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Résumé

Dans ce mémoire d’habilitation à diriger des recherches, j’expose quelques résultats récents
sur l’étude des variétés algébriques complexes lisses au travers d’algèbres de Lie à la fois de
dimension infinie, et de nature homotopique. La plupart des résultats en question sont bien
connus dans le cas des courbes, et je mettrai en avant les difficultés rencontrées pour les
étendre aux variétés de plus grande dimension. On parlera en particulier de généralisations
en dimension supérieure des algèbres de Kac–Moody et de Virasoro, et de leur relation (en
particulier dans le cas des algèbres de Kac–Moody) avec des espaces de modules dérivés associés
à des variétés lisses. Le cas des algèbres de Virasoro soulèvera le problème plus fondamental du
calcul de la cohomologie de l’algèbre de Lie des champs de vecteurs (aussi appelée cohomologie
de Gelfand–Fuchs). Je donnerai également quelques pistes de recherche future, plus ou moins
avancées, dans la même direction d’une part, mais aussi dans une direction nouvelle, autour
des invariants de Donaldson–Thomas.

Abstract

This habilitation thesis gives an overview of recent results, about the study of smooth
complex algebraic varieties using infinite dimensional Lie algebras of homotopical nature.
Most of said results are well-known in the case of curves, and we will highlight the new
difficulties arising in higher dimensions. We will on particular discuss generalizations of Kac–
Moody and Virasoro algebras, and their ties to moduli spaces. The Virasoro case will raise
the more fundamental question of computing the cohomology of Lie algebras of vector fields
of algebraic varieties (also called the Gelfand–Fuks cohomology). A couple of future research
leads, in various states of completion, first in the same vein as the work explained here, but
also in a new direction, around the categorification of Donaldson–Thomas invariants
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Introduction
Ce mémoire résume mes travaux, réalisés depuis la soutenance de ma thèse de doctorat. Ces travaux
consistent essentiellement en l’utilisation de méthodes homotopiques modernes en vue d’étudier
divers problèmes de modules algébriques, en lien avec la théorie des cordes et les théories des
champs holomorphes1.

La plupart de ces travaux sont liés, quoique de façon indirecte, à la notion de théorie des champs
holomorphes en dimension supérieure. En dimension complexe 1 (on parle alors plutôt de théorie
des champs conforme de dimension (réelle) 2), il existe plusieurs formulations mathématiques de
cette notion : algèbre vertex (voir [Kac96 ; FB04]), algèbres chirales ou algèbres à factorisations
(voir [BD04]). De ces formulations, deux ont été étendues à la dimension supérieure : les algèbres
chirales et les algèbres à factorisations, à la fois dans un contexte algébrique (voir [FG11]) et dans
un contexte analytique (voir [CG16 ; CG21]).

De manière très informelle, nous pouvons (en dimension 1) penser à ces théories comme à des
fibrés sur une courbe complexe, munis d’une opération entre les fibres lorsque deux points de la
courbe collisionnent :

x1

x2

x1 “ x “ x2

Fx1
b Fx2 Fx.

(1)

Des exemples de ces théories en dimension supérieure ont été construits à partir de l’étude
d’algèbres de Lie de dimension infinie et de nature homotopique (des dg-algèbres de Lie ou des L8-
algèbres) liées à l’étude de problèmes de modules impliquant des variétés de dimension (complexe)
supérieure ou égale à 2. Une majeure partie de ce mémoire est consacré à la construction et à
l’étude de ces algèbres de Lie, sur un corps k de caractéristique nulle.

Le premier exemple que nous aborderons est celui des algèbres de Kac–Moody (affine) associées
à un groupe réductif G, bien connu en dimension 1. Explicitement, l’algèbre de Kac–Moody as-
sociée à G est une extension centrale de l’algèbre de Lie gpptqq des séries de Laurent à coefficients
dans l’algèbre de Lie g de G. Elle apparaît en lien avec l’espace de modules des G-fibrés sur une
courbe complexe lisse. De cet espace de modules, on construit une théorie des champs conformes
en dimension 2 (holomorphes en dimension 1), par différentes méthodes, selon le modèle visé. Géo-
métriquement par exemple, la Grassmannienne affine de G (ou sa cohomologie) est munie d’une
structure d’algèbre à factorisations. De l’autre côté, algébriquement, la représentation du vide de
l’algèbre de Kac–Moody est une algèbre vertex, représentant la même théorie. Pour passer d’une
version à l’autre, il faut observer que les séries de Laurent représentent les fonctions sur un voisi-
nage formel épointé pD˝

x d’un point x sur notre courbe. C’est en considérant ces voisinages formels
épointés lorsque x varie en famille, ou plutôt lorsque deux points x1 et x2 collisionnent, que les
structures que nous observons apparaissent.

En dimension supérieure, il s’agira d’étudier l’espace de modules des G-fibrés non plus sur
une courbe, mais sur une variété lisse de dimension d quelconque. Du côté géométrique, deux
subtilités supplémentaires apparaissent. La première, le problème de modules des G-fibrés n’est
plus lisse. Afin de conserver de bonnes propriétés de théorie de la déformation, nous devrons munir
ce problème de modules d’une structure dérivée. La géométrie dérivée est en effet une généralisation
de la géométrie algébrique dans laquelle la théorie de la déformation se comporte particulièrement

1Le rôle de ces théories en physique dépasse, de loin, le contenu de ce mémoire comme les connaissances de
l’auteur.
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bien. La seconde subtilité concerne l’analogue des séries de Laurent et les différentes versions de
notions de factorisations : par exemple en dimension 2, deux possibilités s’offrent à nous :

La version torique : il s’agit de remplacer les séries de Laurent kpptqq par des séries de Laurent à
deux variables kppxqqppyqq. On remplace donc notre voisinage formel épointé pD˝ par un disque
formel de dimension 2 privé de deux axes. En ce qui nous concerne, cette approche, voisine de
la notion d’adèles, a un désavantage. Algébriquement, l’anneau kppxqqppyqq dépend d’un choix
dans l’ordre des variables. Géométriquement, cela engendre un dissymétrie entre les axes que
l’on retire. De plus, ce disque formel privé de deux axes, ne peut être associé à un point
dans la surface. Il faudra plus de données (typiquement, un drapeau). Il est dès lors difficile
de définir les bonnes notions (par exemple d’algèbre à factorisations «stratifiées»), ou de se
former de bonnes intuitions correspondantes à l’idée du diagramme (1). Notons cependant
que cette direction est l’objet d’un travail en cours, en collaboration avec Valerio Melani et
Gabriele Vezzosi. Nous n’en dirons toutefois pas plus dans ce mémoire.

La version sphérique : il s’agit ici de conserver l’intuition du diagramme (1), en remplaçant simple-
ment la courbe par une surface (ou plus généralement une variété lisse). Les points évoluent
ainsi librement sur la surface. Cette idée correspond exactement à la notion d’algèbres à
factorisations en dimension supérieure, telle qu’étudiée par exemple dans [FG11] ou [HK22].
C’est la version que nous allons choisir, pour l’algèbre de Kac–Moody comme pour les autres
généralisations à suivre.

D’un point de vue local, le disque formel (épointé) de dimension 1 est simplement remplacé par
son analogue en dimension supérieure pD˝ :“ Specpkrrt1, . . . , tdssq ∖ t0u. Cependant, contrairement
au cas d “ 1, ce schéma n’est plus affine. Le rôle des séries de Laurent devra donc être rempli,
non plus par les simples fonctions globales sur pD˝, mais par toute la cohomologie H‚ppD˝,O

pD˝ q,
munie de sa structure algébrique à homotopie près (cup produit, mais aussi produits de Massey
supérieurs). On pourra alors construire une version homotopique de l’extension de Kac–Moody,
semblable à celle apparaissant en dimension 1.

Nous aborderons également une généralisation à la dimension supérieure de l’algèbre de Virasoro.
En dimension 1, il s’agit de l’unique (à scalaire près) extension de l’algèbre de Witt, algèbre
de Lie kpptqq ddt des champs de vecteurs sur le disque épointé pD˝. Comme précédemment, nous
aborderons une version sphérique en dimension supérieure. Puisque le disque épointé n’est plus
affine en dimension supérieure, il faudra considérer, non pas simplement les champs de vecteurs
globaux, mais toute la cohomologie desdits champs de vecteurs, vue comme une L8-algèbre :

Wittd :“ H‚ppD˝,T
pD˝ q.

La situation est toutefois sensiblement plus complexe que dans le cas des algèbres de Kac–Moody.
En effet, la classification des extensions de Wittd n’est à ce jour pas connue (voir conjecture 3.2.2
ci-dessous).

De manière générale, la classification des extensions centrales d’algèbres de Lie de champs
de vecteurs passent par l’étude de la cohomologie de Chevalley–Eilenberg de ces algèbres de Lie,
connue sous le nom de cohomologie de Gelfand–Fuchs. Elle fut très étudiée dans le cas des variétés
différentiables dans les 70 et 80, après les articles fondateurs de Gelfand et Fuchs [GF68 ; GF69],
en particulier pour ses applications aux feuilletages. Avec comme objectif (inatteint) de classifier
les extensions de cette L8-algèbre de Witt en dimension supérieure, nous étudierons ensuite la
cohomologie de Gelfand–Fuchs des variétés algébriques (lisses).

Cette étude, dont les résultats principaux sont le sujet de [HK22], repose sur les algèbres à
factorisations, à la fois dans un contexte algébrique, et dans un contexte différentiable. Elle permet
de prouver une conjecture, énoncée par Feigin dans les années 1980, concernant la cohomologie
de Gelfand–Fuchs des variétés algébriques affines lisses sur un corps de caractéristique nulle. Ce
résultat implique en particulier que la cohomologie de Gelfand–Fuchs d’une variété algébrique affine
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lisse est de dimension finie en chaque degré, et donne une méthode de calcul de cette cohomologie,
en termes du type d’homotopie rationnel de l’analytification de la variété d’origine.

Je donnerai ensuite quelques pistes, encore à concrétiser, visant à classifier les extensions de
Wittd, et à prouver la conjecture 3.2.2, utilisant en particulier la notion de module sur les algèbres
à factorisations. Ce mémoire se conclura sur un travail en cours, sans lien direct avec ce qui précède,
autour des invariants de Donaldson–Thomas.

Structure du mémoire : La première partie traitera des algèbres de Kac–Moody en dimen-
sion supérieure. Après avoir rappelé quelques fait concernant la dimension 1, nous introduirons les
nouveaux outils nécessaires en dimension supérieure, en particulier la géométrie dérivée. Dans la
seconde partie, nous ferons un écart en théorie des déformations dérivée, appliquée à la K-théorie.
Cela permettra de retrouver un résultat de la première partie, de manière plus conceptuelle. La
troisième partie évoquera la question des algèbres de Virasoro en dimension supérieure, soulignera
les difficultés rencontrées et énoncera une conjecture à leur sujet. La cohomologie des Gelfand–
Fuchs des variétés algébriques et différentiables sera à l’honneur dans une quatrième partie. Enfin,
la cinquième et dernière partie parlera de différentes pistes de recherche, à différents stades d’avan-
cement, en lien avec les problématiques abordées dans ce mémoire.
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Introduction
This habilitation thesis gives an overview of the results I obtained since the defence of my PhD
thesis. My work revolves around the use of homotopical methods in the study of various moduli
spaces in algebraic geometry. More specifically, the moduli spaces at hand will have ties to string
theory and holomorphic field theories2.

Most of the work presented here is related, although somewhat indirectly, to the notion of
holomorphic field theory in higher dimension. In the case of complex dimension 1 (most often
referred to as (real) 2-dimensional conformal field theories), there exist several mathematical for-
mulation of the notion: namely vertex algebras (see [Kac96; FB04]), chiral algebras or factorization
algebras (see [BD04]). Of those formulations, two have been extended to the higher dimensional
case : chiral algebras and factorization algebras, both in an algebraic context (see [FG11]) and in
a complex analytic context (see [CG16; CG21]).

Very informally, we can think of such theories (in dimension 1) as bundles over a complex
curve endowed with an operation between the stalks, as two points (vertices) on the curve collide:

x1

x2

x1 “ x “ x2

Fx1
b Fx2 Fx.

(1)

Examples of such theories in higher dimension have been constructed from the study of some
Lie algebras, of infinite dimension and of homotopical nature (dg-Lie algebras or L8-algebras),
related to the study of moduli problems involving higher dimensional varieties. For the most
part, this thesis is devoted to the construction and study of such Lie algebras, over a field k of
characteristic 0.

The first example we will study is that of (affine) Kac–Moody algebras associated to a reductive
group G. This example is very well studied in dimension 1. Explicitly, the Kac–Moody algebra
associated to G is a central extension of the Lie algebra gpptqq of Laurent series with coefficients
in the Lie algebra g of G. It appears naturally in relation with the moduli space of principal
G-bundles on a smooth complex curve. From this moduli space, we can construct a 2D-conformal
field theory (1D-holomorphic field theory) via various methods, depending on the targeted model.
Geometrically for instance, the affine Grassmannian of G (or maybe its (co)homology) is endowed
with a factorization algebra structure. On the other hand, algebraically, the vacuum representation
of the Kac–Moody Lie algebra is a vertex algebra, representing the same theory. To pass from
one version to the other, observe that Laurent series play the role of functions on a punctured
formal neighbourhood pD˝

x of a point on our curve. The additional structures (factorization or
vertex algebras) will appear when considering the collision of the punctured neighbourhoods at
two points x1 and x2.

In higher dimensions, we will study the moduli space of g-bundles, not on a curve, but on
a d-dimensional smooth variety. From the geometric perspective, two subtleties appear. Firstly,
the moduli space of G-bundles is no longer smooth in general. In order to keep having good
deformation theoretic properties, we need to endow this moduli space with a derived structure (in
the sense of derived geometry). Derived (algebraic) geometry is indeed a generalisation of algebraic
geometry in which deformation theory behaves particularly well.

2The physics behind those notions goes way beyond the author’s understanding, and it will not be included in
the thesis.
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The second subtlety is the choice of an analog for Laurent series, and different notions of
factorization. For instance, in dimension 2, there are (at least) two distinct approaches:

The toric version: replacing the field of Laurent series kpptqq by that of Laurent series in 2-
variables kppxqqppyqq. This amounts to replacing our punctured formal neighbourhood pD˝ by
a 2-dimensional formal disk minus two axes. For us, this approach, which is close to the
notion of adèles, has a drawback. Algebraically, the field kppxqqppyqq depends on a choice of
ordering of the variables. Geometrically, this breaks the symmetry between the to removed
axes. Moreover, this formal disk deprived of two axes can no longer be associated to a point
in a surface. More data is required (typically, that of a flag). It is then much harder to define
the appropriate notions (for instance of “stratified” factorization algebras), or to form good
intuitions, similar to the idea represented in diagram (1). Nonetheless, this direction is the
object of work in progress with Valerio Melani and Gabriele Vezzosi, although this work will
not be described in this thesis.

The spherical version: Trying to keep the intuition of diagram (1), we simply replace the curve
with a surface (or more generally a smooth variety). We let points evolve freely on the surface.
This idea corresponds precisely to the notion of factorization algebras in higher dimension,
as studied for instance in [FG11] or [HK22]. This is the version we will pursue in the work,
for the Kac–Moody algebra as for other generalizations to come.

From a local point of view, the punctured formal disk is simply replaced by its higher dimen-
sional analog pD˝ :“ Specpkrrt1, . . . , tdssq ∖ t0u. However, the scheme is no longer affine as soon as
d ě 2. The role of the field of Laurent series will then have to be taken, not by mere functions
on pD˝, but by the entire cohomology H‚ppD˝,O

pD˝ q, endowed with its algebraic structure up to
homotopy (i.e. the cup product, but also higher order Massey operations). We will then be able
to construct and study a homotopical version of the Kac–Moody central extension, similar to the
one existing in dimension 1.

We will also, in this thesis, discuss a higher dimensional generalization of the Virasoro algebra.
In dimension 1, it is the unique (up to scalar) central extension of the Witt algebra – the Lie
algebra kpptqq ddt of vector fields on the punctured disk pD˝. As before, we shall study a spherical
version in higher dimension, and since the punctured disk is no longer affine, we must consider the
whole cohomology of vector fields, seen as an L8-algebra:

Wittd :“ H‚ppD˝,T
pD˝ q.

The setting is however considerably more complex than on the case of Kac–Moody algebra. The
classification of central extensions of Wittd is not know to this day and to the author (see conjec-
ture 3.2.2 below).

Generally speaking, the study of central extensions of Lie algebras of vector fields goes through
the study of their Chevalley–Eilenberg cohomology, also known as the Gelfand–Fuchs cohomology
of the manifold or variety at hand. This cohomology was the focus of a lot of articles in the
70’s and 80’s, in the differentiable case. This started with the founding papers of Gelfand and
Fuchs [GF68; GF69], in particular for the applications to foliations. With the (not yet achieved)
objective of classifying extensions of this Witt L8-algebra in higher dimension, we will study the
Gelfand–Fuchs cohomology of smooth algebraic varieties.

The most significant results in this direction so far are the topic of [HK22]. They rely heavily
on factorization algebras, both in an algebraic context and in a differentiable context. Those
results prove in particular a conjecture stated by Feigin in the 80’s, about the Gelfand–Fuchs
cohomology of smooth affine algebraic varieties over a field of characteristic 0. Namely, we prove
that the Gelfand–Fuchs cohomology of smooth affine algebraic varieties is finite dimensional in
every degree (but there can be an infinite number of non-vanishing cohomology groups). We
further give a computational method for this cohomology, in terms of the rational homotopy type
of the analytification of the variety.
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I will then discuss some ongoing research and leads, targeted, among other things, at classifying
the central extensions of Wittd (and thus at proving conjecture 3.2.2). A key ingredient will be the
notion of factorization modules over factorization algebras. This thesis will end with the description
of a work in progress, without direct link to the above, about categorifying the Donaldson–Thomas
invariants.

Outline of the thesis: The first part will deal with Kac–Moody algebras in higher dimensions.
After recalling a couple of known facts in dimension 1, we will introduce the necessary tools for
the higher dimensional case (in particular derived geometry). In a second part, we will make an
detour into derived deformation theory, applied to K-theory. This will allow us to recover a crucial
result of the first section, in a more conceptual and satisfying way. The third part will layout the
difficulties encountered in the case of Virasoro algebras in higher dimensions. We will also state
the main conjecture about them. In a fourth section, we will introduce and discuss Gelfand–Fuchs
cohomology of algebraic varieties and differentiable manifolds. Lastly, the fifth part will draw out
research leads, at various states of progress, related to the problems discussed in this thesis.
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1 Moduli of G-bundles and Kac–Moody extensions
Our first example of infinite dimensional dg-Lie algebra is the Kac–Moody algebra. This section’s
content is mostly extracted from [FHK19]. We first recall how the dimension 1 version arises, from
a geometric perspective.

1.1 The dimension 1 case
We first give in a nutshell a quite informal picture of the 1-dimensional case. This summary is in
no way exhaustive, and shows a clear geometric bias. None of the results exposed here are due to
the author. A good introduction to the topic can be found in [FB04]. More details will be given
later down this habilitation thesis, when explaining the higher dimensional case.

Actions on rigidified G-bundles: Let X be a smooth projective algebraic curve over k and
G an algebraic group. The moduli of principal G-bundles BunGpXq on X is representable by a
smooth Artin stack. Fixing a closed point x P X and its formal neighbourhood pDx in X, we
can rigidify the situation by considering the moduli BunGpX, pDxq of rigidified G-bundles at x:
G-bundles on X equipped with a trivialisation on pDx:

BunGpX, pDxq :“ BunGpXq ˆ
BunGppDxq

tTrivu.

By adding this trivialisation, we simplify the geometric nature of the moduli space and remove its
stacky structure: one can now show that BunGpX, pDxq is representable by an ind-scheme. Moreover,
the group (ind-)scheme GppDxq (the jets group) naturally acts on BunGpX, pDxq by changing the
trivialisation, making BunGpX, pDxq a principal GppDxq-bundle over BunGpXq.

This first action can then be extended to a much richer action of a bigger group: the loop
group. This group is constructed in a similar fashion as GppDxq, by replacing the formal disc pDx
by a punctured formal disc pD˝

x Ă pDx ∖ txu. Remark that as a formal scheme, pDx has only one
point, so the definition of the complement pD˝

x is not really satisfying (we get the empty scheme).
Still, there is a sensible definition of the loop group GppD˝

xq (we will come back to it in the higher
dimensional case) as the moduli:

GppD˝
xq : A ÞÑ GpApptqqq.

With G being of finite type, we get a restriction morphism

GppDxqpAq “ limG
´

Arts{tn
¯

» GpArrtssq Ñ GpApptqqq “ GppD˝
xqpAq.

It turn out to give a closed immersion GppDxq Ñ GppD˝
xq.

In order to extend the action of the jets group GppDxq to an action of the loop group GppD˝
xq;

we shall describe BunGpX, pDxq in terms involving pD˝
x. This is done by first defining a moduli of

principal G-bundles on pD˝
x (similarly to the definition of the loop group), then using algebraization

as in [Bha16] to construct restriction morphisms BunGppDxq Ñ BunGppD˝
xq Ð BunGpX˝q (where

X˝ :“ X ∖ txu) and finally by using the Beauville–Laszlo lemma

Lemma 1.1.1 (Beauville–Laszlo [BL95], Bhatt [Bha16]). The natural morphism

BunGpXq Ñ BunGpX˝q ˆ
BunGppD˝

xq

BunGppDxq

is an isomorphism.

A straightforward corollary is the following description of the moduli of rigidified G-bundles:

BunGpX, pDxq »

˜

BunGpX˝q ˆ
BunGppD˝

xq

BunGppDxq

¸

ˆ
BunGppDxq

tTrivu » BunGpX˝q ˆ
BunGppD˝

xq

tTrivu.
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In particular, changing the trivialization on the right-hand-side gives a natural action of our loop
group GppD˝

xq on BunGpX, pDxq, extending that of GppDxq.

Remark 1.1.2. One can prove the above action of GppD˝
xq on BunGpX, pDxq to be transitive. It

follows from the absence of infinitesimal deformations of principal G-bundles on X˝. This result
however has no known generalization to the higher dimensional case.

Even though GppDxq and GppD˝
xq are not algebraic group, they do have a tangent Lie algebra.

Denoting by g the Lie algebra of G, we have

TGppDxq,1 » grrtss :“ g b krrtss and TGppD˝
xq,1 » gpptqq :“ g b kpptqq,

where the bracket on gbA is given by rxbf, ybgs “ rx, ys bfg, for A “ krrtss or kpptqq. Those are
so called current Lie algebras. The geometric actions of GppDxq and GppD˝

xq thus induce infinitesimal
actions of grrtss and gpptqq.

Action on the determinantal bundle: Given ρ : G Ñ GLn a representation ofG, we construct
the determinantal3 line bundle detρ over the stack BunGpXq. It is defined as the determinant of
the cohomology: the stalk over any principal G-bundle P over X (or family thereof), is the line

detpH˚pX,P ρqq “
â

n

detpHnpX,P ρqqp´1q
n

“ detpH0pX,P ρqq b detpH1pX,P ρqq´1.

As an example, if ρ is the adjoint representation, then detρ is isomorphic (through the Kodaira–
Spencer isomorphism) to the canonical line bundle on BunGpXq.

We can easily extend the action of GppDxq to the determinantal bundle (so that the projection
is equivariant). There is however an interesting obstruction to extending the richer action of GppD˝

xq

to detρ: the determinantal anomaly. This means there exists a central extension rGppD˝
xqρ of GppD˝

xq

by Gm and actions

1 Gm rGppD˝
xqρ GppD˝

xq 1

detρ BunGpX, pDxq.

(2)

The determinantal anomaly is nothing but the class in H2pGppD˝
xq,Gmq classifying the aforemen-

tioned central extension. In particular, a trivialisation of the determinantal anomaly yields a
section GppD˝

xq Ñ rGppD˝
xqρ and thus an action of GppD˝

xq on the determinantal bundle.
On the Lie algebra level and with a choice of local coordinates, the determinantal anomaly

becomes a central extension rgpptqqρ of gpptqq by our base field k.

Definition 1.1.3. The Lie algebra extension rgpptqqρ is called the Kac–Moody Lie algebra associated
to G and its representation ρ. Explicitly, it is classified by the 2-cocycle

g b kpptqq b g b kpptqq k

xb f b y b g chρ2px, yqRespf 1gq,

with chρ2 P Sympg_qg the second Chern character of the representation ρ and Res is the residue.

Remark 1.1.4. From the Kac–Moody algebra rgpptqqρ, we form vertex algebras by looking at
vacuum modules (with various central charges). The picture given above can then be constructed
the other way around: starting with the Kac–Moody algebras and the associated vacuum modules,
and building up to a geometric interpretation.

From this perspective, the space of sections of the determinantal bundle detρ is identified with
some space of conformal blocks of a suitable vacuum module, thus giving a geometric interpretation
of said conformal blocks.

3Sometimes also called the theta line bundle and denoted θρ.
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1.2 (Derived) loop group
Replacing our curve with a smooth variety X of dimension d ě 2 introduces various complications.
The first one is the definition of the loop group GppD˝

xq at x P X.
To simplify the exposition, we fix formal local coordinates at the point, and doing so, we

reduce to the standard formal disc pD “ Spfpkrrt1, . . . , tdssq. We can still define without difficulty
GppDq as the moduli

GppDq : A ÞÑ GpArrt1, . . . , tdssq.

However, the ring of Laurent series is to be replaced by the complement of the origin in the
affinization of pD:

GppD˝q : A ÞÑ GpSpecpArrt1, . . . , tdssq ∖ 0q.

Now, with G being affine and d ě 2, by Hartogs’ theorem, any morphism SpecpArrt1, . . . , tdssq∖0 Ñ

G extends uniquely into a morphism SpecpArrt1, . . . , tdssq Ñ G, so that with the above definition,
we get GppD˝q “ GppDq.

There are two ways of circumventing this issue:

Toric approach: Instead of looking at Specpkrrt1, t2rsq ∖ 0, we can consider complements of divi-
sors (with functions, e.g. kppt1qqrrt2ss, krrt1ssppt2qq, or kppt1qqppt2qq). The cost of this solution is
twofold. First, those rings depend on an ordering of the variables: kppt1qqppt2qq ‰ kppt2qqppt1qq.
Geometrically, we would need to fix not only a point x P X, but also a (non necessarily linear)
complete flag in pDx. This approach is thus somewhat related to Beilinson’s theory of adèles.
The second drawback is best understood when generalizing the extensions of definition 1.1.3
to this context. Indeed, we can very well form the Lie algebras gppt1qqppt2qq but the natural
cohomology class that arises lies in degree 3 (or in general n` 1). There are therefore no Lie
algebra extensions per se. We will not pursue this approach, but significant work has been
done in this direction. See for instance [OZ16], [BGW21].

Derived (spherical) approach: This approach circumvents the issue by using derived geometry
and considering the moduli spaces at hand as derived stacks. This allows to differentiate
GppD˝q fromGppDq using the cohomology of functions of Specpkrrt1, . . . , tdssq∖0, as the following
example shows. This is the approach we will follow in this work.

Example 1.2.1. Say G “ Ga (albeit not reductive) and d “ 2. For any ring A, we have
GappD˝qpAq “ ΓpSpecpArrt1, t2ssq∖ 0,Oq “ Arrt1, t2ss. Considering the derived structure here means
we allow for A to be commutative dg-algebra in non-positive degrees:

A “

”

¨ ¨ ¨
B

Ñ A´2 B
Ñ A´1 B

Ñ A0 Ñ 0 Ñ ¨ ¨ ¨

ı

.

Let for instance A be such that A0 “ A´1 “ k, Ap “ 0 otherwise and B “ 0. In this case GappD˝qpAq

is now an 8-groupoid with homotopy groups πipGappD˝qpAqq “ H1´ipSpecpArrt1, t2ssq ∖ 0,Oq:

πipGappD˝qpAqq “ H´ipSpecpArrt1, t2ssq ∖ 0,Oq

“ H´ipSpecpkrrt1, t2ssq ∖ 0,Oq ‘ H1´ipSpecpkrrt1, t2ssq ∖ 0,Oq

“

$

’

&

’

%

krrt1, t2ss if i “ 1

krrt1, t2ss ‘ t´1
1 t´1

2 krt´1
1 , t´1

2 s if i “ 0

0 otherwise.

This derived enhancement of GappD˝q thus remembers some form of "codimension 2 polar part".
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1.3 Interlude: derived geometry
As summarily explained above, derived (algebraic) geometry consists in allowing commutative dg-
algebras (cdga’s) as test rings of functor of points. For an overview of the subject, see e.g. [Toë14].
See also [Ben+21].

Definitions 1.3.1.
(a) Let cdgaď0

k denote the 8-category of non-positively graded cdga’s over k. An object A in
cdgaď0

k is thus a complex

¨ ¨ ¨ Ñ A´2 B
Ñ A´1 B

Ñ A0 Ñ 0 Ñ ¨ ¨ ¨

equipped with a graded commutative multiplicative structure.

(b) A derived prestack (over k) is an 8-functor cdgaď0
k Ñ Gpd8, where Gpd8 denotes the 8-

category of 8-groupoids. A derived prestack S representable by a cdga A is called a derived
affine scheme. We write S “ SpecA. We denote by dAffk the 8-category of derived affine
schemes (so that dAffop

k “ cdgaď0
k ).

(c) A morphism of cdga’s f : A Ñ B is flat (resp. smooth, resp. étale, resp. a Zariski open
immersion) if the induced morphism H0f : H0A Ñ H0B is, and if for every n, the canonical
morphism HnAbH0A H0B Ñ HnB is an isomorphism.

(d) A derived stack is a derived prestack satisfying étale descent. We denote by dStk the 8-
category of derived stacks.

From those definitions, one can straightforwardly define the notion of a derived scheme, derived
Artin or Deligne–Mumford stack or derived ind-scheme.

Definition 1.3.2 (Higher dimensional derived loop group). Let G be a reductive group and X
a d-dimensional smooth variety over k. Let x P X be a k-point. We denote by pDAx the derived
ind-scheme pDx ˆ SpecA, and by AffppDAx q its affinization:

AffppDAx q “ Spec
´

RΓ
´

pDAx ,OpDA
x

¯¯

“ Spec
´

pOX,x pbA
¯

The derived loop group at x is the derived stack

cdgaď0
k Ñ Gpd8

A ÞÑ G
`

AffppDAx q ∖ txAu
˘

1.4 Derived stack of rigidified bundles
The second complication arising from replacing our curve with a higher dimensional variety X
concerns the moduli of G-bundles BunGpXq. Indeed, this moduli space is no longer smooth: its
tangent bundle at a family of bundles P computes H1pX,P adq (where ad denotes the adjoint
representation), and this needs not be a projective module.

It comes however with a non-trivial derived enhancement RBunGpXq that is better behaved.
This derived enhancement is (by definition) an extension of the functor of points to an 8-functor

RBunGpXq : cdgaď0
k Ñ Gpd8.

It is most easily defined as a derived mapping stack

RBunGpXq “ RMappX,BGq : A ÞÑ RMappSpecAˆX,BGq.
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This construction applies as well for the formal disc pDx at a point x P X, so that RBunGppDxq : A ÞÑ

RMapppDAx ,BGq. With the use of the trivial bundle, we can thus define a derived stack of rigidified
bundles:

RBunGpX, pDxq :“ RBunGpXq ˆ
RBunGppDxq

ttrivialu.

Like in the 1-dimensional case, we would like the (derived) loop group GppD˝
xq to act on the

(derived) stack of rigidified bundles. This action will rely on a more general version of the Beauville–
Laszlo lemma.

The first step is to define the derived stack of G-bundles on the punctured neighbourhood pD˝
x.

This definition is very similar to that of GppD˝
xq:

RBunGppD˝
xq : A ÞÑ RMap

`

AffppDAx q ∖ txAu,BG
˘

.

Of course, it should come with a restriction morphism RBunGppDxq Ñ RBunGppD˝
xq, which is not

completely straightforward. Indeed, for a fixed A P cdgaď0
k , there is no morphism AffppDAx q ∖

txAu Ñ pDAx , but only a zigzag

AffppDAx q ∖ txAu Ñ AffppDAx q Ð pDAx .

For this reason, we shall need a derived version of Bhatt’s algebraization (see [Bha16; HPV16]):

Proposition 1.4.1. For any A P cdgaď0
k , the restriction morphism induces an equivalence

RMap
`

AffppDAx q,BG
˘

» RMap
`

pDAx ,BG
˘

.

Using this equivalence’s inverse, we can thus define a restriction morphism RBunGppDxq Ñ

RBunGppD˝
xq. It is used in a derived geometric version of the Beauville–Laszlo lemma

Proposition 1.4.2 ([HPV16; FHK19]). There is a canonical equivalence

RBunGpXq » RBunGpX˝q ˆ
RBunGppD˝

xq

RBunGppDxq.

Informally, that means a principal G-bundle on X amounts to a principal G-bundle on the comple-
ment X˝ of a point, a principal G-bundle on the formal neighbourhood pDx of the point, and some
glueing data on the punctured neighbourhood pD˝

x.

Corollary 1.4.3. The derived loop group GppD˝
xq acts on the derived moduli space of rigidified

bundles:
GppD˝

xq

RBunGpX, pDxq.

Like in the 1-dimensional case, fixing a representation ρ : G Ñ GLn yields a determinantal
bundle detρ on RBunGpXq, and thus on RBunDpX, pDxq. There is an obstruction to lifting the
action of the derived loop group to this bundle, called the determinantal anomaly.

The construction of this anomaly relies on [Hen17b] and the shift in the K-theory of Tate
complexes. We will not give a detailed account on the matter, but we will say that this anomaly
can be constructed as a group stack morphism

GppD˝
xq GLnppD˝

xq ΩK
pD˝
x

K BGm,
ρ det (3)

where K is the stack of K-theory (of the point Speck), ΩK
pD˝
x

is the loop stack in the stack of
K-theory of the punctured disc pD˝

x, and BGm is the stack classifying line bundles. In particular,
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the determinantal anomaly classifies an extension rGppD˝
xqρ of the derived loop group by Gm. The

action of corollary 1.4.3 then extends, similarly to the 1-dimensional case (see diagram (2)):

1 Gm rGppD˝
xqρ GppD˝

xq 1

detρ RBunGpX, pDxq.

(4)

1.5 Kac–Moody extension and local Riemann–Roch theorem
We now turn to the induced infinitesimal actions of the associated Lie algebras. To simplify the
notations in this section, we will work with fixed local coordinates:

pD “ Spfpkrrt1, . . . , tdssq and pD˝ “ Specpkrrt1, . . . , tdssq ∖ t0u.

First, let us highlight that the derived nature of the higher dimensional loop group makes us
leave the classical theory of Lie algebras. Indeed, working with derived geometry implies (amongst
other things) looking at the tangent complex at the unit gppD˝q :“ TGppD˝q,1, rather than the tangent
vector space. Through a standard computation, we find

gppD˝q “ g b RΓppD˝,Oq. (5)

This implies

HipgppD˝qq “

$

’

&

’

%

g b krrt1, . . . , tdss if i “ 0,

g b pt1 ¨ ¨ ¨ tdq´1krt´1
1 , . . . , t´1

d s if i “ d´ 1,

0 else.

This tangent complex gppD˝q comes with a dg-Lie algebra structure (it is a Lie algebra in complexes).
Equivalently, this structure can be seen as an L8-structure on the above cohomology.

The group extension rGppD˝qρ yields a Lie algebraic central extension

0 k rgppD˝qρ gppD˝q 0.

It is classified by a class τρ P H2
LiepgppD˝q,kq in Chevalley–Eilenberg cohomology.

Recall that in dimension 1, the vector space H2
LiepgppD˝q,kq is naturally isomorphic to the

space pSym2 g_qg of equivariant symmetric bilinear forms. The class τρ is identified, through
this isomorphism, with the second Chern character of the representation ρ. In higher dimensions
however, the vector space H2

LiepgppD˝q,kq is infinite-dimensional. Identifying the class τρ will then
require significantly more work.

The first step consists in reducing to the general linear group (through the representation ρ).
Further, we reduce to the infinite general linear group (albeit not an algebraic group):

GL8 :“
ď

n

GLn ; gl8 :“
ď

n

gln.

The dg-Lie algebra gl8ppD˝q carries a central extension classified by some τ P H2
Liepgl8ppD˝q,kq.

This class τ is a universal version of the τρ aforementioned, as each τρ stems from it by pullback.
The cohomology space H2

Liepgl8ppD˝q,kq is of course infinite dimensional. It has however a nice
description, through the Loday–Quillen–Tsygan theorem:

Theorem 1.5.1 (See [LQ83; Tsy83]). For any k-algebra A, the direct sum of matrices endows
HLie

‚ pgl8pAq,kq with a graded Hopf algebra structure, and there is a canonical isomorphism of
graded Hopf algebras

HLie
‚ pgl8pAq,kq » SympHCk

‚´1pAqq,
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where HCk
‚ refers to k-linear cyclic homology (see [Lod92] for an introduction). Equivalently, the

subspace of primitive elements in the Hopf algebra HLie
‚ pgl8pAq,kq is isomorphic to HCk

‚´1pAq.
This isomorphism is obtained from an explicit morphism HLie

‚ pgl8pAq,kq Ñ HCk
‚´1pAq known

as the generalized trace.

A dual version, for cohomology, of a generalization to dg-algebras (see [Bur86; FHK19]) applies
to our case. In particular, there is a notion of primitive classes in H2

Liepgl8ppD˝q,kq. Their space is
a direct summand isomorphic to the dual space HCk

1 ppD˝q_:

HCk
1 ppD˝q_ » H2

primpgl8ppD˝q,kq Ă H2
Liepgl8ppD˝q,kq

Proposition 1.5.2 ([FHK19, §5.4-C]). The class τ is primitive (and thus belongs to the direct
summand HCk

1 ppD˝q_).

The proof found in [FHK19] relies on additive properties of the assignment ρ ÞÑ τρ with respect
to direct sums of representations. We will explain in section 2 below a more conceptual proof of
that fact, based on the results of [Hen21].

Now, the Hochschild–Kostant–Rozenberg theorem allows for a Hodge decomposition of the
cyclic homology of pD˝ (see [Wei97] for the case of schemes we use here), in terms of the hyperco-
homology of truncated de Rham complexes:

HCk
1 ppD˝q »

à

p

H2p´1ppD˝,Ωďpq.

Notice that, as soon as the dimension is at least 2, this space is still infinite dimensional. To
further understand τ : HCk

1 ppD˝q Ñ k, we will need the following observation: the morphism τ is
invariant under the action of automorphisms of the punctured disc pD˝. We will actually only need
to consider the action of linear automorphisms, i.e. of the group GLdpkq for d the dimension of
our variety X.

We start with a representation-theoretic analysis on the cohomology groups HippD˝,Ωjq. Using
then the (truncated) Frölicher spectral sequence computing the hypercohomology H2p´1ppD˝,Ωďpq,
we show

Proposition 1.5.3. There is (up to scalar) only one GLdpkq-invariant morphism

Res: HCk
1 ppD˝q Ñ k.

We shall call it the (higher order) residue.

Let us briefly explain the name. First and foremost, if the dimension d is 1, it actually is
the residue. In general, the above representation-theoretic analysis shows Res arises from the one
invariant class in Hd´1ppD˝,Ωdq. In the case k “ C, the invariant morphism

Hd´1ppD˝,Ωdq Ñ C

can then be identified, using a Dolbeault complex, with integrating a form of weight pd, d ´ 1q

along the unit sphere (of real dimension 2d´ 1) in Cd ∖ t0u. See [FHK19, Prop. 1.5.8] for a more
precise statement. This fact gives, should it be needed, more ground to our approach being called
“spherical”.

We are at last able to give a formula for the central extension class τρ associated to a
representation ρ : G Ñ GLn, similar to that of definition 1.1.3. For this, recall equation (5):
gppD˝q » g b RΓppD˝,Oq.

Theorem 1.5.4 (Local Riemann–Roch theorem, [FHK19]). Up to an invertible multiplicative
constant, the class τρ P H2

LiepgppD˝q,kq is represented by the 2-cocycle

γρ :
`

g b RΓppD˝,Oq
˘bd`1

rd´ 1s Ñ k

px0 b f0q b ¨ ¨ ¨ b pxd b fdq ÞÑ chρd`1px0, . . . , xdqRespf0 ¨ df1 ^ ¨ ¨ ¨ ^ dfdq,

where
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• xi P g,

• each fi is homogeneous of degree |fi| in RΓppD˝,Oq and the sum of their degrees satisfies
ř

|fi| “ d´ 1,

• chρd`1 P Symd`1
pg_qg is the pd` 1q-th Chern character of the representation ρ.

The above formula deserves explanations. First, even though γρ has arity d`1, its total degree
in the Chevalley–Eilenberg complex of gppD˝q is 2. This stems from the cohomological degrees of
the “functions” fi and the equality

ř

|fi| “ d ´ 1. Moreover the quantity f0 ¨ df1 ^ ¨ ¨ ¨ ^ dfd is of
Hodge weights pd, d ´ 1q, so that Respf0 ¨ df1 ^ ¨ ¨ ¨ ^ dfdq is well defined. By convention, and for
the above formula to be valid in all generality, we can set Res “ 0 for other Hodge weights.

This theorem can be seen as a local (infinitesimal) version of the Grothendieck–Riemann–
Roch theorem. Indeed, the class τρ arise from the determinantal anomaly, which acts on the
determinantal bundle (see diagram (4) above). Recall the determinantal bundle is by definition
the "determinant of the cohomology" of a given representation.

The formula τρ “ rγρs thus infinitesimally relates this determinantal bundle (i.e. a first Chern
class) with a higher order Chern character. The notable absence of the Todd genus stems from
the fact that we are only considering the Kac–Moody gauge Lie algebra. We shall see in section 3
below how considering the Virasoro Lie algebra will factor in the Todd class.

The proof of theorem 1.5.4 goes as follows. First, we reduce to GL8. Second, we use an
explicit formula for the generalized trace appearing in theorem 1.5.1 to contemplate that γρ comes
from a primitive class. Then the invariance of the formula of γρ under the action of GLdpkq,
together with proposition 1.5.3 ensures the result.

Building of the above results, a further study, with a more physics-oriented point of view, has
been carried out by Gwilliam and Williams in [GW21].

2 The tangent complex to K-theory
In this section, we will circle back to a proof of proposition 1.5.2 based on the results of [Hen21].
The original proof of proposition 1.5.2 (found in [FHK19]) is more hands-on than the one we will
present here. We give here an original and more conceptual proof.

We start with the determinantal anomaly briefly introduced in diagram (3). For the canonical
representation of GLn, it is a group stack morphism

GLnppD˝q ΩK
pD˝ K BGm,det

Taking classifying stacks and replacing GLn by GL8 “ colimnGLn, we get

BGL8ppD˝q K
pD˝ BK KpGm, 2q.det

The first morphism BGL8ppD˝q Ñ K
pD˝ is the universal morphism, sending a vector bundle to its

class in K-theory. To construct the second morphism K
pD˝ Ñ BK, we first consider the localization

sequence of 8-categorical derived stacks:

Perf t0uppDq PerfppDq PerfppD˝q, (6)

where PerfpY q denote the stack of perfect complexes over Y , and Perf t0uppDq is the stack of
perfect complexes on pD supported at the origin. Taking non-connective K-theory gives a boundary
morphism (of derived prestacks in spectra)

K
pD˝ Ñ ΣKpPerf t0uppDqq.
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Composing with the global section functor RΓ: Perf t0uppDq Ñ Perfpkq, we get K
pD˝ Ñ ΣKk. Pass-

ing to the connective cover, and taking the étale stackification, we find the announced morphism

K
pD˝ Ñ BKk “ BK .

The crucial observation is the following: the above group-theoretic construction has a di-
rect Lie-algebraic analog. Indeed, the localization sequence of diagram (6) induces a fiber-cofiber
sequence of cyclic homologies:

HCk
‚ pPerft0uppDqq HCk

‚ ppDq HCk
‚ ppD˝q.

The induced boundary operator combined with the global section functor (as above) yields

HCk
‚ ppD˝q HCk

‚´1pPerft0uppDqq HCk
‚´1pkq.

Then, the generalized trace morphism (see e.g. [Lod92, Def.1.2.1]) defines an L8-morphism
gl8ppD˝q Ñ HCk

‚ ppD˝q (the RHS being endowed with its abelian dg-Lie algebra structure). All
in all, this gives an L8-morphism

gl8ppD˝q HCk
‚ ppD˝q HCk

‚´1pkq kr1s.

HCk
0 pkq“k

Ó

We claim the above two constructions (the group-theoretic one and the Lie-algebraic one) are
related by more than an analogy: the Lie-algebraic construction is tangent to the group-theoretic
one:

GL8ppD˝q ΩK
pD˝ K BGm Group stack maps

gl8ppD˝q HCk
‚ ppD˝q HCk

‚´1pkq kr1s L8-maps.
Tangent
dg-Lie algebra

det

(7)

The main issue here is to actually define a well behaved tangent to the K-theory stack, in order to
make sense to the above claim. This is the content of [Hen21].

2.1 Infinitesimal behaviour of K-theory
Studying the infinitesimal behaviour of K-theory is by no means a novel idea. The first article
[Blo73] on the matter is due to Spencer Bloch and dates back to 1973. It was followed by the
celebrated article [Goo86] of Thomas Goodwillie, whose main result can be formulated as follows:

Theorem 2.1.1 (Goodwillie, 1986). The relative rational K-theory of a nilpotent extension of Q-
algebras is isomorphic to its relative rational cyclic homology: if B Ñ A is a nilpotent extension,
then there is a natural isomorphism

hofibpKpBq ^ Q Ñ KpAq ^ Qq » hofib
´

HCQ
‚´1pBq Ñ HCQ

‚´1pAq

¯

.

This powerful theorem allows for a computation of the tangent complex to K-theory, if K-
theory had been an algebraic group, or at least followed some geometric behaviours. This naive
tangent complex is

Tnaive
KA ^Q,0 “ hofibpKpArϵsq ^ Q Ñ KpAq ^ Qq (where ϵ2 “ 0)

» hofib
´

HCQ
‚´1pArϵsq Ñ HCQ

‚´1pAq

¯

»
à

pě0

HHQ
‚´2p´1pAq.

9



Because K-theory is extremely far from being an algebraic group, this naive tangent complex does
not quite behave as expected. For example, the group morphism GL8pAq Ñ ΩKA Ñ ΩKA ^Q
does not induce a non-trivial L8-morphism

gl8pAq Ñ Tnaive
KA ^Q,0r´1s »

à

pě0

HHQ
‚´2ppAq.

Indeed, since the right-hand-side is equipped with its abelian Lie algebra structure, such an L8-
morphism would amount to a central extension of gl8 by the complex

À

pě0 HHQ
‚´2p`1pAq. One

can then prove that such a functorial central extension needs to be trivial (even when the base
field k is Q).

To try and fix this issue, one could think of using Goodwillie calculus by stabilizing the
construction:

Tstab
KA ^Q,0 “ colim

n
hofibpKpArϵnsq ^ Q Ñ KpAq ^ Qqr´ns,

where ϵn lies in cohomological degree ´n and ϵ2n “ 0. This however does not solve our issue.
Indeed, one can compute4 Tstab

KA ^Q,0 » HHQ
‚´1pAq and as above, there is no non-trivial functorial

central extension of gl8pAq by this complex (with the proper shift).
In order to give a definition of the tangent complex to K-theory more suited to our needs, we

will rather use deformation theory.

2.2 Formal deformation theory
The key reason for wanting to use deformation theory is the following statement: Deformations of
algebro-geometric objects (in characteristic 0) are governed by dg-Lie algebras.

The statement has been a principle more than a theorem for a long time, as many authors
worked to establish such a correspondence (see notably [Hin01], [Man99; Man09]). This lead to
a classification (see below) by Pridham and Lurie independently. We refer to [Toë17] for a more
complete history.

Theorem 2.2.1 (Pridham [Pri10], Lurie [Lur11]). Let k be a field of characteristic 0. There is
an 8-categorical equivalence

FMPk :“ t(Derived) Formal moduli problems over ku dgLiek

F TF r´1s.

„

Obviously, we need to define the left-hand side and the notion of formal moduli problems.

Definition 2.2.2. A (derived) formal moduli problem is an 8-functor dgArtk Ñ Gpd8 defined
on Artinian cdga’s over k satisfying a version of Schlessinger’s condition. A cdga A over k is
Artinian if

(i) H0A is an Artinian k-algebra, with residue field k,

(ii) HnA “ 0 for n ą 0 or n ăă 0, and is finite dimensional otherwise.

The Schlessinger condition satisfied by a formal moduli problem F is the following:

(S1) We have F pkq » ˚ and

(S2) For any fiber product of Artinian cdga’sD » AˆBC where the morphism A Ñ B is surjective
on H0, the induced morphism (of 8-groupoids):

F pDq Ñ F pAq ˆ
F pBq

F pCq

is an equivalence.
4Note that this computation is actually used in the proof of theorem 2.1.1.
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In general, one can construct a formal moduli problem governing deformations of a k-point in
any geometric enough stack. Here are some examples

Examples 2.2.3.
(a) Let X be a (possibly derived) scheme over k and x P X a k-point. The functor pXx : A ÞÑ

XpAqˆXpkqtxu is a formal moduli problem. The corresponding dg-Lie algebra has underlying
complex TX,xr´1s. It is (trivially) abelian whenever X is smooth at x.

(b) Let G be an algebraic group and BG its classifying stack. The formal moduli problem
B pG : A ÞÑ BGpAqˆBGpkq ttrivu classifies formal deformations of the trivial principal G bundle
on the point Speck. The corresponding dg-Lie algebra is nothing but the Lie algebra g of G
(concentrated in degree 0).

(c) More generally, let X be a scheme and G an algebraic group. Let P be a principal G-bundle
on X. The formal deformations of P are classified by the formal moduli problem

DefpP q : A ÞÑ RBunGpXqpAq ˆ
RBunGpXqpkq

tP u.

The associated dg-Lie algebra is RΓpX,P q. If P is trivial, then this dg-Lie algebra is the
current dg-Lie algebra g b RΓpX,OXq.

(d) If Perf denotes the stack of perfect complexes over the base field, and E is such a complex,
then we can form the formal moduli problem

A ÞÑ PerfpAq ˆ
Perfpkq

tEu.

The associated dg-Lie algebra is the dg-algebra of endomorphisms EndpEq.

Note that some natural deformation functors are not formal moduli problem. They usually
come from moduli spaces that are not representable by anything geometric (i.e. schemes, Deligne–
Mumford or Artin stacks – possibly derived). Before giving some examples, let us remark that the
fully faithful functor dgLiek » FMPk Ă FctpdgArtk,Gpd8q admits a left adjoint, that we will
denote by ℓ

ℓ : FctpdgArt,Gpd8q FMPk » dgLiek

F ℓF .

In particular, we can associate to any functor F : dgArtk Ñ Gpd8 a dg-Lie algebra ℓF , regardless
of whether F is a formal moduli problem or not.

Counterexamples 2.2.4.
(a) Denote by Dqcoh the stack of (unbounded) quasi-coherent complexes over k. Let E P

Dqcohpkq. The functor
DefE : A ÞÑ DqcohpAq ˆ

Dqcohpkq

tEu

is not necessarily a formal moduli problem when E is not bounded on the right. One can
however show that this functor is a 1-proximate formal moduli problem (see [Lur11, §5.1]).
This notion is beyond the scope of this memoir, but it is worth mentioning that it allows to
compute the associated dg-Lie algebra

ℓDefE » EndpEq.

(b) This example is central to our discussion and [Hen21]. The functor

sK: A ÞÑ KpAq ˆ
Kpkq

t0u

11



is not a formal moduli problem. We can even show that it is not n-proximate for any n: if
it were, the associated dg-Lie algebra ℓ

ĎK would be the stabilized tangent mentioned at the
end of section 2.1 (see [Lur11, lem. 5.1.12]), which does not behave it should in terms of Lie
algebra extensions.

2.3 The abelian tangent of K-theory
We can now start focusing on the content of [Hen21]. It deal with computing the dg-Lie algebra
associated to sK as in counterexample 2.2.4(b). First, we observe that K-theory (of a scheme or a
derived scheme X) is richer than just an 8-groupoid (or a space): it lifts to the non-connective
K-theory spectrum Knc

pXq P Sp. As a consequence, we expect its associated dg-Lie algebra to
be abelian. This abelianity is however not a consequence of the above, and we will look rather
towards the abelian tangent dg-Lie algebra, defined as follows.

The 8-category FMPAb
k of abelian groups in formal moduli problems embeds fully faithfully

into the 8-category of functors dgArtk Ñ Sp. It is actually equivalent to the full subcategory
spanned by functors satisfying the same Schlessinger condition as in definition 2.2.2. The equiva-
lence of theorem 2.2.1 induces an equivalence FMPAb

k » Cpkq with the 8-category of complexes
of k-vector spaces (up to quasi-isomorphisms). We get an embedding Cpkq Ă FctpdgArtk,Spq,
which, for formal reasons, admits a left adjoint ℓAb:

Cpkq » FMPAb
k FctpdgArtk,Spq.

ℓAb

We are now able to state the main theorem of [Hen21].

Theorem 2.3.1 ([Hen21]). Let X be a quasi-compact quasi-separated (derived) scheme. Let Knc
X

denote the 8-functor dgArtk Ñ Sp mapping A to the spectrum Knc
pX ˆ SpecAq. Then

ℓAb
KX

» HCk
‚ pXq.

It is important to notice that HCk
‚ pXq stands for the k-linear cyclic homology, as opposed to

Q-linear (relative) cyclic homology or Hochschild homology mentioned in section 2.1.

Corollary 2.3.2 ([Hen21]). Let X be a quasi-compact quasi-separated (derived) scheme. The
canonical stack morphism

BGL8pXq Ñ KX

induces an L8-morphism gl8pRΓpX,OXqq Ñ HCk
‚ pXq, where the right-hand-side is endowed with

its abelian Lie structure. This gives a morphism between their Chevalley–Eilenberg homology com-
plexes

CEk
‚ pgl8pRΓpX,OXqqq Ñ SymkpHCk

‚´1pXqq

which identifies the generalized trace of Loday–Quillen–Tsygan and is a quasi-isomorphism.

The proof of theorem 2.3.1 relies on the following steps. First, we reduce to the affine case
X “ SpecB. A formal adjunction game then allows us to replace non-connective K-theory with
connective K-theory, and further with rational K-theory:

KQ
B : dgArtk CpQqď0

A KpAbk Bq ^ Q.

In this process, we also replace the functor ℓAb by the left adjoint ℓQ of the inclusion

Cpkq FctpdgArtk,CpQqď0q

V
´

A ÞÑ pAugpAq bk V q
ď0

¯

,
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where AugpAq denotes the augmentation ideal of A. All in all, we get ℓAb
KB

» ℓQ
KQ

B

. Because
of Schlessinger’s condition condition (S1), we can further replace rational K-theory with relative
rational K-theory. Using Goodwillie’s theorem 2.1.1, we can even work with relative rational cyclic
homology:

ℓAb
KB

» ℓQ
ĚHCQ

‚´1pBbk´q
, (8)

where ĚHC
Q
‚ pB bk ´q : A ÞÑ fib

´

HCQ
‚ pB bk Aq Ñ HCQ

‚ pBq

¯

.
Now, to relate this rational cyclic homology to k-linear cyclic homology, we will need the

following proposition, cornerstone to the proof of theorem 2.3.1.

Proposition 2.3.3 ([Hen21]). The restriction of ℓQ to functors satisfying condition (S1) (i.e. such
that F pkq » 0) is non-unitally symmetric monoidal:

Fct(S1)
pdgArtk,CpQqď0q Ă FctpdgArtk,CpQqď0q Cpkq

bQ bk,

ℓQ

where the tensor product on the left-hand-side is computed pointwise. Observe that this tensor
product has no unit, for the constant functor with value Q does not satisfy condition (S1).

A formal consequence of this proposition concerns the behaviour of ℓQ when applied to cyclic
homology of non-unital algebras. The first observation is that there is a definition of cyclic homol-
ogy of non-unital algebras that does not rely on the existence of a monoidal unit. We can thus form
the functor HCQ

‚ pBbkAugp´qq : A ÞÑ HCQ
‚ pBbkAugpAqq internally in Fct(S1)

pdgArtk,CpQqď0q,
using only the non-unital monoidal structure and colimits in this category and starting from the
functor A ÞÑ B bk AugpAq. This implies

ℓQ
HCQ

‚´1pBbkAugp´qq
» HCk

‚´1

´

ℓQBbkAugp´q

¯

» HCk
‚´1pBq.

However, the above left-hand-side is a priori not the same as the right-hand-side of equation (8).
There is a canonical natural transformation

αB : HCQ
‚´1pB bk Augp´qq ĚHC

Q
‚´1pB bk ´q,

fi

which is never an equivalence (except if B “ k “ Q). Determining whether morphisms like αBpAq

are equivalences amounts to Wodzicki’s excision theorem in cyclic homology:

Theorem 2.3.4 (Wodzicki, 1989 [Wod89]). Let C Ñ D be a surjective morphism of connective
Q-dg-algebras and I its kernel (seen as a non-unital dg-algebra). If I is H-unital (meaning that its
bar complex is contractible), then

HCQ
‚ pIq » fib

´

HCQ
‚ pCq Ñ HCQ

‚ pDq

¯

.

Conversely, if I is a connective non-unital Q-dg-algebra and if for every C Ñ D as above such that
kerpC Ñ Dq » I, we have HCQ

‚ pIq » fib
´

HCQ
‚ pCq Ñ HCQ

‚ pDq

¯

, then I is H-unital.

For αB above to be an equivalence, we would then need B bk AugpAq to be H-unital for any
Artinian A. This can easily be disproved. However, we do know that ℓQBbkAugp´q

» B is H-unital
(it is unital by assumption). The idea is then to adapt a proof of Wodzicki’s theorem due to
Guccione and Guccione [GG96] to prove the following:
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Theorem 2.3.5 ([Hen21]). Let A : dgArtk Ñ dgAlgď0,nu
Q be an 8-functor. Denote by I : dgArtk Ñ

dgAlgď0,nu
Q the 8-functor A ÞÑ fibpApAq Ñ Apkqq. If ℓQA P dgAlgnu

k is H-unital, then the canon-
ical natural transformation

HCQ
‚ pIq Ñ ĚHC

Q
‚ pAq :“ fib

´

HCQ
‚ pAq Ñ HCQ

‚ pApkqq

¯

induces an equivalence ℓQ
HCQ

‚ pIq
» ℓQ

ĚHCQ
‚ pAq

.

Applying this theorem to A “ B bk ´ then shows

ℓAb
KB

» ℓQ
ĚHCQ

‚´1pBbk´q
» ℓQ

HCQ
‚´1pBbkAugp´qq

» HCk
‚´1

´

ℓQBbkAugp´q

¯

» HCk
‚´1pBq,

thus proving theorem 2.3.1.

2.4 Deducing the primitivity of τ

We will now explain how proposition 1.5.2 can be deduced from theorem 2.3.1. Recall diagram (7)
above. After having replaced BGm with the graded Picard group BGgr

m and the determinant with
its graded version, the morphisms of group stacks

ΩK
pD˝ K BGgr

m
detgr

are morphisms of abelian group stacks. We get after taking (formal) classifying spaces

BGL8ppD˝q K
pD˝ ΣK BBGgr

m

gl8ppD˝q HCk
‚ ppD˝q HCk

‚´1pkq kr1s

L8-morphism
(generalized trace) Abelian L8-morphisms.

ℓ

Abelian formal moduli problems

ℓAb

detgr

ℓAb
ℓAb

By construction, the class τ of proposition 1.5.2 classifies the composite morphism gl8ppD˝q Ñ kr1s

above. The primitivity of τ amounts to the abelianity of the morphism HCk
‚ ppD˝q Ñ kr1s.

3 Virasoro extensions
After the higher dimensional version of the Kac–Moody, we turn towards a second example of
infinite-dimensional dg-Lie algebras: the Virasoro algebras. The 1-dimensional picture is somewhat
similar to that section 1.1, where, instead of considering the moduli of G-bundles on a fixed curve,
we consider the moduli space of curves itself. See for instance [FB04] for the details of what is
summed up below.

3.1 The case of curves
Denote by Mg,1 the moduli space of curves of genus g ě 2 with one marked point, and by
π : Mg,1,rig Ñ Mg,1 the bundle of infinitesimal coordinates at the marked point. More explicitly,
Mg,1,rig classifies triplets pX,x, νq where pX,xq is a genus g marked curve, and ν : pDx » pD is an
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isomorphism, where, as in section 1, pDx denotes the formal neighbourhood of x in X, and pD that
of 0 in A1.

Clearly Mg,1,rig is a principal AutppDq-bundle over Mg,1. Remarkably, the (fiber-wise) AutppDq-
action extends to a transitive action on the total space Mg,1,rig (see [Kon87; BS88]). To describe
informally this action, we fix pX,x, νq P Mg,1,rig and α P AutppD˝q. Intuitively, we can see the
curve X as the glueing of X ∖ x and pDx along the punctured formal neighbourhood pD˝

x. Altering
the glueing data using ν´1αν P AutppD˝

xq gives the new curve Xα, image of the action by α. In
practice, Xα has the same underlying space as X, with an altered structure sheaf around x.

Denote by Wk
1 “ DerppDq “ krrtssBt the Lie algebra of formal vector fields (in dimension 1),

and by Witt1 “ DerppD˝q “ kpptqqBt the Witt algebra:

Wk
1 Ă Witt1.

The above group actions yield an infinitesimal action of Wk
1 on the fibers of the projection

π : Mg,1,rig Ñ Mg,1 and a transitive action of Witt1 on the total space Mg,1,rig.
Denote by Mg the moduli spaces of genus g curves (as before, g ě 2) and by ω the Hodge

line bundle on Mg. Forgetting the marked point yields a projection p : Mg,1,rig Ñ Mg,1 Ñ Mg.
The line bundle p˚ω plays the role of the determinantal bundle (similarly to what was described
in section 1.1 above). Namely, the action of Witt1 does not extend to p˚ω. The obstruction to
this extension is a central extension class of Witt1 by k called the Virasoro class. It is represented
by the cocycle

Witt1 b Witt1 “ kpptqqBt b kpptqqBt k

fBt b gBt ´ 1
12 Respfg

3dtq.

The corresponding extension is the Virasoro algebra Vir:

0 Ñ k Ñ Vir Ñ Witt1 Ñ 0.

The action of Witt1 on Mg,1,rig then extends to an action of Vir on the Hodge bundle p˚ω.

3.2 The higher dimensional case
The global geometric picture available in dimension 1, albeit appealing, is not quite within reach
(yet) in the higher dimensional setting. Let us describe the state of progress on this question. Most
of the content of this section is work in progress, with M. Kapranov and A. Khoroshkin.

First, we can form the automorphism derived group stacks AutppDq and

AutppD˝q : A ÞÑ Map»
{ SpecAppD˝

A, pD˝
Aq,

where pD now denotes the formal disc of dimension d, and pD˝ is a placeholder for a wannabe d-
dimensional punctured formal disc. A construction, similar to that of the determinantal anomaly
(see diagram (3) and section 2) gives a derived group stack extension

1 Gm ĄAutppD˝q AutppD˝q 1. (9)

One possible construction relies on the following argument: the group stack AutppD˝q acts canon-
ically on the boundary operator K

pD˝ Ñ BK. The class of O
pD˝ is obviously invariant under this

action. It gives an AutppD˝q-invariant morphism

˚ K
pD˝ BK KpGm, 2q.

rOs det (10)

The resulting quotient morphism BAutppD˝q Ñ KpGm, 2q determines the above extension (9):

ĄAutppD˝q “ Ω
`

fib
`

BAutppD˝q Ñ KpGm, 2q
˘˘

.
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This extension has a Lie algebra counterpart, generalizing the 1-dimensional picture. First, the
group AutppDq has Lie algebra Wk

d , the Lie algebra of d-dimensional formal vector fields:

Wk
d “

d
à

i“1

krrt1, . . . , tdssBti

with rfBti , gBtj s “ f dgdti Btj ´ g dfdtj Bti (See [GF70b]. See also section 4 below for the importance of
this Lie algebra).

The automorphism group stack AutppD˝q being derived in nature, its Lie algebra is really the
dg-Lie algebra of derived derivations on pD˝:

Wittd :“ RΓppD˝,T
pD˝ q.

As with the Kac–Moody case, the cohomology of the underlying complex is easily computed:

HpppD˝,T
pD˝ q “

$

’

&

’

%

Wk
d if p “ 0,

Àd
i“1

1
t1...td

krt´1
1 , . . . , t´1

d sBti if p “ d´ 1,

0 otherwise.

The group stack extension ĄAutppD˝q (cf. (9) above) induces a dg-Lie algebra extension

0 k Vird Wittd 0 (11)

called the Virasoro (dg-)algebra in dimension d. This extension class has a direct Lie-algebraic
construction. The action of AutppD˝q on O

pD˝ gives an infinitesimal action of Wittd onto RΓppD˝,Oq:

Wittd REnd
`

RΓppD˝,Oq
˘

.

Note that on the right-hand side, RΓppD˝,Oq is to be considered with its "topology". In practice, it
is a Tate complex: obtained as an extension of a complete (i.e. pro-perfect) complex by a discrete
(i.e. ind-perfect) complex. The endomorphisms considered are assumed to be continuous in the
proper sense. See [Hen17b].

Following [Tat68] (see [FHK19] for the details), we can construct a canonical morphism
τ : HC1

`

REnd
`

RΓppD˝,Oq
˘˘

Ñ k called the trace anomaly. Its restriction along the universal
morphism RΓppD˝,Oq Ñ REnd

`

RΓppD˝,Oq
˘

agrees (up to an invertible scalar) with the residue
mentioned in proposition 1.5.3.

As a consequence, we get a central extension class τWitt P H2
LiepWittd,kq, corresponding to

the morphism

HLie
2 pWittd,kq HLie

2

`

REnd
`

RΓppD˝,Oq
˘

,k
˘

HC1

`

REnd
`

RΓppD˝,Oq
˘˘

k.

Universal trace5

Using an argument similar to that of section 2.4, we can prove that τWitt classifies the Virasoro
extension (11) coming from the group theoretic side.

We next try to better understand the extension class τWitt P H2
LiepWittd,kq. To do so, we

look at the space H2
LiepWittd,kq itself. First, the dg-Lie algebra Wittd comes as the derived

global section of a sheaf of local Lie algebras: the bracket is given by bi-differential operators. In
5The universal trace is a morphism HLie

‚ pA,kq Ñ HC‚´1pAq functorial in A any associating dg-algebra. It relates
to the generalized trace of Loday–Quillen–Tsygan from theorem 1.5.1.
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particular, it can be seen as the derived solutions of a Lie algebra in D-modules. In general, if L is
a sheaf of Lie algebras in D-modules over a scheme X, we can form a D-module version CED‚ pLq

of its Chevalley–Eilenberg homology (simply using the tensor product of D-modules). Taking its
(global) de Rham cohomology gives notion of “diagonal homology”:

CE∆
‚ pRΓdRpX,Lqq :“ RΓdRpX,CED‚ pLqq. (12)

It can be thought as an homological analog (i.e. a predual) of Gelfand and Fuks’ diagonal co-
homology (see [GF68; Fuk86], see also section 4 below), in algebraic geometry. It comes with a
canonical morphism

CE‚pRΓdRpX,Lqq Ñ CE∆
‚ pRΓdRpX,Lqq

which is in general not an equivalence.
In the case of pD˝ (or rather a polynomial version D˝ :“ Ad ∖ t0u) and L :“ T b DD˝ the Lie

algebra of vector fields, we can prove

Lemma 3.2.1. The diagonal homology CE∆
‚ pRΓdRpD˝,Lqq sits in a fiber-cofiber sequence

CE‚pWk
d q Ñ CE∆

‚ pRΓdRpD˝,Lqq Ñ CE‚´2d`1pWk
d q,

where Wk
d is (as above) the Lie algebra of formal vector fields in dimension d.

A lot is known of the (co)homology of Wk
d (see [Fuk86, p.89]):

HnLiepWk
d ,kq “

#

0 for 0 ă n ă 2d` 1 and n ą dpd` 2q

krx1, . . . , xds
Sd

d`1 for n “ 2d` 1,

where krx1, . . . , xds
Sd

d`1 denotes the vector space of symmetric polynomials of total degree d `

1. As a consequence, the degree 2 diagonal cohomology of vector fields on D˝ is isomorphic to
krx1, . . . , xds

Sd

d`1. The canonical morphism between diagonal and non-diagonal cohomology thus
induces a morphism

krx1, . . . , xds
Sd

d`1 Ñ H2
LiepRΓpD˝,Tq,kq

„
Ð H2

LiepWittd,kq.

Conjecture 3.2.2. The morphism krx1, . . . , xds
Sd

d`1 Ñ H2
LiepRΓpD˝,Tq,kq

„
Ð H2

LiepWittd,kq is an
isomorphism. Moreover, the class τWittd corresponds, in krx1, . . . , xds

Sd

d`1, to the p2d` 2q-th Todd
character Td2d`2:

• Td “
śd
i“1

xi

1´e´xi
P krrx1, . . . , xdssSd is the Todd genus,

• Td2d`2 is its degree d` 1 component.

This conjecture is a local Riemann–Roch kind of statement, comparable to theorem 1.5.4. For
a fully fledged local Riemann–Roch theory, mixing both Chern and Todd characters, one should
look at a higher dimensional version of the Atiyah algebra, by acting on the tangent sheaf rather
than on the structure sheaf in the above construction.

We will describe, in section 4 below, an attempt at proving this conjecture. However un-
successful, this attempt still lead to interesting results in [HK22]. Further ideas towards proving
conjecture 3.2.2 will be discussed in section 5. Before that, let us conclude this section with a
remark about the geometric picture. Trying to generalize the statements of section 3.1, an issue
arises with the moduli space of varieties itself: deformations of algebraic varieties need not be
algebraic themselves. In particular, one needs to work in the setting of derived analytic geometry,
as developed in [Por19; Por15; PY20], adding technical difficulties to the mix. This direction will
(hopefully) be pursued in future work.
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4 Gelfand–Fuchs cohomology in algebraic geometry
The conjecture 3.2.2 fits in a more global question:

Given a smooth variety X, can we compute the Chevalley–Eilenberg cohomol-
ogy of it Lie algebra of vector fields?

In differential geometry, the cohomology of the Lie algebra of vector fields of a manifold M is known
as the Gelfand–Fuchs cohomology of M . It was the subject of intense research in the 1970’, starting
with the founding articles of Gelfand and Fuchs [GF68; GF70b], followed by [Gui73; Hae76; BS77]
among others. See below or in [Fuk86, Chap. 2 §4] for an account on the matter.

In this section, we will describe the main results of [HK22]. It deals with Gelfand–Fuchs
cohomology of algebraic varieties:

Theorem 4.0.1 ([HK22]). Let X be a d-dimensional smooth algebraic variety6 over C.

(a) The Gelfand–Fuchs cohomology H‚
GFpXq :“ H‚

LiepRΓpX,TXq,Cq of X comes equipped with a
so-called diagonal filtration H‚

GF,ďnpXq. We call the total space of this filtration the topological
Gelfand–Fuchs cohomology H‚

GF,toppXq (see definition 4.3.1). It is equipped with a canonical
morphism

τX : H‚
GF,toppXq :“ colim

n
H‚

GF,ďnpXq Ñ H‚
GFpXq.

(b) There is space Yd (depending only on the dimension d), a bundle Y an
X Ñ Xan with fiber Yd

(over the analytification Xan of X) and a canonical equivalence

H‚
GF,toppXq » H‚

SingpSectpY an
X Ñ Xanq,Cq

with the singular cohomology of the space of sections of the bundle Y an
X Ñ Xan.

(c) If X is affine, then the diagonal filtration is exhaustive: i.e. the morphism τX is an equiva-
lence. As a consequence, the Gelfand–Fuchs cohomology H‚

GFpXq of X is finite dimensional
in every degree (but there may be infinitely many non-zero cohomology groups).

A differentiable analog of assertion (c) was known for a while [Hae76; BS77]. See theorem 4.1.1
below. In the algebraic case, is was conjecture by Feigin in the 1980’, and the question stayed open
since. In the case of complex analytic vector fields, Kawazumi proved a similar statement for open
curves (see [Kaw93]).

As we will explain in section 4.1 below, the space Yd and the idea of bundles Y an
X is by no means

new, and can be traced back to the early work of Gelfand and Fuchs [GF70b] in the differentiable
case. The space Yd has the crucial property that its (real or complex) singular cohomology is the
Chevalley–Eilenberg cohomology of Wd, the Lie algebra of (real or complex) formal vector fields.

Seeing how the bundle YX is constructed (see below), we can deduce that H‚
GF,toppXq (and thus

also H‚
GFpXq in the affine case) depends only on the rational homotopy type of the analytification

Xan of X, on its dimension and of its tangent sheaf’s Chern classes.
We give here some interesting examples. The rest of the section will be dedicated to sketching

the proof of theorem 4.0.1.

Examples 4.0.2.
(a) If X “ A1

k ∖ t0u is the punctured affine line. Reducing to k “ C, we get

H‚
Liepkrt, t´1sBt,kq » krα, βs,

with α of degree 2 and β of degree 3. Indeed, assuming k “ C, then Y an
X is a trivial bundle

with fiber Y1 homotopic to S3. The theorem allows to compute

H‚
LiepCrt, t´1sBt,Cq » H‚

SingpMappS1, S3q,Cq » H‚
SingpΩS3 ˆ S3,Cq » Crβ, γs

6The more general case of smooth varieties over any field k of characteristic 0 can be deduced from that of C.
See [HK22].
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with β of degree 2 and γ of degree 3. This computation relates to the Gelfand–Fuchs coho-
mology of the circle [GF68], and explicit formulas can be spelled out for the classes β and γ.
The class β leads to the Virasoro extension in dimension 1.

(b) If X “ P1
k then we have H‚

GFpP1
kq “ H‚

Liepsl2pkq,kq » krγs with γ in degree 3. On the other
hand, the bundle Y an

X is also trivial and we find (after reducing to the complex case):

H‚
GF,toppP1

kq » H‚
SingpMappCP1, S3q,kq » H‚

SingpΩ2S3 ˆ S3,kq » krα, γs

with α of degree 1 and γ in degree 3. The graded ring krα, γs is isomorphic to H‚
Liepgl2pkq,kq,

and the canonical morphism

τP1 : H‚
Liepgl2pkq,kq » H‚

GF,toppP1
kq Ñ H‚

GFpP1
kq “ H‚

Liepsl2pkq,kq

identifies with the restriction along the inclusion sl2 Ă gl2.
A similar statement for higher dimensional projective spaces is not yet known. It would
provide an interesting insight on the topological cohomology and its behaviour.

(c) If X “ E is an elliptic curve, then

H‚
GF,toppEq » H‚

SingpMappS1 ˆ S1, S3q,kq » krα, β1, β2, γs

with α in degree 1, β1 and β2 in degree 2 and γ in degree 3. On the other hand, RΓpE,Tq “

k ‘ kr´1s is an abelian dg-Lie algebra. In particular

HnGFpEq »

#

krrxss if n “ 0, 1,
0 otherwise.

In this example we thus have H‚
GF,toppEq finite dimensional in each degree, but spread out

on an infinite number of cohomology groups on one side, and H‚
GFpEq infinite dimensional in

two degrees, and zero elsewhere on the other side.

(d) Let X “ Pdk ∖ Z with Z a smooth quadric hypersurface. A more evolved computation (see
[HK22, §6.5]) shows

H‚
GFpPdk ∖ Zq »

#

H‚
SingpYd,kq » H‚

LiepWk
d ,kq if d is even,

H‚
SingpMappSd, Ydq,kq if d is odd.

(e) If X “ D˝ :“ Ad ∖ t0u, then Y an
X » Cd ∖ t0u ˆ Yd and we get

H‚
GF,toppD˝q » H‚

SingpMappCd ∖ t0u, Ydq,kq » H‚
SingpMappS2d´1, Ydq,kq

Using Serre’s spectral sequence, one can compute H2
SingpMappS2d´1, Ydq,kq » H2d`1

Sing pYd,kq »

H2d`1
Lie pWk

d ,kq » krx1, . . . , xds
Sd

d`1. In particular, the morphism τD˝ induces a morphism

krx1, . . . , xds
Sd

d`1 » H2
GF,toppD˝q Ñ H2

GFpD˝q

to be identified with the morphism of conjecture 3.2.2. In particular, conjecture 3.2.2 would
follow from an extension of assertion (c) of theorem 4.0.1 to the quasi-affine case, or more
humbly to Ad ∖ t0u alone. See section 5 for possible research in this direction.
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4.1 The case of differentiable manifolds
Let us first give a modern overview of the differentiable case. The results explained in this section
are due to Gelfand–Fuchs [GF68; GF70b], Guillemin [Gui73], Haefliger [Hae76] and Bott–Segal
[BS77].

Let us fix a smooth manifold M , of dimension d and denote by H‚
GFpMq its Gelfand–Fuchs

cohomology, that is the Chevalley–Eilenberg cohomology of its Lie algebra of global vector fields
VectpMq:

H‚
GFpMq :“ H‚pVectpMq,Rq.

The goal is to compute H‚
GFpMq.

The local case: Consider first M “ Rd. Expansion at 0 P Rd gives a morphism VectpRdq Ñ WR
d ,

and thus a restriction map
H‚

LiepWR
d ,Rq

„
Ñ H‚

GFpRdq

which turns out to be an isomorphism (see [GF70b]). As a consequence, for any immersion of a
disc D in Rd, the induced morphism H‚

GFpDq Ñ H‚
GFpRdq is an isomorphism. From this, we get

the (informal and not quite true) intuition that Gelfand–Fuchs cohomology should appear as the
global sections of a locally constant cosheaf, with costalk H‚

LiepWR
d ,Rq. Before explaining why this

intuition is incorrect, and how to fix it, let us describe the tentative costalk in more details. This
is the content of [GF70b].

The main ingredient here is the Gelfand–Fuchs skeleton Yd (mentioned above), satisfying

H‚
LiepWR

d ,Rq » H‚
SingpYd,Rq. (13)

The approach depicted here is not quite the original (and more computational) approach of Gelfand
and Fuchs. We only sketch the construction and the proof of (13). For further details, see [HK22,
Sec. 1].

The first step is to reduce to complex coefficients. Then, the space Yd will come with an
action of the Lie group GLdpCq, and the above isomorphism will be compatible with this action.
To construct Yd, we will first construct the quotient Yd{GLdpCq. We start by considering the
natural GLdpCq-action on WC

d . It induces, on the Chevalley–Eilenberg complex of WC
d , an action

à la Bernstein–Lunts: the Lie group acts and the induced infinitesimal action of the Lie algebra
is null-homotopic. The (homotopy) fixed points under this action are then given by the relative
Chevalley–Eilenberg cohomology that Gelfand and Fuchs compute

H‚
LiepWC

d , gldpCq,Cq » Cre1, . . . , eds{I

where ei has cohomological degree 2i and I is the ideal of polynomials of cohomological degree
greater than 2d.

The wannabe quotient Yd{GLdpCq should thus satisfy

H‚
Sing

´

Yd{GLdpCq,C
¯

» H‚
LiepWC

d , gldpCq,Cq » Cre1, . . . , eds{I.

Observe then that the cohomology of the classifying space BGLdpCq is the graded ring Cre1, . . . , eds

with ei as above. The space Yd{GLdpCq should thus be a 2d-skeleton in BGLdpCq. To make proper
sense of this skeleton, we rely on the description of (the homotopy type of) BGLdpCq as an infinite
Grassmannian Grpd,C8q of d-dimensional subspaces of C8. We then define sk2d Ă GrpCd,C8q as
the 2d-skeleton with respect to the Schubert cell decomposition. The space sk2d is our candidate
for Yd{GLdpCq, as it satisfies by construction

H‚
Singpsk2d,Cq » Cre1, . . . , eds{I » H‚

LiepWC
d , gldpCq,Cq. (14)
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The space Yd is the homotopy fiber product

Yd ˚

sk2d BGLdpCq.

Because the equivalence (14) is compatible with the action of Cre1, . . . , eds “ H‚
SingpBGLdpCq,Cq,

this implies an equivalence
H‚

LiepWC
d ,Cq » H‚

SingpYd,Cq, (15)

which is furthermore compatible with the Bernstein–Lunts actions of GLdpCq. Further computa-
tions lead to the properties of H‚

LiepWC
d ,Cq (or more generally of H‚

LiepWk
d ,kq for any field k of

characteristic 0) mentioned above conjecture 3.2.2:

HnLiepWk
d ,kq “

#

0 for 0 ă n ă 2d` 1 and n ą dpd` 2q

krx1, . . . , xds
Sd

d`1 for n “ 2d` 1.

As a corollary, we get that the Gelfand–Fuchs cohomology of Rd is finite dimensional.

The global case: To state the global result, we first need a version of Yd over a d-dimensional
manifold. Consider the complexified tangent vector bundle TC

M :“ TM bR C of M . It is classified
by a morphism M Ñ BGLdpCq. We denote by YM the homotopy fiber product

YM M

sk2d BGLdpCq.

TC
M

In other words, YM :“ TC
M ˆGLdpCq Yd is the bundle over M with fiber Yd associated to TC

M .

Theorem 4.1.1 (Haefliger [Hae76], Bott–Segal [BS77]). Let M be a smooth manifold of dimension
d that admits a finite cover by convex discs (e.g. M is compact or is the interior of a compact
manifold with boundary). There is an equivalence

H‚
GFpMq » H‚

SingpSectpYM Ñ Mq,Rq.

As a consequence, the Gelfand–Fuchs cohomology H‚
GFpMq of M is finite dimensional in every

degree (although there may be infinitely many non-vanishing cohomology groups).

This theorem is a global version of equation (13) above. In order to globalize such an iso-
morphism, we would like to say that Gelfand–Fuchs cohomology is some kind of cosheaf. Taken
to naively, this statement is false. Consider the very simple example of a manifold M consist-
ing of two connected components M1 and M2. If H‚

GF were a cosheaf (in complexes), we’d have
H‚

GFpMq » H‚
GFpM1q ‘ H‚

GFpM2q, but instead we have

H‚
GFpMq » H‚

GFpM1q b H‚
GFpM2q.

This sort of multiplicative cosheaf structure is precisely what factorization algebras are encoding.
We refer to [Gin15] for a survey of factorization algebras in this topological context.

Informally, a pre-factorization algebra (say, in complexes of k-vector spaces) over M is a
pre-cosheaf F : OpenpMq Ñ Cpkq endowed with (compatible) additional structural equivalences

µU1,...,Un
: FpU1q b ¨ ¨ ¨ b FpUnq » FpU1 > ¨ ¨ ¨ > Unq (16)
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for U1, . . . , Un pairwise disjoint in M . Using this structure, we can form for any N Ă M open and
any finite covering U “ tU1, . . . , Unu of N a factorizing Čech diagram

ČbpF ,Uq :“

¨

˚

˚

˝

¨ ¨ ¨
à

α,βPPU

â

UPα
V Pβ

FpU X V q
à

αPPU

â

UPα

FpUq

˛

‹

‹

‚

,

where PU is the set of sets of mutually disjoint elements of U: i.e. α P PU if α “ tUi1 , . . . , Uipu

with Uir XUis “ ∅ if r ‰ s. A pre-factorization algebra F is a factorization algebra if for any open
subset N Ă M and any finite covering U of N , the canonical morphism colim ČbpF ,Uq Ñ FpNq

is an equivalence.
The factorization homology of a factorization algebra F is, by definition, its global cosections:

ˆ
M

F :“ FpMq.

Theorem 4.1.2 (Bott–Segal, [BS77, Cor. 5.8 and Prop. 6.2]). The following functors are factor-
ization algebras on M :

FGF : U ÞÑ GF‚
pUq

FSect : U ÞÑ Sing‚
RpSectpYU Ñ Uqq,

where GF‚
pUq :“ CE‚

pVectpUq,Rq is the Gelfand–Fuchs complex of U and Sing‚
RpSectpYU Ñ Uqq

is the singular complex of SectpYU Ñ Uq, so that we have

HnpGF‚
pUqq » HnGFpUq and HnpSing‚

RpSectpYU Ñ Uqqq » H‚
SingpSectpYU Ñ Uq,Rq.

The case of FGF relies on Gelfand and Fuchs’ diagonal filtration on the Gelfand–Fuchs complex
GF‚

pMq (introduced in [GF69; GF70a]). We will describe in more details its algebraic analog in
section 4.3.

The case of FSect can be seen as a precursor to Lurie’s non-abelian Poincaré duality theorem
[Lur17, Thm. 5.5.6.6]. It relies on the crucial fact that the space Yd is d-connected (actually, it is
2d-connected). Using said fact, we can then use a generalization of the Eilenberg–Moore spectral
sequence, due to Anderson [And72].

Those factorization algebras are moreover locally constant, in the sense that if U Ă V is an
homotopy equivalence, then FFGpUq Ñ FFGpV q is an equivalence (and similarly for FSect). The key
point is then the following: such factorization algebras are determined by their costalk at a point,
equipped with an Ed-algebra structure (here, actually a commutative algebra structure), and an
action of GLdpRq. In this case, the costalks are (respectively) H‚

LiepWR
n ,Rq and H‚

SingpYd,Rq. The
equivalence (15) identifies said stalks (with all their structure!) and thus provides an equivalence
FGF » FSect. This implies theorem 4.1.1

H‚
GFpMq »

ˆ
M

FFG »

ˆ
M

FSect » H‚
SingpSectpYM Ñ Mqq.

4.2 Factorization algebras in the algebraic context
Because of the lack of open subsets for the Zariski topology, factorization algebras defined as
cosheaves (like in the differentiable context) do not work so well. Like in Verdier duality, the trick
is to mimic cosheaf-behaviours using exceptional pullbacks and pushforward of sheaves. Algebraic
factorization algebras appeared first in [BD04]. Like therein, we will work with factorization
algebras in D-modules.

To get to define structure morphisms like µU,V in (16), for disjoint opens subsets U and V ,
we see the pair U, V as a neighbourhood of a configuration tx, yu of two distinct points x P U and
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y P V . In plain terms, this means we shall work with a space of configurations of points (i.e. of
finite subsets, without fixing a cardinal): the Ran space. First introduced by Borsuk and Ulam
[BU31] in the topological setting, the Ran space was later studied in the algebraic context by Ran
[Ran93; Ran00]. Interestingly, it also appears in Haefliger’s work on Gelfand–Fuchs cohomology
[Hae76], a sign that ideas behind factorization algebras were already present at the time.

The algebro-geometric definition of the Ran space is the following. Denote by Fi
↠
n the category

whose objects are non-empty finite sets, and morphisms are surjections. We then set, forX a variety

RanX :“ colim
IPFi

↠
n

XI .

D!-factorization algebra: A D!-module over RanX is a family pEpIqqI of D-modules over each
XI , such that for any diagonal embedding δ : XJ Ñ XI , we have δ!EpIq » EpJq. It factorization
homology (we do not yet require a factorization structure) is the global (co)sections:

ˆ
X

E :“ colim
IPFi

↠
n

RΓdR

´

XI , EpIq
¯

.

There is also a compactly supported factorization homology, defined as
ˆ c

X

E :“ colim
IPFi

↠
n

RΓc
dR

´

XI , EpIq
¯

.

The factorization structure (corresponding to the morphisms µ of (16)) is defined as follows.
Given a surjection α : I ↠ J , we define Upαq the open subset of XI given by

Upαq “ tpxiqiPI | the subsets Ij :“ txi, i P α´1pjqu, j P J, are pairwise disjointu.

A factorization structure on E “ pEpIqqI is the datum of compatible equivalences

E
pIq

|Upαq
»

˜

ò

jPJ

EpIjq

¸

|Upαq

.

For example, with a factorization structure, the stalk of Ept1,2uq at a configuration x ‰ y P X is
equivalent to the tensor product of the stalks of Ep˚q “ Ept1uq “ Ept2uq at x and y. A D!-module
over RanX equipped with a factorization structure is called a D!-factorization algebra7.

It is rather easy to construct a D!-factorization algebra computing Chevalley–Eilenberg homol-
ogy of a sheaf of Lie algebras. Fix L a sheaf of k-linear Lie algebras on X. The Chevalley–Eilenberg
homology of the dg-Lie algebra RΓpX,Lq is computed by the complex

¨ ¨ ¨ Λ3RΓpX,Lq Λ2RΓpX,Lq RΓpX,Lq k 0

RΓpX3, Lb3qS3
RΓpX2, Lb LqS2

» » (17)

where the symmetric group Sn acts on RΓpXn, Lbnq by permuting the factors and multiplying
by the signature. From this perspective, it becomes quite natural to try and define a factorization
algebra E such that EpIq “ LbI . This does not quite work, for three reasons: first, we should
be working with D-modules ; second, the antisymmetric action and the Lie structure need to
be factored in somehow ; and third, and more importantly, we cannot hope for an equivalence
∆!pLb Lq » L. Fixing those three points lead to the following construction.

7This notion is often simply called a factorization algebra in the literature. We add the D! to emphasize the
difference with a dual notion to be introduced below.
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Example 4.2.1. Fix a Lie algebra L in D-modules over X (for instance L “ TX b DX induced
from the tangent sheaf, with the bracket of vector fields). For I a finite set a q an integer, we
denote by EqqpIq the (finite) set of equivalence relations on elements of I with exactly q equivalence
classes. We set

CpIq
q :“

à

„PEqqpIq

δ˚

`

LbI{„ b detpkI{„q
˘

where δ : XI{„ Ñ XI is the diagonal embedding. In particular,

CpIq
q “

$

’

&

’

%

LbI b detpkIq if q “ cardpIq is the cardinal of I,
L if q “ 1,
0 if q ď 0 or q ą cardpIq.

The Lie bracket induces a square-zero differential CpIq
q Ñ CpIq

q´1. We define C‚pX,Lq by

C‚pX,LqpIq :“
´

0 Ñ CpIq

cardpIq
Ñ ¨ ¨ ¨ Ñ CpIq

q Ñ ¨ ¨ ¨ Ñ CpIq

1 Ñ 0
¯

This is not quite a D!-module over the Ran space. Indeed, the natural morphisms C‚pX,LqpJq Ñ

δ!C‚pX,LqpIq (associated to diagonal embeddings δ : XJ Ñ XI) are not equivalences. Nevertheless,
this can formally be made into a factorization algebra by a strictification process (see [HK22, Def.
5.1.4] for more details). Its factorization homology computes the (reduced) Chevalley–Eilenberg
homology of the dg-Lie algebra of global solutions of L:

ˆ
X

C‚pX,Lq » ĎCE‚pRΓdRpX,Lq,kq.

When L “ TX b DX , this computes the (reduced) Gelfand–Fuchs homology of X.

rrDss-factorization algebras: Since we are mostly interested in Chevalley–Eilenberg cohomol-
ogy, we will need a dual notion (in the sense of Verdier duality), that we call rrDss-factorization
algebras. Because we do not have any finiteness assumption on our D-modules (such as holo-
nomicity), this Verdier duality takes values in complete D-modules (represented as pro-perfect
D-modules). For f : X Ñ Y and E a complete D-module on Y , we denote by f rr˚sspEq the com-
plete D-module on X:

f rr˚sspEq :“
`

f !pE_q
˘_
.

This allows us to define rrDss-modules over RanX, as a collection pFpIqq of complete D-modules
over the XI ’s, with equivalences δrr˚sspFpIqq » FpJq for any diagonal embedding δ : XJ Ñ XI . The
factorization structure is defined similarly. The (compactly supported) factorization cohomology
of a rrDss-factorization algebra F is then the complete complex of k-vector spaces

˛
X

F :“ lim
IPFi

↠
n

RΓdRpXI , FpIqq and
˛ c

X

F :“ lim
IPFi

↠
n

RΓc
dRpXI , FpIqq.

The Verdier duality provides an equivalence between D!- and rrDss-factorization algebra. We have
moreover

ˆ˛
X

F

˙˚

»

ˆ c

X

F_ and
ˆ˛ c

X

F

˙˚

»

ˆ
X

F_.

Example 4.2.2. The rrDss-factorization algebra Č‚pX,Lq is defined as the Verdier dual of C‚pX,Lq

from example 4.2.1. Its compactly supported factorization cohomology computes the (reduced)
Chevalley–Eilenberg cohomology:

˛ c

X

Č‚pX,Lq » ĎCE
‚
pRΓdRpX,Lq,kq.
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In particular, if L “ TXbDX , the right-hand-side is nothing else than the (reduced) Gelfand–Fuchs
cohomology of X:

˛ c

X

Č‚pX,TX b DXq » ĎCE
‚
pRΓpX,TXq,kq “ ĎGF

‚
pXq.

4.3 Diagonal filtration and covariant Verdier duality
Introduced by Gelfand and Fuchs in [GF69; GF70a], the diagonal filtration on Gelfand–Fuchs
cohomology is central to the differentiable case. It induces an important spectral sequence, allowing
some computations. We will use neither the diagonal filtration nor the induced spectral sequence
directly. Still, let us describe it in terms of factorization algebras, as it shed light on the similarities
between the arguments we give, and the ones in differential geometry.

Fix a positive integer n and, for I a finite set, denote by XI
ďn Ă XI the closed subvariety of

I-tuples composed of at most n different points. For F a rrDss-factorization algebra, we set
˛ c,ďn

X

F :“ lim
I

RΓdR,c

XI
ďn

`

XI , FpIq

˘

,

where RΓdR,c
Z computes the compactly-supported de Rham cohomology supported on Z. This

defines a filtration8

0 Ñ

˛ c,ď1

X

F Ñ ¨ ¨ ¨ Ñ

˛ c,ďn

X

F Ñ ¨ ¨ ¨ Ñ

˛ c

X

F.

Crucially, and contrary to the differentiable situation, this filtration does not need to be exhaustive:
the morphism

colim
n

˛ c,ďn

X

F Ñ

˛ c

X

F

does not need to be an equivalence. Specializing to the Gelfand–Fuchs factorization algebra
Č‚pX,TX b DXq gives the diagonal filtration in the algebraic setting:

0 Ñ GF‚
ď1pXq Ñ ¨ ¨ ¨ Ñ GF‚

ďnpXq Ñ ¨ ¨ ¨ Ñ GF‚
pXq.

The first term, GF‚
ď1pXq is often referred to as the diagonal complex, and its cohomology as the

diagonal cohomology. It is dual to the diagonal homology introduced in equation (12) above.
Like for diagonal homology, diagonal cohomology comes as the (derived and compactly supported)
global solutions of a D-module C‚

∆pXq on X.
We are now ready to define the topological Gelfand–Fuchs cohomology used in the statement

of theorem 4.0.1:

Definition 4.3.1. The topological Gelfand–Fuchs cohomology of X is computed by the total space
of the diagonal filtration

GF‚
toppXq :“ colim

n
GF‚

ďnpXq, H‚
GF,toppXq :“ H‚pGF‚

toppXqq.

This concludes the construction of assertion (a) of theorem 4.0.1.
We can give a more explicit description of this diagonal filtration. Set L “ T b DX . Recall

the (bi)complex (17), or rather its dual, computing Gelfand–Fuchs cohomology:

0 RΓc
dRpX,L_q RΓc

dR

`

X2, pL_qb2
˘S2

RΓc
dR

`

X3, pL_qb3
˘S3

¨ ¨ ¨

8A dual version of the filtration is also available for D!-factorization algebras.
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In each Xq, we can consider the closed subvariety Xq
ďn. The filtration part H‚

GF,ďnpXq is then
computed by the above complex, where de Rham cohomology is replaced with de Rham cohomology
with support in Xq

ďn:

0 RΓc
dRpX,L_q ¨ ¨ ¨ RΓdR,c

Xq
ďn

pXq, pL_qbqq
Sq

¨ ¨ ¨

Since Xq
ďn “ Xq if n ě q, the filtration is trivially exhaustive on every graded part. How-

ever, in the resulting total complex, a fixed cohomological degree may sees contributions of every
RΓdR,c

Xq
ďn

pXq, pL_qbqq
Sq (since this complex is not necessarily coconnective).

In particular, the filtration does not need to be exhaustive in the general case (and it is not,
see examples 4.0.2). In the affine case however:

Proposition 4.3.2. Assuming X is affine, the complex

RΓdR,c
Xq

ďn

`

Xq, pL_qbq
˘

» RΓ
´

pXq
ďn,T

bq
X

¯˚

is concentrated is degree 0. This implies the diagonal filtration is exhaustive in this case, and thus
proves assertion (c) of theorem 4.0.1.

It remains to proof assertion (b) in theorem 4.0.1. This will be proven by using analytification
of factorization algebras and theorem 4.1.2. We will see in section 4.4 that topological factorization
algebras can be obtained from (nice enough) D!-factorization algebras. The proof will thus rely
on expressing GF‚

toppXq as the factorization homology of a D!-factorization algebra associated to
Č‚pX,TX b DXq. This process, introduced by Gaitsgory and Lurie [GL14], is called covariant
Verdier duality.

Covariant Verdier duality: From a rrDss-factorization algebra F , we build a D!-factorization
algebra as follows. Fix I a non-empty finite set and consider the canonical morphism fI : X

I Ñ

RanX.
Imagine for a moment that F was an honest sheaf (and not a rrDss-module) on RanX. Con-

structing a D!-module becomes fairly straightforward: simply set EpIq :“f !IF . In practice however,
F is a rrDss-module and thus a family of D-modules pFpSqq, S P Fi

↠
n, with additional structural

equivalences.
We could then consider EpIq

S :“ f !IfS˚FpIq. Again the formal meaning of this is not completely
clear, so we rely on a putative base change formula to properly define EpIq

S . Let ∆pI, Sq be the
intersection of XI and XS in RanX. In practice, ∆pI, Sq is the closed subvariety of XI ˆ XS

defined by
∆pI, Sq :“ tpxiqiPI , pysqsPS | txi, i P Iu “ tys, s P Suu.

It is thus made of pairs of tuples spanning the same set. Denote by p : : ∆pI, Sq Ñ XI and
q : ∆pI, Sq Ñ XS the projection. We define9:

E
pIq

S :“ p˚q
!FpSq and EpIq :“ lim

S
E

pIq

S .

The family ψpF q :“E “ pEpIqq assembles into a D!-module on RanX. A highly technical argument
allows further to carry the factorization structure on F to a factorization structure on ψpF q. The
D!-factorization algebra ψpF q is called the covariant Verdier dual10 of F . It comes with canonical
morphisms ˆ

X

ψpF q Ñ

˛
X

F and
ˆ c

X

ψpF q Ñ

˛ c

X

F

9The definition relies on some finiteness assumption (coherence) on F , a technical detail we choose to omit. See
[HK22] for details

10A dual construction carries D!-factorization algebras to rrDss-factorization algebras. Those constructions are not
necessarily inverse to each other.
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Moreover, a formal computation identifies
´ c
X
ψpF q with the total space of the diagonal filtration.

Applying this to Č‚pX,TX b DXq yield the following proposition.

Proposition 4.3.3.ˆ c

X

ψ
`

Č‚pX,TX b DXq
˘

» colim
n

GF‚
ďnpXq “: GF‚

toppXq.

4.4 Analytification and the role of factorization structures
Let us denote by Xan the analytification of X. The Riemann–Hilbert correspondence implies that
if EpIq is regular holonomic over XI , then there is an analytic D-module EpIq

an over XI
an; and EpIq

and EpIq
an have the same solutions (i.e. analytic solutions are algebraic)

RΓdRpXI , EpIqq » RΓpXI
an,DRpEpIq

an qq

´

and RΓc
dRpXI , EpIqq » RΓcpXI

an,DRpEpIq
an qq

¯

We refer to [Bor87] for a good account on algebraic D-modules and the Riemann–Hilbert corre-
spondence. This allows us to analytify regular holonomic D!-modules over RanX:

Definition 4.4.1. Let E be a regular holonomic D!-module over RanX (meaning that each EpIq

is regular holonomic). For any V Ă Xan open subset, we set

AEpV q :“ colim
I

RΓcpV I ,DRpEpIq
an qq.

The assignment V ÞÑ AEpV q defines a precosheaf on Xan, which, by the Riemann–Hilbert corre-
spondence, satisfies:

AEpXanq “:

ˆ
Xan

AE »

ˆ c

X

E.

In the previous section, and up until this point, the (algebraic) factorization structures were
not paramount to the discussion. Most of what was said concerns D!- and rrDss-modules over the
Ran space. The role of the factorization structures appears here:

Proposition 4.4.2. If E is a D!-factorization algebra then

(a) If Ep˚q is regular holonomic over X˚ “ X then E is regular holonomic (the converse tauto-
logically holds);

(b) If E is regular holonomic, then AE is a factorization algebra.

We will apply this to E “ ψ
`

Č‚pX,TX b DXq
˘

. It starts with computing the stalk of Ep˚q

at any closed point x P X. By construction, the D-module Ep˚q is nothing but the diagonal
cohomology D-module C‚

∆pXq mentioned just above definition 4.3.1. A rather straightforward
computation shows that the stalk of C‚

∆pXq at x is the Chevalley–Eilenberg cohomology of the Lie
algebra of formal vector fields at x:

i!xpC‚
∆pXqq » H‚

LiepWX,xq » H‚
LiepWC

d q.

This is in particular finite dimensional, which implies that C‚
∆pXq is holonomic. It is also regular,

since C‚
∆pXq (and actually E itself) extend naturally to any smooth compactification of X.

Definition 4.4.3. We denote by AX the topological factorization algebra AψpČ‚pX,TXbDXqq.

From all of the above, we get

GF‚
toppXq »

ˆ c

X

ψ
`

Č‚pX,TX b DXq
˘

»

ˆ
Xan

AX .

To conclude the proof of theorem 4.0.1, it remains to compute the right-hand-side. This is the
content of the next subsection.
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4.5 Finishing the proof: the topological side
The remaining arguments will closely follow the (sketch of) proof of theorem 4.1.1 given above. A
couple of adaptations need to be made. First, to construct the bundle Y an

X Ñ Xan. Its fiber Yd is
the same as in section 4.1 except d is now the complex dimension of X or Xan (and no the real
dimension). It is in particular a GLdpCq-space. Using the principal GLdpCq-bundle associated to
the tangent of Xan, we form the fibration Y an

X Ñ Xan:

Y an
X :“ Yd ˆ

GLdpCq

TXan
Ñ Xan.

Since Yd is 2d-connected, and 2d is the real dimension of Xan, the proof of theorem 4.1.2 extends
to show that the functor

FXan

Sect : U ÞÑ Sing‚
CpSectpY an

X Ñ Xanqq

is a topological factorization algebra over the smooth real manifold Xan. By definition, we thus
have

H‚
SingpSectpY an

X Ñ Xanq,Cq »

ˆ
Xan

FXan

Sect .

Like in the C8 case, the factorization algebras FXan

Sect and AX are both locally constant. They
are thus determined by they stalks (with their GLdpCq-equivariant E2d-algebra structures). Those
stalks are respectively H‚

SingpYd,Cq and H‚
LiepWC

d ,Cq. They are equivalent (with all their structure)
by (15). We get FXan

Sect » AX , and thus

H‚
GF,toppXq »

ˆ
Xan

AX »

ˆ
Xan

FXan

Sect » H‚
SingpSectpY an

X Ñ Xanq,Cq.

This concludes our survey of the proof of theorem 4.0.1.

5 Further work

5.1 Gelfand–Fuchs cohomology with coefficients
The differentiable case: Gelfand–Fuchs cohomology is not restricted to constant field coeffi-
cients, and given, say, a manifold M , we could for instance consider the cohomology

H‚
LiepVectpMq, C8pM,Rqq.

It is known as the Gelfand–Fuchs cohomology with coefficients in functions (in this case). Of course,
other coefficient sheaves (or complexes thereof) can be used: e.g. the de Rham complex, the sheaf
of forms, or of vector fields. In this differentiable context, those cohomology groups where studied
by Tsujishita in [Tsu81] (see [Fuk86, Thm. 2.4.10] for an account of this work). First observe that
the total space TM of the principal GLdpCq-bundle associated to the complexified tangent bundle
TC
M of M embeds in the space YM . Tsujishita then considers the space

ZM :“ tpx, sq P M ˆ SectpYM Ñ Mq | spxq P TMu.

Theorem 5.1.1 (Tsujishita [Tsu81]). Under the assumption that M is simply connected and can
be covered by a finite number of discs:

H‚
LiepVectpMq, C8pM,Rqq » H‚

SingpZM ,Rq.

His proof relies on the following ideas:

(i) The Chevalley–Eilenberg complex CE‚
pVectpMq, C8pM,Rqq comes with a diagonal filtration,

similar to the one existing for constant coefficients. We write CE‚
∆p¨ ¨ ¨ q for its diagonal part.
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(ii) The Chevalley–Eilenberg complex CE‚
pVectpMq,Ω‚

M q with coefficients in the de Rham com-
plex11 acts on CE‚

pVectpMq, C8pM,Rqq (in a way compatible with the diagonal filtrations);

(iii) There is an equivalence

CE‚
pVectpMq, C8pM,Rqq » CE‚

∆pVectpMq, C8pM,Rqq b

CE‚
∆pVectpMq,Ω‚

M q

CE‚
pVectpMq,Ω‚

M q;

(iv) There are compatible equivalences

CE‚
∆pVectpMq, C8pM,Rqq CE‚

∆pVectpMq,Ω‚
M q CE‚

pVectpMq,Ω‚
M q

Sing‚
RpTM q Sing‚

RpYM q Sing‚
RpSectpYM Ñ Mq ˆMq;

» » »

(v) Under the extra assumption that M (and thus YM ) is simply connected, the Eilenberg–Moore
spectral sequence and items (iii) and (iv) imply the result, since

ZM » TM ˆ
YM

pSectpYM Ñ Mq ˆMq.

In the algebraic setting: An algebraic version of Tsujishita’s theorem is available, in a work
in progress with Anton Khoroshkin and Mikhail Kapranov. It relies, not only on factorization
algebras, but on factorization modules in the algebraic setting (see [BD04, §3.4.18] or [Roz10]).

We will abstain from a formal definition of factorization modules and will settle for the fol-
lowing informal idea. Fix a D!-factorization algebra A over a smooth variety X of dimension d. A
D!-factorization module over A is a D!-module M over the pointed Ran space: i.e. the space of
pointed configuration of points in X:

Ran˚ X :“ ttx0, . . . , xnu Ă X, pointed at x0u.

At a configuration tx0, . . . , xnu as above, with xi ‰ xj for i ‰ j, the stalk of M should satisfy

Mtx0,...,xnu » Mx0 b

n
â

i“1

Axi .

As the configuration varies, and (say) x0 and x1 collide, we get an operation

Mx0
b Ax1

Ñ Mx0
.

Whenever xi and xj collide, with both i and j different from 0, the corresponding operation comes
from the factorization structure on A. Global sections of a D!-factorization module define a very
well-behaved notion of factorization homology of a module:

ˆ
X

M :“ RΓdRpRan˚ X,Mq.

There are moreover variations, involving compact support in the algebra direction, in the module
direction, or in both. For us, the most useful will be the factorization homology with compact sup-
port in the algebra direction. It can be defined as follows. Consider the projection π : Ran˚ X Ñ X
at the marked point. We set ˆ cA

X

M :“ RΓdRpX,π!Mq.

11There are (at least) two natural actions of vector fields on the de Rham complex: the trivial one and the one
acting on each Ωp

M . It turns out the Chevalley–Eilenberg complexes with coefficients in those two representations
are quasi-isomorphic.
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Dually, there is a notion of rrDss-factorization comodules over a rrDss-factorization algebra, with
suitably defined factorization cohomology

¸
X

or factorization cohomology compactly supported in
the algebra direction

¸ cA
X

.
With the natural stratification Ran˚

ďnX Ă Ran˚ X of Ran˚ X by the cardinal of configurations
comes a diagonal filtration on said factorization homology:

˛ ďn

X

N :“ RΓRan˚
ďnX

pRan˚ X,N q, 0 Ñ

˛ ď1

X

N Ñ ¨ ¨ ¨ Ñ

˛ ďn

X

N Ñ ¨ ¨ ¨ Ñ

˛
X

N ,

and similarly for factorization homology with compact support in the algebra direction:

0 Ñ

˛ cA,ď1

X

N Ñ ¨ ¨ ¨ Ñ

˛ cA,ďn

X

N Ñ ¨ ¨ ¨ Ñ

˛ cA

X

N ,

This filtration is again related to a covariant Verdier duality functor ψ from rrDss-factorization
comodules to D!-factorization modules by colimn

¸ ďn

X
N »

´
X
ψN (and similarly with compact

support conditions).

Proposition 5.1.2. For any coherent DX-module (or bounded complex thereof) N with an ac-
tion of the Lie algebra of vector fields, there is a rrDss-factorization comodule N pX,Nq over
Č :“ ČpX,TX b DXq such that

GF‚
pX,Nq :“ CE‚

pRΓpX,TXq,RΓdRpX,Nqq »

˛ cA

X

N pX,Nq.

We denote by GF‚
∆pX,Nq the corresponding diagonal complex

GF‚
∆pX,Nq :“ CE‚

∆pRΓpX,TXq,RΓdRpX,Nqq :“

˛ cA,ď1

X

N pX,Nq.

and by GF‚
toppX,Nq the "topological" cohomology:

GF‚
toppX,Nq :“ colim

n

˛ cA,ď1

X

N pX,Nq

ˆ

»

ˆ cA

X

ψpN pX,Nqq

˙

.

The above accounts for an algebraic analog of Tsujishita’s argument (i). For item (ii), the action
of

CE‚
pRΓpX,TXq,RΓpX,Ω‚

Xqq » GF‚
pX,OXq

comes from the action of OX on any DX -module. As an analog of item (iii), we have

GF‚
toppX,Nq » GF‚

toppX,OXq b
GF‚

∆pX,OXq

GF‚
∆pX,Nq. (18)

The equivalence (18) arises from a very general base-change formula for factorization modules.
Like in section 4, the diagonal filtration is exhaustive in the affine case, and we get in that case

GF‚
pX,Nq » GF‚

pX,OXq b
GF‚

∆pX,OXq

GF‚
∆pX,Nq.

The remaining items (iv) and (v) then follow from the computation GF‚
pX,OXq » GF‚

pXq bk

H‚
dRpXq and from theorem 4.0.1. All in all, we get

Theorem 5.1.3. If X is a simply connected smooth affine variety, then we have

CE‚
pRΓpX,TXq,RΓpX,OXqq » GF‚

pX,DXq » Sing‚
kpZan

X q

where Zan
X is defined as

Zan
X » T an

X ˆ
Y an
X

pSectpY an
X Ñ Xanq ˆXanq.
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In order to drop the simple connectedness assumption (in both the differentiable and algebraic
cases), a possible approach could be to prove the above theorem through analytification (similarly to
our proof of theorem 4.0.1). The main missing technical ingredient here is the notion of factorization
modules in the differentiable context12 and the corresponding non-abelian Poincaré duality.

5.2 Geometrizing the Hochschild–Serre filtration
In order to compute the cohomology H‚

LiepWittdq and thus prove a part of conjecture 3.2.2, we can
try to extend theorem 4.0.1, assertion (c) to the case of the punctured disc, or more generally, to
the quasi-affine case.

Let us fix X a smooth affine variety and U Ă X an open subvariety. The basic idea is to
use the Hochschild–Serre filtration (yielding the Hochschild–Serre spectral sequence, see [HS53])
relative to the dg-Lie sub-algebra h “ ΓpX,TXq in g “ RΓpU,TU q, in order the compute H‚

GFpUq:“
H‚

LiepRΓpU,TU q,kq.
Recall that the Hochschild–Serre filtration is a filtration

¨ ¨ ¨ Ñ CE‚
pnqpg, h,kq Ñ ¨ ¨ ¨ Ñ CE‚

p0qpg, h,kq “ CE‚
pg,kq

such that

• limnCE
‚
pnqpg, h,kq “ 0, and

• hofib
´

CE‚
pnqpg, h,kq Ñ CE‚

pn´1qpg, h,kq

¯

» CE‚
ph, pΛng{hq˚qr´ns.

Theorem 5.2.1. Consider the rrDss-factorization algebra Č :“ ČpU,TU b DU q over U . As a rrDss-
module over RanU , it admits a filtration:

¨ ¨ ¨ Ñ Čpnq Ñ ¨ ¨ ¨ Ñ Čp0q » Č

such that

• limn Čpnq » 0,

•
¸
U
Čpnq » CE‚

pnqpg, h,kq.

Notice that in our example, g{h » RΓZpX,TXqr1s, with Z “ X ∖ U .
Denoting by Ďpnq the homotopy fiber hofibpČpnq Ñ Čpn ´ 1qq, we also have

¸
U
Ďpnq »

CE‚
ph, pΛng{hq˚qr´ns. Moreover, with X being affine, we can show the diagonal filtration on¸

U
Ďpnq to be exhaustive. This is, however, not enough to conclude that the diagonal filtration on

GF‚
pUq »

¸
U
Č is exhaustive as well. To circumvent this issue, we will try and use equation (18).

To do so, we shall

• Extend equation (18) to the case where N is not longer coherent (here, powers of the DX -
module N “ i˚i

!pTX b DXqr1s for i : Z Ñ X the closed immersion; so that RΓdRpX,Nq »

RΓZpX,TXqr1s » g{h),

• Compare the diagonal filtration on
¸
X
Ďpnq over RanX with that on

¸
X
N pX,Nbnq,

• Apply to the case U “ Ad ∖ t0u Ă Ad “ X, and prove using equation (18) that the diagonal
filtration on

¸
X
N pX,Nbnq stabilizes at weight 1, independently of n.

• Conclude that the diagonal filtration on GF‚
pAd∖t0uq stabilizes at weight 1 and is exhaustive,

thus proving conjecture 3.2.2.
12Note that this notion is different from the notion of stratified factorization algebras from, e.g., [AFT17].
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5.3 Matrix factorizations and categorical Donaldson–Thomas invariants
Donaldson–Thomas invariants: The Donaldson–Thomas invariants are integral invariants
with roots in theoretical physics (counting strings in a space-time). For the sake of concision,
we will abstain from a lengthy introduction to the domain and and settle with the following short
sketch. We will be interested in the complex dimension 3 case, after [Tho00] and [Beh09]. We
choose, however, to take the point of view of derived algebraic geometry that only appeared later
on.

Fix Y a Calabi–Yau 3-fold. In order to count strings (=curves) in Y , we study the compact
moduli space ĎMDTpY q of stable coherent sheaves on Y (corresponding to the definition ideal
of curves) with fixed numerical invariants (Chern classes). This moduli stack is in general not
smooth, and its deformation theory is governed by a perfect obstruction theory, which is moreover
symmetric (i.e. self dual, up to a shift).

In terms of derived geometry, the moduli space ĎMDTpY q admits a canonical derived enhance-
ment R ĎMDTpY q (whose cotangent complex gives the above perfect obstruction theory). The
Calabi–Yau structure on Y allows, through Serre duality, to construct a duality

ω2 : LR ĎMDTpY q » TR ĎMDTpY qr1s

corresponding to the symmetry of the perfect obstruction theory. In [Pan+13], Pantev, Toën,
Vaquié and Vezzosi show that ω2 actually arises from a p´1q-shifted symplectic form ω on the
derived moduli space R ĎMDTpY q. This is the fundamental structure of study in this section.

Given a (nice enough) proper p´1q-shifted symplectic derived stack X (such as the moduli
space R ĎMDTpY q), we can construct a so-called virtual class rXsvir in the Chow group A˚pXq

of X (this is by definition the Chow group of the underlying non-derived stack), using Behrend–
Fantechi’s deformation to the normal cone (see [BF97]) associated to the induced perfect obstruc-
tion theory. The Donaldson–Thomas invariant of X is the volume

ˆ
rXsvir

1 P Z.

If Y is a Calabi–Yau 3-fold, its Donaldson–Thomas invariants is the family, indexed by all possible
choices of fixed numerical invariants, of the invariant of R ĎMDTpY q.

In [Beh09], Behrend gives an equivalent construction of the Donaldson–Thomas invariant of a
symplectic derived stack X as above. He constructs a locally constant integer-valued function νX
on X, the Euler characteristic of which computes the Donaldson–Thomas invariant of X:

ˆ
rXsvir

1 “ χpνXq :“
ÿ

n

nχpν´1
X pnqq.

Amongst other things, this result allows to extend the definition to non-proper derived stacks, as
the right-hand side is then well-defined (albeit possibly rational instead of integral).

Sheafification and vanishing cycles: In a series of papers [Joy15; BBJ19; Bra+15], Joyce
and his collaborators construct a sheafification of Behrend’s function νX , at least in the case of a
schematic X (see also [Ben+15; JU20] for the case of stacks).

For X a p´1q-shifted symplectic scheme equipped with a square root of the canonical bundle,
they construct a perverse sheaf PX on X such that

χpPXq “ νX .

This sheaf PX is a globalization of the sheaf of vanishing cycles, in the following sense. Consider
a smooth scheme U equipped with a function f : U Ñ A1. Its derived critical locus is the derived
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intersection
dCritpfq U

U T˚U

df

0

The (0-shifted) symplectic structure on T˚U induces a p´1q-shifted symplectic structure on dCritpfq.
By construction, the perverse sheaf PU,f :“PdCritpfq is the perverse sheaf of vanishing cycles of the
Landau–Ginzburg model pU, fq.

Theorem 5.3.1.
(a) (Darboux lemma, [BBJ19]) Any p´1q-shifted symplectic scheme is Zariski locally equivalent

to a derived critical locus.

(b) ([Bra+15]) Given X a p´1q-shifted symplectic scheme, any choice of Landau–Ginzburg model
pU, fq such that X » dCritpfq yields an isomorphic perverse sheaf PU,f , up to a twist by the
principal Z{2-bundle of square roots of the canonical bundle ωX .

(c) ([Bra+15]) Provided a square root of ωX and a covering X by a family of derived critical loci
dCritpfiq, fi : Ui Ñ A1, the sheaves PUi,fi glue to a perverse sheaf PX , independent of the
choice of the covering.

Strictly speaking, the articles of Joyce and his collaborators does not deal with p´1q-shifted
symplectic schemes, but with d-critical loci. A d-critical locus is the shadow of a p´1q-shifted
derived scheme, in non-derived terms (see [Joy15]).

We will sketch here a proof of the above theorem 5.3.1(c) relying on derived geometry. It
is joint work in progress with Marco Robalo and Julian Holstein. This proof is more conceptual
than the original and we find it gives a better understanding of the phenomena behind the above
theorem. It also opens a way to prove a categorification of this statement (see below).

First, we consider the derived stack DarbChartsX (on the small étale site of X) of Darboux
charts onX. It classifies smooth formal thickenings13 pU ofX, equipped with a function f : pU Ñ A1,
and a symplectic equivalence dCritpfq » X.

Consider also the stack Quad∇X of non-degenerate quadratic bundles with a flat connection.
We further require the sections of Quad∇XpSq to be étale locally equivalent14 to Ad ˆ S with the
trivial flat connection and with the quadratic form q “

ř

x2i .

Theorem 5.3.2. The stack Quad∇X is a monoid (for the sum), and it acts on DarbChartsX . The
action is moreover transitive, so that the quotient stack DarbChartsX{Quad∇X is connected.

The action is as follows. Fix S Ñ X an étale morphism, and p pU, fq P DarbChartsXpSq and
pM, qq P Quad∇XpSq. The flat connection on M implies that the bundle M Ñ S descends to a
bundle on π : M

pU Ñ pU . Moreover, with the quadratic form q being flat for the connection, it
descends to a form q

pU : M
pU Ñ A1. Denote by xM

pU the formal neighbourhood of the zero section
in M

pU . We set
fq :“ f ˝ π ` q

pU : xM
pU Ñ A1.

The derived critical locus dCritpfqq then identifies with the fiber product dCritpfqˆ
pU dCrit pU pq

pU q »

dCritpfq » S. The assignment
´

p pU, fq, pM, qq

¯

ÞÑ pxM
pU , fqq

13We use formal thickenings, rather than plain smooth schemes, because the latter notion is not functorial: if
X » dCritpgq with pU, gq a Landau–Ginzburg model, and Y Ă X is an open subscheme, there is no canonical
restriction of pU, gq that would give a Darboux chart on Y .

14Any quadratic form is locally of the form
ř

x2
i , and the flat connection is always locally trivial. However, we

cannot in general trivialize both those data simultaneously.
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defines an action of Quad∇X on DarbChartsX . To understand the quotient stack DarbChartsX{Quad∇X ,
we start with an adaptation of [Joy15, Thm. 2.20]:

Proposition 5.3.3. Let p pU, fq and p pV , gq be elements of DarbChartsXpSq, for some S étale over
X. Locally on S, there exist pM, qq and pN, pq in Quad∇XpSq such that

pxM
pU , fqq » p pN

pV , gpq.

In particular, π0
´

DarbChartsX{Quad∇X

¯

“ ˚.

Let us briefly describe M . Consider the formal linear stack

M “ SpecS
`

SymSpΩ
pV ‘ T

pV q
˘

.

where Ω
pV and T

pV are implicitly restricted to S. Since it does not have a flat connection a priori, we
need to shrink S enough to trivialize those bundles and use the trivial connection. The quadratic
form q is the canonical pairing.

On the other hand, the quadratic bundle N is more complicated to describe. As a bundle,
it is by construction Ω

pV ‘ T
pU (those sheaves are implicitly restricted to S). The non-degenerate

quadratic form on this bundle is neither obvious nor canonical. We will not, however, give a
description here.

Notice that the above argument is not symmetric in pU and pV , so swapping the roles of pU and
pV gives a different pair of quadratic bundles.

We can now focus on theorem 5.3.1(c). To any Darboux chart p pU, fq over S étale over X, we
can associate the perverse sheaf of vanishing cycles P

pU,f . It is a priori a perverse sheaf over pU ,
but perverse sheaves on pU are simply perverse sheaves on S, since pU is a formal thickening of S.
This construction assembles into a morphism of (derived) stacks

P : DarbChartsX Ñ PervX .

Similarly, to any Morse thickening pxM, qq over S, we associate the sheaf of vanishing cycles P
xM,q

P

PervXpSq. Moreover, the vanishing cycles of pxM ˆS
xM, q ‘ qq form the constant unit sheaf. Using

the Thom–Sebastiani isomorphism [Mas01], we deduce the functor pxM, qq ÞÑ P
xM,q

has values in
tensor 2-torsion perverse sheaves, i.e. Z{2-bundles. We get a stack morphism

P : Quad∇X Ñ BZ{2.

A second use of the Thom–Sebastiani isomorphism shows

P
xM

xU
,fq

» P
pU,f b P

xM,q
.

As a consequence, we get a quotient morphism P : DarbChartsX{Quad∇X Ñ PervX{
`

BZ{2
˘. The key

point now is the surprising existence of a natural factorization of P through the projection p:

DarbChartsX{Quad∇X X PervX{
`

BZ{2
˘

.p

P

D
(19)

This factorization X Ñ PervX{
`

BZ{2
˘ can be thought as a twisted version of PX , that exists over

any p´1q-shifted symplectic scheme. We will come back to it in a second. Before that, let us
explain how the datum of an orientation yields an actual perverse sheaf.
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The above factorization induces a (plain) commutative diagram

PervX

PervX{
`

BZ{2
˘

˚

X K
`

Z{2, 2
˘

.

As is turns out, the morphism X Ñ K
`

Z{2, 2
˘

classifies the Z{2-gerbe of square roots of the
canonical bundle. The choice of such a square root therefore trivializes this morphism (so provides
us with a dashed factorization in the diagram above). This in turn induces a lift X Ñ PervX ,
classifying the sheaf PX of theorem 5.3.1(c).

We double back on the factorization of (19). Although we shall not give explicitly its con-
struction or properties in this thesis, let us highlight one of the steps in the proof:

Lemma 5.3.4. The morphism

P : DarbChartsX{Quad∇X PervX{
`

BZ{2
˘

,P

seen as a map of stacks on the small étale site of S, is trivial on all homotopy sheaves.

From theorem 5.3.2, the case of π0 is trivial. Since the target stack PervX{
`

BZ{2
˘ is in fact a

1-stack, the case of πn, n ě 2 is also trivial.
To understand this morphism π1, we first need to describe the homotopy sheaf of the source.

The sheaf π1pDarbChartsX{Quad∇Xq in fact receives an epimorphism from π1pDarbChartsXq, and
is thus locally generated by automorphisms of Darboux charts. There may be (and there are)
complicated such automorphisms, but one can show that the image of such an automorphism φ by
P is determined by the determinant of φ, seen as a principal Z{2-bundle. The lemma then follows.

Categorification and matrix factorization: The main benefit of the new proof of theo-
rem 5.3.1(c) described above is how easily it can be adapted to other invariants. We will later
down be interested here in categorical invariants, namely the categories of matrix factorizations.

Given f : U Ñ A1 a function on a smooth scheme U , a matrix factorization of f is a pair of
vector bundles E0 and E1, with morphisms B0 : E0 Ñ E1 and B1 : E1 Ñ E0, such that B0 ˝ B1 “ f
and B1 ˝ B0 “ f . The category MFpU, fq of matrix factorizations is, by a theorem of Orlov [Orl04],
equivalent to the category of singularities of the zero-locus of f . As an invariant of Landau–
Ginzburg loci, it can be seen as a categorification of vanishing cycles, for (Z{2-graded) vanishing
cycles can be recovered from the periodic homology of matrix factorization (see [Efi17]).

The goal of this ongoing work, joint with Julian Holstein and Marco Robalo, is to prove the
following statement:

Statement 5.3.5. Given X a p´1q-shifted symplectic scheme equipped with some orientation data
(square root of ωX and something else, see below), there is a sheaf of Z{2-graded dg-categories MFX
such that, if X » dCritpfq, then MFXpXq “ MFpU, fq.

To understand the need for orientation data, consider the following example. Take U “ A1
C

and f “ x2. The (derived) critical locus of x2 is a single point SpecC. In particular, dCritpx2q

is also the derived critical locus of the 0-function on the point A0
C “ SpecC. On the other hand,

MFpA1
C, x

2q is the Z{2-graded dg-category of 1-periodic complexes, while MFpA0
C, 0q is the Z{2-

graded dg-category of 2-periodic complexes. This difference stems from the orientation structure,
that dCritpA1

C, x
2q and dCritpA0

C, 0q do not share.
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To understand the orientation, we follow the same procedure as for perverse sheaves: study the
matrix factorization of a Morse thickening. By Preygel’s Thom–Sebastiani equivalence [Pre11], for
any Morse thickening pxM, qq over S, the Z{2-graded dg-category MFpxM, qq squares to the monoidal
unit (i.e. the category of 2-periodic complexes). As a consequence, MFpxM, qq is naturally a Z{2-
graded Azumaya algebra of 2-torsion. The group stack Az

Z{2
Z{2

of such Azumaya algebras can be
computed through Hochschild cohomology, and we get

πn

´

Az
Z{2
Z{2

¯

»

$

’

&

’

%

Z{2 ˆ Z{2 if n “ 0,

Z{2 if n “ 1 or 2,

0 otherwise.

In a picture similar to the one above, we have

DarbChartsX{Quad∇X dgCat
Z{2
X {Az

Z{2
Z{2

X BAz
Z{2
Z{2

MF

p

τ

ĚMF

With this picture in mind, we would need two things to prove statement 5.3.5:

• To show the morphism MF factors as ĚMF ˝ p (similarly to diagram (19)) and

• To start with a trivialization of the induced morphism τ (the orientation data).

The existence of a factorization ĚMF is not yet known. There are however positive signs. For
instance, a version of lemma 5.3.4 also holds.

The orientation data itself can be understood using the description of AzZ{2
Z{2

given above. The
morphism τ corresponds to obstruction classes

α1, α2 P H1
´

X,Z{2

¯

, β P H2
´

X,Z{2

¯

, γ P H3
´

X,Z{2

¯

.

Of the classes αi, one is canonically trivialized. The other classifies some sort of dimension-parity
torsor, a trivialization of which allows to lift the aforementioned uncertainty between MFp˚, 0q and
MFpA1, x2q.

The class β classifies the gerbe of square roots of the canonical bundle ωX . The datum of
a trivialization of β thus amounts to Joyce’s orientation data, as in theorem 5.3.1(c). Intuitively,
the vanishing of the class allows to lift the uncertainty in the choice of automorphisms of MFp˚, 0q

when glueing (there are exactly two such automorphisms, namely the identity and the shift by 1).
The last class γ corresponds intuitively to twisting the glueing data by a 2-torsion line bundle.

It is not yet clear what higher gerbe it classifies.
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