, 5.1, 6.1] Let S be a noetherian scheme and
f : X → S be a morphism of finite type. Let F ∈ Db

c(X,Λ). Then there
exists a modification g : S ′ → S such that if f ′ (resp. F ′) is deduced from f

(resp. F ) by base change by g, RΨf ′F
′ belongs to Db

c(X
′ ←× S′S

′,Λ) and the
formation of RΨf ′F

′ commutes with any base change S ′′ → S ′.

In particular, after base change by g, the cohomology of the Milnor tube
restricts isomorphically to that of the Milnor fiber : for any point (x, y) of

X ′
←
× S′S

′, the restriction map

(5.2.1) RΨf ′F
′
(x,y) → RΓ(X ′(x) ×S′(f(x)) y, F

′)

is an isomorphism.

It follows that when S is regular of dimension ≤ 1, RΨF is already
constructible (i. e. belongs to Db

c) and commutes with any base change. For
S a trait, one recovers Deligne’s results 3.2 (b). For S of dimension zero, 5.2
says that RΦF is universally zero (cf. (4.3.6), i. e. after any base change
S ′ → S, the cone of the restriction to any Milnor fiber of the pull-back f ′,

(5.2.2) F ′x → RΓ((X ′(f ′(x)))t, F
′),

is zero : one recovers Deligne’s universal local acyclicity theorem [SGA 4 1/2
Th. finitude, 2.16].

There is an important case in which no modification of the base is needed
to make RΨF constructible and commuting with base change, namely the
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case of isolated singularities. More precisely, 5.2 implies the following result,
generalizing that stated in [La 2, 3.3.5] :

Corollary 5.3. [O 1, 5.1] Let S be a noetherian scheme and f : X → S
be a separated and of finite type morphism. Let F ∈ Db

c(X,Λ). Let Σ be the
complement in X of the largest open subset U such that F |U is universally
locally acyclic over S. Assume that Σ is quasi-finite over S. Then RΨF (resp.

RΦF ) belongs to Db
c(X

←
× SS,Λ) and its formation commutes with any base

change S ′ → S (in particular, for any point (x, y) of X
←
× SS, the cohomology

of the Milnor tube at (x, y) restricts isomorphically to the cohomology of the

Milnor fiber). Moreover, RΦF is concentrated on Σ
←
× SS.

Here “universally locally acyclic” means that, after any base change, the
restriction maps of type (5.1.3) are isomorphisms [SGA 4 1/2 Th. finitude,
2.12]. This is the case, for example, when U is smooth over S and F |U is a
locally constant sheaf (1.12).

5.4. Here are some glimpses on the proof of 5.2, see [O 1] for the details
and [I 5] for an outline. Standard arguments reduce to proving the following
assertion : (5.4.1) For S of finite type over Z, there exists an alteration

g : S ′ → S such that after base change by g, RΨF becomes constructible
and for any S ′-morphism T ′ → T , the cone KTT ′RΨfF of the base change
map

RΨf ′T
(FT )|T ′ → RΨf ′

T ′
(FT ′)

vanishes, where f ′ : X ′ → S ′ is deduced from f by base change by g. That one

can replace “modification” by “alteration” follows from Gruson-Raynaud’s
flattening theorem [GR].

Orgogozo proves (5.4.1) by a rather intricate induction on the triples of in-
tegers t = (δ, r, d), δ ≥ 0, r ≥ −2, d ≥ 0, lexicographically ordered. He proves
by induction on t that for dimS ≤ δ, dim f ≤ d and F ∈ Db

c(X,Λ) with
HqF = 0 for q < 0, there exists an alteration g as above such that τ≤rRΨX′F

′

is constructible and for any S ′-morphism T ′ → T , τ≤rKTT ′RΨfF = 0.
For t = (0,−2, 0) (more generally any t = (δ,−2, d)) the assertion is

trivial. That this inductive procedure proves (5.4.1) follows from the fact
that RΨf is of cohomological dimension ≤ 2 dim f , a nontrivial point, based
on an old result of Artin on the joins of henselian rings [A, 3.4], to the
effect that if x, y are geometric points of an affine noetherian scheme X, the
connected components of the fiber product X(x) ×X X(y) are strictly local.

The key ingredient in the proof of (5.4.1) is de Jong’s main theorem [dJ
2, 5.10], namely that for f : X → S a proper morphism between noetherian,

28



integral, excellent (e. g. of finite type over Z, cf. 6.4) schemes, there exists
a commutative diagram

Z h //

f ′

��

X

f
��

S ′
g // S,

where g and h are alterations, with Z integral, and f ′ is plurinodal. A
morphism is called plurinodal [dJ 2, 5.8] if it is a finite composition of proper
nodal curves, i. e. proper, flat morphisms of relative dimension 1 whose
geometric fibers have at most ordinary quadratic singularities (this definition
is slightly less restrictive than that in (loc. cit.) as we don’t require the curves
to be quasi-split nor have sections).

In the induction procedure, a typical, crucial step is the following one,
which we reproduce from [I 5, 4.3.1] :

Suppose that f can be factored as f = ba, where b : Y → S is proper, of
relative dimension ≤ d − 1, and a : X → Y is a proper nodal curve. Let us
show that after a suitable alteration g : S ′ → S, we have τ≤rKTT ′RΨfΛ = 0
for every S ′-morphism T ′ → T .

Let U ⊂ X be the open subset of smoothness of a. The complement
Σ = X − U is finite over Y . As b is of relative dimension ≤ d − 1, by the
induction assumption we may assume, up to base changing by an alteration
S ′ → S, that τ≤rKTT ′RΨbΛ = 0. By the basic property 5.1 (ii), as aU = a|U
is smooth, we then have

0 =
←
aU
∗τ≤rKTT ′RΨbΛ = τ≤rKTT ′RΨfΛ|U.

Hence τ≤rKTT ′RΨfΛ is concentrated on Σ, and it suffices to show that

←
aΣ ∗τ≤rKTT ′RΨfΛ = 0.

Now
←
aΣ ∗τ≤rKTT ′RΨfΛ = τ≤rR

←
a ∗KTT ′RΨfΛ,

and by the basic property 5.1 (i) we have

R
←
a ∗KTT ′RΨfΛ = KTT ′RΨb(Ra∗Λ).

As Ra∗Λ is in Db
c(Y,Λ) and cohomologically concentrated in nonnegative de-

grees, by the induction assumption again, we may assume, up to base chang-
ing S by an alteration, that τ≤rKTT ′RΨb(Ra∗Λ) = 0, hence τ≤rKTT ′RΨfΛ =
0 as required.
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5.5. The above results 5.1, 5.2 extend 3.2 (a) and (b) in the best possible
way. For the moment, however, no generalization of 3.2 (c) is known. Besides,
no explicit calculation of nearby or vanishing cycles over a base of dimension
≥ 2 has been performed as yet. This is related to the problem of generalizing
the variation and monodromy operators of the classical theory. For constant
coefficients, the examples of nodal curves, or of semistable reduction along a
divisor with normal crossings (in the sense of [I 1, 1.1]), or more generally,
borrowing notions from log geometry, morphisms underlying log smooth and
exact morphisms of log schemes, should be accessible and would shed light
on these questions.

Despite this lack of understanding, the mere existence of a formalism,
together with 5.3, enabled Gabber and Orgogozo to solve questions raised in
[Weil II] concerning the vanishing cycles associated with Lefschetz pencils,
namely, in all cases, the conjugacy of vanishing cycles under the monodromy
group of the pencil, and the constancy of this group when the pencil varies,
see [O 1, 11.2] and, for an outline, [I 5, 5.1, 5.2].

6. Gabber’s recent results on étale cohomology

Gabber has recently solved fundamental problems and conjectures left
open in [SGA 4] and [SGA 5], namely :

(i) Grothendieck’s absolute purity conjecture
(ii) constructibility of higher direct images of constructible sheaves of tor-

sion prime to the characteristics by finite type morphisms between noetherian
quasi-excellent schemes

(iii) affine Lefschetz type theorems for excellent schemes
(iv) existence of dualizing complexes on excellent schemes.
The main results and a sketch of the key ideas in their proofs are presented

in [Ga 2], [Ga 3]. A more detailed account is in preparation [ILO]. In this
section we give a short overview of the statements.

Theorem 6.1. (Gabber) Let X be a regular, locally noetherian scheme,
Y ⊂ X a regular divisor, j : U = X−Y → X the inclusion, Λ = Z/nZ, with
n > 0 invertible on X. Then :

Rqj∗Λ =


Λ if q = 0

ΛY (−1) if q = 1

0 if q > 1

The isomorphism Λ
∼−→ R1j∗Λ(1) sends the unit section to the section

of R1j∗Λ(1) over Y which is locally given by the opposite of the class of
the torsor of nth-roots of a local equation of Y . The composition of this
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isomorphism with the canonical isomorphism R1j∗Λ(1)
∼−→ H2

Y (Λ(1)) sends
the unit section to the cohomology class of Y , c(Y ) ∈ H0(Y,H2

Y (Λ(1)) =
H2
Y (X,Λ(1)), according to the conventions of [SGA 4 1/2, Cycle].

This theorem had been conjectured by Grothendieck in the oral seminar
of [SGA 5], under the assumption that X is excellent (which turned out to
be superfluous). It was proven in [SGA 4 XVI] for X, Y smooth over a field,
and in [SGA 4 XIX] for X of characteristic zero. Gabber’s first proof of 6.1,
in 1994 ([Ga 1], see [F 3] for a written account) used techniques of algebraic
K-theory developed by Thomason (who had himself proved 6.1 in 1984 [Th]
under some restrictive hypotheses). Gabber’s new proof [Ga 3] no longer
uses K-theory (see [R1]).

Corollary 6.2. Let X and Λ be as in 6.1, and let Y be a closed, regular
subscheme of X, of pure codimension d. Then :

Hq
Y (Λ) =

{
0 if q 6= 2d

ΛY (−d) if q = 2d

The isomorphism ΛY
∼−→ H2d

Y (Λ)(d) sends the unit section to the section
c(Y ) ∈ H0(Y,H2d

Y (Λ)(d)), which is characterized by the property that, if Y
is the transverse intersection of regular divisors Yi (1 ≤ i ≤ d), c(Y ) is the
product of the classes c(Yi) of 2.1.

Recall that on a regular noetherian scheme X, a divisor D is called a
simple (or strict) normal crossings divisor if D is the sum of a locally finite
family (Di)i∈I of regular divisors crossing transversally, i. e. such that, at
each point x of the support of D, if J(x) is the (finite) set of indices i ∈ I
such that x belongs to the support of Di, then, for all subset J of J(x),
the intersection of the Di’s for i ∈ J is, locally around x, a regular closed
subscheme of X of codimension |J |. A divisor D is called a normal crossings
divisor if, étale locally, D is a strict normal crossings divisor.

Corollary 6.3. Let X and Λ be as in 6.1, and let D =
∑

i∈I Di be
a strict normal crossings divisor on X. Let j : U = X − D → X be the
inclusion. Then :

Rqj∗Λ =


Λ if q = 0

⊕ΛDi
(−1) if q = 1

ΛqR1j∗Λ if q ≥ 1

The isomorphism ⊕ΛDi

∼−→ R1j∗Λ(1) sends the unit section of ΛDi
to the

image by restriction of c(Di) ∈ Γ(X,R1ji∗Λ(1)) into Γ(X,R1j∗Λ(1)), where
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ji : X − Di → X is the inclusion. The isomorphism ΛqR1j∗Λ
∼−→ Rqj∗Λ is

induced by the cup-product. It defines an isomorphism

Rqj∗Λ = ⊕ΛDJ
(−|J |),

where J runs through the subsets of I with q elements and DJ is the in-
tersection of the Di’s for i ∈ J . It is formal to deduce 6.3 from 6.2, see [I
3].

The K-theoretic free proof of 6.1 given by Gabber in [Ga 3] uses some
arguments of the original proof [F 3] together with some new, delicate tech-
niques of canonical desingularization and logarithmic geometry, see [Mo] and
[R] for some details.

6.4. Recall that a ring A is called quasi-excellent if A is noetherian and
satisfies the following conditions :

(i) for all x ∈ X = SpecA, the fibers f−1(y) of the canonical morphism
f : Spec ÔX,x → SpecOX,x are geometrically regular, i. e. are regular and
remain so after any finite extension of k(y).

(ii) for any A-algebra of finite type A′, the set of regular points of SpecA′

is open.
When A is local, (i) implies (ii) [EGA IV 7.8.3 (i)]. A ring A is called

excellent if it is quasi-excellent and moreover, is universally catenary, i. e.
any A-algebra of finite type A′ is catenary (i. e. the chain condition on codi-
mensions for chains of irreducible closed subsets X1 ⊂ X2 ⊂ X3 of SpecA′ is
satisfied).

A scheme X is called quasi-excellent (resp. excellent) if it admits an open
cover by the spectra of quasi-excellent (resp. excellent) rings. For example,
the spectrum of a complete noetherian local ring, a scheme of finite type
over a Dedeking ring of mixed characteristics is excellent. Any scheme lo-
cally of finite type over a quasi-excellent (resp. excellent) scheme is itself
quasi-excellent (resp. excellent). See [EGA IV 7.8] for details (the terminol-
ogy quasi-excellent cannot be found in (loc.cit.) but seems to have become
standard).

Theorem 6.5. (Gabber) Let Y be a noetherian, quasi-excellent scheme
and let f : X → Y be a morphism of finite type. Let Λ = Z/nZ, with n ≥ 1
invertible on Y . Let F be a constructible sheaf of Λ-modules on X. Then :

(a) Rqf∗F is constructible for all q,
(b) there exists an integer N such that Rqf∗F = 0 for q ≥ N .

The conjunction of (a) and (b) is equivalent to saying that Rf∗ sends
Db
c(X,Λ) into Db

c(Y,Λ). Recall (1.8, 1.9) that, if f is proper, (a) and (b)
hold even if n is not invertible on Y , and that (a) and (b) were proven by
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Artin for Y of characteristic zero [SGA 4 XIX], or, by Deligne [SGA 4 1/2 Th.
finitude] if f is a morphism of S-schemes of finite type, with S noetherian,
regular of dimension ≤ 1 (but not necessarily quasi-excellent) it’s possible,
however, to reduce the non quasi-excellent case to the quasi-excellent one
(Gabber)). Besides, Gabber has shown that the constructibility of f∗F holds
even if Y is not quasi-excellent, but he has constructed a counter-example
in the non quasi-excellent case for q = 1 (compare with the analogous facts
concerning base change for a proper morphism, 1.4, 1.5). He has also proven
an analogue of 6.5 in the non abelian setting [Ga 2].

Gabber gave two proofs of 6.5 (a). Both rely on the absolute purity
theorem and use uniformization theorems that we will discuss in the next
section. An outline will be given in section 8. The second proof gives (a)
and (b) at the same time. It uses some of the techniques alluded to above
for the proof of the purity theorem.

The same ingredients (absolute purity, uniformization) are essential in
the proofs of the next results in 6.6 and 6.7.

6.6. Affine Lefschetz. A classical theorem of Artin and Grothendieck
[SGA 4 XIV] asserts that if f : X → Y is an affine morphism between
schemes of finite type over a field k and Λ = Z/nZ with n prime to the
characteristic of k, then for any sheaf F of Λ-modules on X and all q ∈ Z,
one has dim supp(Rqf∗F ) ≤ dim supp(F )− q.

Gabber generalized this to quasi-excellent schemes as follows :

Theorem 6.6.1. (Gabber [Ga 3]) Let f : X → Y be an affine morphism
of finite type between noetherian, quasi-excellent schemes. Assume Y admits
a dimension function δY and let δX be the corresponding dimension function
on X, defined by δX(x) = δY (f(x)) + tr.deg(k(x)/k(f(x))). Let Λ = Z/nZ
with n invertible on Y . Then for any sheaf F of Λ-modules on X and all
q ∈ Z, one has δY (Rqf∗F ) ≤ δX(F )− q.

Here by a dimension function on Y we mean a function δ : Y → Z
such that, for any immediate specialization y → x of geometric points above
y → x, δ(x) = δ(y)− 1. Such a dimension function exists étale locally. If Y
is a closed irreducible subscheme of a regular scheme, then y 7→ − dimOY,y
is a dimension function. By δ(G) in 6.6.1 we mean supGx 6=0 δ(x).

It follows from 6.6.1 that if X is the spectrum of a strictly local, noethe-
rian, integral, excellent ring A with fraction field K, then for any prime `
invertible on X, one has cd`(K) = dim(X). This was conjectured by Artin
in [SGA 4 X]. A variant for ` = char(k), taking into account the logarithmic
differentials of the residue field, has recently been proven by Gabber and
Orgogozo, solving a conjecture of Kato. We will discuss this briefly in 7.4.
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6.7. Dualizing complexes. In [SGA 5 I] Grothendieck conjectured that if
X is a regular, noetherian, excellent scheme of finite Krull dimension, and
Λ = Z/nZ with n invertible on X, then ΛX is a dualizing complex.

By a dualizing complex on X we mean an object K of Db
c(X,Λ) such that

there exists an integer N for which Exti(F,K) = 0 for all i ≥ N and all con-
structible sheaves F of Λ-modules on X, the functor D = RHom(−, K) sends
Db
c(X,Λ) into itself and the biduality map F → DDF is an isomorphism for

any F ∈ Db
c(X,Λ).

Grothendieck’s conjecture was proven in [SGA 5 I] for X of dimension
≤ 1, or of characteristic zero (using Hironaka’s resolution). Gabber proved
the conjecture in general (see [R2]). He also proved the existence of dual-
izing complexes on any noetherian, excellent scheme admitting a dimension
function and of finite Krull dimension. This existence had been proven by
Deligne in [SGA 4 1/2, Th. finitude] for X of finite type over a regular
scheme of dimension ≤ 1 (no further assumption is needed in this case).

7. Gabber’s uniformization theorems

7.1. Let X be a scheme. Denote by (pf/X) the category of schemes locally
of finite presentation over X. The pspf-topology (pspf for “propre surjectif, de
présentation finie”) on (pf/X) (or on X, for short) is the topology generated
by covering families of the following types : (i) T ′ → T proper surjective, of
finite presentation (ii) open Zariski covers (Ti → T )i∈I . The corresponding
site is called the pspf-site of X and denoted Xpspf . This topology is close to
that considered by Suslin-Voevodsky [SV, 10], called h-topology. It coincides
with it when X is noetherian [GL]. The pspf-topology on (pf/X) is finer than
the étale topology.

Theorem 7.2. (Gabber [Ga 3]) Let X be a noetherian quasi-excellent
scheme and Y a nowhere dense closed subset. There exists a finite family of
finite type morphisms (fi : Xi → X)i∈I having the following properties :

(i) the family (fi) is covering for the pspf topology ;
(ii) each Xi is regular and connected ;
(iii) for each i ∈ I, Yi := f−1

i (Y ) is either empty or the inclusion of the
support of a divisor with strict normal crossings ;

(iv) for each i ∈ I, fi is quasi-finite over a dense open subset of X, and if
ηi is the generic point of Xi, fi(ηi) is a maximal point of X.

In particular, a pair (Y ⊂ X) as above locally for the pspf topology looks
like the inclusion of the support of a divisor with strict normal crossings
(or of the empty space) in a regular, noetherian (quasi-excellent) scheme.
For this reason, one can call 7.2 a local uniformization theorem. This is a
(weak) form of resolution à la Hironaka. This is also a local generalization
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of part of de Jong’s theorem [dJ 1, 8.2], namely the statement that if X is
an integral scheme, separated, of finite type and flat over the spectrum S
of a (non-necessarily excellent) Dedeking ring, and Y is a nonempty proper
closed subset of X, then, after a suitable finite extension of S, there exists
an alteration f : X ′ → X, with X ′ regular and f−1(Y ) the support of a strict
normal crossings divisor. Note that, in 7.2, the morphism f :

∐
Xi → X

sum of the fi’s is not necessarily proper. Using Gruson-Raynaud’s flatten-
ing theorem [GR] one can show that the property for the family (fi) to be
covering for the h-topology is equivalent to the fact that f acquires a section
after a base change of the form g = g1g2g3g4, where g1 is a closed nilpotent
immersion, g2 a modification, g1 a finite flat map, g1 a finite Zariski cover.

7.3. The main steps of the proof are the following :

(1) One may assume X local henselian.
This is the ”easy” part : the statement is local for the étale topology,

quasi-excellency is preserved by henselization [EGA IV 18.7.6], and by pass-
ing to the limit arguments, data (fi) over the henselization of X at a point
x can be descended to an étale neighborhood of x.

Therefore, one may proceed by induction on the integer d, assuming the
theorem established for all X as in 7.2 which are local of dimension < d
(hence for any X as in 7.2 which is of finite dimension < d).

(2) One may assume X complete, local (of dimension ≤ d).
Let X̂ be the completion of the local henselian scheme X at its closed

point. Having found morphisms (fi : X ′i → X̂)i∈I as in 7.2 for X̂, one has
to descend them to X, preserving their properties. Let h : X̂ → X be the
canonical morphism. Choose a filtering projective system of affine morphisms
hα : Xα → X of finite type such that h = inv.limhα. By Popescu’s theorem
[Po 1, 1.3] (see also [Po 2], and [Sw] for an independent exposition of the
proof of the main theorem in [Po 1]), for each α and any integer n ≥ 0,
hα has a section sα,n : X → Xα, whose restriction to the nth-infinitesimal
neighborhood Xn of the closed point of X coincides with the restriction of
X̂ → Xα to Xn. The morphisms fi can be descended to some Xα, and then
pulled back to X via sα,n. The problem is to show that, for suitable α, n,
the morphisms thus obtained satisfy the properties required in 7.2. This
is delicate. The proof relies on a new technique of formal approximation
developed by Gabber [Ga 3].

(3) The conclusion of 7.2 holds for X complete, local, of dimension ≤ d
(under the induction assumption made above).

This is the longest part of the proof. There are three main steps.
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(a) The starting point is a refinement of a theorem of Cohen [EGA 0IV
19.8.8 (ii)] :

Theorem 7.3.1. (Gabber [Ga 2, 8.1]) Let Z = SpecA be a noetherian,
complete, local, reduced scheme, equidimensional of dimension r, and of
equicharacteristics. There exists a formal power series ring of the form B =
k[[t1, · · · , tr]], where k is isomorphic to the residue field of A, and a local
morphism g : Z → T = SpecB, such that A is finite over B, torsionfree and
generically étale.

The improvement on loc.cit. is that X is not assumed integral and, for Z
of characteristic p > 0, that g is generically étale. The proof is in the spirit
of that of Nagata’s jacobian criterion [EGA 0IV 22.7].

(b) The next step is a fibration theorem :

Theorem 7.3.2. (Gabber [Ga 3]) Let X be a noetherian, complete,
normal, local scheme of dimension d ≥ 2, and Y a proper closed subscheme.
There exists :

(i) a noetherian, complete, regular, local scheme S of dimension d− 1
(ii) a noetherian, normal, local scheme X1, a local morphism f : X1 → S,

which is essentially of finite type and of relative dimension 1, and a proper
closed subscheme Y1 of X1

(iii) a local, finite and surjective morphism g : X̂1 → X, where X̂1 is the
completion of X1 at its closed point, such that the pull-back of Y by g is the
completion of Y1 at its closed point.

To deduce 7.3.2 from 7.3.1 one proceeds as follows.
Suppose first that X is of equicharacteristics. Applying 7.3.1 to Z = X,

one finds a local, finite, and generically étale morphism h : X → S[[td]],
where S = SpecR, R = k[[t1, · · · , td−1]]. Using the Weierstrass preparation
theorem, one may assume, up to a change of coordinates, that h is étale above
the complement of V (P ) where P ∈ R[td] is a unitary polynomial, vanishing
at the closed point x0 of S[[td]]. One then applies Elkik’s algebraization
theorem [El, th. 5 p. 577] to the morphism h and the henselian pair cut
off by (S[td], V (P )) at the henselization of S[td] at x0. Additional work is
required to algebraize Y . The morphism obtained from h by algebraization
descends to a morphism h′ : X ′ → T ′, where T ′ is an étale neighborhood of
x0 in S[td], such that the composition X ′ → T ′ → S yields (by localization)
the desired morphism f .

Suppose now that the closed point x of X is of characteristic p > 0 and
the generic point of X is of characteristic zero. Then X is above SpecZp.
Assume first that the special fiber X0 = V (p) is reduced. Then, applying
7.3.1 to Z = X0, one finds a finite, local, generically étale morphism h0 :
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X0 → Spec k[[t1, · · · , td−1]] (with k isomorphic to k(x)), which one lifts to
h : X → SpecW [[t1, · · · , td−1]], where W is a Cohen ring for k. One then
proceeds as above, this time taking S = SpecR, R = W [[t1, · · · , td−2]]. If
the special fiber X0 is not reduced, one uses a theorem of Epp [Ep] to show
that up to replacing X → SpecZp by X ′ → SpecW ′, where X ′ is finite
over X and W ′ is a finite extension of the Witt ring of a suitable perfect
subfield of k(x), the special fiber X ′0 of X ′ → SpecW ′ is reduced. One then
continues as before, with X replaced by X ′ and X0 by X ′0. (c) The last step

uses techniques of logarithmic geometry and (a particular case of) de Jong’s
theorem on alterations and nodal curves, namely :

Theorem 7.3.3. (de Jong) [dJ 2, 2.4] Let f : X → S be a proper
morphism of integral excellent schemes, whose generic fiber Xη is smooth,
geometrically irreducible, and of dimension 1, and let Y ⊂ X be a proper
closed reduced subscheme such that Yη is étale. Then there exists a commu-
tative diagram

X ′ h //

f ′

��

X

f
��

S ′
g // S

where X ′, S ′ are integral, g and h are alterations, f ′ is a proper nodal curve,
and the components of h−1(Y ) dominating S ′ are disjoints sections of f ′

contained in the smooth locus of f ′.

Using 7.3.2 one may assume that there exist a local, normal scheme X1,
with X̂1 = X, a local, essentially of finite type morphism f : X1 → S, of
relative dimension 1, with S local, complete, regular and of dimension d− 1,
and a closed reduced subscheme Y1 of X1 such that Ŷ1 = Y . (Note that X1

is excellent hence Ŷ1 is reduced.) It is enough to construct a pspf covering
(fi) of X1 satisfying the properties of 7.2 with respect to Y1. Indeed, as X1 is

excellent, they will be preserved by pull-back to X̂1(= X). Up to replacing
X1 by some affine model whose X1 is the localization and base changing by
a finite normal extension of S, one may assume that f is of finite type, the
generic fiber of f is smooth and that the components of Y1 dominating S
are generically étale. One then applies 7.3.3 : after alterating S and X1, one
obtains X ′ and S ′, excellent integral, with S ′ of dimension ≤ d − 1, and a
nodal curve f ′ : X ′ → S ′, such that the components of the inverse image
Y ′ of Y in X ′ dominating S ′ are étale and contained in the smooth locus
of f ′. Applying the induction assumption to S ′ (and suitable proper closed
subsets), one can assume that S ′ is regular, f ′ smooth outside a divisor with
strict normal crossings T ′ and Y ′ = D ∪ E, where D is a divisor contained
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in the smooth locus of f ′ and étale over S ′, and E the support of the inverse
image of a union of components of T ′. By the local structure theorem for
nodal curves [dJ 1, 2.23, 3.3], it turns out that for the log structure on X ′

defined by Y ′ (push-out of the trivial one on the complement), X ′ is log
regular [K 2, 2.1]. Finally, by Kato’s log desingularization theorem [K 2,
10.4], a modification of X ′ makes X ′ regular and Y ′ a strict normal crossings
divisor.

7.4. Application of 7.3.2 to the p-dimension of fields.
Let k be a field and p a prime number. One defines the p-dimension (or

cohomological p-dimension) of k,

(7.4.1) dimp(k),

in the following way. If char(k) 6= p, dimp(k) is the cohomological dimension
of Spec k for the étale topology and p-torsion coefficients. If char(k) = p,
one defines the p-rank of k, p− rk(k), as the dimension of Ω1

k/Fp
over k. Let

r = p − rk(k). If r = ∞, then dimp(k) = ∞. Suppose that r < ∞. If, for
all finite extensions k′ of k, H1(Spec k′,Ωr

k′/Fp,log) = 0, then dimp(k) = r. If

not, then dimp(k) = r + 1. Here Ωi
k′/Fp,log is the abelian subsheaf of Ωi

k′/Fp

generated étale locally by the logarithmic differentials, or, equivalently, the
kernel of 1 − C−1 : Ωi → Ωi/dΩi−1, where C−1 is the Cartier isomorphism.
Thus

H1(Spec k′,Ωr
k′/Fp,log) = Coker(1− C−1 : Ωr

k′/Fp
→ Ωr

k′/Fp
/dΩr−1

k′/Fp
).

The following result, conjectured by Kato, was recently proved by Orgogozo
:

Theorem 7.4.2. [O 2] Let A be a local, noetherian, henselian, excellent,
integral ring, with residue field k of characteristic p > 0 and fraction field K.
Then

(7.4.2.1) dimp(K) = dimp(k) + dim(A).

Kato had proven 7.4.2 for A a discrete valuation ring. Orgogozo’s proof
uses this particular case, and relies in an essential way on Gabber’s fibration
theorem 7.3.2.

If A satisfies the assumptions of 7.4.2 but its residue field k is of charac-
teristic p′ 6= p, and, if p = 2, k cannot be ordered, then (7.4.2.1) still holds,
as a consequence of [SGA 4 X 2.4] and a recent affine Lefschetz theorem of
Gabber [Ga 3], see [PS] for details.

8. On the proof of the constructibility theorem
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The purpose of this section is to give an outline of the proof of part (a)
of Gabber’s theorem 6.5.

If j : U → Z is the inclusion of the complement of a divisor with strict
normal crossings in a regular scheme Z, then, for all q, Rqj∗Λ is constructible
by corollary 6.3 of Gabber’s absolute purity theorem 6.1. The general idea
is to reduce to this case using Gabber’s uniformization theorem 7.2 and
cohomological descent. There is, however, a serious difficulty in implementing
this method, arising from the fact that the morphisms fi occuring in 7.2 are
not necessarily proper. In particular, if j : U → Z is as above, f : Z → Y
is a member of a pspf covering family of type 7.2, and G is a constructible
Λ-module on Z, such as Rqj∗Λ, we do not know whether the sheaves Rif∗G
are constructible. To deal with this issue the strategy is to use noetherian
induction and Deligne’s generic constructibility theorem :

Theorem 8.1. (Deligne) [SGA 4 1/2, Finitude, 1.9] Let S be a noethe-
rian scheme, f : X → Y a morphism of S-schemes of finite type, Λ = Z/nZ
with n invertible on S, and F a constructible Λ-module on X. Then there is
a dense open subset U of S such that above U the Rqf∗F are constructible
(and zero except for a finite number of them), and their formation commutes
with any base change S ′ → U ⊂ S.

One wants to apply this to the morphism f : Z → X above. A second
problem appears here. To show constructibility of Rif∗G, by [SGA 4 IX
2.4 (v)] it is enough to show that for any irreducible closed subscheme g :
X ′ → X of X, there is a nonempty open subset U ′ of X ′ such that the
restriction of g∗Rif∗G to U ′ is locally constant of finite type (or, equivalently,
constructible). The problem is that, as f is not necessarily proper, Rif∗ does
not necessarily commute with base change, in particular the base change map
g∗Rif∗G → Rif ′∗G

′ is non necessarily an isomorphism, where f ′ : Z ′ → X ′

is deduced from f by base change by g and G′ is the inverse image of G on
X ′. Therefore, applying 8.1 to (f ′, G′) yields no information on g∗Rif∗G.
However, when one uses cohomological descent, one is not interested in a
single pspf covering family fi : Zi → X but on pspf hypercoverings ε· : Z· →
X. For these, the situation is better. First of all, we have a general result of
cohomological descent :

Theorem 8.2. [SGA 4 Vbis] Let X be a scheme and ε. : X. → X be a
hypercovering for the pspf topology. Let Λ be a torsion ring. Then, for any
F ∈ D+(X,Λ), the adjunction map

F → Rε.∗ε.
∗F

is an isomorphism.
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Recall that the assumption that ε. is a pspf hypercovering means that,
for all n ∈ N, the natural map Xn → coskn−1(X≤n−1)n is covering for the
pspf topology, where, for n = 0, coskn−1(X≤n−1)n = X and the natural map
is ε0. As proper surjective morphisms and Zariski open covers are both of
universal 1-cohomological descent, the same is true by [SGA 4 Vbis 3.3.1] for
coverings for the pspf topology, and 8.2 follows from [SGA 4 Vbis 3.3.3].

Now a key technical point is that, in the situation of 8.2, for certain
complexes G. ∈ D+(X.,Λ), the formation of Rε.∗G. commutes with base
change X ′ → X. Namely, we have the following result, which can be thought
of as a theorem of refined cohomological descent (or cohomological descent
with base change) :

Theorem 8.3. (Gabber) Let ε. : X. → X and Λ be as in 8.2, with X
noetherian. In addition, let f : U → X and g : X ′ → X be morphisms of
finite type. Let f. : U. → X. be the pull-back of f by ε., Let F ∈ D+(U,Λ),
F. its inverse image on U. and G. := Rf.∗F. ∈ D+(X.,Λ). Consider the
cartesian square

(8.3.1) X ′.

ε′.
��

g. // X.

ε.
��

X ′
g // X

.

Then the base change map

g∗Rε.∗G. → Rε′.∗g.
∗G.

associated with (8.3.1) is an isomorphism.

8.4. We will sketch the proof of 8.3 in 8.5. Let us first show how, putting
together the absolute purity theorem, the uniformization theorem, and 8.2,
8.3, one can prove the constructibility theorem. To prove that for any f :
X → Y and F as in 6.5, the direct images Rqf∗F are constructible, it
suffices to show that for any open and dense immersion f : U → X, with X
noetherian quasi-excellent, the direct images Rqf∗Λ are constructible. This
follows from standard dévissages. By Deligne’s step by step procedure [SGA
4 V bis, 5.1], using 7.2, one can construct a pspf hypercovering

ε. : X. → X

such that Xn is a regular scheme for all n and if we form the cartesian square

(8.4.1) U.
f. //

η.
��

X.

ε.
��

U
f // X

,
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each fn is, on any connected component of Xn, either an isomorphism or the
inclusion of the complement of a strict normal crossings divisor. By 8.2, we
have

ΛU = Rη.∗ΛU. ,

hence
Rf∗Λ = Rε.∗(Rf.∗Λ).

Let G. := Rf.∗Λ. By 6.3, we know that G. ∈ D+
c (X.,Λ), i. e. each Gn ∈

D+(Xn,Λ) has constructible cohomology sheaves. In order to prove that the
sheaves Lq := Rqε.∗G. are constructible, by the criterion recalled above, we
have to show that for any closed irreducible subscheme g : X ′ → X, there
is a nonempty open subset V of X ′ such that the restriction of g∗Lq to V is
locally constant of finite type. Consider the corresponding cartesian square
(8.3.1), and let G′. = g.

∗G., which belongs to D+
c (X ′. ,Λ). By 8.3, we have

g∗Lq
∼−→ Rqε′.∗G

′
..

By generic constructibility (8.1) we know that, for each (i, j), there is a
dense open subset Vij of X ′ such that the restriction of Rjε′i∗G

′
i to Vij is

locally constant of finite type. The conclusion then follows from the spectral
sequence

Eij
1 : Rjε′i∗G

′
i ⇒ Ri+jε′.∗G

′
..

8.5. Let us now sketch the proof of 8.3. Consider the cartesian square (8.4.1)
defined by f and ε..

Here is a naive attempt to prove 8.3. Let η′. : U ′. → U ′ be the fiber product
of ε′. and η. over ε., so that we get a cube with cartesian faces. The bottom
horizontal face, say, is

(1) U ′ h //

f ′

��

U

f
��

X ′
g // X

,

and the top one

(2) U ′.
h. //

f ′.
��

U.

f.
��

X ′.
g. // X.

,

with vertical maps from (2) to (1) given by ε., ε
′
., η., η

′
.. As η′. is deduced by

base change from ε., η
′
. is a pspf hypercovering, and cohomological descent
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in the form of 8.2 holds for η′.. On the other hand, make the following
assumption :

(*) base change by g (resp. g.) holds in (1) (resp. (2)) for Rf∗F (resp.
Rf.∗F.) where F. = η.

∗F .
Then the conclusion of 8.3 follows formally. Indeed, modulo trivial com-

patibilities between base change maps, we have :

g∗Rε.∗Rf.∗F. = g∗Rf∗F (descent for η.)

= Rf ′∗h
∗F (base change in (1))

= Rf ′. ∗Rη
′
.∗η
′
.
∗h∗F (descent for η′.)

= Rε′.∗Rf
′
. ∗h.

∗F. (transitivity)

= Rε′.∗g.
∗Rf.∗F. (base change in (2)).

Unfortunately, assumption (*) does not hold in general, as the case where
g is a closed immersion and f the inclusion of the complement already shows.
To circumvent this difficulty, one replaces the fiber products U ′ and U ′. by
the oriented products

←
U ′ = X ′

←
×XU ,

←
U ′. = X ′.

←
×X.U.,

and form the analogous cube, with squares (1)’, (2)’, and η′. defined by the
oriented product

←
η′. = ε′.

←
× ε.η..

Then the analogue (*)’ of (*) becomes true, and is essentially tautologi-

cal. Cohomological descent for
←
η′. and h∗F also holds, but is more delicate.

Granted this, the proof follows the same formal lines as before. To conclude
the proof of 8.3 it suffices therefore to establish the following general results
8.6, 8.7.

The first one is an oriented base change theorem :

Theorem 8.6. (Gabber-Orgogozo) [I 6, 3.7] Let f : X → S, g : Y → S
be morphisms of schemes. Assume that f is coherent, i. e. quasi-compact

and quasi-separated. Let T = Y
←
× SX be the oriented product of the cor-

responding étale toposes, with projections p1 : T → Y , p2 : T → X, and
canonical map τ : fp2 → gp1 (4.1). Let Λ be a ring. For any F ∈ D+(X,Λ),
the base change map (in D+(X,Λ))

(8.6.1) g∗Rf∗F → Rp1∗p
∗
2F

associated with τ is an isomorphism.
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As we claimed in 4.2, when g is a closed immersion and f is the comple-
mentary open immersion, the usual fiber product Y ×S X is empty, but T is
not, and in fact plays the role of a punctured tubular neighborhood of Y in S.
The analogous formula in differential geometry, for Y a closed submanifold
of a manifold S, X = S − Y , T a suitable punctured tubular neighborhood
of Y in S, and F locally constant near Y , is immediate. The proof of 8.6 is
not much more difficult. For example, if g is the inclusion of a closed point
y such that k(y) is separably closed, and f the complementary open immer-
sion, then T is the punctured Milnor ball S(y)−{y}, and the conclusion of 8.6
follows from the calculation of the stalks of direct images by coherent maps
: Rf∗(F )y = RΓ(S(y) − {y}, F ). In the general case, the main point is that
for X, Y , S strictly local, and g a local map (but f not necessarily local), if
t is the point of T defined by the closed points of X, Y , S, then T is a local
topos of center t, i. e. for any sheaf G on T , the natural map Γ(T,G)→ Gt

is an isomorphism.
Gabber has generalized 8.6 to morphisms of toposes. On the other hand,

for S noetherian, g a closed immersion, and f the complementary open im-
mersion, one can view 8.6 as an essentially trivial analogue of a theorem of
Fujiwara on rigid tubular neighborhoods [F 1, 6].

The second result is an oriented cohomological descent theorem :

Theorem 8.7. (Gabber) Let f , g, T be as in 8.6. Let ε. : S. → S be
a pspf hypercovering. Let η. : T. → T be the augmented simplicial topos
defined by base change by ε., i. e.

T. = Y.
←
× S.X.,

where X. (resp. Y.) is deduced from X (resp. Y ) by base change by ε.. Let
Λ be a torsion ring. Then, for any F ∈ D+(T,Λ), the adjunction morphism

F → Rη.∗η.
∗F

is an isomorphism.

See [O 3] for the proof. Here are the main steps.
(a) Suppose that X, S, Y are strictly local, and g local, so that, as was

observed above, T is local. Then one shows that p2 : T → X has a unique
section s sending the closed point of X to that of T , and that, moreover,
for any Λ-module F on T , the natural map p2∗F = s∗p∗2p2∗F → s∗F is an
isomorphism.

(b) Let ξ. : X. → X be a pspf hypercovering and θ. : T. → T the
augmented simplicial topos deduced from ξ. by base change. Then for F ∈
D+(T,Λ), the adjunction map F → Rθ.∗θ

∗
. F is an isomorphism. To show
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this, using (a) and the proper base change theorem one reduces to the case
where F = p∗2E, for E ∈ D+(X,Λ). The conclusion then follows from 8.2.

(c) (the key point) Assume that f : X → S has a factorization

X
f ′ // S ′ a // S ,

with a proper. Let Y ′ = Y ×S S ′, T ′ = Y ′
←
× S′X, and

h : T ′ → T

be the map induced by a. Then, for any F ∈ D+(T,Λ), the adjunction map

F → Rh∗h
∗F

is an isomorphism.
Note that (c) is not a cohomological descent assertion. When S is noethe-

rian, g : Y → S (resp. g′ : Y ′ → S ′) is a closed immersion and f : X → S
(resp. f ′ : X → S ′) the complementary open immersion, so that a induces
an isomorphism over X, one can think of (c) as a cohomological equivalent of
the (built-in) invariance of Fujiwara’s punctured rigid tubular neighborhood
(of Y in S) under an admissible modification of S. In fact, Gabber’s original
approach to 8.6 was via Fujiwara’s tubular neighborhoods instead of oriented
products. The proof of (c) is easy, using the proper base change theorem and
8.6.

(d) Finally, to prove 8.7, let us factorize η. : T. → T into

T. = Y.
←
× S.X.

α. // Y
←
× SX.

θ. // T = Y
←
× SX ,

where θ. is deduced from the projection X. → X as in (b), and α. given

by the αn : Yn
←
× SnXn → Y

←
× SXn defined by the projections Sn → S and

Yn → Y as in (c). The adjunction map relative to θ. is an isomorphism by
(b), while that relative to α. is an isomorphism by (c) (applied to each αn).

References

[A] M. Artin, On the join of Hensel rings, Advances in Math. 7, 1971,
282-296.

[BBD] A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Astérisque
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[Z 2] W. Zheng, Sur l’indépendance de ` en cohomologie `-adique sur les
corps locaux, preprint, 2007.
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II par P. Deligne et N. Katz, SLN 288, 340, Springer-Verlag, 1972-1973.

48


