Riemann Conference

December 27-30, 2015 – Sanya – China
Glimpses on vanishing cycles, from Riemann to today

Luc Illusie

Université Paris-Sud
Plan

1. The origins
2. The Milnor fibration
3. Grothendieck and Deligne
4. Grothendieck’s local monodromy theorem
5. The Deligne-Milnor conjecture
6. The Picard-Lefschetz formula
7. Euler numbers and characteristic cycles
1. The origins

Vanishing cycles in Riemann?

No, but ...
Riemann (1857) studied the hypergeometric equation \(E(\alpha, \beta, \gamma) \)

\[
t(1 - t)f'' + (\gamma - (\alpha + \beta + 1)t)f' - \alpha\beta = 0
\]

(\(\alpha, \beta, \gamma \in \mathbb{C}\)), and the monodromy of its solutions around its singular points (0, 1, \(\infty\)).

\(E(\alpha, \beta, \gamma) \) has regular singularities at these points (moderate growth of solutions).

The hypergeometric function

\[
F(\alpha, \beta, \gamma, t) = \sum_{n \geq 0} \frac{(\alpha, n)(\beta, n)}{(\gamma, n)} \frac{t^n}{n!}
\]

(|\(t\)| < 1), where \((u, n) = \prod_{0 \leq i \leq n-1} (u + i)\), is the unique solution which is holomorphic at 0 with value 1.
Solutions form a complex local system \mathcal{H}_C of rank 2 over $S = \mathbb{P}^1_C - \{0, 1, \infty\}$. For a chosen base-point $t_0 \in S$, it is given by

$$\rho : \pi_1(S, t_0) \to \text{GL}((\mathcal{H}_C)_{t_0}) \cong \text{GL}_2(\mathbb{C}).$$

Suitable standard loops around $s = 0, 1, \infty$ give local monodromy operators $T_s \in \text{GL}_2(\mathbb{C})$, satisfying $T_0 T_1 T_\infty = 1$, generating the global monodromy group

$$\Gamma := \rho(\pi_1(S, t_0))) \subset \text{GL}_2(\mathbb{C}).$$

What are the T_s’s? What is Γ?
An example: the Legendre family

Consider the family X/S of elliptic curves on $S = \mathbb{P}^1_\mathbb{C} - \{0, 1, \infty\}$:

$$X_t : y^2 = x(x - 1)(x - t).$$

For $\alpha = \beta = 1/2, \gamma = 1$,

$$E(1/2, 1/2, 1) : t(1 - t)f'' + (1 - 2t)f' - \frac{f}{4} = 0$$

is the DE satisfied by the periods of holomorphic differential forms on X_t.

The relative de Rham cohomology group $H_{dR} := H^1_{dR}(X/S)$ is a free \mathcal{O}_S-module of rank 2, equipped with the Gauss-Manin connection ∇.

\[\mathcal{H}_{\text{dR}} = \mathcal{O}_S e_1 \oplus \mathcal{O}_S e_2, \]
\[e_1 = [dx/y], \ e_2 = \nabla(d/dt)(e_1), \]
with
\[\nabla(d/dt)e_2 = \frac{(2t - 1)e_2}{t(1 - t)} + \frac{e_1}{4t(1 - t)}. \]

Horizontal solutions \(f_1 e_1^\vee + f_2 e_2^\vee \) of the dual of \(\mathcal{H}_{\text{dR}} \) are given by \(f_1 = f \), \(f_2 = f_1' \), where \(f \), a local section of \(\mathcal{O}_S \), satisfies
\[E(1/2, 1/2, 1) : t(1 - t)f'' + (1 - 2t)f' - \frac{f}{4} = 0. \]

We have
\[\mathcal{H}_{\text{dR}}^{\nabla=0} = \mathcal{H}_Z \otimes \mathbb{C}, \]
where \(\mathcal{H}_Z := \mathcal{H}^1(X/S, \mathbb{Z}) \), a rank 2 \(\mathbb{Z} \)-local system, equipped with the (symplectic, unimodular) intersection form \(\langle , \rangle \).
If γ is a local horizontal section of $\mathcal{H}^\vee = \mathcal{H}_1(X/S, \mathbb{Z})$, the period
\[\int_{\gamma} \frac{dx}{y} \]
is a solution of $E(1/2, 1/2, 1)$. For example, the hypergeometric function
\[F(1/2, 1/2, 1, t) = \frac{1}{\pi} \int_{1}^{\infty} \frac{dx}{y} \]
is a solution.

The representation $\rho : \pi_1(S, t_0) \to \text{GL}((\mathcal{H}_C)_{t_0})$ is deduced from
\[\rho : \pi_1(S, t_0) \to \text{Sp}((\mathcal{H}_C)_{t_0}) \simeq \text{SL}_2(\mathbb{Z}). \]

Local monodromies around 0 and 1 can be calculated by choosing suitable symplectic bases (γ, δ) of $(\mathcal{H}_Z)_t$, using the description of X_t as a 2-sheeted cover of $\mathbb{P}^1_\mathbb{C}$.
• In a suitable symplectic base, T_0 and T_1 are given by

\[T_0 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad T_1 = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \]

• The global monodromy group is conjugate in $\text{SL}_2(\mathbb{Z})$ to the subgroup $\Gamma = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \}$ of index 2 of the congruence subgroup $\Gamma(2)$ defined by $a \equiv d \equiv 1 \mod 4$. It acts freely on the Poincaré upper half plane $D = \{ \text{Im} z > 0 \}$.

• Riemann’s period mapping $t \mapsto (\int_\gamma \omega, \int_\delta \omega)$, where $\omega = \frac{dx}{y} \in H^0(X_t, \Omega^1)$, induces an isomorphism

\[S = \mathbb{P}^1_{\mathbb{C}} - \{0, 1, \infty\} \simeq D/\Gamma. \]

which extends to an isomorphism

\[\mathbb{P}^1_{\mathbb{C}} \simeq M_2 \ (= (D \cup \mathbb{P}^1(\mathbb{Q}))/\tilde{\Gamma}(2)) \]

sending $0, 1, \infty$ to the 3 cusps of M_2 ($\tilde{\Gamma}(2)$ = image of $\Gamma(2)$ in $\text{PSL}_2(\mathbb{Z})$).
In particular, as \(\chi(S) = -1 \), and \([\mathbb{SL}_2(\mathbb{Z}) : \Gamma] = 12\), the Galois cover

\[D \to S = D / \Gamma \]

implies that \(S = B\Gamma \), hence \(\chi(\Gamma) = -1 \), and

\[\chi(\mathbb{SL}_2(\mathbb{Z})) = -\frac{1}{12}, \]

as is well known.

It was discovered by Picard (around 1880) that the form of \(T_0 \) is "explained" by the fact that \(\delta \) vanishes when \(t \to 0 \), and that the singularity of the surface \(X \) at \((x = 0, y = 0) \) is equivalent to \(u^2 + v^2 = t^2 \) (Picard-Lefschetz formula).
2. The Milnor fibration

Let $f : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}, 0)$ be a germ of holomorphic function having an isolated critical point at 0 with $f(0) = 0$.

Milnor (1967) proved that, for $\varepsilon > 0$ small, and $0 < \eta << \varepsilon$, if $B = \{z| \sum_{0}^{n} |z_i|^2 \leq \varepsilon\}$, $D = \{|t| \leq \eta\}$, the restriction of f to $B \cap f^{-1}(D)$,

$$f : B \cap f^{-1}(D) \to D,$$

induces over $D - \{0\}$ a locally trivial C^∞ fibration in (real) $2n$-dimensional manifolds with boundary

$$M_t = f^{-1}(t) \cap B,$$

trivial along the boundary ∂M_t.

This is now called the Milnor fibration, and M_t is called a Milnor fiber.
Moreover, Milnor proved:

- \(M_t \) has the homotopy type of a bouquet of \(\mu \ n \)-dimensional spheres:

\[
S^n \vee \cdots \vee S^n \ (\mu \ \text{terms}),
\]

hence, if \(\tilde{H}^i = \text{Coker}(H^i(\text{pt}) \to H^i) \),

\[
\tilde{H}^i(M_t, \mathbb{Z}) = \begin{cases}
\mathbb{Z}^\mu & \text{if } i = n \\
0 & \text{if } i \neq n.
\end{cases}
\]

- The Milnor number \(\mu = \mu(f) \) is given by

\[
\mu = \dim_{\mathbb{C}} \mathbb{C}\{z_0, \cdots, z_n\}/(\partial f/\partial z_0, \cdots, \partial f/\partial z_n).
\]
Letting t turn once around zero clockwise in D gives an automorphism of $H^n(M_t, \mathbb{Z})$, the monodromy automorphism

$$T \in \text{Aut}(H^n(M_t, \mathbb{Z})).$$

Milnor conjectured:

- The eigenvalues of T are roots of unity (i.e., T is quasi-unipotent).

Grothendieck proved it, using Hironaka’s resolution of singularities and his theory of $R\Psi$ and $R\Phi$.
3. Grothendieck and Deligne

Given a 1-parameter family \((X_t)_{t \in S}\) of (algebraic, or analytic varieties), and a point \(s \in S\), Grothendieck (1967) constructed in SGA 7 a complex of sheaves on \(X_s\), called complex of vanishing cycles, measuring the difference between \(H^*(X_s)\) and \(H^*(X_t)\) for \(t\) “close" to \(s\) (special fiber \(X_s\) vs general fiber \(X_t\)), and a closely related one, called nowadays complex of nearby cycles.

Set-up : complex analytic, or étale.

Will discuss only the étale one.
Étale set-up

$S = (S, s, \eta)$, a strictly local trait

η: the generic point

$\bar{\eta}$: a separable closure of η.

For $f : X \to S$, get cartesian squares

$$
\begin{array}{ccc}
X_s & \xrightarrow{i} & X & \xleftarrow{j} & X_{\bar{\eta}} \\
\downarrow & & \downarrow f & & \downarrow \\
S & \xrightarrow{s} & S & \xleftarrow{\eta}
\end{array}
$$

Work with coefficients ring $\Lambda = \mathbb{Z}/\ell^n\mathbb{Z}$ (ℓ prime, invertible on S) (or \mathbb{Z}_{ℓ}, \mathbb{Q}_{ℓ}, $\overline{\mathbb{Q}}_{\ell}$, ℓ prime, invertible on S), write $D(\cdot)$ for $D(\cdot, \Lambda)$.

For $K \in D^+(X_{\bar{\eta}})$, the complex of nearby cycles is:

$$
R\Psi_f(K) := i^*Rj_*(K|X_{\bar{\eta}}) \in D^+(X_s).
$$

Comes equipped with an action of the inertia group $I = \text{Gal}(\bar{\eta}/\eta)$ (complex of sheaves of I-modules on X_s).
For $K \in D^+(X)$, get an (I-equivariant) exact triangle

$$K|_{X_s} \to R\Psi_f(K|_{X_\eta}) \to R\Phi_f(K) \to,$$

where $R\Phi_f(K)$ is called the complex of vanishing cycles.

A generalization

$S = (S, s, \eta)$ henselian trait, not necessarily strictly local. Take strict localization of S at a separable closure \tilde{s} of s:

$$\tilde{S} = (\tilde{S}, \tilde{s}, \tilde{\eta}) \to (S, s, \eta).$$

For $f : X \to S$, base changed $\tilde{f} : \tilde{X} \to \tilde{S}$, and $K \in D^+(X_\eta)$ (resp. $K \in D^+(X)$), define

$$R\Psi_{\tilde{f}}K \ (\text{resp. } R\Phi_{\tilde{f}}K) \in D^+(X_{\tilde{s}})$$

as $R\Psi_{\tilde{f}}(K|_{\tilde{X}_{\tilde{\eta}}}) \ (\text{resp. } R\Phi_{\tilde{f}}(K|_{\tilde{X}}))$. Get action of full Galois group $\text{Gal}(\tilde{\eta}/\eta) \ (\tilde{\eta} \to \tilde{\eta})$, not just of inertia $I = \text{Gal}(\tilde{\eta}/\eta) \subset \text{Gal}(\tilde{\eta}/\eta)$.
General properties

- **Functoriality** Consider a commutative diagram:

\[
\begin{array}{ccc}
X & \xrightarrow{h} & Y \\
\downarrow{f} & & \downarrow{g} \\
S & \xleftarrow{\text{g}} & \\
\end{array}
\]

If \(h \) is smooth, the natural map

\[h^* R\Psi_Y \rightarrow R\Psi_X h^* \]

is an isomorphism. In particular, if \(f \) is smooth, \(R\Phi_f(\Lambda) = 0 \).

If \(h \) is proper, the natural map

\[Rh_* R\Psi_X \rightarrow R\Psi_Y Rh_* \]

is an isomorphism. In particular (taking \(Y = S \)), if \(f \) is proper, for \(K \in D^+(X_\eta) \), we have a canonical isomorphism

(compatible with the Galois actions)

\[R\Gamma(X_\tilde{s}, R\Psi_X K) \cong R\Gamma(X_{\eta}, K). \]
For X/S proper, the triangle $K|_{X_\tilde{S}} \to R\Psi_f(K|_{X_\eta}) \to R\Phi_f(K) \to$ gives an exact sequence

$$\cdots \to H^{i-1}(X_\tilde{S}, R\Phi_X(K)) \to H^i(X_\tilde{S}, K) \xrightarrow{sp} H^i(X_{\eta}, K)$$

$$\to H^i(X_\tilde{S}, R\Phi_X(K)) \to \cdots,$$

where sp is the specialization map:

$$sp : H^i(X_\tilde{S}, K) \simeq H^i(X_\tilde{S}, K) \to H^i(X_{\eta}, K).$$

When $K = \Lambda$, $R\Phi_X(\Lambda)$ is concentrated on the points $x \in X_\tilde{S}$ where X/S is not smooth.
• **Finiteness** (Deligne, 1974) Nearby cycles are constructible: $R\psi_X$ induces

$$R\psi_X : D_c^b(X_\eta) \to D_c^b(X_{\tilde{s}}).$$

• **Perversity** (Gabber, 1981) $R\psi$ commutes with Grothendieck-Verdier duality:

$$R\psi(D_{X_\eta}K) \sim D_{X_{\tilde{s}}} R\psi K,$$

induces $\text{Per}(X_\eta) \to \text{Per}(X_{\tilde{s}}).$
In the **analytic setup**, there are analogous definitions and properties, and a comparison theorem (Deligne, 1968) between the étale $R\Psi$ and the analytic $R\Psi$, similar to Artin-Grothendieck’s comparison theorem Betti vs étale.

Over \mathbb{C}, nearby cycles have been extensively studied in connection with **Hodge theory** (Steenbrink et al.), and the **theory of \mathcal{D}-modules** (M. Saito et al.).
Let X/S be as above, with S strictly local, and $x \to X_s$ be a geometric point.

For $K \in D^+(X)$, by general nonsense on étale cohomology, the stalk of $R\Psi(K)$ ($:= R\Psi_X K$) at x is given by

$$(R\Psi K)_x = R\Gamma((X_{(x)})_{\overline{\eta}}, K).$$

Here $X_{(x)}$ is the strict localization of X at x (a kind of Milnor ball), and $(X_{(x)})_{\overline{\eta}}$ its geometric generic fiber (a kind of Milnor fiber).
But \((R^q\Psi K)_x\) is difficult to calculate!

Known for \(K = \Lambda\) (constant sheaf), when \(X\) has **semistable reduction** at \(x\), i.e., étale locally at \(x\),

\[
X \xrightarrow{\sim} S[t_1, \cdots, t_n]/(t_1 \cdots t_r - \pi)
\]

(\(\pi\) a uniformizing parameter in \(S\)). Then:

- \[(R^1\Psi \Lambda)_x = \operatorname{Ker}(\mathbb{Z}^r \xrightarrow{\text{sum}} \mathbb{Z}) \otimes \Lambda(-1)\]
- \[(R^q\Psi \Lambda)_x = \Lambda^q(R^1\Psi \Lambda)_x\]

(\(\Lambda^q = q\)-th exterior power, \(\Lambda(m) = m\)-th Tate twist).

- The inertia group \(I\) acts trivially on \((R^q\Psi \Lambda)_x\).
For \(X = S[t_1, \cdots, t_r]/(t_1 \cdots t_r - \pi) \), topological model of \((X_{(x)})_{\eta} : \text{fiber of} \)

\[
(S^1)^r \to S^1, (z_1, \cdots, z_r) \mapsto z_1 \cdots z_r.
\]

Proof combines:

- Grothendieck’s calculation of tame nearby cycles \((R^q \psi \Lambda)_t := (R^q \psi \Lambda)^P (P \subset I \text{ the wild inertia}), \) modulo validity of Grothendieck’s absolute purity conjecture for components of \((X_{(x)})_s\)

- validity OK and \((R^q \psi \Lambda)_t = R^q \psi \Lambda \) (Rapoport-Zink, 1982).
Recall Grothendieck’s absolute purity conjecture:

For regular divisor $D \subset X$, X regular, $\Lambda = \mathbb{Z}/\ell^\nu \mathbb{Z}$, \ldots as above, ℓ invertible on X, $\mathcal{H}^q_D(X, \Lambda) = \begin{cases} \Lambda_D(-1) & \text{if } q = 2 \\ 0 & \text{if } q \neq 2. \end{cases}$
Modulo absolute purity conjecture (OK if S/Q, and now in general by Gabber (1994)), Grothendieck calculated tame nearby cycles for X étale locally of the form $S[t_1, \cdots, t_n]/(ut_1^{n_1} \cdots t_r^{n_r} - \pi)$ (u a unit):

$$R^q\psi\Lambda_{t,x} = \mathbb{Z}[\mu_{\ell^m}] \otimes \Lambda^q(\text{Ker}(\mathbb{Z}^r \xrightarrow{\sum n_ix_i} \mathbb{Z})) \otimes \Lambda(-q)$$

where $\gcd(n_1, \cdots, n_r) = \ell^md$, $(\ell, d) = 1$.

Here I acts on $\mathbb{Z}[\mu_{\ell^m}]$ by permutation through its tame quotient $\mathbb{Z}_{\ell}(1)$, in particular, acts on $R^q\psi\Lambda_{t,x}$ through a finite quotient, hence quasi-unipotently on $R\psi\Lambda_{t,x}$.

Combined with Hironaka’s resolution of singularities, and functoriality of $R\psi$ for proper maps, calculation yields a proof of Milnor’s conjecture on the monodromy of isolated singularities.
4. Grothendieck’s local monodromy theorems

Grothendieck’s arithmetic local monodromy theorem is the following:

Theorem

$S = (S, s, η)$ henselian, $k = k(s)$, ℓ prime different from $p = \text{char}(k)$. Assume that no finite extension of k contains all roots of unity of order a power of ℓ (e. g., k finite). Let

$$\rho : \text{Gal}(\bar{η}/η) \rightarrow \text{GL}(V)$$

be a continuous representation into a finite dimensional \mathbb{Q}_ℓ-vector space V. Then, there exists an open subgroup $I_1 \subset I$, such that, for all $g \in I_1$, $\rho(g)$ is unipotent.

Proof.

Exercise ! (Use strong action of $\text{Gal}(\bar{k}/k)$ on tame inertia I_t: $g\sigma g^{-1} = \sigma^{\chi(g)}$, $\chi = \text{cyclotomic character}.)$
A corollary is that there exists a unique nilpotent morphism

\[N : V(1) \to V, \]

called the monodromy operator, such that, for all \(\sigma \in I_1 \) and \(x \in V \),

\[\sigma x = \exp(N(t_\ell(\sigma)x)), \]

where \(t_\ell : I \to \mathbb{Z}_\ell(1) \) is the \(\ell \)-component of the tame character.

The operator \(N \) is \(\text{Gal}(\bar{\eta}/\eta) \)-equivariant. In particular, for \(k = \mathbb{F}_q \), if \(F \in \text{Gal}(\bar{\eta}/\eta) \) is a lifting of the geometric Frobenius \((a \to a^{1/q})\), then

\[NF = qFN. \]

Led to the Weil-Deligne representation.
The geometric local monodromy theorem is the following result, due to Grothendieck in a weaker form, later improved by various authors:

Theorem

Let S be an (arbitrary) henselian trait. Let X_η be separated and of finite type over η. Then, there exists an open subgroup $I_1 \subset I$, independent of ℓ, such that for all $i \in \mathbb{Z}$ and all $g \in I_1$,

$$(g - 1)^{i+1} = 0$$

on $H^i(X_\eta, \Lambda)$ (resp. $H^i_c(X_\eta, \Lambda)$).

History

- Existence of I_1 (**a priori** ℓ-dependent) for H^i_c with $i + 1$ replaced by uncontrolled bound, proved by Grothendieck, as a consequence of the arithmetic local monodromy theorem (reduction to k small). Method generalized to H^i once finiteness of H^i was proved (Deligne, 1974).
- Existence of l_1 (\textit{a priori} ℓ-dependent), with bound $i + 1$, proved by Grothendieck for X_η/η proper and smooth, modulo validity of absolute purity and resolution of singularities, as a consequence of local calculation of $R^q\Psi Z_\ell$ in the (quasi-) semistable case. Unconditional for $i \leq 1$, or $p = 0$.

- Existence of l_1, independent of ℓ, but with $i + 1$ replaced by uncontrolled bound, proved by Deligne (1996), using Rapoport-Zink’s calculation of $R\Psi Z_\ell$ in the semistable case, and de Jong’s alterations. Final result obtained by refinement of this method (Gabber - I., 2014).
Why care for exponent $i + 1$?

Grothendieck’s motivation: for $i = 1$, exponent 2 is a crucial ingredient in his proof of the semistable reduction theorem for abelian varieties:

Theorem

With S *as before, let* A_η *be an abelian variety over* η. *There exists a finite extension* η_1 *of* η *such that* A_{η_1} *acquires semistable reduction over the normalization* (S_1, s_1, η_1) *of* S *in* η_1, *i.e., the connected component* $A^0_{s_1}$ *of the special fiber of the Néron model of* A_{η_1} *is an extension of an abelian variety by a torus:*

$$0 \to \text{(torus)} \to A^0_{s_1} \to \text{(abelian variety)} \to 0.$$
Deligne-Mumford (1969) deduced from it the **semistable reduction theorem** for curves:

Corollary

Let X_{η} be a proper, smooth curve over η. There exists a finite extension η_1 of η such that X_{η_1} has semistable reduction over the normalization S_1 of S in η_1, i.e., is the generic fiber of a proper, flat X_1/S_1, with X_1 regular, and special fiber $(X_1)_{s_1}$ a reduced curve having simple nodes.
• Corollary is the key tool in Deligne-Mumford’s proof of the irreducibility of the coarse moduli space M_g (over any algebraically closed field k).

• Proofs of corollary independent of theorem found later (Artin-Winters, 1971; T. Saito, 1987).

• For $\text{char}(k) = 0$, a generalization of corollary to arbitrary dimension proved by Mumford et al. (1973).

5. The Deligne-Milnor conjecture

At the opposite of semistable reduction, we have isolated singularities.

Let $S = (S, s, \eta)$ be a strictly local trait, with $k = k(s)$ algebraically closed. Assume X regular, flat, finite type over S, relative dimension n, smooth outside closed point $x \in X_s$. Then $R\Phi\Lambda$ is concentrated at x, and in cohomological degree n:

$$(R\Phi^q\Lambda)_x = \begin{cases}
0 & \text{if } q \neq n \\
\Lambda^r & \text{if } q = n
\end{cases}$$

The coherent module $\mathcal{E}xt^1(\Omega^1_{X/S}, \mathcal{O}_X)$ is concentrated at x, its length

$$\mu := \lg(\mathcal{E}xt^1(\Omega^1_{X/S}, \mathcal{O}_X))$$

generalizes the classical Milnor number.
The action of I on $R^n\Phi\Lambda$ has a Swan conductor $Sw(R^n\Phi\Lambda) \in \mathbb{Z}$, measuring wild ramification ($= 0$ if S of char. 0).

Deligne conjectured (SGA 7 XVI, 1972):

$$\mu = r + Sw(R^n\Phi\Lambda).$$

Generalizes Milnor formula over \mathbb{C}.

Conjecture proved:

- if X/S finite, or x is an ordinary quadratic singularity, or S is of equal characteristic (Deligne, loc. cit.)
- if $n = 1$ (Bloch, 1987 + Orgogozo, 2003)

6. The Picard-Lefschetz formula

Let X/S as before, with relative dimension n. Assume x is an ordinary quadratic singularity of X/S, i.e., étale locally at x, X/S is of the form (π a uniformizing parameter):

$$
\sum_{1 \leq i \leq m+1} x_i x_{i+m+1} = \pi
$$

$(n = 2m + 1)$,

$$
\sum_{1 \leq i \leq m} x_i x_{i+m} + x_{2m+1}^2 = \pi
$$

$(n = 2m, \; p > 2)$,

$$
\sum_{1 \leq i \leq m} x_i x_{i+m} + x_{2m+1}^2 + ax_{2m+1} + \pi = 0
$$

with $a^2 - 4\pi \neq 0 \; (n = 2m, \; p = 2)$.
Then

$$(R^n \Phi \Lambda)_x \sim \Lambda,$$

with action of inertia I trivial is n odd, through a character of order 2 if n even, tame if $p > 2$.

Assume now X/S proper, flat, of relative dimension $n > 0$, smooth outside $\Sigma \subset X_s$ finite, and each $x \in \Sigma$ is an ordinary quadratic singularity.
Then the monodromy of $H^*(X_{\overline{\eta}})$ is described as follows (Deligne, SGA 7 XV, 1972):

- For $i \neq n, n + 1$, $H^i(X_s) \rightarrow H^i(X_{\overline{\eta}})$.
- For each $x \in \Sigma$, there exists $\delta_x \in H^n(X_{\overline{\eta}})(m)$ ($n = 2m$ or $2m + 1$), well defined up to sign, called the vanishing cycle at x, and the sequence

$$0 \rightarrow H^n(X_s) \xrightarrow{\text{sp}} H^n(X_{\overline{\eta}}) \xrightarrow{(-,\delta_x)} \sum_{x \in \Sigma} \Lambda(m - n) \rightarrow H^{n+1}(X_s)$$

$$\xrightarrow{\text{sp}} H^{n+1}(X_{\overline{\eta}}) \rightarrow 0.$$ is exact. One has $(\delta_x, \delta_y) = 0$ for $x \neq y$, $(\delta_x, \delta_x) = 0$ for n odd, and $(\delta_x, \delta_x) = (-1)^m \cdot 2$ for $n = 2m$. Here $(a, b) = \text{Tr}(ab)$, where $\text{Tr} : H^{2n} \rightarrow \Lambda(-n)$.
The inertia \(I \) acts trivially on \(H^i(X_\eta) \) for \(i \neq n \), and on \(H^n(X_\eta) \) through orthogonal (resp. symplectic) transformations for \(n = 2m \) (resp. \(n = 2m + 1 \)), given by the Picard-Lefschetz formula:

For \(\sigma \in I \), \(a \in H^n(X_\eta) \),

\[
\sigma a - a = \begin{cases}
(−1)^m \sum_{x \in \Sigma} \frac{\varepsilon_x(\sigma)}{2} (a, \delta_x) \delta_x & \text{if } n = 2m \\
(−1)^{m+1} \sum_{x \in \Sigma} t_\ell(\sigma) (a, \delta_x) \delta_x & \text{if } n = 2m + 1.
\end{cases}
\]

Here \(t_\ell : I \to \mathbb{Z}_\ell(1) \) is the tame character, and \(\varepsilon_x : I \to \pm 1 \) is the unique character of order 2 if \(p > 2 \) and that defined by the quadratic extension \(t^2 + at + \pi = 0 \) for \(X \) locally at \(x \) of the form

\[
\sum_{1 \leq i \leq m} x_i x_{i+m} + x_{2m+1}^2 + ax_{2m+1} + \pi = 0.
\]
Difficult case in the proof: \(n \) odd, \(n = 2m + 1 \). Use factorization:

\[
\begin{array}{c}
H^n(X_{\overline{\eta}}) \rightarrow \bigoplus_{x \in \Sigma} (R^n\Phi\Lambda)_x, \\
\sigma - 1 \downarrow \downarrow \Var(\sigma)_x \\
H^n(X_{\overline{\eta}}) \leftarrow \bigoplus_{x \in \Sigma} H^n_x(X_s, R\Psi\Lambda)
\end{array}
\]

where:

- Top row is part of specialization sequence
- Bottom row = composition of \(H^n_x \rightarrow H^n \) and \(H^n(X_s, R\Psi\Lambda) = H^n(X_{\overline{\eta}}) \).
- \((R^n\Phi\Lambda(m + 1))_x\) and \(H^n_x(X_s, R\Psi\Lambda)(m) \) are isomorphic to \(\Lambda \), with respective generators \(\delta'_x, \delta_x \) defined up to sign, with \(\langle \delta'_x, \delta_x \rangle = 1 \), for a perfect pairing with values in \(\text{Tr} \)

\[
H^{2n}_x(X_s, R\Psi\Lambda(n)) \xrightarrow{\sim} \Lambda. \text{ We have } \delta_x \mapsto \delta_x \in H^n(X_{\overline{\eta}}).
\]
The map $\text{Var}(\sigma)_x$, called variation, is given by the local Picard-Lefschetz formula:

$$\text{Var}(\sigma)_x(\delta'_x) = (-1)^{m+1} t_\ell(\sigma) \delta_x,$$

which is the crux of the matter.

- Original proof (Deligne) required lifting to char. 0 and a transcendental argument.
- Purely algebraic proof given later (I., 2000), as a corollary of Rapoport-Zink’s theory of nearby cycles in the semistable case.
Over \mathbb{C}, Milnor fiber M_t of $f : (x_1, \cdots, x_{2m+2}) \mapsto \sum x_i^2$ is fiber bundle in unit balls of tangent bundle to sphere $S^n = \{ x \in \mathbb{R}^{n+1} | \sum x_i^2 = 1 \}$.

- $R^n \Phi_x$ corresponds to $\tilde{H}^n(M_t)$,
- $H^n_x(X_s, R\Psi)$ corresponds to $H^n_c(M_t - \partial M_t)$,
- δ_x dual to $\delta^\vee_x \in H_n(M_t, \partial M_t)$ given by one fiber of M_t over S^n,
- δ'_x dual to $(\delta'_x)^\vee \in \tilde{H}_n(M_t)$ given by $S^n \subset M_t$.

Next slide: picture, for $n = 1$ ($m = 0$) of the dual variation map (T the positive generator of $\pi_1(S^1)$)

$$\text{Var}(T)^\vee : H_1(M_t, \partial M_t) \rightarrow \tilde{H}_1(M_t),$$

$$\delta^\vee_x \mapsto -(\delta'_x)^\vee.$$
Back to the Legendre family:

\[X_t : y^2 = x(x - 1)(x - t). \]

Locally at \(x = y = t = 0 \), \(X/S \) is \(x_1^2 + x_2^2 = t^2 \), instead of \(x_1^2 + x_2^2 = t \), hence variation is doubled, and get

\[T(\delta) = \delta, \quad T(\gamma) = \gamma \pm 2\delta \]
Arithmetic applications

- Grothendieck used the PL formula in his theory of the monodromy pairing for abelian varieties having semistable reduction (SGA 7 IX), with a formula for calculating the group of connected components of the special fiber of the Néron model. Variants, generalizations, and arithmetic applications by Raynaud, Deligne-Rapoport, Mazur, Ribet.

- Most importantly, the PL formula was the key to the cohomological study (by Deligne and Katz, SGA 7 XVIII) of Lefschetz pencils, which led to the first proof, by Deligne, of the Weil conjecture (Weil I).
Variants and generalizations

• Tame variation

Recall the case of isolated singularities: X regular, flat, finite type over S, relative dimension n, smooth outside closed point $x \in X_s$. Then $R\Phi\Lambda$ is concentrated at x, and in cohomological degree n:

$$(R\Phi^q\Lambda)_x = \begin{cases}
0 & \text{if } q \neq n \\
\Lambda^r & \text{if } q = n
\end{cases}$$

Moreover,

$$H^n_{\{x\}}(X_s, R\Psi\Lambda) = \Lambda^r,$$

with a perfect intersection pairing

$$R^n\Phi(\Lambda)_x \otimes H^n_{\{x\}}(X_s, R\Psi\Lambda) \to H^{2n}_{\{x\}}(X_s, R\Psi\Lambda) = \Lambda(-n).$$
Finally, if l acts tamely on $R\psi \Lambda$, i.e., through its quotient $\mathbb{Z}_\ell(1)$, and if σ is a topological generator of it, then $\sigma - 1$ induces an isomorphism

$$\text{Var}(\sigma) : R^n\Phi(\Lambda)_x \xrightarrow{\sim} H^n_{\{x\}}(X_s, R\psi \Lambda),$$

called the variation at x (I., 2003), a (weak) generalization of the local Picard-Lefschetz formula. The analogue over \mathbb{C} had been known since the 1970’s (Brieskorn).
• **Thom-Sebastiani theorems**
 The Picard-Lefschetz theory describes vanishing cycles, monodromy and variation at the isolated critical point \(\{0\} \) of the function
 \[x_1^2 + \cdots + x_m^2. \]
 The classical Thom-Sebastiani theorem \((/\mathbb{C})\) describes the same invariants at the isolated critical point \(\{0\} \) of a function of the form
 \[f(x_1, \cdots, x_m) = f_1(x_1) + \cdots + f_m(x_m), \]
 where the \(x_i \) are independent packs of \(n_i + 1 \) variables, and \(f_i : \mathbb{C}^{n_i+1} \rightarrow \mathbb{C} \) has an isolated critical point at \(\{0\} \).
If \(n = \sum n_i \) (= rel. dim. of \(f \)), then (for coefficients \(\mathbf{Z} \))

\[
R^n \Phi_f = \bigotimes_{1 \leq i \leq m} R^{n_i} \Phi_{f_i},
\]

with monodromy

\[
T = \bigotimes_{1 \leq i \leq m} T_i,
\]

and variation

\[
Var = \bigotimes_{1 \leq i \leq m} Var_i.
\]

Algebraic analogues?
(over an alg. closed field \(k \), in the étale set-up)
Deligne’s observation: analogue wrong in general, tensor product must be replaced by

local convolution product \ast

of Deligne-Laumon.

Quite recently, T. Saito, in conjunction with Beilinson’s construction of a singular support
\[SS(\mathcal{F}) \subset T^*X \]
for a constructible sheaf \(\mathcal{F} \) on a smooth \(X/k \) (an equidimensional conic closed subset of \(T^*X \), of dimension \(= \dim(X) \)), defined a characteristic cycle supported on \(SS(\mathcal{F}) \), with coefficients in \(\mathbb{Z}[1/p] \) (actually, in \(\mathbb{Z} \) (Beilinson)):
\[CC(\mathcal{F}) \in \mathbb{Z}_{\dim(X)}(T^*X), \]
proved a generalization of the Deligne-Milnor formula (equal characteristic case), and as a corollary, a global index formula for the Euler number of \(\mathcal{F} \).
The **global index formula** reads:

For X/k proper and smooth, k alg. closed, $\Lambda = \mathbb{Q}_\ell$,

$$\chi(X, \mathcal{F}) = (CC(\mathcal{F}), T_X^* X).$$

Here $\chi(X, \mathcal{F}) = \sum_i (-1)^i \dim H^i(X, \mathcal{F})$, $T_X^*(X) = 0$-section of $T^* X$.

This work was inspired by Kashiwara-Schapira’s analogous theory over \mathbb{C}, and various conjectures of Deligne.

Ingredients

- Radon and Legendre transforms (Brylinski), geometric theory of Lefschetz pencils (Katz, SGA 7 XVII)
- Ramification theory for imperfect residue fields (Abbes, T. Saito)
- Deligne’s theory of vanishing cycles over general bases (Deligne, Gabber, Orgogozo) (also used in generalized Thom-Sebastiani theorems).
Thank you!