1. Historical sketch

1956:
• Cartier isomorphism
• Serre’s Witt vector cohomology,
• Dieudonné’s theory of Dieudonné modules

1963-65:
• Manin’s work on formal groups,
• Gauss-Manin connection

1967:
• Cartier et al.: big Witt vectors, Cartier modules
• Tate: \(p \)-divisible groups, Hodge-Tate decomposition
• Monsky-Washnitzer’s cohomology
• Grothendieck: crystalline cohomology

1967:
• Cartier et al.: big Witt vectors, Cartier modules
• Tate: \(p \)-divisible groups, Hodge-Tate decomposition
• Monsky-Washnitzer’s cohomology
• Grothendieck: crystalline cohomology

1970:
• Berthelot’s thesis
• Grothendieck’s crystalline Dieudonné theory, problem of the mysterious functor

• Mazur-Ogus: slopes of Frobenius (Katz inequality)

1974:
• Bloch: complex of typical curves on \(K \)-groups

1975:
• Deligne-Illusie: de Rham-Witt complex

1980:
• Fontaine’s \(p \)-adic period rings \(B_{\text{cris}}, B_{\text{dR}} \)

1980-85:
• Fine study of de Rham-Witt (Nygaard, Illusie-Raynaud, Ekedahl)
 • Bloch-Kato’s proof of Hodge-Tate decompositions (good ordinary case)
 • Fontaine-Messing’s proof of \(C_{\text{cris}} \) (dim \(X < p \), \(e \leq p - 1 \)), syntomic cohomology
 • Faltings’s almost étale theory, tentative proofs of \(C_{\text{cris}}, C_{\text{dR}} \) in general

1988:
• Fontaine-Jannsen’s \(C_{\text{st}} \) conjecture
• Fontaine-Illusie-Kato: log schemes
• Hyodo-Kato log crystalline cohomology, log de Rham-Witt complex
• Kato’s proof of \(C_{\text{st}} \) (2 dim \(X < p - 1 \))

1988 - ...:
• Berthelot’s rigid cohomology, arithmetic \(\mathcal{D} \)-modules

1997:
• Tsuji: proof of \(C_{\text{st}} \) in the general case
• Faltings: sketch of corrected proof of almost purity lemma and \(C_{\text{st}} \)
 (details worked out by Gabber-Ramero)

1998:
• Niziol’s proof of \(C_{\text{cris}} \) using \(K \)-theory
2000: • Fontaine, Colmez, André, Kedlaya, Christol-Mebkhout, : proofs of main conjectures on \(p \)-adic representations (weakly admissible ⇔ admissible, dR ⇔ pst, \(p \)-adic local monodromy conjecture, finiteness of rigid cohomology)

2004: • Hesselholt-Madsen’s absolute de Rham-Witt complex / \(\mathbb{Z}_p \)
• Langer-Zink’s relative de Rham-Witt complex / \(\mathbb{Z}_p \)
• Zink’s theory of displays

2007: • Olsson : stack theoretic variants of de Rham-Witt

2008: • Nizioł’s \(K \)-theoretic proof of \(C_{st} \)
• Davis-Langer-Zink : overconvergent de Rham-Witt complex

2011: • Beilinson : new proof of \(C_{dR} \) using derived de Rham complexes

\[
\text{Witt vector } H^* \\
\text{de Rham – Witt complex} \\
\text{de Rham and crystalline } H^* \\
\text{Hodge } H^* \\
p – \text{adic étale } H^*
\]

2. Witt vectors

2.1. Witt polynomials, ghost components

\(p = \text{prime number} \)

\[
w_n(X_0, \cdots, X_i, \cdots) := \sum_{0 \leq i \leq n} p^i X_{i}^{p^{n-i}} : \\
w_0 = X_0 \\
w_1 = X_0^p + pX_1 \\
w_2 = X_0^{p^2} + pX_1^p + p^2 X_2, \\
\vdots
\]

Theorem 2.1.1. For a set \(A \), let

\[
W(A) := A^\mathbb{N} = \{(a_0, \cdots, a_n, \cdots), a_i \in A\}.
\]

There exists a unique functor \(A \mapsto W(A) \) from rings to rings such that

\[
w : W(A) \to A^\mathbb{N}
\]

is a homomorphism of rings, where \(A^\mathbb{N} \) is equipped with the product structure.
Proof. [CL, II, §§ 5, 6]. Alternate proof : use Dwork’s lemma : If
\(f : A \to A, f(a) \equiv a^p \mod p, (x = (x_0, \cdots) \in w(A^N)) \iff (x_i = f(x_{i-1}) \mod p^i \forall i > 0). \) See also : [Demazure, III].

Ghost map, ghost components. \(1 = (1, 0, \cdots, 0, \cdots), 0 = (0, \cdots, 0), \) \(S_n(a, b), P_n(a, b), S_0 = a_0 + b_0, S_1 = a_1 + b_1 - \sum_{0 < i < p} p^{-1}(p^i/i!(p-i)!)(a_0)^i, P_0 = a_0b_0, P_1 = b_0a_1 + b_1a_0^p + pa_1b_1. \)

2.2. Operators \(R, F, V \)
\(W_n(A), R, V, \) short exact sequences, \([x] = (x, 0, \cdots) \)

There exists a unique \(F : W(A) \to W(A) \) functorial in \(A \) such that \(w(Fa) = (w_1(a), w_2(a), \cdots). \)

\(Fa = (f_0(a), \cdots, f_n(a), \cdots), f_n(a) = f_n(a_0, \cdots, a_{n+1}), f_0(a) = a_0^p + pa_1, \)
\(f_n(a) \equiv a_n^p \mod p \)
\(F : W_n(A) \to W_{n-1}(A) \)
\(FV = p, xVy = V((Fx)y), F[x] = [x^p], (VF = p) \iff (p = 0 \text{ in } A). \)

\(p = 0 \text{ in } A \Rightarrow Fa = (a_0^p, \cdots, a_n^p, \cdots). \)

\(m \in \mathbb{Z} \text{ invertible in } A \Rightarrow m \text{ invertible in } W_n(A) ; \) in particular, if \(A \) is a \(\mathbb{Z}_p \)-algebra, so is \(W_n(A). \)

2.3. Examples

- \(W_n(A), A \text{ perfect of char. } p \)
 \(V = pF^{-1}, W_n(A) = W(A)/p^nW(A), W(A) = \text{(the unique) strict } p \)-ring \(B \) of residual ring \(A \) \((W(A) \xrightarrow{\sim} B, a \mapsto \sum r(a_n)p^rn, r : A \to B \text{ (the system of multiplicative representatives)} \)
 \(k \text{ perfect field of char. } p \Rightarrow W(k) = \text{(the) Cohen ring of } k ; W(F_p) = \mathbb{Z}_p. \)

- \(W_n(F_p[t]) \)

\[W_n(F_p[t]) = E^0/V^nE^0, \]
where \(E^0 \subset Z_p/[p^{-\infty}] \) is the set of \(\sum_{k \in \mathbb{N}[1/p]} a_k t^k \) such that the denominator of \(k \) divides \(a_k \) for all \(k, \) with \(F, V \) induced by \(F, V \) on \(Q_p/[p^{-\infty}] \) given by \(Ft = t^p, V = pF^{-1}. \)

(see [DRW, I 2.3] : \(E^0 = \sum V^nZ_p[t] \); there’s a unique \(Z_p \)-algebra homomorphism \(E^0 \to W(F_p[t]) \) compatible with \(V, \) sending \(t \) to \([t] \); it is injective and induces an isomorphism on \(gr_V. \)

Gives a decomposition

\[W_n(F_p[t]) = \bigoplus_{k \text{ integral}} (Z/p^nZ)[t]^k \bigoplus \bigoplus_{k \text{ not integral}} V^{u(k)}(Z/p^{n-u(k)}Z)[t]p^{u(k)}k, \]

(\(p^{u(k)} \) being the denominator of \(k, \) and \([t] \) the Teichmüller representative).

A similar description holds for \(F_p[t_1, \cdots, t_r] \) (loc. cit.).
• $W_n(Z(p))$

\[
W_n(Z(p)) = \prod_{0 \leq i \leq n-1} Z(p)V^i1
\]

(as a $Z(p)$-module, with $V^i1.V^j1 = p^iV^j1$ $(0 \leq i \leq j < n$).

(see [Hesselholt-Madsen, 1.2.4] : $gr_V W_n(Z(p))$ free over $Z(p)$, (V^i1) split the filtration : $\sum_{0 \leq i < n} V^i[a_i] = \sum_{0 \leq i < n} b_i V^i1$, with a_i, b_i in $Z(p)$ (and the 1-1 correspondence $(a_i) \leftrightarrow (b_i)$ given by complicated functions))

2.4. Link with big Witt vectors

$W(A) := (1 + A[[t]])^*, \ u + w v := u v, \ (1 - at)^{-1} w (1 - bt)^{-1} := (1 - abt)^{-1}$

$A/Z(p) \Rightarrow W(A) \subset W(A), \ W(A) = \pi W(A), \ \pi x = E(t)x$.

$E(t) = \exp(\sum_{n \geq 0} t^n/n) = \prod_{n \in l(p)} (1 - t^n)^{-\mu(n)/n} \in W(Z(p))$ (Artin-Hasse exponential)

\[
a = (a_0, \cdots) \mapsto \prod_{n \geq 0} E(a_n t^n), \ W(A) \iso \pi W(A)
\]

(see [DRW 0 1.2], [Demazure], [Bloch]).

2.4. Sheafification

For A a ring in a topos T, and $n \in \mathbb{N}$, $n > 0$, the presheaf $U \mapsto W(A(U))$ (resp. $U \mapsto W_n(A(U))$) is a sheaf of rings, denoted $W(A)$ (resp. $W_n(A)$).

If X is a scheme, the underlying space of X together with the sheaf $W_n(O_X)$ is a scheme, denoted $W_n(X)$ (LZ, Appendix). If p is nilpotent in A, VW_nA is nilpotent (since it’s a DP-ideal, see 3.2). If p is nilpotent on X, $W_n(X)$ is a thickening of X.

3. Crystalline cohomology

3.1. Inputs from complex analytic geometry : Poincaré lemma, Gauss-Manin connection

• Poincaré lemma

analytic : X/C smooth analytic space : $C \to \Omega_{X/C} = \text{quasi-isomorphism}$

formal : $k = \text{field of char. } 0, \ t = (t_1, \cdots, t_n) : k \to \Omega_{k[[t]]/k} = \text{quasi-isomorphism}$

algebraic : $k = \text{field of char. } 0, \ t = (t_1, \cdots, t_n) : k \to \Omega_{k[[t]]/k} = \text{quasi-isomorphism}$

\[(n = 1 : 0 \to k \to k[t] \to k[t]dt \to 0 \text{ exact, } t^i \mapsto it^i1dt (i \geq 1)\]

$\text{char}(k) = p > 0 \Rightarrow \Omega_{k[[t]]/k}$ quasi-isomorphic to $k[t^p] \otimes (k \otimes k[t^{-1}]dt[-1])$

(generalization : Cartier isomorphism)

• Gauss-Manin

relative Poincaré lemma : $f : X \to Y$ smooth morphism of complex analytic spaces $\Rightarrow f^{-1}\mathcal{O}_Y \to \Omega_{X/Y}$ quasi-isomorphism.
If \(f \) proper, then \(R^i f_* \mathcal{C} = \) local system, and
\[
\mathcal{H}_{dR}(X/Y) := R^i f_* \Omega_{X/Y} = \mathcal{O}_Y \otimes R^i f_* \mathcal{C}.
\]

\(\Rightarrow \) For \(Y/C \) smooth, get integrable connection \(\nabla = d \otimes \text{Id} : \mathcal{H}_{dR}(X/Y) \to \Omega^1_Y \otimes \mathcal{H}_{dR}(X/Y) \), with horizontal sections \(R^i f_* \mathcal{C} \).

If \(Y = \text{smooth } C\text{-scheme}, f : X \to Y \) proper smooth, by GAGA
\[
\mathcal{H}^i_{dR}(X/Y) = \mathcal{H}^i_{dR}(X^\text{an}/Y^\text{an}),
\]
and by Manin there exists a canonical integrable connection
\[
\nabla_{GM} : \mathcal{H}^i_{dR}(X/Y) \to \Omega^1_Y \otimes \mathcal{H}_{dR}(X/Y)
\]
such that \((\nabla_{GM})^\text{an} = \nabla\). Purely alg. construction. Variants : Katz-Oda, Grothendieck.

\(\Rightarrow \) Grothendieck’s observation : \(k = \text{perfect field of char. } p > 0, W = W(k), t = (t_1, \ldots, t_n), X/S = \text{Spec} W[[t]] \) proper smooth such that \(\mathcal{H}_{dR}(X/S) \) free of finite type \(\forall i \). Let \(u : \text{Spec} W \to S, v : \text{Spec} W \to S \) such that \(u \equiv v \mod p \). Get : \(X_u := u^* X, X_v := v^* X \) such that \(X_u \otimes k = X_v \otimes k = Y \), and \(H^i_{dR}(X_u/W) = u^* \mathcal{H}^i(X/S), H^i_{dR}(X_v/W) = v^* \mathcal{H}^i(X/S) \). By \(\nabla = \nabla_{GM} \), get isomorphism
\[
\chi(u, v) : H^i_{dR}(X_u/W) \cong H^i_{dR}(X_v/W),
\]
\[
u^*(x) \mapsto \sum_{m \geq 0} (1/m!)(u^*(t) - v^*(t))^m v^*(\nabla(D)^m x)
\]
\((x \in H^i_{dR}(X/S), D = (D_1, \ldots, D_n), D_i = \partial/\partial t_i)\), with \(\chi(v, w)\chi(u, v) = \chi(u, w), \chi(u, u) = \text{Id} \) (NB. \((1/m!)(u^*(t) - v^*(t))^m \in W \) ; series converge \(p \)-adically : \(p > 2 \) easy, by Berthelot in general).

\(\Rightarrow \) question (Grothendieck) : for \(Y/k \) proper, smooth, \(X_1, X_2 \) proper smooth liftings \(/W \), can one hope for an isomorphism (generalizing \(\chi(u, v) \))
\[
\chi_{12} : H^i_{dR}(X_1/W) \cong H^i_{dR}(X_2/W)
\]
with \(\chi_{23}\chi_{12} = \chi_{13} \)? (Monsky-Washnitzer : analogue in the affine case OK)

Answer : Yes : solution : crystalline cohomology \(H^i(Y/W) \) (depending only on \(Y \), with no assumption of existence of lifting), providing can. iso :
\[
\chi : H^i(Y/W) \cong H^i_{dR}(X/W)
\]
for any proper smooth lifting \(X/W \) of \(Y \), such that for \(X_1, X_2 \) as above, \(\chi_2 = \chi_{12}\chi_1 \).
Berthelot-Grothendieck’s definition: \(H^i(Y/W) = \text{proj} \lim_n H^i(Y/W_n), \)
\(H^i(Y/W_n) = H^i((Y/W_n)_{\text{cris}}, \mathcal{O}), (Y/W_n)_{\text{cris}}: \text{crystalline site, } \mathcal{O} = \text{structural sheaf of rings}. \)

Later: \(H^i(Y/W) = H^i(Y_{zar}, W\Omega_Y), W\Omega_Y = \text{de Rham-Witt complex}. \)

3.2. Divided powers

\(I \subset A = \text{ideal}; \text{divided powers on } I = \text{family } \gamma_n : I \to A, n \in \mathbb{N}, \)
satisfying formally the properties of \(x^n/n! : \)

\(\gamma_0(x) = 1, \gamma_i(x) = x, \gamma_n(x) \in I \) for \(n \geq 1, \)

\(\gamma_n(x + y) = \sum_{p+q=n} \gamma_p(x)\gamma_q(y), \)

\(\gamma_n(\lambda x) = \lambda^n \gamma_n(x), \)

\(\gamma_p(x)\gamma_q(x) = ((p+q)!/p!q!)\gamma_{p+q}(x) \)

\(\gamma_p(\gamma_q(x)) = (pq)!/p!(q!)^p \gamma_{pq}(x). \)

In particular,

\(n! \gamma_n(x) = x^n. \)

DP-ideal, DP-structure.

Examples

- \(I = pW \subset W (W = W(k), k \text{ perfect, char. } p > 0). \) Then: \(\forall n \in \mathbb{N}, \)

\(p^n/n! \in W. \)

Proof. \(v_p(n!) = (n - \sum_{0 \leq i \leq r} a_i)/(p - 1), \) with \(n = \sum_{0 \leq i \leq r} a_i p^i, 0 \leq a_i < p, \)
hence

\(v_p(p^n/n!) = (n(p-2) + \sum a_i)/(p-1) \geq 0, \)

and \(> 0 \) if \(n > 0). \)

Note: \(p > 2 \Rightarrow \lim_{n \to \infty} p^n/n! = 0 \)

\(p = 2: v_2(2^n/n!) = \sum a_i (= 1 \text{ for } n = 2^m) \)

Induced DP on \(W_m. \)

\(A/W \) finite totally ramified, \([A : W] = e, \pi \in A \) uniformizing parameter, then (\(\pi A \) has a DP structure) \(\iff (e \leq p-1). \)

- \(M \) an \(A \)-module,

\(\Gamma M = \oplus_{n \geq 0} \Gamma^n M = A \oplus M \oplus \Gamma^2 M \oplus \cdots \)

the DP-algebra on \(M, \Gamma^+ M = \oplus_{n \geq 0} \Gamma^n M \) (if \(M \) is locally free of finite type, \(\Gamma^n M = (S^n(M^\vee))^{\vee} = TS^n M). \)

\(^1 \) There exists a unique DP on \(\Gamma^+ M \) extending \(M \to \Gamma^n M, x \mapsto x^n. \)

\[A < t_1, \ldots, t_r > = \Gamma(\oplus_{1 \leq i \leq r} A t_i) = \oplus_{k=(k_1, \ldots, k_r)} A t^{[k]}. \]

\(^1TS^n M = (M^{\otimes n})^{S_n} \) is the submodule of symmetric tensors of degree \(n. \)
Divided power Poincaré lemma. There exists a unique integrable connection d on the $A[t]$ module $A < t >$ such that $dt_i^{[n]} = t_i^{[n]}dt$ and $d(xy) = dx.y + y.dx$, and $A \to A < t > \otimes \Omega A[t]/A$ is a quasi-isomorphism.

- A a $\mathbf{Z}_{(p)}$-algebra $\Rightarrow (\gamma_n)_{n \geq 1}$ on I is determined by γ_p (or $(p - 1)! \gamma_p$).
- R a $\mathbf{Z}_{(p)}$-algebra $\Rightarrow \gamma_n(Vx) = (p^{n-1}/n!)Vx^n$ is in $VW(R)$ for $x \in W(R)$, $n > 0$, and (γ_n) $(n > 0)$, $\gamma_0 = 1$ is a DP on $VW(R)$, called canonical.

Divided power envelope (Berthelot’s construction). For (B, J), J an ideal in B, there exists a (unique) pair $(D_B(J), J)$, J, an ideal in $D_B(J)$ equipped with DP γ and a morphism $(B, J) \to (D_B(J), J)$ universal for morphisms in (C, K), with K a DP-ideal. Called DP-envelope of (B, J).

Variant for B an A-algebra, with a PD-ideal I in A, with γ on J made compatible with the DP on I (i.e. PD of I extend to $ID_B(J)$ and compatible with the DP of J on the intersection). Case of interest : $A = W_n(k)$, $I = (p)$.

Example. $M = A$-module, $B = SM = \oplus_{n \in \mathbb{N}} S^nM$ the symmetric algebra on M, $J = S^+M \Rightarrow (D_B(J), J) = (\Gamma M, \Gamma^+M)$.

3.3. The crystalline site.

X/W_n, $W_n = W_n(k)$, k perfect of char. $p > 0$

$\text{Crys}(X/W_n)$ crystalline site : objects : (U, T, γ), U Zariski open (or étale) in X, $U \to T$ closed immersion $/W_n$, with DP γ on $I = \text{Ker}(\mathcal{O}_T \to \mathcal{O}_U)$ compatible with the canonical DP on pW_n (NB. $p^n = 0 \Rightarrow I = \text{nil ideal : } U \to T$ a thickening) ; morphisms : obvious ; covering families : $(U_i, T_i) \to (U, T)$ such that $(T_i \to T)$ covering (Zar or étale). Zariski (resp. étale) crystalline site.

Sheaf on Zar (resp. ét) $\text{Crys}(X/W_n) \leftrightarrow$ compatible family of Zar (resp. ét) sheaves $F_{(U,T)}$ and maps $a_f : f^*F_{(V,Z)} \to F_{(U,T)}$ for $f : (U, T) \to (V, Z)$ such that $a_f = \text{iso}$ if $f : T \to Z$ open (resp. étale). Topos of sheaves on $\text{Crys}(X/W_n)$ denoted $(X/W_n)_{\text{crys}}$. Functorial in X/W_n. In particular, the absolute Frobenius of X and $\sigma : \text{Spec}W_n \to \text{Spec}W_n$, $\sigma(a_0, \cdots, a_{n-1}) = (a_0^p, \cdots, a_{n-1}^p)$, induce a morphism $F : (X/W_n)_{\text{crys}} \to (X/W_n)_{\text{crys}}$.

Example : $(U, T) \mapsto \mathcal{O}_T$ is a sheaf of rings, called structural sheaf, denoted \mathcal{O}_{X/W_n}.

Canonical maps.

\[
i : X \to (X/W_n)_{\text{crys}}\]

\footnote{S. Yasuda observes that in fact the datum of a dp-structure is equivalent to that of a single function $g = (p - 1)! \gamma_p$ satisfying $g(\lambda x) = \lambda^n g(x)$, $pg(x) = x^p$, and $g(x + y) = g(x) + g(y) + \sum_{0 < i < d}(1/p)(p!/(p - i)!)} x^i g^{p-i}.$
(X = X_{zar} or X_{et}), a closed immersion of ringed toposes,

\[0 \to J_{X/W_n} \to \mathcal{O}_{X/W_n} \to i_* \mathcal{O}_X \to 0, \]

and a morphism of toposes (ringed by the constant ring \(W_n \))

\[u = u_{X/W_n} : (X/W_n)_{crys} \to X, \]

\[\Gamma(U, u_* F) := \Gamma((U/W_n)_{crys}, F). \]

Crystalline cohomology

\[H^i(X/W_n) := H^i((X/W_n)_{crys}, \mathcal{O}_{X/W_n}), \]

a \(W_n \)-module. In derived style

\[R \Gamma(X/W_n) := R \Gamma((X/W_n)_{crys}, \mathcal{O}_{X/W_n}) = R \Gamma(X, Ru_* \mathcal{O}_{X/W_n}). \]

Remark. Crystalline site, topos, structural sheaf \(\mathcal{O} \), canonical map \(u \) generalize to \(X \to (S, I, \gamma) \), \(p \) nilpotent on \(S \), \(I \subset \mathcal{O}_S \) ideal with DP \(\gamma \) extendable to \(X \).

3.4. Calculation of \(H^*(X/W_n) \)

Assume we have a closed embedding \(i : X \to Z \), of ideal \(I \), with \(Z/W_n \) smooth. Let \((\mathcal{O}_D, \mathcal{O}) \) be the DP-envelope of \(I \) (compatible with the DP on \((p) \)), so that \(X \to Z \) factors as

\[X \to D \to Z, \]

with \(X \to D \) a thickening. Then \(\mathcal{O}_D \) has a canonical integrable connection \(d : \mathcal{O}_D \to \mathcal{O}_D \otimes \Omega^1_{Z/W_n} \) such that \(d(x^m) = x^{[m-1]} dx \) for \(x \in I \). Consider the corresponding de Rham complex of \(Z/W_n \) with coefficients in \(\mathcal{O}_D \):

\[\mathcal{O}_D \otimes \Omega_{Z/W_n}. \]

Theorem 3.4.1. (Berthelot-Grothendieck) There exists a canonical isomorphism

\[Ru_* \mathcal{O}_{X/W_n} \sim \mathcal{O}_D \otimes \Omega_{Z/W_n} \]

in \(D(X, W_n) \).

(In fact, there is constructed a transitive system of isomorphisms for variable embeddings \(X \subset Z \).)

Corollary 3.4.2.

\[H^*(X/W_n) \sim H^*(Z, \mathcal{O}_D \otimes \Omega_{Z/W_n}). \]
In particular, for X/k smooth, Z/W_n a smooth lifting,

$$H^*(X/W_n) \sim H^*_{dR}(Z/W_n).$$

Proof of 3.4.1. The (sheaf defined by the) single DP-thickening $X \subset D$ covers the final object of $(X/W_n)_{\text{crys}}$, its powers D^r ($= \text{DP-envelope of } X$ diagonally embedded in $(Z/W_n)^r$) are acyclic for u_*, and $u_*(O_{X/W_n}|D^r) = O_{D^r}$. Therefore

$$R u_* O_{X/W_n} \sim \check{\mathcal{C}}(D, \mathcal{O})$$

with

$$\check{\mathcal{C}}(D, \mathcal{O}) = (O_D \to O_{D^2} \to \cdots O_{D^r} \to \cdots).$$

Using the DP-Poincaré lemma one shows that the above complex (called the Čech-Alexander complex) is isomorphic in $D(X,W_n)$ to the de Rham complex Ω_{Z/W_n}^\cdot.

Remark. Th. 3.4.1 generalizes to $X \to (S,I,\gamma)$, with an embedding $X \to Z$ into Z smooth over S (see [B], [BO]).

3.5. Crystalline cohomology for X/k proper and smooth

For X/k proper and smooth,

$$H^i(X/W) := \text{proj.lim}_n H^i(X/W_n)$$

is a finitely generated W-module for all i. In fact, $H^i(X/W) = H^i$ of the perfect complex $R\Gamma(X/W) := R\text{proj.lim}_n R\Gamma(X/W_n)$. If Z/W is a proper, smooth lifting of X/k, then

$$R\Gamma(X/k) \sim R\Gamma_{dR}(Z/W) := R\Gamma(Z,\Omega_{Z/W}).$$

For A/W finite, totally ramified, with $e = [A : W]$, and Z/A a proper, smooth lifting of X (i.e. $Z \otimes_A k = X$), one still has

$$H^*(X/W) \otimes_W A \sim H^*_{dR}(Z/A)$$

if $e \leq p - 1$; in general, only

$$H^*(X/W) \otimes_W K \sim H^*_{dR}(Z/A) \otimes_A K,$$

for $K = \text{Frac}(A)$ (Berthelot-Ogus).

For X/k proper, smooth, $X \to H^*(X/W) \otimes K_0$ ($K_0 = \text{Frac}(W)$) is a Weil cohomology: Künneth, Poincaré duality, cycle class, with “correct” Betti numbers, i.e. $\dim H^i(X/W) \otimes K_0 = \dim H^i(X_{\overline{k}}, \mathbb{Q}_\ell)$ (\overline{k} an algebraic closure of k, $\ell \neq p$), at least if X/k is projective (Katz-Messing) or liftable to char. 0 (i.e. to A as above) (Berthelot-Ogus + Artin-Grothendieck).
For $k = \mathbb{F}_q$, $q = p^n$, by Berthelot,

$$Z(X/\mathbb{F}_q, t) = \prod \det(1 - F^a t, H^i(X/W) \otimes K_0)^{(-1)^{i+1}},$$

with $\det(1 - F^a t, H^i(X/W)) \otimes K_0) = \det(1 - F^a t, H^i(X_{\mathbb{F}_q}, \mathbb{Q}_t))$ if X/k is projective (Katz-Messing).

3.6. Slopes of Frobenius

Assume k algebraically closed, let X/k be proper, smooth, fix $i \in \mathbb{Z}$, and let $H := H^i(X/W) \otimes K_0$. Let $\varphi : H \to H$ be the σ-linear endomorphism defined by $F : (X/W_n)_{\text{crys}} \to (X/W_n)_{\text{crys}}$. Poincaré duality $\Rightarrow \varphi$ is bijective, i.e. H is an F-isocrystal. By Dieudonné-Manin,

$$H = \oplus H_\lambda,$$

with H_λ pure of slope λ, i.e. a direct sum of m_λ copies of $M_\lambda := K_0,\sigma[F]/(F^a - p^r)$, $\lambda = r/s \geq 0$, $(r, s) = 1$, $F_\lambda = \sigma(\lambda) F$ (the slopes $0 \leq \lambda_1 < \cdots < \lambda_r$ of H are the λ for which $m_\lambda \neq 0$) (= p-adic valuations of “eigenvalues” of φ).

Newton polygon $\text{Nwt}_i(X) = \text{Nwt}(H)$: slope λ_i with horizontal length $m_{\lambda_i}s$ ($r/s = \lambda_i$).

Hodge polygon $\text{Hdg}_i(X) = \text{slope} r$ with multiplicity the Hodge number $h^r,s(X, \Omega^s_{X/k})$. Basic inequality :

Theorem 3.6.2. (Mazur-Ogus) $\text{Nwt}_i(X)$ lies above $\text{Hdg}_i(X)$.

In particular, for $k = \mathbb{F}_q$, if $H^i(X, \mathcal{O}) = 0$, all eigenvalues of F^a on $H^i(X/W)$ are divisible by q.

The proof of 3.6.2 uses the Cartier isomorphism as an essential tool. See 4.5.3 for a key lemma.

Remark. Assuming only k perfect, H decomposes as in (3.6.1) with H_λ the largest sub-F-crystal such that the slopes of $H_\lambda \otimes K_0(\overline{k})$ are all λ, and 3.6.2 is still valid.

Remark. Suppose $X = Z \otimes_A k$, Z/A proper, smooth as above. Then $h^{r,s}(X) \geq h^{r,s}(Z_K)$ ($Z_K = Z \otimes K$) (semi-continuity). Hence $\text{Hdg}_i(Z_K)$ is above $\text{Hdg}_i(X)$, p-adic Hodge theory (C_{cris} theorem) implies : $\text{Nwt}_i(X)$ lies above $\text{Hdg}_i(Z_K)$.

4. The de Rham-Witt complex

4.1. Witt complexes : the Langer-Zink construction

32011/3/14 : I just received a preprint by J. Suh, *Symmetry and parity of slopes of Frobenius on proper smooth varieties*, in which he shows that this result and the one above still hold in the proper smooth, not necessarily projective case.
Definitions. (1) Let \(A \) be an \(A \)-algebra (in some topos \(T \)), \(I \subset B \) an ideal with \(DP \gamma_n, M \) a \(B \)-module. An \(A \)-dp-derivation \(D : B \rightarrow M \) is an \(A \)-derivation such that \(D\gamma_n(x) = \gamma_{n-1}(x)Dx \) for \(x \in I \) (i.e. local section of \(I \)). Denote by \(d : B \rightarrow \tilde{\Omega}^1_{B/A,\gamma} \) (or \(\tilde{\Omega}^1_{B/A} \)) the universal \(A \)-dp-derivation.

\[
\text{Hom}(\tilde{\Omega}^1_{B/A}, M) = \text{Der}_{A,\gamma}(B, M).
\]

(2) A \(B/A \)-dga is a strictly anticommutative graded \(B \)-algebra \(P = \oplus_{n \in \mathbb{N}} P^n \), equipped with an \(A \)-linear map \(d : P^n \rightarrow P^{n+1} \) such that \(d^2 = 0 \) and \(d(xy) = dx.y + (-1)^i x.dy \) for \(x \in P^i, y \in P^j \). A \(B/A \)-dp-dga is a \(B/A \)-dga such that \(B \rightarrow P^0 \rightarrow P^1 \) is a dp-derivation. Initial \(B/A \)-dp-dga denoted \(\tilde{\Omega}_{B/A} \).

(3) For \(A \) a \(\mathbb{Z}(p) \)-algebra, a Witt complex over \(B/A \) is a projective system of \(W_n(B)/W_n(A) \)-dga \(P_n \) for \(n \geq 1 \)
\[
\cdots \rightarrow P_{n+1} \rightarrow P_n \rightarrow \cdots \rightarrow P_1
\]
equipped with maps \(F : P_{n+1} \rightarrow P_n, V : P_n \rightarrow P_{n+1} \), satisfying:
- \(W_n B \rightarrow P^0_n \) compatible with \(F, V \);
- \(Fx.Fy = F(xy) \);
- \(xVy = V(Fx.y) \);
- \(FV = p \);
- \(FdV = d \);
- \(Fd[x] = [x^{1-p}d[x]] \) for \(x \in B \)
 (here \([x] = [x].1_{p_0} \) by abuse).

A map of Witt complexes is a map of projective systems compatible with all the structures.

(NB. The terminology Witt complex is borrowed from [HM]; a Witt complex is called an \(F-V \)-procomplex) in [LZ].)

Standard formulas in any Witt complex:
- \(dF = pFd, Vd = pdV \),
- \(V(xdy_1 \cdots dy_r) = Vx.dV y_1 \cdots .dV y_r \),
- \(Vdx = VFdV x = V1.dV x = d(V1.V x) = d(V(FV x)) = pdV x \).

Theorem 4.1.1. (Langer-Zink). For \(A \) a \(\mathbb{Z}(p) \)-algebra, the category of Witt complexes over \(B/A \) admits an initial object, denoted \(W\Omega_{B/A} \),
called the de Rham-Witt (pro)-complex of \(B/A \). Moreover:
(a) $W_n\Omega^0_{B/A} = W_nB$ for all n;
(b) The de Rham-Witt complex of B/A is a projective system of dp-dga, for the canonical DP structure on $VW_{n-1}B$. The (unique) map of dp-dga

$$\tilde{\Omega}^{W_nB/W_nA} \to W_n\Omega_{B/A}$$

is surjective, and an isomorphism for $n = 1$:

$$\Omega_{B/A} \xrightarrow{\sim} W_1\Omega_{B/A}.$$

(c) If $p = 0$ in A, then $VF = p$.

Proof. One first checks the following two key points:

(i) If P is a Witt complex, then, for all n, $d : W_nB \to P^1_n$ is a dp-derivation (and hence P_n is a dp-dga)

(e. g., for $x \in B$, $d\gamma_p([x])dV[x] = p^{-2}V[x]dV[x] = p^{-2}V[x]dV[x]$, and already $dV[x]^p = d([x]V1) = V1d[x] = VFD[x] = V([x]^{p-1}d[x]) = V[x]^{p-1}dV[x]$)

(ii) If $D : W_nA \to M$ is a dp-derivation into a W_nA-module M, then $FD : W_{n-1}A \to F\ast M$ defined by

$$FDx = [a^{p-1}]D[a] + DVb$$

for $x = [a] + Vb$, is a dp-derivation.

It follows from (ii) that the projective system $\tilde{\Omega}^{W_nB/W_nA}$ acquires maps (of graded algebras) $F : \tilde{\Omega}^{W_nB/W_nA} \to \tilde{\Omega}^{W_{n-1}B/W_{n-1}A}$ satisfying some of the formulas in (3) ($FdVx = dx$ for $x \in W_nB$, $Fd[x] = [x^{p-1}]d[x]$ for $x \in B$, $dFx = pFDx$, for $x \in W_{n+1}B$). The projective system $W.\Omega_{B/A}$ is then constructed inductively as a quotient of $\tilde{\Omega}^{W_nB/W_nA}$.

In (ii), the fact that FD is a derivation (already is additive) makes crucial use of the fact that D is a dp-derivation. Compare with the definition of the Cartier operator C^{-1}, sending dx to the class of $x^{p-1}dx$, which is additive (modulo boundaries). For A of char. p, $F : W_2\Omega^1_{B/A} \to \Omega^1_{B/A}$ lifts the Cartier operator $C^{-1} : \Omega^1_{B/A} \to \Omega^1_{B/A}/dB$.

For a morphism $f : X \to S$ of schemes over $\mathbb{Z}(p)$,

$$W.\Omega^{X/S} := W.\Omega^{\mathcal{O}_X/f^{-1}(\mathcal{O}_S)}$$

is called the *de Rham-Witt (pro)-complex of X/S. Obvious functoriality in B/A and X/S. We are mainly interested in the case where p is nilpotent in S, and even $S = \text{Spec} k$ a perfect field of char. p. 12
4.2. Other constructions

- If A is a perfect ring of char. p, $W\Omega_{B/A}$ coincides with Illusie’s de Rham-Witt complex constructed in [DRW] (if I is the latter, I is a Witt complex over B/A, and the corresponding map $W\Omega_{B/A} \to I$ is an isomorphism, as the universal property of I as a V-pro-complex yields an inverse to it). This isomorphism is compatible with F, V. Langer-Zink’s approach simplifies the construction of F on I.

- For k a perfect field of char. $p > 2$ and X/k smooth of dim. $< p$, it is shown in [DRW] that $W\Omega_{X/k}$ coincides with Bloch’s complex of typical curves on $SK_{i+1}, \cdots \to C^iX \to \cdots$. (Kato [K1] sketched how to remove the restrictions $p > 2$ and dim$X < p$ in Bloch’s construction, and presumably the isomorphism extends.)

- For X/k smooth as above, it is shown in [DRW] that

$$W\Omega_X := \text{proj.lim}_n W\Omega_{X/k}$$

is the quotient of proj.lim$\Omega_{W_nO_X}$ by the closure (for the canonical filtration) of the p-torsion, a quotient considered first by Lubkin.

- For B a $\mathbb{Z}(p)$-algebra, Hesselholt-Madsen [HM] define a Witt complex over B as a projective system of strictly anticommutative W_nB-graded algebras E_n, with operators F, d, V as in (3) above, (with $d^2 = 0$ and $d(xy) = dx.y + (-1)^i x.dy$), forgetting the W_nA-linearity of d. They show that the category of Witt complexes over B has an initial object, called the (absolute) de Rham-Witt complex of B,

$$W\Omega_B.$$

They study it for $p > 2$. The Langer-Zink complex $W\Omega_{B/A}$ is a quotient of $W\Omega_B$, studied in [He].

- Other variants : Olsson’s variant of the Langer-Zink construction for certain morphisms of algebraic stacks [O], Davis-Langer-Zink overconvergent de Rham-Witt complex for X/k smooth [DLZ].

4.3. Local description of $W\Omega_{X/S}$ (smooth case)

- Étale extensions

 (1) For X/S, $W_n\Omega^i_{X/S}$ is quasi-coherent on $W_n(X)$ for all i, n.

 (2) Assume p nilpotent on S. Then, for Y an S-scheme and $X \to Y$ étale, $W_n(X) \to W_n(Y)$ is étale, and

$$W_nO_X \otimes_{W_nO_Y} W_n\Omega^i_{Y/S} \to W_n\Omega^i_{X/S}$$
is an isomorphism.

Proof. The main point is to show the first assertion of (2). See [LZ, appendix]. Much easier if $p = 0$ (cf. [DRW]). It is shown in [LZ] that (2) holds if, instead of assuming p nilpotent on S, one assumes that Y is F-finite, i.e. the absolute Frobenius of $Y \otimes F_p$ is finite.

- Canonical bases
 For X/S smooth, the determination of the local structure of $W_n\Omega_{X/S}$ is reduced by (2) to that of $W_n\Omega_{B/A}$ for a polynomial algebra $B = A[T_1, \cdots, T_r]$.

 Case $A = F_p$. We have the following description of $W_n\Omega_B := W_n\Omega_{B/F_p}$, due to Deligne:

 $$W_n\Omega_B = E / (V^n E + dV^n E'),$$

 where E' is the so-called complex of integral forms, defined by

 $$E' \subset \Omega_C/Q_p, \quad C = Q_p[T_1^{p^{-\infty}}, \cdots, T_r^{p^{-\infty}}],$$

 with

 $$V = pF^{-1}, FT_i = T_i^p,$$

 where $(\omega \in E') \Leftrightarrow (\omega$ and $d\omega$ integral) (i.e. coefficients in Z_p).

 Proof. As $E^0/V^n E^n = W_n(B)$, $E := (E' / (V^n E + dV^n E'))_{n \geq 1}$ is a Witt complex over B/F_p, so we have a natural map $W.\Omega_B/F_p \rightarrow E$ of Witt complexes. To show that it’s an isomorphism, one uses:

 As a complex of Z_p-modules, E has a natural grading by the group

 $$\Gamma = (Z[1/p]_{\geq 0})^r,$$

 $$E = \bigoplus_{k \in \Gamma} kE,$$

 where $x = \sum a_i(T)d\log T_i$ belongs to kE, i.e. is of homogeneous of degree k, if and only if the polynomials $a_i(T)$ are (here $i = (i_1 < \cdots < i_m)$), $d\log T_i = d\log T_{i_1} \cdots d\log T_{i_m}$.

 Each kE^m has a canonical basis consisting of elements $e_i(k)$ ($i = (i_1 < \cdots < i_m)$) sent to specific elements in the de Rham-Witt complex.

 Example: $r = 1$, $B = F_p[T], kE^0 = Z_p e_0(k), kE^1 = Z_p e_1(k)$, with $e_0(k) = p^{u(k)} T^k$ if $k \notin Z$ where $p^{u(k)}$ is the denominator of k, $e_0(k) = T^k$ otherwise, $e_1(k) = T^k d\log T$ ($k > 0$). Then $e_0(k)$ is sent to $[T]^k$ if $k \in Z$, to $V^{u(k)}[T]^{p^{u(k)}k}$ if $k \notin Z$, $e_1(k)$ to $[T]^{k} d\log[T] := [T]^{k-1} d[T]$ if $k \in Z$ ($k > 0$), $dV^{u(k)}[T]^{p^{u(k)}k}$ if $k \notin Z$. One gets direct sum decompositions

 $$W_n(B) = \bigoplus_{k \text{ integral}} (Z/p^n Z)[T]^k \oplus \bigoplus_{k \text{ not integral}} V^{u(k)}(Z/p^{u(k)} Z)[T]^{p^{u(k)}k},$$
\[W_n \Omega^1_{B/F_p} = \bigoplus_{k>0, \ k \text{ integral}} (\mathbb{Z}/p^n\mathbb{Z})[T]^k \log[T] \]
\[\bigoplus_{k \text{ not integral}} dV^{n(k)}(\mathbb{Z}/p^{n-u(k)}\mathbb{Z})[T]^{p^{u(k)}k}, \]
\[W_n \Omega^i_{B/F_p} = 0, \ i > 1. \]

Key observation (Deligne) : \(W_n \Omega_{B/F_p} \) contains the de Rham complex \(\Omega_{(\mathbb{Z}/p^n\mathbb{Z})[T]} \) as a direct summand:
\[W_n \Omega_{B/F_p} = \Omega_{(\mathbb{Z}/p^n\mathbb{Z})[T]} \oplus (W_n \Omega_{B/F_p})_{\text{not integral}}, \]
and the complement \((W_n \Omega_{B/F_p})_{\text{not integral}}\) is acyclic.

The limit \(W\Omega_B := \text{proj lim} W_n \Omega_B \),
can be described as
\[WB = \{ \sum_{k \in \mathbb{N}[1/p]} a_k T^k, a_k \in \mathbb{Z}_p, \text{den}(k)|a_k \forall k, \lim_{k \to \infty} a_k = 0 \} \]
\[W\Omega^1_B = \{ \sum_{k>0, k \in \mathbb{N}[1/p]} a_k T^k (dT/T), a_k \in \mathbb{Z}_p, \lim_{k \to \infty} \text{den}(k).a_k = 0 \} \]
\[W\Omega^i_B = 0, \ i > 1. \]

All this is generalized to any \(r \) in [DRW] and to any \(A \) in [LZ]. In particular :
\[W_n \Omega_{A[T_1,\ldots,T_r]/A} = \Omega_{W_n(A)[T_1,\ldots,T_r]/W_n(A)} \oplus (W_n \Omega_{A[T_1,\ldots,T_r]/A})_{\text{not integral}}, \]
with the not integral part acyclic. And for \(X/S \) smooth of relative dimension \(d \):
\[W_n \Omega_{X/S} = (0 \to W_n \Omega_X \to W_n \Omega^1_{X/S} \to \cdots \to W_n \Omega^{d-1}_{X/S} \to W_n \Omega^d_{X/S} \to 0). \]

- The canonical filtration
 \[W\Omega_{X/S} := \text{proj lim} W_n \Omega_{X/S}, \]
 \[\text{Fil}^n W\Omega_{X/S} := \ker W\Omega_{X/S} \to W_n \Omega_{X/S} \]
 Then ([LZ]) : For \(X/S \) smooth,
 \[\text{Fil}^n W\Omega^i_{X/S} = V^n W\Omega^i_{X/S} + dV^n W\Omega^{i-1}_{X/S}. \]

Moreover ([DRW] for \(S \) perfect, [BER] in general) : For \(S/F_p \), \(X/S \) smooth, \(gr^n W\Omega^i_{X/S} \) is an extension of \(\Omega^{i-1}_{X/S}/Z_n \Omega^{i-1}_{X/S} \) by \(\Omega^i_{X/S}/B_n \Omega^i_{X/S} \):
\[0 \to \Omega^i_{X/S}/B_n \Omega^i_{X/S} \to gr^n W\Omega^i_{X/S} \to \Omega^{i-1}_{X/S}/Z_n \Omega^{i-1}_{X/S} \to 0 \]
In particular, \(\text{gr}^n\) is locally free of finite type, of formation compatible with base change.

Here, \(Z_n\) and \(B_n\) are the iterated cycles and boundaries of \(\Omega_{X/S}\) defined inductively by the Cartier isomorphism, from \(Z_0 = \Omega_1, B_0 = 0, C^{-1} : B_n \Omega_{X/S} \sim B_{n+1} \Omega_{X/S}/B_1, C^{-1} : Z_n \Omega_{X/S} \sim Z_{n+1} \Omega_{X/S}/B_1\).

4.3. De Rham-Witt complex and crystalline cohomology

Theorem 4.3.1. \(k\) perfect field of char. \(p\), \(X/k\) smooth. There exists a canonical isomorphism of projective systems of \(D(X,W_n)\):

\[
R_u \ast O_{X/W_n} \overset{\sim}{\rightarrow} W_n \Omega_{X/k}
\]

(notations of 3.4.1).

This isomorphism is compatible with the multiplicative structures, and functorial in \(X/k\). It induces isomorphisms

\[
R \Gamma(X/W_n) \overset{\sim}{\rightarrow} R \Gamma(X,W_n \Omega_{X/k}),
\]

\[
H^*(X/W_n) \overset{\sim}{\rightarrow} H^*(X,W_n \Omega_{X/k}).
\]

Proof. First, suppose \(X\) affine. Choose an embedding \(i : X \rightarrow Z\) into a smooth \(W\)-scheme \(Z\). Let \(Z_n := Z \otimes W_n\). Construct inductively a compatible system of \(W_n\)-extensions \(u_n : W_n X \rightarrow Z_n\) of the inclusion \(i_n : X \hookrightarrow Z_n\). Let \(X \hookrightarrow D_n \rightarrow Z_n\) be the dp-envelope of \(i_n\). As the ideal of \(X \hookrightarrow W_n X\) has divided powers, \(u_n\) uniquely factors through \(D_n\). We get maps \(\Omega_{Z_n/W_n} \rightarrow \Omega_{W_n X/W_n} \rightarrow W_n \Omega_{X/k}\), whose composite factors through \(D_n \otimes \Omega_{Z_n/W_n} = \Omega_{D_n/W_n}\) as \(d : W_n O_X \rightarrow W_n \Omega_{X/k}\) is a dp-derivation. The resulting map

\[
R_u \ast O_{X/W_n} \overset{\sim}{\rightarrow} D_n \otimes \Omega_{Z_n/W_n} \rightarrow W_n \Omega_{X/k}
\]

does not depend on the choice of the embedding. To check it’s an isomorphism, we may assume \(Z_n\) lifts \(X\), and even reduce to \(X = \text{Spec}k[t_1, \cdots, t_r]\), \(Z_n = \text{Spec}W_n[t_1, \cdots, t_r]\). Then the result follows from the fact that the inclusion

\[
\Omega_{Z_n/W_n} \subset W_n \Omega_{X/k}
\]

is a quasi-isomorphism (cf. 4.3, end of Canonical bases).

General case : hypercover by open affines, use cohomological descent.

Comparison th. 4.3.1 extended by Langer-Zink to \(X/S\) smooth, \(p\) nilpotent on \(S\):

\[
R_u \ast O_{X/W_n(S)} \overset{\sim}{\rightarrow} W_n \Omega_{X/S}.
\]

Same proof.
Remark. The proof actually gives an isomorphism in the derived category of projective systems of W_n-modules over X (this is finer, and needed to apply $R\lim$ functors).

4.4. The slope spectral sequence

4.4.1. Suppose now X/k proper and smooth. Then 4.3.1 gives:

$$R\Gamma(X/W) \sim \to R\Gamma(X, W\Omega_{X/k})$$

and $R\Gamma(X/W)$ is a perfect complex, with $R\Gamma(X/W) \otimes^L_{W} k \to R\Gamma(X, \Omega_{X/k})$.

Moreover:

- The $(\sigma$-linear) endomorphism φ of $R\Gamma(X/W)$ induced by the absolute Frobenius of X is induced by the endomorphism Φ of $W\Omega_{X/k}$ such that $\Phi = p^i F$ in degree i.
- $F : W\Omega^d_{X/k} \to W\Omega^d_{X/k}$ is bijective, which yields a σ^{-1}-linear endomorphism v of $R\Gamma(X/W)$ such that $\varphi v = v \varphi = p^d$.

The next result is deeper:

Theorem 4.4.2. For any (i, j), the canonical map

$$H^j(X, W\Omega^i_{X/k}) \to \text{proj. lim}_n H^j(X, W_n\Omega^i_{X/k})$$

is an isomorphism, $H^j(X, W\Omega^i_{X/k})$ is separated and complete for the V-topology, its subgroup $T^{a,j}$ of p-torsion is killed by a power of p, and

$$H^j(X, W\Omega^i_{X/k})/T^{a,j}$$

is a free W-module of finite rank.

Proof. The argument in [DRW], imitated from Bloch, consists in studying $H^*(X, W\Omega^\leq i)$, with the operator V_i given on $W\Omega^\leq i$ by $p^{i-j}V$ in degree j. Using the structure of gr$^nW\Omega$, one shows that $H^*(X, W\Omega^\leq i)$ is finitely generated over $W[[V]]$ and of finite length modulo V. Using Φ (with $\Phi V_i = V_i \Phi = p^{i+1}$, this implies that $H^*(X, W\Omega^\leq i)$ is sum of a free W-module of finite rank and a p-torsion module killed by a power of p, and 4.4.2 follows by dèvissage.

Remark. As observed in [BBE], the proof shows that the conclusion of 4.4.2 holds for $i = 0$ and X/k proper, not necessarily smooth.

Corollary 4.4.3. $H^j(X, W\Omega^i_{X/k})/T^{a,j}$, with the operators F, V induced by F, V on $W\Omega^i$, is the Cartier module of a smooth formal p-divisible group. Equipped with the operator $p^i F$, it’s an F-crystal of slopes in $[i, i + 1]$.

Corollary 4.4.4. The $(\Phi$-equivariant) spectral sequence

$$E^{ij}_1 = H^j(X, W\Omega^i_{X/k}) \Rightarrow H^{i+j}(X, W\Omega_{X/k}) (= H^{i+j}(X/W))$$
degenerates at E_1 modulo torsion and gives isomorphisms

$$H^i(X, \Omega^i_{X/k}) \otimes K_0 \sim (H^{i+j}(X/W) \otimes K_0)_{[i, i+1]}$$

where $(H^{i+j}(X/W) \otimes K_0)_{[i, i+1]}$ is the part of the F-isocrystal $H^{i+j}(X/W) \otimes K_0$ of slopes in $[i, i+1]$

The spectral sequence of 4.4.4 is called the slope spectral sequence.

In particular:

Corollary 4.4.5. There is a natural isomorphism, for all j,

$$H^j(X, W\Omega_X) \otimes K_0 \sim (H^i(X/W) \otimes K_0)_{[0, 1]}$$

Remark. It was recently shown by Berthelot, Bloch and Esnault [BBE] that 4.4.5 extends to the proper, possibly singular case, provided that $H^i(X/W) \otimes K_0$ is replaced by Berthelot’s rigid cohomology $H^i_{\text{rigid}}(X/K_0)$.

Remark. The slope spectral sequence is studied in more detail in [DRW], [IR], and by Ekedahl [E]. See also the survey [I]. One application, described in [DRW, II 5.12], is the (refined) Igusa-Artin-Mazur inequality: if k is algebraically closed, and X/k projective, smooth, then

$$\rho = b_2 - 2h - r,$$

where $\rho = \text{rkNS}(X/k)$, $b_2 = \dim H^2(X/W) \otimes K_0$, $h = \dim (H^2(X/W) \otimes K_0)_{[0, 1]}$, and $r = \text{rk} T_p H^2(X, G_m)$. When Artin-Mazur’s formal Brauer group Φ^2 of X is representable by a smooth formal group, h is the dimension of its p-divisible part. The projectiveness assumption is used in loc. cit. to ensure a symmetry property of slopes of Frobenius on H^2. This property has been shown by J. Suh to actually hold in the general proper smooth case as well (see footnote 2).

4.5. **Higher Cartier isomorphisms, alternate construction of the de Rham-Witt complex**

For X/S smooth, S/\mathbf{F}_p, the Cartier isomorphism is an isomorphism of graded algebras

$$C^{-1}_{X/S} : \oplus \Omega^i_{X/(p)/S} \sim \oplus H^i F_* \Omega^i_{X/S},$$

where $X^{(p)} = \text{pull-back of } X \text{ by the absolute Frobenius of } S$, $F : X \to X^{(p)}$ the relative Frobenius, such that C^{-1} sends $a \otimes 1 \in \mathcal{O}_{X(p)}$ to a^p and $da \otimes 1$ to the class of $a^{p-1} da$.

Suppose $S = \text{Spec } k$, k perfect of char. p. Then $F : W_2 \Omega^1_X \to \Omega^1_X$ lifts the absolute Cartier isomorphism C^{-1} (composed of $C^{-1}_{X/S}$ and the canonical
isomorphism $\Omega_X^i \sim \Omega_{X^{(p)}}$ (cf. 4.1.1 (ii)). (We drop $/k$ for short.) More
generally:

Theorem 4.5.1. For $n \geq 1$, $F^n : W_{2n}\Omega^i_X \to W_n\Omega^i_X$ induces an isomorphism

$$W_n\Omega^i_X \sim \mathcal{H}W_n\Omega_X,$$

compatible with products, and equal to C^{-1} for $n = 1$.

Proof. Main point: show: $F^n W_{2n}\Omega^i_X = ZW_n\Omega^i_X$. The proof given in
[DRW] is insufficient, corrected in [IR]. Makes crucial use of the description
of $W_n\Omega_X$ for $X = \text{Spec} [t_1, \cdots, t_r]$ in terms of the complex of integral forms
(4.3) and, of course, of the Cartier isomorphism.

By 4.3.1, F^n induces W_n-linear isomorphisms

$$(4.5.2) \quad W_n\Omega^i_X \sim \sigma^n_{\mathcal{H}}(X/W_n),$$

where $\mathcal{H}(X/W_n) = R^i u_* \mathcal{O}_{X/W_n}$.

Assume X lifted to formal smooth Z/W, let $Z_n := Z \otimes W_n$. Then
$\mathcal{H}(X/W_n) = \mathcal{H}_{dR}(Z_n/W_n)$ (3.4.1), and (4.5.2), for $i = 0$ and $i = 1$ are
given by:

$i = 0$: $a = (a_0, \cdots, a_{n-1}) \in W_n\mathcal{O}_X$ sent to $b_0^p + pb_1^p + \cdots + p^{n-1}b_{n-1}$
in $\mathcal{H}_{dR}(Z_n/W_n)$, where b_i in \mathcal{O}_Z lifts a_i,

$i = 1$: $d(a_0, \cdots, a_{n-1})$ in $W_n\Omega^1_X$ sent to $\sum b_i^p d b_i$ in $\mathcal{H}_{dR}(Z_n/W_n)$.

For $i = 0$, (4.5.2) factors the n-th ghost component $w_n : W_{n+1}(\mathcal{O}_{Z_{n+1}}) \to \mathcal{O}_{Z_{n+1}}$, and, for $i = 1$, the composite map $(4.5.2) dR : W_{n+1}\mathcal{O}_X \to \Omega^1_{Z_n}/d\mathcal{O}_{Z_n}$
lifts $F^n d : W_{n+1}\mathcal{O} \to \Omega^1_X/d\mathcal{O}_X$.

\Rightarrow reconstruction of $W_i\Omega_X$ (suggested by Katz):

$$W_n\Omega^i_X := \sigma^n_{\mathcal{H}}(X/W_n),$$

$$F : W_{n+1}\Omega^i_X \to W_n\Omega^i_X$$
given by the restriction $\mathcal{H}(X/W_{n+1}) \to \mathcal{H}(X/W_n)$,

$$d : W_n\Omega^i_X \to W_{n+1}\Omega^{i+1}_X$$
given locally by the Bockstein operator associated with the exact sequence

$$0 \to \Omega_{Z_n/W_n} \to \Omega_{Z_{2n}/W_{2n}} \to \Omega_{Z_n/W_n} \to 0,$$

where the first map is multiplication by p^n,

$$V : W_n\Omega^i_X \to W_{n+1}\Omega^i_X.$$
induced by multiplication by p on $\Omega_{Z_{n+1}/W_{n+1}}$.

To reconstruct $R : W_{n+1}Ω_{X} \rightarrow W_{n}Ω_{X}$, suppose Z/W admits a formal lifting $Φ$ of Frobenius (exists if X/k affine). Then, $Φ^*$ is divisible by p^i on $Ω^i_{Z/W}$, let $f = p^{-i}Φ$ on $Ω^i_{Z/W}$. For $x \in \mathcal{H}^i(X/W_{n+1}) = \mathcal{H}_{dR}^i(Z_{n+1}/W_{n+1})$, there exists $y \in Ω^i_{Z/W}$, unique modulo $p^iΩ^i_{Z/W} + dΩ^{i-1}_{Z/W}$, such that $x = fy$ mod $p^{i+1}Ω^i_{Z/W} + dΩ^{i-1}_{Z/W}$. Then, for y_n the image of y in $Ω^i_{Z_{n+1}/W_{n+1}}$, $dy_n = 0$, and $x \mapsto$ class of y_n in $\mathcal{H}_{dR}^i(Z_{n}/W_n)$ defines R.

Existence and uniqueness of y rely on the following key lemma:

Lemma 4.5.3. (Ogus). With the above notations, let $L \subset Ω_{Z/W}$ be the subcomplex defined by

$$L^i = \{ x \in p^iΩ^i_{Z/W} | dx \in p^{i+1}Ω^{i+1}_{Z/W} \}.$$

Then $Φ^* : Ω_{Z/W} \rightarrow Ω_{Z/W}$ factors through L and induces, for each $n \geq 1$, a quasi-isomorphism

$$Ω_{Z_{n}/W_n} \rightarrow L_n := L \otimes W_n.$$

(To get y from x, apply 4.5.3 to the class of $p^i\tilde{x}$ in $\mathcal{H}^i(L_n)$, for $\tilde{x} \in Ω^i_{Z/W}$ lifting x.)

Proof. [BO, 8.8]: dévissage, reducing to Cartier isomorphism. Lemma 4.5.3 is the crucial ingredient in the proof of the Mazur-Ogus theorem 3.6.2.

Applications.

- Structure (for X/W proper and smooth) of the conjugate spectral sequence

$$E_2^{ij} = \text{proj. lim } H^j(X, \mathcal{H}^i(X/W_n)) \Rightarrow H^{i+j}(X/W)$$

(degenerates at E_2 modulo torsion), and analysis of the log-Hodge-Witt groups

$$H^j(X, WΩ^i_{X,\log}) := \text{proj. lim } H^j(X, W_nΩ^i_{X,\log}),$$

where $W_nΩ^i_{X,\log} \subset W_nΩ^i_X$ is the additive subsheaf étale locally generated by the forms $d\log[x_1] \cdots d\log[x_i]$, for $x_m \in \mathcal{O}_X^*$, $1 \leq m \leq i$.

- Construction of $WΩ_X$ via (4.5.2) works in the log context, see §6 (Hyodo-Kato).

5. Review of log schemes

Pre-log structure, log structure, log scheme

Examples : trivial log str., $\mathcal{O}_X \cap j_*\mathcal{O}_U$

Morphisms : $\{\text{schemes}\} \subset \{\text{log schemes}\}$

Associated log structure $M^\alpha :$ push-out of

$$\mathcal{O}^* \xleftarrow{\alpha^{-1}} (\mathcal{O}^*) \rightarrow M$$
\[(u, a) \equiv (v, b) \iff \exists c, d \in \alpha^{-1}(\mathcal{O}^*) \mid ad = bc, cu = dv \text{ for } (u, a) \text{ and } (v, b) \text{ in } (\mathcal{O}^*, M))\], universal property

\[f^*M := (f^{-1}M)^a, \text{ strict morphism}\]

Chart \(P \to M, X \to \text{Spec}\mathbb{Z}[P]\); chart of a morphism

Examples: \(\text{Spec}\mathcal{O}_S[T_1, \cdots, T_r], (t_1 \cdots t_r = 0) \subset \text{Spec}A, A \text{ regular local, } (t_i) \text{ regular parameters}; \text{ trait, standard log point } (N \to k, 1 \to 0)^a, \text{ semistable reduction}\)

\(P \to P^{op}, \text{ integral, fine, fs monoid (resp. log scheme)}\)

Examples: dnc, affine toric variety, toric variety (torus embedding), toroidal embedding

Fiber products, base change, strict case

\[\Omega^{1}_{(X,M)/(S,N)}, d, \text{dlog, } \alpha(a) \text{dlog} = d\alpha(a)\]

\[\Omega^{1}_{(X,M)/(S,N)} = (\Omega^1_{X/S} \oplus (\mathcal{O}_X \otimes \mathbb{Z}M^{gp}) / \langle d\alpha(a), 0 \rangle - (0, \alpha(a) \otimes a), (0, 1 \otimes b) \rangle > (a \in M^{gp}, b \in N^{gp})\]

\[\omega^1_{X/S}, \Omega^1_{X/S}, \Omega^1_{(X,M)/(S,L)}, \text{ log dR complex } \Omega_{(X,M)/(S,L)} \text{ (or } \omega^1_{X/S}, \text{ or } \Omega^1_{X/S}, \text{ or } \Omega^1_{X/S})\]

Examples: relative dnc: \(\Omega^1_{X/S}(\log D), \text{ semistable reduction: } \Omega^1_{X/S}(\log(D/E))\), toric varieties

Exact closed immersion, log thickening

Log smooth, log étale; strict case; chart characterization

Examples: toroidal embeddings, relative dnc, semistable reduction, \(\text{Spec} k[x, y/x] \to \text{Spec} k[x, y], \text{ log blow-up}\)

Cartier isomorphism:

- **semistable type:** \((s = \text{Spec} k, L) \text{ standard log point, } (X, M) \text{ of semistable type over } (s, L) : \text{ étale loc. } X = \text{Spec} k[t_1, \cdots, t_d]/(t_1 \cdots t_r), \text{ with charts}\)

\[
k[t_1, \cdots, t_d]/(t_1 \cdots t_r) \leftarrow \mathbb{N}^r
\]

\[
\begin{array}{c}
k \leftarrow 1 \rightarrow 0 \\
1 \rightarrow (1, \cdots, 1) \\
\end{array}
\]

(e. g. special fiber of semistable scheme over trait).

- **more generally, log smooth Cartier type:** \(f : (X, M) \to (S, L), S/\mathbb{F}_p, \text{ log smooth and saturated morphism of fs log schemes (saturated = (log integral + reduced geometric fibers). (} \leftrightarrow \text{ (log integral and in the Frobenius diagram (with cartesian square) }\)

\[
\begin{array}{c}
(X, M) \leftarrow (X', M') \leftarrow X, M \\
\downarrow f \\
(S, L) \leftarrow F_{abs} (S, L)
\end{array}
\]
the relative Frobenius F is exact, see [K2], [Ts, II 3.1]) ($F_{\text{abs}} : a \mapsto a^p$ on O_S and on L). Examples: (poly) semistable reduction, log smooth saturated toric morphism $\text{Spec} A[P] \rightarrow \text{Spec} A[Q]$; Kummer étale (e. g. $x^n = t$, $(n, p) = 1$): not Cartier type.

log smooth, Cartier type ⇒ Cartier isomorphism

$$C^{-1} : \Omega^i_{(X', M')/\text{Spec} \ k} \sim F^* \Omega^i_{(X, M)/\text{Spec} \ k},$$

$(a \otimes 1) d\log x_1 \cdots d\log x_r \mapsto a^p d\log x_1 \cdots d\log x_r, a \in O_X, x_i \in M.$

(\Rightarrow) decompositions of Deligne-Illusie type of $F^* \Omega^i_{(X, M)/\text{Spec} \ k}$ in situations lifted mod p^2 and $\dim f < p$. Applications to (classical) Hodge theory (e. g. [IKN]).

Definitions of integral and exact: P, Q fine monoids, $h : Q \rightarrow P$ integral if $Z[Q] \rightarrow Z[P]$ flat; h exact if $Q = (h^{gp})^{-1}(P)$ in Q^{gp}; $f : (X, M) \rightarrow (Y, N)$ integral (resp. exact) if $(f^* N)_x \rightarrow M_x$ integral (resp. exact) $\forall x \in X$.

6. De Rham-Witt complex and log crystalline cohomology

See slides.

7. The Hyodo-Kato isomorphism

See [HK] and slides Illusie-Sapporo-Hyodo-Kato.pdf. See also [Nak, §7] for complements and corrections to [HK]. For a new approach to the Hyodo-Kato isomorphism, see [Be].

8. Rational points over finite fields for regular models of algebraic varieties of Hodge type ≥ 1, after P. Berthelot, H. Esnault and K. Rülling

8.1. Slopes of Frobenius and rational points

Recall: For $q = p^a$, $k = \mathbf{F}_q$, Y/k separated, finite type,

$$Z(Y, t) = \exp(\sum_{n \geq 1} |Y(\mathbf{F}_q^n)| t^n/n) = \prod(1 - t^{\deg(x)})^{-1} \in (1 + t\mathbb{Z}[t]) \cap \mathbb{Q}(t),$$

(Dwork), hence

$$Z(Y, t) = \prod (1 - \alpha_i t) / \prod (1 - \beta_j t),$$

α_i, β_j algebraic integers, $\alpha_i \neq \beta_j$ for all (i, j). By Grothendieck,

$$Z(Y, t) = \prod \det(1 - F^a t, H^i_c(Y_\mathbb{F}_t, \mathbb{Q}_\ell))^{(-1)^{i+1}}.$$
with inverse roots of $\det(1 - F^n t, H^i_c(Y_k, \mathbb{Q}_\ell))$ algebraic integers (Deligne), but we won’t use these results in this section. The next statement is an easy consequence of the slope spectral sequence:

Proposition 8.1.1. Assume:

(i) Y/k geometrically connected,

(ii) Y/k proper and smooth,

(iii) $H^i(Y, W\mathcal{O}_Y) \otimes \mathbb{Q} = 0$ for all $i > 0$.

Then:

(iv) For all finite extensions $k' = \mathbb{F}_{q^n}$ of k, $|Y(k')| \equiv 1 \mod q^n$.

Proof. Recall Berthelot’s formula

$$Z(Y, t) = \prod P_i(t)^{-1 + i},$$

$$P_i(t) = \det(1 - F^a t, H^i(Y/W)).$$

As $H^i(Y, W\mathcal{O}_Y) \otimes \mathbb{Q} = (H^i(Y/W) \otimes \mathbb{Q})_{0,1}$; (iii) ⇒ all slopes of Frobenius on $H^m(Y/W)$ for $m > 0$ are ≥ 1, hence (Dieudonné-Manin) all α_i, β_j above appearing in P_m, $m > 0$ are divisible by q. As $P_0(t) = 1 - t$ by (i),

$$Z' / Z = \sum_{n \geq 1} |Y(\mathbb{F}_{q^n})| t^{n-1} = \sum_{n \geq 1} a_n t^{n-1},$$

with $a_n = |Y(\mathbb{F}_{q^n})| \equiv 1 \mod q^n$.

In [BBE], Berthelot, Bloch and Esnault show that (i) and (iii) suffice for (iv) to hold. By Étesse-Le Stum, Berthelot’s formula (*) holds with crystalline cohomology replaced by Berthelot’s compactly supported rigid cohomology $H^i_{c,\text{rig}}(Y/K_0)$, and it is proven in [BBE] that a suitably defined cohomology group with compact supports $H^i_{c,\text{rig}}(Y, W\mathcal{O}) \otimes \mathbb{Q}$ is finite dimensional and, again, calculates the part of $H^i_{c,\text{rig}}(Y/K_0)$ of slope < 1.

8.2. **Berthelot-Esnault-Rülling’s theorem**

Suppose now that $Y = X_k$ is the special fibre of a scheme X over a dvr R of mixed char. $(0, p)$, with perfect residue field k and fraction field K.

Theorem 8.2.2. ([BER]) Assume:

(i) X regular, and proper and flat over R;

(ii) X_K geometrically connected;

(iii) $H^i(X_K, \mathcal{O}_{X_K}) = 0$ for all $i > 0$.

Then, if $k = \mathbb{F}_q$, $|X_k(\mathbb{F}_{q^n})| \equiv 1 \mod q^n$ for all $n \geq 1$.

Remarks.

(1) Esnault proved the conclusion of 8.2.2 assuming (i), (ii), and instead of (iii), that X_K is of coniveau ≥ 1 in degree > 0, i.e. for each $i > 0$, there
exists a dense open U in X_K such that the restriction map $H^i(X_K, \mathbb{Q}_\ell) \to H^i(U_K, \mathbb{Q}_\ell)$ is zero. By mixed Hodge theory this condition implies (iii), and should be equivalent to it according to Grothendieck’s generalized Hodge conjecture.

(2) By Zariski connectedness theorem (i) and (ii) in 8.2.2 imply $Y = X_k$ is geometrically connected. Therefore, by [BBE] 8.2.2 follows from :

Theorem 8.2.3. ([BER]) Under the assumptions (i), (ii), (iii) of 8.2.2 one has (for $Y = X_k$) :

(iv) $H^i(Y, W\mathcal{O}_Y) \otimes \mathbb{Q} = 0$ for all $i > 0$.

Actually, an even stronger result is proven in [BER] :

Theorem 8.2.4. ([BER]) Let X be regular and proper and flat over R. If, for one $q \in \mathbb{Z}$, $H^q(X_K, \mathcal{O}) = 0$, then (for $Y = X_k$) $H^q(Y, W\mathcal{O}_Y) \otimes \mathbb{Q} = 0$.

Note : base changing by Spec\hat{R} changes neither assumptions nor conclusions so we may and will assume R complete.

Particular cases.

(a) Assume X/R smooth. Then the conclusion of 8.2.4 means that the slopes of Frobenius on $H^q(Y/W)$ are ≥ 1. Assume furthermore :

(a1) $H^q(X, \mathcal{O}) = H^{q+1}(X, \mathcal{O}) = 0$.

Then, by base change, $H^q(Y, \mathcal{O}) = 0$, so, by the Mazur-Ogus inequality, the slopes of $H^q(Y/W)$ are ≥ 1 (One can also show by induction $H^q(Y, W_n\mathcal{O}) = 0$, hence $H^q(Y, W\mathcal{O}) = 0$.)

Without the assumption (a1), it may happen that $H^q(Y, \mathcal{O}) \neq 0$ (Serre’s examples of failure of Hodge symmetry in char. p). In this case, the Mazur-Ogus inequality says nothing. However, as observed in 3.6.2, p-adic Hodge theory (the C_{cris} theorem) implies that the Newton polygon of $H^q(Y/W)$ is above the Hodge polygon of $H^q_{Hdg}(X_K)$, hence the slopes of $H^q(Y/W)$ are ≥ 1.

(b) Assume X/R has semistable reduction. By the slope spectral sequence for the log de Rham-Witt complex, the conclusion of 8.2.4 still means that the slopes of Frobenius on $H^q(Y/(W, W(L)))$ ((Speck, L) the standard log point) are ≥ 1, and this is true by the C_{st} theorem.

8.3. **Strategy of proof of 8.2.4.**

The general idea is to reduce to the semistable case by using de Jong alterations and cohomological descent.

- **Use of de Jong alterations**
Starting point: because \(X \) is integral and flat over \(R \), by de Jong, there exists a finite extension \(K_1 \) of \(K \), with ring of integers \(R_1 \), and a commutative diagram

\[
\begin{array}{c}
X & \xrightarrow{f} & Z \\
\downarrow & & \downarrow \\
\text{Spec}R & \xrightarrow{f} & \text{Spec}R_1 \\
\end{array}
\]

with \(Z \) integral, semistable over \(R_1 \), and \(Z \to X \) a projective alteration. The morphism \(Z_{K_1} \to X_{K_1} \) may not be surjective, but passing to a Galois extension \(K' \) of \(K \) containing \(K_1 \) and taking a disjoint sum \(X_0 \) of translated by the Galois group of pull-backs of \(Z/\text{Spec}X_{R_1} \) to \(\text{Spec}R' \), \((X_0)_{K'} \to X_{K'} \) is surjective.

Iteration: Fix \(m > q \). Iterating the process, one constructs an augmented \(m \)-truncated simplicial scheme

\[
\varepsilon : X_* \to X_{R'}
\]

(\(R' \) the ring of integers of a suitable extension \(K' \) of \(K \)), such that:
- each \(X_n \) is a sum of pull-backs of semistable schemes over rings of integers of subextensions of \(K' \)
- \(\varepsilon_{K'} : (X_*)_{K'} \to X_{K'} \) is a proper \(m \)-truncated hypercovering
- \(X_0 \) is, as above, the disjoint sum of base changes of a semistable \(Z/R_1 \), with \(f : Z \to X \) a projective alteration, \(Z \) integral.

- **Use of cohomological descent and classical Hodge theory**

Since \(q < m \), as each \((X_n)_{K'} \) is smooth over \(K' \) and \(\varepsilon_{K'} \) is a proper \(m \)-truncated hypercovering, it follows from Deligne’s mixed Hodge theory that

\[
H^q(X_{K'}, \Omega_{X_{K'}/K'}) \to H^q((X_*)_{K'}, \Omega_{(X_*)_{K'}/K'})
\]

is an isomorphism of filtered spaces (for the Hodge filtration). In particular, \(H^q((X_*)_{K'}, \mathcal{O}) = 0 \).

- **Use of \(p \)-adic Hodge theory**

By the \(C_{st} \) theorem for truncated simplicial semistable schemes (Tsuji), it follows that the slopes of Frobenius on \(H^q((X_*)_{K'}/(W(k'), W(L))) \) are \(\geq 1 \). By a generalization of de Rham-Witt theory to the truncated simplicial semistable case, this means that

\[
H^q((X_*)_{K'}, W\mathcal{O}) \otimes \mathbb{Q} = 0.
\]

- **A trace argument**
If the map
\[\varepsilon_{k'} : (X_\bullet)_{k'} \rightarrow X_{k'} \]
was a truncated proper hypercovering, cohomological descent for rigid cohomology (Tsuzuki) - and its compatibility with slopes - would give the vanishing of \(H^q(X_{k'}, W\mathcal{O}) \otimes \mathbb{Q} \), hence that of \(H^q(X_k, W\mathcal{O}) \otimes \mathbb{Q} \). However, \(\varepsilon_{k'} \) is not in general a truncated proper hypercovering. Still, the functoriality map
\[H^q(X_k, W\mathcal{O}) \otimes \mathbb{Q} \rightarrow H^q((X_0)_{k'}, W\mathcal{O}) \otimes \mathbb{Q} \]
is zero, as it factors through \(H^q((X_\bullet)_{k'}, W\mathcal{O}) \otimes \mathbb{Q} = 0 \). Therefore it’s enough to show that (8.3.2) is injective. By the construction of \(X_0 \) as a sum of pull-backs of \(Z \), it’s enough to show that
\[f^*_k : H^q(X_k, W\mathcal{O}) \otimes \mathbb{Q} \rightarrow H^q(Z_k, W\mathcal{O}) \otimes \mathbb{Q} \]
is injective. This is achieved by a trace argument. One constructs a trace map
\[\tau_{f_k} : H^q(Z_k, W\mathcal{O}) \otimes \mathbb{Q} \rightarrow H^q(X_k, W\mathcal{O}) \otimes \mathbb{Q} \]
such that
\[(8.3.4) \quad \tau_{f_k} f_k^* = r \cdot \text{Id}, \]
where \(r \) is the generic degree of the alteration \(f \).

8.4. The trace map

As \(X \) and \(Z \) are regular, integral, with \(\dim Z = \dim X \), \(f : Z \rightarrow X \) is a complete intersection morphism of virtual relative dimension zero (i.e. locally defined by a regular immersion of codimension \(d \) in a smooth \(X \)-scheme of relative dimension \(d \)). Moreover, \(f \) is projective (in the sense that \(Z \) is a closed subscheme of some projective space \(\mathbb{P}_{X}^d \)). The construction of \(\tau_{f_k} \) and the proof of (8.3.4) uses essentially only these facts. There are three steps. Denote by \((-)_n\) the reduction mod \(p^{n+1} \).

- **Step 1**

Construction of (compatible) trace maps
\[\text{Tr}_{f_n} : Rf_{n*}\mathcal{O}_Z \rightarrow \mathcal{O}_{X_n} \]
with
\[(8.4.1) \quad \text{Tr}_{f_n} f_n^* = r \cdot \text{Id} \]

26
(where \(f_n^* = O_{X_n} \to Rf_n_*O_{Z_n} \) is the adjunction map).

This is more or less standard Grothendieck duality [Ha] (with signs made precise by Conrad [C]). In terms of a factorization

\[
\begin{align*}
\begin{array}{c}
Z \\
\downarrow i \\
\downarrow f \\
\end{array} & \quad \begin{array}{c}
P = P^d_X \\
\downarrow \pi \\
X \\
\end{array}
\end{align*}
\]

(with \(i \) a regular immersion of codimension \(d \)), \(\text{Tr}_{f_n} \) is the composition

\[
\text{Tr}_{f_n} = \text{Tr}_{\pi_n} \text{Tr}_{i_n},
\]

with \(\text{Tr}_{\pi_n} \) given by the canonical isomorphism \(R^d\pi_n*\Omega_{P_n/X}^d \iso O_{X_n} \), and \(\text{Tr}_{i_n} \) by the cohomology class of \(i_n \).

- **Step 2**

Construction of (compatible) trace maps, for \(n \geq 1 \),

\[
(\tau_{f_0})_n : R(f_0)_*W_nO_{Z_0} \to W_nO_{X_0}.
\]

This is a new construction, similar to the previous one, but using the de Rham-Witt complex (of Langer-Zink) of \(P_0/X_0 \).

- **Step 3**

Comparison of trace morphisms and proof of the key formula

\[
(8.4.2) \quad (\tau_{f_0})_n(f_0)^*_n = r.\text{Id},
\]

where \((f_0)_n : W_nO_{X_0} \to R(f_0)_*W_nO_{Z_0} \) is the adjunction map. (This formula implies (8.3.4) because \(Z_k \subset Z_0 \), \(X_k \subset X_0 \) are nilpotent immersions, and (by a result of [BBE]) the restriction maps \(H^q(X_0,W\mathcal{O})\otimes \mathbb{Q} \to H^q(X_k,W\mathcal{O})\otimes \mathbb{Q} \), \(H^q(Z_0,W\mathcal{O})\otimes \mathbb{Q} \to H^q(Z_k,W\mathcal{O})\otimes \mathbb{Q} \) are isomorphisms.)

This is the most ingenious part of the proof of 8.2.4. The basic tool is the unique factorization of the \(n \)-th phantom map

\[
w_n = F^n : W_{n+1}(O_{X_{n-1}}) \to O_{X_{n-1}},
\]

\[
w_n(b_0, \cdots, b_n) = b_0^p + \cdots + p^{n-1}b_{n-1}^p + p^n b_n = b_0^p + \cdots + p^{n-1}b_{n-1},
\]

into

\[
\begin{align*}
\begin{array}{c}
W_{n+1}(O_{X_{n-1}}) \\
\downarrow F^n \\
W_n(O_{X_0}) \\
\end{array}
\end{align*}
\]
Comparing cohomology classes of a regular immersion in both theories, one shows the commutativity of the diagram

\[
\begin{array}{c}
\longrightarrow \\
W_n(O_{Z_0}) \\
\longrightarrow
\end{array}
\begin{array}{c}
\longrightarrow \\
O_{X_{n-1}}
\end{array}
\]

where the vertical maps are given by \(\tilde{F}^n \). It follows that \((\tau_{f_0})_n(f_0)_n^* \) is the multiplication by a class \(c_n \in H^0(X_0, W_n(O_{X_0})) \) such that \(c := \text{proj.lim} c_n \in H^0(X_0, W\mathcal{O}_{X_0}) \) has the following two properties:

(i) \(Fc = c \),

(ii) \(\tilde{F}^n(c - r) = 0 \) for all \(n \geq 1 \).

One shows that this implies that \(c - r = 0 \), hence \(c_n = r \). One shows more generally that \(\text{Ker}(F - 1) \cap \bigcap_{n \geq 1} \text{Ker}(\tilde{F}^n : W\mathcal{O}_{X_0} \to O_{X_{n-1}}) = 0 \).

References

