
Around the Poincaré lemma, after Beilinson [1]

Luc Illusie

The following notes are an expanded version of talks on Beilinson’s paper
[1] given at the department of mathematics of the university of Padova on
October 25 and 26, 2012, at the Séminaire RÉGA1 on December 12, 2012,
lectures at the KIAS (Seoul) on January 3 and 4, 2013, a course at the
Morningside Center of Mathematics (Beijing), on February 18, 25, and March
4, 11, 2013, and a course at the VIASM (Hanoi) on September 4, 5, 9, 10, 11,
2014. I do not discuss Beilinson’s next paper [2], which deals with crystalline
refinements of the comparison theorem between p-adic étale cohomology and
de Rham cohomology.

1. The classical Poincaré lemma and the Betti - de Rham com-
parison theorem

For a smooth analytic space X/C, the classical Poincaré lemma2 says
that the natural augmentation

(1.1) CX → Ω•X/C = (OX → Ω1
X/C → · · · )

is a quasi-isomorphism, where Ω•X/C is the de Rham complex of holomor-
phic differential forms on X. Actually, over any polydisc or more gener-
ally any star shaped open U in X, (1.1) induces a homotopy equivalence
C = Γ(U,CX) → Γ(U,Ω•X/C), a homotopy operator being given by integra-

tion, ω 7→
∫ 1

0
i∂th

∗(ω)dt, h(t, x) = tx.
From (1.1) one deduces

(1.1.1) RΓ(X,C)
∼→ RΓ(X,Ω•X/C),

1Réseau d’Étudiants en Géométrie Algébrique, Institut Henri Poincaré, Paris.
2According to de Rham, ([8], p. 646) this lemma, attributed to Poincaré, was in fact

first proved by Volterra. Here is what de Rham writes : “... dans ses Leçons sur la
Géométrie des espaces de Riemann, dont la première édition a paru en 1928, E. Cartan
donne le nom de Théorème de Poincaré au fait que la différentielle extérieure seconde d’une
forme différentielle est toujours nulle, ce qui est d’ailleurs trivial et résulte immédiatement
de la définition de cette différentielle extérieure. La réciproque, valable dans l’espace
euclidien, n’est pas triviale, et dans ses Leçons sur les invariants intégraux, parues en 1922,
E. Cartan démontre le théorème et sa réciproque sans mentionner Poincaré ni personne
d’autre. Et aujourd’hui, c’est cette réciproque qui est assez couramment appelée lemme de
Poincaré. Or ces propositions sont parfaitement énoncées et démontrées dans des travaux
de Volterra (voir en particulier : Opere matematice, Vol. I, p. 407 et 422) datant de 1889
; on y trouve aussi la formule de Stokes sous sa forme générale, ainsi d’ailleurs que - sous
un autre nom il est vrai - la notion de forme harmonique dans l’espace euclidien. Il est
clair que Cartan n’a pas eu connaissance de ces travaux, sinon il n’aurait pas manqué de
les citer et de rendre justice à Volterra”.
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(1.1.2) H∗(X,C)
∼→ H∗(X,Ω•X/C)

between Betti and de Rham cohomology (where we wrote C for CX).
Changing notation, suppose now that X is a smooth scheme of finite type

over C, and let Xan be the associated analytic space. Let Ω•X/C be the de

Rham complex of algebraic differential forms on X (endowed with the Zariski
topology). It is no longer true that the natural augmentation

CX → Ω•X/C

is a quasi-isomorphism. (The cohomology sheaves of Ω•X/C were studied by

Bloch and Ogus [3], they have a deep connection with algebraic cycles on X.)
It is of course not true either that the natural map RΓ(X,C)→ RΓ(Xan,C)
is an isomorphism (H i(X,C) = 0 for i > 0). However, by a theorem of
Grothendieck [13], the natural map

(1.2) RΓ(X,Ω•X/C)→ RΓ(Xan,Ω•Xan/C)

is an isomorphism. (For X/C proper it is a consequence of Serre’s GAGA
theorems. In the general case, it follows from the existence (by Hironaka) of
good smooth compactifications, and a local calculation at infinity, a divisor
with normal crossings.) Therefore, by composing with the inverse of (1.1.1)
we get isomorphisms

(1.2.1) RΓ(X,Ω•X/C)
∼→ RΓ(Xan,C),

(1.2.2) H∗(X,Ω•X/C)
∼→ H∗(Xan,C).

One has a natural isomorphism

(1.2.3) H∗(Xan,C)
∼→ Hom(H∗(X

an),C),

where H∗(X
an) is the singular integral homology of Xan. When X is affine,

H∗(X,Ω•X/C) is just the cohomology of global sections of the de Rham com-
plex,

H∗(X,Ω•X/C) = H∗Γ(X,Ω•X/C)

and one can check (this is a form of de Rham’s theorem) that the composite
isomorphism

(1.2.4) H∗Γ(X,Ω•X/C)
∼→ Hom(H∗(X

an),C)

is given up to sign by integration of differential forms along singular simplices
ω 7→ (γ 7→

∫
γ
ω) (according to ([7], 1.2) the sign is (−1)n(n+1)/2 for ω of degree
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n). The complex numbers
∫
γ
ω appearing in this way are called periods, and

(1.2.2), (1.2.4) period isomorphisms.
Example. For X = Gm = Spec C[t, t−1] the multiplicative group over C,

(1.2.4) takes ω = dt/t (whose class is a basis of H1(X,Ω•X/C)) to the linear

form sending the generator x 7→ e2πix, 0 ≤ x ≤ 1 of H1(X) to −2πi.

If K is any field and X is a K-scheme, one can consider its de Rham com-
plex Ω•X/K and its hypercohomology, H∗(X,Ω•X/K). When X/K is smooth
of finite type and K is a subfield of C via some embedding σ : K ↪→ C, and
Xσ is the pull-back of X to C via σ, one has a canonical isomorphism

H∗(X,Ω•X/K)⊗K,σ C
∼→ H∗(Xσ,Ω

•
Xσ/C),

hence, by (1.2.2), a period isomorphism

(1.2.5) H∗(X,Ω•X/K)⊗K,σ C
∼→ H∗(Xan

σ ,C) = H∗(Xan
σ ,Q)⊗Q C

(depending on σ). Thus, for K = Q we get two rational Q-structures on
H∗(Xan,C), related by the period isomorphism (1.2.5) which is highly non
rational, as the example above shows.

When X/K is proper and smooth, (1.2.5) is more than an equality of
dimensions. Both sides have a natural filtration (the Hodge filtration), and
(1.2.5) is compatible with it. One can extend this isomorphism to the case
X/K is only separated and of finite type, by replacing the de Rham coho-
mology on the left hand side by one defined by suitable hypercoverings like
in Deligne Hodge III [6]. We’ll come back to this later.

2. The p-adic étale - de Rham comparison theorem : outline

Let K be a field of characteristic zero, K an algebraic closure of K, with
Galois group GK = Gal(K/K). Let X/K be separated and of finite type.
For any prime `, H∗(XK ,Q`) is a finite dimensional Q`-representation of GK .
If we have an embedding σ : K ↪→ C and choose an extension σ : K ↪→ C, we
have a comparison isomorphism (depending on σ in a GK-equivariant way) :

H∗(XK ,Q`)
∼→ H∗(Xan

σ ,Q)⊗Q`.

But in general, for X/K proper and smooth, we have no way to compare this
representation of GK with the de Rham cohomology H∗(X,Ω•X/K). The situ-
ation, however, is better when K is a p-adic field and ` = p. In this case, we
have a comparison isomorphism involving Fontaine’s ring BdR, which, after
partial results by Bloch-Kato, Fontaine-Messing, Hyodo-Kato, was proved in
full generality in the last 15 years by several authors (and different meth-
ods) (Tsuji [21], Faltings [9], Niziol [18], Yamashita [22]), and quite recently
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Beilinson [1]. I will explain Beilinson’s approach, which is close in spirit to
the construction of (1.2.2) via the Poincaré lemma (1.1).

Fix a complete discrete valuation field K of characteristic 0, with perfect
residue field k of characteristic p > 0, ring of integers OK , and as above an
algebraic closure K of K, with Galois group GK . Let X/K be separated and
of finite type. We will define a comparison map

(2.1) ρdR : RΓdR(X/K)⊗B+
dR → RΓ(XK ,Zp)⊗B+

dR,

compatible with all structures (Galois actions, Hodge filtrations on H∗),
whose extension to BdR,

(2.2) ρdR : RΓdR(X/K)⊗BdR → RΓ(XK ,Qp)⊗BdR

is an isomorphism.
Here B+

dR, BdR are Fontaine rings (whose definition will be recalled later),
and RΓdR(Y/κ) for any Y separated and of finite type over a field κ of char.
0 is defined in the following way:

(a) for Y/κ proper and smooth,

RΓdR(Y/κ) := RΓ(Y,Ω•Y/k),

(b) for Y/κ smooth (but not necessarily proper),

RΓdR(Y/κ) := RΓ(Y ,Ω•
Y /κ

(logD))

for any proper and smooth compactification Y of Y such that D := Y −Y is
a divisor with normal crossings (by Deligne’s Hodge II [5], the right hand side
does not depend on the choice of Y ). In both cases, H∗dR(Y/κ) is endowed
with the Hodge filtration defined by the naive filtration of the de Rham
complexes, which filtration does not depend on the choices ;

(c) in general, choose a proper hypercovering V• → Y , with each Vn/κ
smooth, and a simplicial compactification V• ↪→ V • such that each V n/κ is
proper and smooth, and the complement V n − Vn is a divisor with normal
crossings Dn, and define

RΓdR(Y/κ) := RΓ(V •,Ω
•
V •/κ

(logD•)).

By Deligne’s Hodge III [6], the right hand side does not depend on the
choices, and the Hodge filtration on H∗dR(Y/κ), defined by the naive filtration
of Ω•

V •/κ
(logD•) is independent of the choices.

Strategy of the construction.
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Beilinson’s method to construct (2.1) uses no syntomic cohomology, no
algebraic K-theory, no almost étale theory. It is not a by-product of a finer
comparison theorem involving Frobenius structures (Cst, or Cpst). Instead,
it relies on a p-adic variant of the Poincaré lemma (1.1), based on de Jong’s
alterations and a p-divisibility theorem generalizing a vanishing theorem of
Bhatt, with, as a technical tool, the theory of derived de Rham complexes.

In the construction of (1.2.1) the bridge between the two sides is given by
the de Rham complex Ω•Xan/C on Xan, which, on the one hand, is a resolution

of the constant sheaf C, and on the other, receives (or more precisely is the
analytification of) the algebraic de Rham complex Ω•X/C :

(2.3) C→ Ω•Xan/C ← Ω•X/C.

For any field F , denote by VarF the category of F -varieties, i. e. reduced,
separated F -schemes of finite type. The bridge between the two sides of (2.1)
is given by a certain projective system of sheaves of filtered differential graded
algebras (dga for short)

A\dR
on VarK , equipped with Voevodsky’s h-topology, which is generated by proper
surjective maps and surjective étale coverings. The comparison pattern is
basically of the form (2.3) :

(2.4) A\dR⊗̂Zp A\dRoo // A\dR ⊗Q

a

��
AdR⊗̂Zp

b

OO

AdR

.

A few explanations on the items appearing in (2.4) :
• AdR is a projective system of sheaves of filtered K-dga AdR/F

i on
VarK (equipped with the h-topology), which has the property that for any
K-variety Y , we have a natural identification

(2.5) R lim←−RΓ(Y,AdR/F
i) ' RΓdR(Y/K),

the isomorphism induced on H∗ being compatible with the filtrations on
both sides. The construction of AdR (as that of its refined variant A\dR) is
algebraic, but the above identification uses mixed Hodge theory. For Y/K
proper and smooth, the underlying dga of AdR is just Ω•

Y/K
.

• The symbol ⊗̂ denotes a completed derived tensor product : for any
complex E of abelian groups (or sheaves of abelian groups) Beilinson defines

E⊗̂Zp = R lim←−
n

(E ⊗L Z/pn).

5



• Recall the definition of Fontaine’s ring

B+
dR := lim←−

i

(((OK ⊗W W ( lim←−
x 7→xp

OK/p))/J i)̂⊗Q)

where W = W (k), θ : OK⊗WW (lim←−x 7→xp OK/p)→ OC is the canonical map,
sending

(x0, x1, · · · , xn, · · · ) ∈ W ( lim←−
x 7→xp

OK/p)

to
∑
pnx

(n)
n (where xn = (x

(m)
n )m with x

(m)
n ∈ OK , and (x

(m+1)
n )p = x

(m)
n ),

and C := K̂, J = Ker θ, andˆmeans p-adic completion.
AdR is a projective system of filtered OK-dga AdR/F

i, which is related
to Fontaine’s ring by a canonical isomorphism (compatible with the induced
filtrations)

(2.6) B+
dR

∼→ R lim←−
i

(((AdR/F
i)⊗̂Zp)⊗Q).

• The horizontal maps are the obvious ones.
• a and b are isomorphisms. The p-adic Poincaré lemma is the fact that

b is an isomorphism, more precisely that, for any n ≥ 1, and any i, the map

(2.7) (AdR/F
i)⊗L Z/pn → (A\dR/F

i)⊗L Z/pn

is an isomorphism. The fact that a is an isomorphism is formal.

3. Preliminaries to the construction of A\dR
There are two basic ingredients : (1) derived de Rham complexes, (2) de

Jong’s semi-stable models.

(1) Derived de Rham complexes.
(a) The case of schemes
Let’s start with the affine case. Let A be a (commutative) ring. The

forgetful functor U : A-alg → Sets from the category of A-algebras to the
category of sets admits a left adjoint T : Sets → A-alg, associating to a set
I the free A-algebra T (I) := A[I] = SA(A(I)) on the set I. By a well-known
construction (cf. e. g. ([14], I 1.5)), for any A-algebra B this pair of adjoint
functors (T, U) gives rise to a simplicial A-algebra PA(B) augmented to B,

(3.1) PA(B) = (· · ·A[A[B]] ⇒ A[B])→ B,

having the following properties :
(i) in each degree n, PA(B)n is a free A-algebra (namely, PA[B]n =

A[PA(B)n−1], with the convention that PA(B)−1 = B),
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(ii) the augmentation induces a quasi-isomorphism on the underlying
chain complexes.

(More generally, an augmented simplicial A-algebra R→ B having prop-
erties (i) and (ii) is called a free resolution of B. For R = PA[B], the augmen-
tation actually induces a homotopy equivalence on the underlying simplicial
sets.)

Let P := PA(B). Applying the functor of Kähler differentials Ω1
−/− to

(3.1) we get a simplicial P -module Ω1
P/A, which by extension of scalars to B

is turned into a simplicial B-module, whose underlying chain complex is by
definition the cotangent complex of B over A, denoted

(3.2) LB/A := B ⊗P Ω1
P/A.

It depends functorially (as a complex) on B/A. One has H i(LB/A) = 0 for
i > 0, and H0(LB/A) = Ω1

B/A. One shows that, up to an isomorphism in

D(B), LB/A can be calculated by replacing P by any free resolution of B. If
A is noetherian and B of finite type over A, such resolutions exist which are
finitely generated in each degree. In this case, H i(LB/A) is finitely generated
over B for all i.

Let now f : X → Y be a morphism of schemes. A similar construction
yields the cotangent complex

LX/Y .

Namely, consider the morphism of sheaves of algebras A = f−1(OY )→ B =
OX on the Zariski site of X. For any sheaf of sets E on X, let A[E] be the
(commutative) free A-algebra on E (= SA(A(E))). The functor T : E 7→ A[E]
from the category ShX of sheaves of sets onX to the category A-alg of sheaves
of A-algebras on X is left adjoint to the forgetful functor U associating with
an A-algebra B the underlying sheaf of sets. This pair of adjoint functors
(T, U) between ShX and A-alg again gives rise to a simplicial A-algebra
PA(B) augmented to B,

(3.3) PA(B) = (· · ·A[A[B]] ⇒ A[B])→ B,

having the following properties :
(i) in each degree n, PA(B)n is a free A-algebra on a sheaf of sets
(ii) the augmentation induces a quasi-isomorphism on the underlying

chain complexes.
(As above, an augmented simplicial A-algebra R → B having proper-

ties (i) and (ii) is called a free resolution of B, and for R = PA[B], the
augmentation induces a homotopy equivalence on the underlying simplicial
sheaves.)
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Again, putting P := PA(B) and applying the functor of Kähler differen-
tials Ω1

−/− to (3.3) we get a simplicial P -module Ω1
P/A, which by extension

of scalars to B is turned into a simplicial B-module, whose underlying chain
complex is by definition the cotangent complex of X over Y , denoted

(3.4) LX/Y := B ⊗P Ω1
P/A.

It depends functorially (as a complex) on X/Y . Its cohomology sheaves
HiLX/Y are quasi-coherent, zero for i > 0, and H0LX/Y = Ω1

X/Y . Again,

one shows that, up to an isomorphism in D(B), LX/Y can be calculated by
replacing P by any free resolution of B. Moreover, If X = SpecS → Y =
SpecR is a map of affine schemes, one has a natural quasi-isomorphism ([14],
II 2.3.6.3)

(3.5) (LS/R)˜
∼→ LX/Y ,

where (−)˜ denotes an associated quasi-coherent sheaf. Any composition

X
f→ Y → S gives rise to an exact transitivity triangle ([14], II 2.1)

(3.6) f ∗LY/S → LX/S → LX/Y → .

If i : X → Z is an embedding of X into a smooth scheme Z/S, with ideal I,
then we have a canonical isomorphism in D(X) ([14], III 1.2)

(3.7) τ≥−1LX/S
∼→ [I/I2

dZ/S→ i∗Ω1
Z/S],

where τ≥i is the canonical truncation functor. If moreover i is a regular
immersion, then ([14] III 3.2), in D(X),

(3.8) LX/S
∼→ τ≥−1LX/S

∼→ [I/I2
dZ/S→ i∗Ω1

Z/S].

Example 3.9. Applying (3.7) to SpecOL → SpecOK where L runs through
the finite extensions of K contained in K, one finds that

(3.9.1) LOK/OK
∼→ Ω1

OK/OK
.

Recall that by Fontaine ([11], th. 1)

(3.9.2) Ω1
OK/OK

= (K/a)(1)

for the fractional ideal a of OK generated by p−1/(p−1)D−1K/K0
, where K0 is the

fraction field of W (k) and DK/K0 the different :

a := p−1/(p−1)D−1K/K0
.OK ⊂ K.
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We’ll return to this later.
Coming back to the general situation f : X → Y , with P = PA(B), the

de Rham complex

Ω•P/A = (P → Ω1
P/A → · · · → Ωn

P/A → · · · )

is a simplicial differential graded A-algebra, which we can turn into a differ-
ential graded algebra, by taking the corresponding bicomplex (of A-modules)
and the associated total complex

(3.10) LΩ•X/Y := sΩ•P/A,

(sΩ•P/A)n = ⊕i+j=nΩj
P−i/A

.

We call LΩ•X/Y the derived de Rham complex of X/Y ([15], VIII 2.1) (see also

Errsln283.pdf on Illusie’s web page). The multiplicative structure is given
by the product on the exterior algebra Ω∗P/A and the product on the chain

complex of P defined by the shuffle map Pi ⊗ Pj → Pi+j (sending x ⊗ y to∑
ε(µ, ν)sν1 · · · sνjx.sµ1 · · · sµiy, where (µ, ν) runs through the (i, j)-shuffles

of (1, · · · , i + j) and ε(µ, ν) is the signature of (µ, ν)). It has a natural
filtration (compatible with the dga structure)

(3.11) F iLΩ•X/Y := sΩ≥iP/A.

We view LΩ•X/Y as an object of the derived category of filtered A-dga on

X (one can show as such an object it can be calculated by replacing the
canonical resolution P by any free resolution of the A-algebra B). By the
equivalence between the derived categories of simplicial modules over P and
B (cf. [14], I 3.3.2.1) the associated graded can be viewed in a natural way
as an object of D(X) (unbounded in general). We have

(3.12) gr1FLΩ•X/Y = LX/Y [−1]

and

(3.13) gr.FLΩ•X/Y = (LΛ•LX/Y )[−•].

For the p-adic de Rham comparison theorem, the object of interest is the
pro-completion of LΩ•X/Y , i.e. the projective system

(3.14) LΩ̂•X/Y := “ lim←−
i

”LΩ•X/Y /F
i,

9



viewed as a (pro-) filtered dga on X. For X = SpecS → Y = SpecR as
above we define similarly LΩ•S/R, F i, etc., the complexes of sheaves associated
to grFLΩ•S/R are naturally quasi-isomorphic to grFLΩ•X/Y .

Example 3.9 (cont’d) : a new look at Fontaine’s ring B+
dR.

Beilinson defines

(3.9.3) AdR := LΩ̂•OK/OK .

Let us sketch the proof of the isomorphism (2.6). Recall the canonical iso-
morphisms

LOK/OK
∼→ Ω1

OK/OK
∼→ (K/a)(1) = (Qp/Zp)⊗ a(1).

We have
(Qp/Zp)⊗̂Zp = Zp[1],

and, by Quillen’s shift formula (cf. ([14], I 4.3.2.1)), for a module M over a
ring A in some topos,

LΛi(M [1])
∼→ LΓi(M)[i]

for any i ≥ 0. It follows that

(3.9.4) Hn(grFAdR⊗̂Zp) =

{
0 if n 6= 0,

OC〈â(1)〉 if n = 0,

where OC = ÔK and OC〈〉 denotes a divided power algebra, and hence that
(AdR/F

i+1)⊗̂Zp is concentrated in degree zero, with

((AdR/F
i+1)⊗̂Zp)⊗Q ' C[t]/ti+1.

Now observe that
AdR/F

2 = (OK
d→ Ω1

OK/OK
)

hence
AdR/F

2 ∼→ O′
K

:= Ker d

as d is surjective (by Fontaine ([12],1.4.4)). If

ui : Ainf/F
i+1 → (AdR/F

i+1)⊗̂Zp

is the canonical map, where

Ainf = lim←−
i

((OK ⊗W W ( lim←−
x 7→xp

OK/p))/J i)̂
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(the hat meaning p-adic completion) is the universal thickening, the map

u1 : Ainf/F
2 → (AdR/F

2)⊗̂Zp

is a filtered isomorphism by ([12], 1.4.3), hence also

uiQ : B+
dR/F

i+1 → (AdR/F
i+1)⊗̂Qp := ((AdR/F

i+1)⊗̂Zp)⊗Q.

Finally, taking projective limits, one gets the filtered isomorphism (2.6).
The derived completion ⊗̂ is essential in this calculation. For the non-

completed graded we have by (3.13)

griFAdR = LΛiΩ1
OK/OK

[−i].

Replacing Ω1
OK/OK

by the complex of flat OK-modules [a → K](1), concen-

trated in degrees -1 and 0, and using that LΛi of a complex [L→M ] of flat
modules (in degrees -1 and 0) can be calculated by the Koszul complex

[ΓiL→ Γi−1L⊗M → · · · → L⊗ Λi−1M → ΛiM ]

(in degrees in [−i, 0]) (a formula similar to that of ([15], VIII 2.1.2.1)), we
find that, for i > 0,

LΛiΩ1
OK/OK

= [Γia→ K](i)[i− 1]

hence

(3.9.5) griFAdR =

{
OK if i = 0

(Qp/Zp)⊗ 1
i!
âi(i)[−1] if i > 0.

It follows that (as a pro-object)

AdR ⊗Q = K,

and the map AdR ⊗ Q → AdR⊗̂Qp := (AdR⊗̂Zp) ⊗ Q corresponds to the
inclusion K ↪→ B+

dR.
As Beilinson observes, one can also deduce (3.9.5) from (3.9.4) : for i > 0,

griFAdR ⊗L Z/p = (griFAdR⊗̂Zp) ⊗L Z/p = Γia(i) ⊗ Z/p, hence griFAdR is
concentrated in degree 1, and given by (3.9.5).

(b) Logarithmic variants.
As de Jong’s alterations produce compactifications with normal crossings

at infinity and semi-stable pairs, hence differential forms with log poles, we
will need variants of the above constructions for morphisms of log schemes.
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Recall that a log scheme (X,M) is a triple (X,M,α : M → OX), where M
is a sheaf of monoids on X for the étale topology, and α a homomorphism
(for the multiplicative structure of OX), such that α induces an isomorphism
α−1(O∗X)

∼→ O∗X . Morphisms of log schemes are defined in the obvious way.
We refer to [17] for the basic language of log schemes.

If f : (X,M) → (Y, L) is a morphism of log schemes, a variant, due to
Gabber and Olsson (see [19]) of the construction of the free resolution PA(B),
applied to the morphism of log rings (f−1L → f−1OY ) → (M → OX), and
of the definition of LX/Y produces a complex

(3.15) L(X,M)/(Y,L),

concentrated in degree ≤ 0, called the cotangent complex of f (see §7 for
a quick review of this construction). It again depends functorially on f
as a complex. We have H0L(X,M)/(Y,L) = Ω1

(X,M)/(Y,L), the sheaf of Kähler

(log) differential 1-forms, and if (X,M) and (Y, L) are fine, then the sheaves
HiL(X,M)/(Y,L) are all quasi-coherent. If the log structures L and M are
trivial, or more generally if M is induced by L, then the natural map LX/Y →
L(X,M)/(Y,L) is an isomorphism, where LX/Y is the cotangent complex of the

underlying morphism of schemes. Any composition (X,M)
f→ (Y, L) →

(S,K) produces an exact transitivity triangle

(3.16) f ∗L(Y,L)/(S,K) → L(X,M)/(S,K) → L(X,M)/(Y,L) →

similar to (3.5).
If (X,M)→ (Y, L) is log smooth and, in addition, is integral (a technical

condition3 satisfied for example in the case of semi-stable reduction or if the
base is a field with trivial log structure), then

(3.17) L(X,M)/(Y,L)
∼→ Ω1

(X,M)/(Y,L),

a locally free module of finite rank.
We have a derived log de Rham complex

(3.18) (LΩ•(X,M)/(Y,L), F
i),

which is a filtered f−1OY -dga defined similarly to (3.10), (3.11), with

(3.19) gr1LΩ•(X,M)/(Y,L) ' L(X,M)/(Y,L)[−1],

3This means that for any geometric point x of X with image y in Y , Z[Mx/O∗(X,x)] is

flat over Z[Ly/O∗(Y,y)], see ([17], 4.1).
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(3.20) grLΩ•(X,M)/(Y,L) ' LΛ(L(X,M)/(Y,L))[−.].

As in (3.14) we define the pro-completion of L(X,M)/(Y,L), i. e. the projective
system

(3.21) LΩ̂•(X,M)/(Y,L) := “ lim←−
i

”LΩ•(X,M)/(Y,L)/F
i.

(2) De Jong’s semi-stable models.
Recall de Jong’s theorem : if X is a K-variety, there exists a finite exten-

sion K ′ of K, an alteration V → XK′ (i. e. a proper, surjective map, sending
each generic point to a generic point with a finite residue extension), and
a compactification V ⊂ V , with V projective over OK′ , such that the pair
(V, V − V ) is a semi-stable pair over OK′ , which means that V is regular,
V − V is a reduced divisor with normal crossings (union of the special fiber
V k′ over the residue field k′ of OK′ and a horizontal divisor D). Locally
around a point of V k′ , V is étale over OK′ [t1, · · · , tn]/(t1 · · · tr − π′) (where
π′ is a uniformizing parameter of OK′), and D is given by the vanishing of
tr+1 · · · ts.

Actually, we will need the following stronger form (also due to de Jong) : if
X as above is compactified into X proper over OK (such a compactification
exists by Nagata), then one can find a pair (V, V ) as above such that the
alteration V → XK′ is the restriction to XK′ of an alteration V → XOK′ .

In order to deal with the extensions needed to get semi-stable reduction,
it is convenient to adopt Beilinson’s conventions and terminology, which are
slightly different from those of de Jong : a semi-stable pair over K is a
commutative diagram

U
j //

��

U

f

��
SpecK // SpecOK

,

where U is regular, j is a dense open immersion, U − U is a divisor with
normal crossings, f is proper and flat, and, if g = U → SpecOKU is the Stein
factorization of f , the closed fibers of g are reduced. Here OKU := Γ(U,O),
and KU := Γ(UK ,O).

One defines in the obvious way the notion of semi-stable pair over K (a
pair (U,U) of K-varieties whose connected components come by base change
via some point SpecK → SpecOKV from a semi-stable pair (V, V ) over K).
They form a category denoted Varss

K
. We have a forgetful functor

φ : Varss
K
→ VarK ,
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(U,U) 7→ U , which is faithful, as our K-varieties are reduced. Endow VarK
with the Voevodsky h-topology. Using de Jong’s theorem (in its strong form),
one checks that φ enjoys the following property :

(B) For any V ∈ VarK and any finite family ((Uα, Uα) ∈ Varss
K

, fα : V →
Uα), there exists an h-covering family (U ′β → V ), with U ′β = φ(U ′β, U

′
β), such

that any composition U ′β → V → Uα is induced by a (necessarily unique)

map of pairs (U ′β, U
′
β)→ (Uα, Uα).

Property (B) implies that B := Varss
K

, via φ, plays the role of a base for
the h-topology of VarK . More precisely, if one endows Varss

K
with the induced

h-topology (i. e. a sieve C in B is called covering if φ(C) is covering), then
covering sieves in B form a Grothendieck topology on B, the map B →
VarK is continuous and induces an equivalence on the corresponding toposes
of sheaves. In particular, any presheaf (U,U) 7→ F (U,U) on B defines an
associated sheaf aF on VarK . We will apply this to presheaves on B defined
by certain derived de Rham complexes.

4. Construction of A\dR and of the comparison map

We come back to the situation considered before (2.1). For any semi-
stable pair (V, V )/OK in Varss

K
, we have a morphism of log schemes (V, V )→

SpecOK , where SpecOK is endowed with the trivial log structure and (V, V )
with the canonical one, M = OV ∩ j∗OV . Consider the (pro)-complex

RΓ(V , LΩ̂•
(V,V )/OK

) (here V is endowed with the Zariski topology) (note that

each griF has bounded, coherent cohomology, so that we would get the same
pro-complex by using the étale topology). To make it functorial in (V, V ),
we can calculate it as

RΓ(V , LΩ̂•
(V,V )/OK

) = Γ(V , C(LΩ̂•
(V,V )/OK

)),

where C denotes the Godement resolution associated with the set of (usual)
points of V : the right hand side is the pro-object

“ lim←−
i

”Γ(V , C(LΩ•
(V,V )/OK

/F i)).

We thus get a presheaf of pro-dga4

(V, V ) 7→ Γ(V , C(LΩ̂•
(V,V )/OK

))

on Varss
K

. Using the remark at the end of §3, we define A\dR to be the
associated sheaf on VarK for the h-topology :

(4.1) A\dR := a((V, V ) 7→ Γ(V , C(LΩ̂•
(V,V )/OK

)).

4not commutative, but having an E∞-structure
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This is a sheaf of pro-OK-dga (even, pro-E∞-OK-algebras) on VarK for the
h-topology.

Remark. Instead of using Godement’s resolutions, one could use Lurie’s
language of derived ∞-categories, viewing (V, V ) 7→ RΓ(V , LΩ̂•

(V,V )/OK
) as

a presheaf of E∞-OK-algebras in a filtered derived ∞-category D. It then
makes sense to take the associated h-sheaf (with values in D), which in turn,
by Lurie’s theory, defines a complex of sheaves of OK-modules on VarK , with
the structure of a filtered E∞-algebra.

Let us now define the map

b : AdR⊗̂Zp → A\dR⊗̂Zp

in (2.4). Actually, b is short for a projective system of maps (of sheaves on
VarK for the h-topology) ((2.7) above)

(4.2.1) bn,i : (AdR/F
i)⊗L Z/pn → (A\dR/F

i)⊗L Z/pn,

where the left hand side is viewed as a constant sheaf. The composition (of
maps of log schemes)

(V, V )→ SpecOK → SpecOK ,

where SpecOK and SpecOK are endowed with the trivial log structures5,
defines a map of (pro) (log) derived de Rham complexes on V

LΩ̂•OK/OK |V → LΩ̂•
(V,V )/OK

,

hence, as by definition AdR = LΩ̂•OK/OK
(3.8.3), a map

AdR/F
i → RΓ(V , (LΩ̂•

(V,V )/OK
)/F i).

Sheafifying for the h-topology we get a map

AdR/F
i → A\dR/F

i,

from which (4.2.1) is deduced by applying ⊗LZ/pn. As mentioned in 2.4, we
have the following crucial result :

Theorem 4.2 (p-adic Poincaré lemma.) For all i and n, bn,i (4.2.1) is an
isomorphism in D(VarK,h,OK ⊗ Z/pnZ).

5If we put on SpecOK the canonical log structure given by the open subset SpecK,
we would get an isomorphic transitivity triangle, see (5.1).
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Finally, let us define AdR and

a : A\dR ⊗Q→ AdR

in (2.4). Let Varnc
K

denote the category of K-pairs (U,U), where U is proper

and smooth over K and U is a dense open subset such that the complement
U −U is a divisor with normal crossings. The definition of AdR is similar to
that of A\dR. We consider the presheaf

(U,U) 7→ Γ(U, C(LΩ̂•
(U,U)/K

))

on Varnc
K

(where C denotes a Godement resolution) and define AdR to be its
associated sheaf of the h-topology on VarK :

(4.3) AdR : a((U,U) 7→ Γ(U, C(LΩ̂•
(U,U)/K

))).

This is a sheaf of pro-K-dga on VarK for the h-topology, and even of pro-K-
dga as LK/K = Ω1

K/K
= 0, hence

LΩ̂•
(U,U)/K

∼→ LΩ̂•
(U,U))/K

∼→ Ω̂•
(U,U)/K

,

as (U,U) is log smooth and integral over K.
If (V, V ) is a semi-stable pair over OK , (V, V ) ⊗OK K = (U,U) is a

normal crossings pair over K, and we have a canonical isomorphism (given
by a canonical, functorial chain of quasi-isomorphisms)

LΩ̂•
(V,V )/OK

⊗K ∼→ Ω̂•
(U,U)/K

,

hence an isomorphism

Γ(V , C(LΩ̂•
(V,V )/OK

))⊗Q
∼→ Γ(U, C(Ω̂•

(U,U)/K
))

(given by a canonical, functorial chain of quasi-isomorphisms)6. As both
Varss

K
and Varnc

K
are bases for the h-topology of VarK , these isomorphisms

induce an isomorphism on the associated sheaves,

(4.4) a : A\dR ⊗Q
∼→ AdR.

For X in VarK , choose a proper hypercovering V• → X, with V• compact-
ified into an nc simplicial pair (V•, V •) over K. By definition (see (c) after
(2.2))

RΓdR(X/K) = RΓ(V •,Ω
•
(V•,V •)/K

),

6Here it would be more elegant to use the language of Lurie’s derived ∞-categories
alluded to in the remark above.
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with corresponding pro-object

RΓdR(X/K )̂ = RΓ(V •, Ω̂
•
(V•,V •)/K

).

By construction we have a canonical map

(4.5) RΓdR(X/K )̂→ RΓ((V•)h,AdR)̂
∼→ RΓ(Xh,AdR)̂.

Let us show that this map is an isomorphism. On H∗ it induces the natural
map

H∗(V •, Ω̂
•
(V•,V •)/K

)→ lim−→H∗(Z•, Ω̂
•
(Z•,Z•)/K

)

where (Z•, Z•) runs through the simplicial objects of Varnc
K

endowed with
an augmentation Z• → X which is an h-hypercovering (instead of a proper
one). Therefore, to show that (4.5) is an isomorphisms, it suffices to show
that the ind-object

“ lim−→ ”RΓ(Z•, Ω̂
•
(Z•,Z•)/K

)

(of the derived category of pro-dga over K) is essentially constant, of value

RΓ(V •, Ω̂
•
(V•,V •)/K

). For this, by the Lefschetz principle we may replace K

by C. Then, for (Z•, Z•) mapping to (V•, V •), the map

RΓ(V •,Ω
•
(V•,Z•)/C)→ RΓ(Z•,Ω

•
(Z•,Z•)/C

)

by [6] underlies a morphism of mixed Hodge complexes. By cohomological
descent for the h-topology, it induces an isomorphism on the underlying com-
plexes of C-vector spaces. Therefore, by mixed Hodge theory, it underlies a
filtered isomorphism for the Hodge filtrations.

It’s easy now to define the comparison map ρdR (2.1). It is the compo-
sition of several ones. In the sequel, for ease of notations we will omit the
superscriptˆindicating pro-completions.

First, we have the functoriality map

(4.6) RΓdR(X/K)→ RΓdR(XK/K).

Second, the isomorphism (4.5)

(4.7) RΓdR(XK/K)
∼→ RΓ(XK,h,AdR).

Next, we use the identification

(4.8) RΓ(XK,h,AdR)
∼→ RΓ(XK,h,A

\
dR)⊗Q

deduced from (4.4).
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Then we send the right hand side to (RΓ(XK,h,A
\
dR)⊗̂Zp) ⊗ Q by the

natural map

(4.9) RΓ(XK,h,A
\
dR)⊗Q→ (RΓ(XK,h,A

\
dR) ⊗̂Zp)⊗Q.

By the Poincaré lemma (4.2) (and cohomological descent), the natural
map

(4.10) RΓ(XK ,Zp)⊗LZp ((AdR/F
i)⊗̂Zp)→ RΓ(XK,h,A

\
dR/F

i)⊗̂Zp

is an isomorphism. Now, recall the isomorphism (2.6)

((AdR/F
i)⊗̂Zp)⊗Q

∼→ B+
dR/F

i.

Therefore, applying ⊗Q to (4.10) we get a filtered isomorphism

(4.11) RΓ(XK ,Zp)⊗B+
dR

∼→ RΓ(XK,h,A
\
dR)⊗̂Qp,

where ⊗̂Qp means (⊗̂Zp)⊗Q.
The compositions of maps (4.6) to (4.9) is a map

(4.12) RΓdR(X/K)→ (RΓ(XK,h,A
\
dR) ⊗̂Zp)⊗Q.

Composing (4.12) with the inverse of (4.11) (given by the Poincaré lemma),
we get a map

RΓdR(XK/K)→ RΓ(XK ,Zp)⊗B+
dR,

whose associated B+
dR-linear map is the is the desired comparison map (2.1):

ρdR : RΓdR(X/K)⊗B+
dR → RΓ(XK ,Zp)⊗B+

dR.

This map is compatible with products, Galois actions, and filtrations on both
sides.

The p-adic de Rham comparison theorem is:

Theorem 4.13. The map (2.1) induces the isomorphism (2.2):

ρdR : RΓdR(X/K)⊗BdR
∼→ RΓ(XK ,Zp)⊗BdR.

5. The p-adic Poincaré lemma
There are two main parts : (a) reduction to an h-local p-divisibility prop-

erty for certain Hodge sheaves by using the Koszul filtration (b) proof of this
p-divisibility by reduction to the case of pointed curves using de Jong and
isogenies of Jacobians.
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(a) The Koszul filtration.
Let (U,U) be an ss pair over OK (§3 (2)). We have a transitivity triangle

for log cotangent complexes

(5.1) OU ⊗ L(K,OK)/OK → L(U,U)/OK → L(U,U)/OK
→ .

Here L(K,OK)/OK is the log cotangent complex of the pair (SpecK, SpecOK)

over OK (with trivial log structure). Such a pair is not ss, but for any finite
extension K ′ of K, SpecOK′ , equipped with the log structure given by the
pair (SpecK ′, SpecOK′) is a log complete intersection over OK , and one
easily deduces from this that the natural map

(5.2) LOK/OK → L(K ,OK)/OK

from the non log cotangent complex to the log one is an isomorphism (if
K ′ ⊂ K is a finite extension of K, the cone of LOK′/OK → L(K′,OK′ )/OK is
isomorphic to the residue field of OK′ , hence the cone of (5.2) is an OK-
module which is both p-divisible and killed by p). Therefore in (5.1) we
may replace L(K ,OK)/OK by LOK/OK , which is isomorphic to Ω1

OK/OK
, and

L(U,U)/OK
by L(U,U)/(K,OK). Moreover, as (U,U) → (SpecK, SpecOK) is a

filtering projective limit of log smooth integral maps, we have L(U,U)/(K,OK)
∼→

Ω1
(U,U)/(K,OK)

, which is locally free of finite rank on U . Hence (5.1) can be

rewritten as a short exact sequence

(5.3) 0→ OU ⊗OK Ω1
OK/OK

→ Ω1
(U,U)/OK

→ Ω1
〈U,U〉 → 0,

where
Ω1
〈U,U〉 := Ω1

(U,U)/(K,OK)
,

and (5.3) locally splits. Consider the (derived) Koszul filtration (0 ⊂ I0 ⊂
I1 ⊂ · · · ⊂ Im = grmF LΩ•

(U,U)/OK
) on

grmF LΩ•
(U,U)/OK

= (LΛmL(U,U)/OK )[−m] = (LΛmΩ1
(U,U)/OK

)[−m]

defined by (5.3), with associated graded

grIagrmF LΩ•
(U,U)/OK

= grm−aF AdR[−a]⊗ Ωa
〈U,U〉.

(For a short exact sequence 0 → E ′ → E → E ′′ → 0 of flat modules over
some ring, IaΛ

mE := Im Λm−aE ′ ⊗ ΛaE → ΛmE.)
ApplyingRΓ(U,−) and sheafifying for the h-topology, one gets a filtration

I. (with span in [0,m]) on grmFA
\
dR, with associated graded

(5.4) grIagrmFA
\
dR = grm−aF AdR[−a]⊗LOK G

a,
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where Ga is the complex of h-sheaves on VarK associated to (U,U) 7→
RΓ(U,Ωa

〈U,U〉),

Ga := a((U,U) 7→ RΓ(U,Ωa
〈U,U〉)).

Lemma 5.5.

(5.5.1), (τ>0G0)⊗L Z/p = 0

and

(5.5.2) Ga ⊗L Z/p = 0

for a > 0.
Note that the vanishings (5.5.1) and (5.5.2) are equivalent to saying that

multiplication by p on HbGa is an isomorphism for all (a, b) 6= (0, 0), i. e.
that for these values HbGa is a Q-vector space (hence a K-vector space). The
p-divisibility of HbG0 was first proved by Bhatt (using a method that was
adapted by Beilinson to prove 5.5). (Bhatt proved that for any f : X → S
proper, with S affine and excellent, there exists an alteration π : X ′ → X
such that, for all i > 0, π∗H i(X,O) ⊂ pH i(X ′,O).)

To prove that (4.2) is an isomorphism is equivalent to proving that

(∗) Cone(grmFAdR → grmFA
\
dR)⊗L Z/p = 0.

For a pair (U,U) with U connected, H0(U,O) = OK (by the normality of
U), hence H0G0, which is the h-sheaf associated to (U,U) 7→ H0(U,O), is
the constant sheaf of value OK . Therefore,

grmFAdR = grmFAdR ⊗LOK H
0G0,

so that by (5.4) the left hand side of (*) has a dévissage into (grmFAdR ⊗LOK
τ>0G0)⊗L Z/p, and (grm−aF AdR[−a]⊗LOK G

a)⊗L Z/p for a > 0, which are all

zero by (5.5).

(b) Jacobians of semi-stable curves.
The proof of (5.5) heavily uses variants of de Jong’s alteration theorems,

both to reduce to the following crucial lemma, and to prove it :

Lemma 5.6. Consider a morphism of ss-pairs over K (§3, (2))

f : (C,C)→ (S, S),

together with a section e : S → C having the following properties :
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(i) f is a semi-stable family of curves, by which we mean that f is proper
and flat, its geometric fibers are semi-stable curves, and f |S : C → S is
smooth, with geometrically irreducible fibers ;

(ii) The closure Df of CS − C is an étale divisor over S and f(Df ) = S
(i. e. C → S is affine).

(iii) The image e(S) of the section e intersects the fibers of f at smooth
points, and e(S) ∩Df = ∅.

Then, after h-localization on (S, S) one can find an alteration h : (C ′, C
′
)→

(C,C) with f ′ : (C ′, C
′
)→ (S, S) satisfying (i) and (ii), together with a lifting

e′ : S → C
′

of e satisfying (iii), such that the maps

h∗ : R1f∗OC → R1f ′∗OC′

and
h∗ : f∗ωf → f ′∗ωf ′

are divisible by p, where ω := Ω1
(−,−)/(S,S).

Remark 5.6.1. By the local structure of nodal curves over regular pairs
(cf. ([4],2.23), ([16], 1.9)) we have

ωf = f !OS[−1]⊗OC(Df ).

Notice that f∗OC(−Df ) = 0 since f(Df ) = S, hence Rf∗OC(−Df ) =
R1f∗OC(−Df )[−1], with R1f∗OC(−Df ) locally free of finite type, and dually
R1f∗ωf = 0, with f∗ωf dual to R1f∗OC(−Df ).

Proof of 5.6. Let us first sketch the construction of (C ′, C
′
). Consider

the exact sequence of group schemes on S,

0→ T → J [ → J → 0,

where
J = Pic0

C/S

is the Picard scheme parametrizing line bundles on C whose restriction to
the normalization of each irreducible component of any geometric fiber of f
is of degree zero,

J [ = Pic0
(C,Df )/S

the Picard scheme parametrizing line bundles as above together with a triv-
ialization along Df , and T the torus

T = (f∗Gm,Df )/Gm.

21



The group schemes J and J [ are semiabelian schemes. The section e : S → C
defines an Abel-Jacobi map

i : C → J [S,

x 7→ OC(x− e) (an immersion as soon as the genus of CS is at least 1). We
first define C̃ to be the normalized i-pull-back of p : J [S → J [S :

C̃ //

��

J [S

p

��
C i // J [S

.

Then one defines C̃ to be the normalization of C in C̃ :

C̃

��

C̃

��

oo

C Coo

.

Finally, using a refinement of de Jong’s theorem due to Temkin [20] (or
doing it directly as does Beilinson), one shows that working h-locally on S

one can find an alteration h : (C ′, C
′
) → (C̃, C̃) with a lifting e′ of e such

that f ′ : (C ′, C
′
) → (S, S) satisfies the conditions (i) - (iii). This h has the

desired p-divisibility property for h∗. This is proved by playing a clever game
with J , J [, J ′, J ′[. There are two steps :

(a) The commutative square

C ′ //

h

��

J [S

p

��
C // J [S

induces a commutative square

J ′[S

h∗
��

// J [S

p

��
J [S

Id // J [S

,

hence h∗ : J ′[S → J [S is divisible by p. Therefore, as S is normal, by Faltings-
Chai [10],

h∗ : J ′[ → J [
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is divisible by p. By 5.6.1 the induced map on the Lie algebras is the dual of
h∗ : f∗ωf → f ′∗ωf ′ , which is therefore divisible by p.

(b) Similarly, the commutative square

C
′
S

h
��

// JS

p

��
CS

// JS

induces a commutative square

J ′S

h∗
��

// JS

p

��
JS

Id // JS

,

so h∗ : J ′S → JS is divisible by p. By the self-duality of Jacobians, h∗ : JS →
J ′S is identified with the dual of h∗, hence also divisible by p. By Faltings-
Chai the same is true of h∗ : J → J ′. But the map induced by h∗ on the Lie
algebras is h∗ : R1f∗OC → R1f ′∗OC′ , which is thus divisible by p.

End of proof of 5.5. It’s enough to show that any ss-pair (U,U) over K ad-

mits an h-covering (U ′, U
′
)→ (U,U) by an ss-pair that kills τ>0RΓ(U,OU)⊗L

Z/p and RΓ(U,Ωa
(U,U)/OKU

)⊗L Z/p for a > 0.

For this one proceeds by induction on the dimension of U , using 5.6 and
the following de Jong type preparation lemma :

Lemma 5.7. Let (U,U) be an ss-pair over K. Then there exists a
diagram of ss-pairs over OK :

(5.7.1) (C,C) h //

f
��

(U,U)

(S, S)

where h is an h-covering with dim U = dim C, and f is a morphism of
ss-pairs admitting a section e satisfying conditions (i) - (iii) of 5.6.

Thus, thanks to 5.6 and 5.7 we may assume that we have a diagram (5.7.1)

and an alteration h : (C ′, C
′
) → (C,C) satisfying the properties of 5.6. To

finish the proof of 5.5, it suffices to show that there exists an h-covering
(S ′, S

′
)→ (S, S) such that the composition

(C ′, C ′)(S′,S′) → (C ′, C ′)→ (C,C)
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kills τ>0RΓ(−,OC) ⊗L Z/p and RΓ(−,Ωa
(C,C)

) ⊗L Z/p for a > 0, where dif-

ferentials are log differentials relative to (KC ,OKC ), etc. Again, we use
the Koszul filtration on Ωa

(C,C)
relative to f , which has only one step :

I0 = f ∗Ωa
(S,S)

and I1 = Ωa
(C,C)

,

0→ f ∗Ωa
(S,S)
→ Ωa

(C,C)
→ f ∗Ωa−1

(S,S)
⊗ ωf → 0.

Applying Rf∗ and using that R1f∗ωf = 0 (5.6.1), we get a triangle

Ωa
(S,S)
⊗Rf∗OC → Rf∗Ω

a
(C,C)

→ Ωa−1
(S,S)
⊗ f∗ωf → .

The section e of f splits off Rf∗Ω
a
(C,C)

into

Rf∗Ω
a
(C,C)

= Ωa
(S,S)
⊕ L,

and the above triangle sits in a 9-diagram

Ωa
(S,S)
⊗R1f∗OC [−1] // L // Ωa−1

(S,S)
⊗ f∗ωf →

Ωa
(S,S)
⊗Rf∗OC

OO

// Rf∗Ω
a
(C,C)

OO

// Ωa−1
(S,S)
⊗ f∗ωf →

Id

OO

Ωa
(S,S)

OO

Id // Ωa
(S,S)

OO

// 0

OO

.

Thus L is isomorphic to the cone of a coboundary map :

L ' Cone(∂ : Ωa−1
(S,S)
⊗ f∗ωf → Ωa

(S,S)
⊗R1f∗OC)[−1]

(a Kodaira-Spencer complex ). The map h∗ : Rf∗Ω
a
(C,C)

→ Rf∗Ω
a

(C′,C
′
)

re-

spects the above decompositions and one deduces from 5.6 that h∗ ⊗L Z/p :
L⊗LZ/p→ L′⊗LZ/p is zero, hence h∗ : RΓ(S, L)⊗LZ/p→ RΓ(S, L′)⊗LZ/p
is also zero. Induction disposes of the other summand RΓ(S,Ωa

(S,S)
).

6. Sketch of proof of the comparison isomorphism theorem

The crucial verification is for Gm and H1. It is made by an explicit Čech
cocycle calculation.

Lemma 6.1. For X = GmK = SpecK[t, t−1] the comparison map

ρ : H1
dR(X/K)⊗BdR → H1(XK ,Zp)⊗BdR
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is a filtered isomorphism, sending the class of dt/t in F 1H1
dR to κ⊗$, where

κ ∈ H1(XK ,Zp(1)) is the class of the Kummer Zp(1)-torsor lim←−(t1/p
n
) over

XK , and $ = ε−1 ⊗ log[ε] ∈ mdR(−1) is the canonical Fontaine element,
which maps each generator ε = (εn) of Zp(1) to log([ε]) ∈ mdR (a p-adic
analogue of 2πi).

Once 6.1 is established, one deduces compatibility of ρ with Gysin maps
for codimension one closed immersions of smooth varieties, hence for classes
of hyperplane sections. As usual, by Poincaré duality this yields the case of
projective smooth varieties. Then one deduces the result for the complement
of a strict normal crossings divisor in a projective smooth scheme, and finally
the general case by Hironaka and cohomological descent.

7. Quick review of derived log cotangent and de Rham com-
plexes

Let T be a topos. A pre-log ring in T (or pre-log structure on T ) is a
multiplicative homomorphism α : L → A, where L a commutative monoid
with unit, and A a ring. Homomorphisms of such objects are defined in the
obvious way. A pre-log structure α : L → A is called a log structure if α
induces an isomorphism α−1(A∗)

∼→ A∗, where A∗ is the group of units in
A. The forgetful functor from log rings to pre-log rings admits a left adjoint,
denoted (L→ A) 7→ (L→ A)a = (La → A). There is a canonical adjunction
map L→ La, (L→ A)a is called the associated log ring (or log structure).

For a map of pre-log rings (L→ A)→ (M → B) one defines its B-module
of Kähler differentials

Ω1
(M→B)/(L→A) := (Ω1

B/A ⊕ (B ⊗Z (Coker(Lgp →Mgp))))/R,

where the exponent gp means the group envelope, and R is the subgroup
generated by the image of m 7→ (dα(m), 0) − (0, α(m) ⊗ m), with an A-
derivation

d : B → Ω1
(M→B)/(L→A), b 7→ image of dB/A(b),

and a homomorphism

dlog : M → Ω1
(M→B)/(L→A),m 7→ image of (0, 1⊗m)

satisfying
α(m)dlogm = dα(m)

universal among similar pairs (D : B → E,Dlog : M → E) called (L→ A)-
log derivations from (M → B) to a B-module E. We have :

Ω1
(M→B)/(L→A)

∼→ Ω1
(M→B)a/(L→A)a .
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For a map of log schemes (X,M)→ (Y, L)7,

Ω1
(X,M)/(Y,L) := Ω1

(M→OX)/(f−1L→f−1OY ).

The following construction is due to Gabber ([19], §8). Fix a prelog ring
(L→ A) in T . The forgetful functor U from the category of (L→ A)-prelog
rings to the category of pairs of sheaves of sets admits a left adjoint

(X, Y ) 7→ T(L→A)(X, Y ) := (L⊕N(X) → A[X
∐

Y ]),

abridged to T (X, Y )) = cobase change of (N(X) → Z[X
∐
Y ]) by (0→ Z)→

(L→ A) :

(N(X) → Z[X
∐
Y ]) // (L⊕N(X) → A[X

∐
Y ])

(0→ Z)

OO

// (L→ A)

OO
.

T (X, Y ) is called the free (L → A)-log algebra generated by (X, Y ). Note
that :

Ω1
T (X,Y )/(L→A) = B(X) ⊕B(Y )

(basis made from dy, y ∈ Y , and dlog x, x ∈ X).
This pair of adjoint functors gives rise to a standard resolution, called the

canonical free resolution

P(L→A)(M → B) = (T, U).(M → B),

where (T, U). : [n] 7→ (TU)[n] is the canonical simplicial object defined by the
pair (T, U) ([14], I 1.5.2). Each component Pn is free on the underlying pair
of Pn−1, and resolution means that the pair of underlying simplicial (sheaves
of) sets of P is augmented to (M,B) by a pair of quasi-isomorphisms.

The log cotangent complex of (M → B) over (L→ A) is defined by

L(M→B)/(L→A) := Ω1
P(L→A)(M→B)/(L→A) ⊗B

(tensor product taken over the underlying (simplicial) ring of P(L→A)(M →
B)). For a map f : (X,M) → (Y, L) of log schemes, the log cotangent
complex of (X,M) over (Y,N) is defined by

L(X,M)/(Y,L) := L(M→OX)/(f−1L→f−1OY ).

7see §3 (b) Logarithmic variants for the notation.
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An important (nontrivial) point is that passing to the associated log rings
does not change the log cotangent complex : the canonical map

L(M→B)/(L→A)
∼→ L(M→B)a/(L→A)a

is an isomorphism ([19], 8.20).
Another useful fact is that for f : (X,M)→ (Y, L) log smooth,

Cone (L(X,M)/(Y,L) → Ω1
(X,M)/(Y,L))

is cohomologically concentrated in degrees ≤ −3, zero if f is integral ([19],
8.32, 8.34).

The derived log de Rham complex of (M → B) over (L → A) is defined
by

LΩ•(M→B)/(L→A) := sΩ•P(L→A)(M→B)/(L→A)

and the pro-completed one by the projective system

LΩ̂•(M→B)/(L→A) := “ lim←−
i

”LΩ•(M→B)/(L→A)/F
i,

where
F i = sΩ≥iP/(L→A).

For a map of log schemes (X,M)→ (Y, L), the derived log de Rham complex
is defined by

LΩ•(X,M)/(Y,L) := LΩ•(M→OX)/(f−1(L)→f−1(OY )).
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