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Pictures of Ludwig Eduard Boltzmann



EI irgend ein Raum mit sehr vielen Gasmolekiilen erfiillt, deren jedes ein einfacher
materieller Punkt ist. Jede Molekiil fliege wahrend des gréssten Theiles der Zeit
geradlinig mit gleichférmiger Geschwindigkeit fort. Nur wenn sich zwei Molekiile
zuféllig sehr nahe kommen, beginnen sie auf einender einzuwirken. Ich nenne diesen
Vorgang, wahrend dessen zwei Molekiile auf einander einwirken, einen Zusammenstoss der
beiden Molekiile, ohne dass jedoch dabei an einen Stoss elastischer Korper zu denken ist ; die
wéahrend des Zusammenstosses wirksamen Kréfte kénnen vielmehr ganz beliebig sein. Selbst
wenn zu Anfang der Zeit alle Molekiile dieselbe Geschwindigkeit besessen hétten, wiirden
sie dieselbe im Verlaufe der Zeit nicht immer beibehalten. In Folge der Zusammenstdsse
werden vielmehr einige Molekiile grossere, andere kleinere Geschwindigkeiten annehmen,
bis sich endlich eine solche Verteilung der Geschwindigkeiten unter den Molekiilen herge-
stellt hat, dass dieselbe durch die Zusammenstésse nicht weiter verdandert wird. Bei dieser
schliesslich sich herstellenden Geschwindigkeitsvertheilung werden im Allgemeinen alle még-
lichen Geschwindigkeit von Null bis zu einer sehr grossen Geschwindigkeit vorkommen. Die
Zahl der Molekiilen, deren Geschwindigkeit zwischen v und v + dv liegt, wollen wir mit
F(v)dv bezeichnen. Dann bestimmt uns also die Function F die Geschwindigkeitsverthei-
lung vollstindig. Fiir den Fall einatomiger Molekiile, den wir jetzt betrachten, fand bereits
Maxwell fiir F(v) den Werth Av2e=B"", wobei A und B Constanten sind, so dass also die
Wahrscheinlichkeit der verschiedenen Geschwindigkeit durch eine dhnliche Formel gegeben
wird, wie die Wahrscheinlichkeit der verschiedenen Beobachtungsfehler in der Theorie der
Methode der kleinsten Quadrate. Der erste Beweis jedoch, den Maxwell fiir diese Formel
gab, wird von ihm selbst als unrichtig bezeichnet. Spéter gab er zwar einen sehr elegan-
ten Beweis dafiir, dass, wenn man die obige Geschwindigkeitsvertheilung einmal unter den
Glasmolekiilen hergestellt hat, dieselbe in der That durch die Zusammenstdsse nicht weiter
verdndert wird. Er sucht auch zu beweisen, dass es die einzige Geschwindigkeitsvertheilung
von der betrachteten FEigenschaft ist. Allein der letztere Beweis scheint mir wieder Fehl-
schliisse zu enthalten. Es ist somit noch nicht bewiesen, dass, wie immer der Zustand des
Gases zu Anfang gewesen sein mag, er sich immer dieser von Maxwell gefundenen Grenze
ndhern muss. Es kénnte sein, dass es ausser dieser noch verschiedene andere mégliche Gren-
zen gibt. Dieser Beweis gelingt aber leicht mittelst der Auffassungsweise des Problems, zu
deren Auseinandersetzung ich jetzt schreiten will, und welche zudem den Vorteil bitter, dass
sie sich direct auf mehratomige Molekiile, also auf den in der Natur wahrscheinlich allein
vorkommenden Fall iibertragen lasst.

Ludwig Eduard Boltzmann, extract from [2]
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m Chapter 1

A numerical method
inspired by the kinetic theory

We first propose an elementary introduction to the lattice Boltzmann method. This numer-
ical method has its origins in gas automata or cellular automata.

m Thermodynamics of gases

The fluid flows can be described at several spatial and time scalings according to the inves-
tigated phenomena. When the number of particles in the volume of reference is low (and
in particular when the number of collisions involving these particles is low), a microscopic
description is required and yields to predict the evolution of each individual particule. Many
models are relevant and the most precise use quantum mechanics. One of the simplest
models considers the particles as hard spheres moving in a straight line and interacting
by bouncing. These collisions are infinitely brief phenomena during which certain physical
quantities are exchanged like momentum, energy, etc. Unfortunately, as the number of par-
ticles increases, these models become unusable due to too many variables: remember that
Avogadro’s number equals to the number of carbon atoms in 12 grams is worth approxi-
mately 6x 1023,

On the mesoscopic scale, particles are described by a continuous variable called the ve-
locity distribution function which represents the number of particles at a given time, at a
given point in space, with a given velocity. This scale is for example used to describe the
statistical velocity distribution of a gas when it is far from thermodynamic equilibrium. This
intermediate spatial scale is relevant in the case where the unit volume contains a large
number of particles. The particle density equation proposed by Boltzmann [2] describes
the evolution of a population of particles which relaxes towards an equilibrium given by a
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Maxwell-Boltzmann distribution. This equilibrium distribution is characterized by only a few
state variables (mass, momentum, energy, etc.) and depends very little on the underlying
microscopic system: many different microscopic systems have the same equilibrium. Boltz-
mann further shows that a function (later called the Boltzmann’s H function) plays the role
of an entropy: it is necessarily decreasing over time for a closed system. He introduces a sta-
tistical interpretation of entropy in 1877, which marked a major breakthrough in the under-
standing of the transition from reversible microscopic dynamics to irreversible macroscopic
evolution—the formula in engraved on his gravestone in Vienna S = klog W.

Various attempts have been proposed to obtain approximate solutions of the Boltzmann
equation: Chapman [4, 5, 6] and Enskog [13, 14] independently gave two methods with
identical results, those of Enskog reusing Hilbert's asymptotic expansion method. Enskog's
method consists of jointly expanding the Boltzmann equation and its solution: the approxi-
mation of order zero is a Maxwell-Boltzmann distribution and its moments satisfy the com-
pressible Euler equations; the first order approximation is the solution of a linear equation
and its moments satisfy the compressible Navier-Stokes equations. When the second order
approximation is considered, the Burnett equations are obtained. However, these equa-
tions of order 2 have never made it possible to obtain notable improvements [15, 22], the
essential reason being the real difficulty of having to impose boundary conditions for higher
order derivatives. Full details of the Enskog method—generally referred to as the Chapman-
Enskog method in the literature—are given in classic references such as Hirschfleder et al.
[22], Ferziger and Kaper [15], Vincenti and Kruger [30], Chapman and Cowling [7] and Liboff
[23]. These approximate solutions and the resulting models are relevant at a macroscopic
scale for which the mean free path—average distance traveled by a particle between two
collisions—is very small.

We consider a simple gas with a single type of particles and no external force lying in R?
for d € {1,2,3}. Let's define the particle distribution function f, function of the time ¢, the
position z, and the velocity ¢, such that the mass of the particles dp lying in a box located at
x with a small volume dz and having a velocity ¢ defined with a precision dc, at the time ¢,
is given by

dp = f(t,z,c)dzdec.

The particle distribution function can then be used to define the macroscopic quantities as,
for example, the mass p, the momentum ¢, and the energy £ by

p(t,z) = | f(t,z, c)dc, (1.1)
R4

q(t, ) :/ cf (t,z, c)dc, (1.2)
Rd

E(t,z) —/ lc-cf(t,z’,c)dc. (1.3)
R4 2

The fluid velocity is defined as u = ¢/p.
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The particle distribution function f satisfies the Boltzmann equation
Of(t,z,c)+ c0.f(t,z,c) = 2(f)(t, z, ), t>0, zeRY ceRY (1.4)

In this equation, the term 0,f + ¢-0,f corresponds to a free transport at the velocity ¢,
whereas the right member 2(f) describes the collision between the particles of the gas.In
most cases, for dilute gases, this operator 2 is quadratic taking into account “two-points”
collisions.

A microscopic analysis of the molecular collisions shows that the mass, the momentum,
and the energy are conserved during the collisions. The effect on the macroscopic scale
that interest us here is that, in particular, the collision kernel 2(f) has zero integral when
tested against 1, ¢, and jc-c:

1
2(f)de =0, / c2(f)de =0, / —c-c2(f)de =0. (1.5)
Rd Rd
By injecting these hypothesis into the Boltzmann equation (1.4), the conserved quantities
m = (p, q, E) are functions of time and space that satisfy the Euler equations of gas dy-
namics:

oym + 0, = 0. (1.6)

In this equation, the flux ¢ reads

1
© = </ cf dc,/ c®cfdc,/ c=c-cf dc> .
Rd R4 Rd 2

The equation (1.6) is a system of partial differential equations if the flux ¢ reads as a function
of the conserved quatities m. We speak about the closure of the system. The asymptotic
expansion of Hilbert [21] or the Chapman-Enskog development [7] can be used to obtain an
asymptotic expression of the flux in the limit of small Knudsen number. The Knudsen number
e is a dimensionless number defined as the ratio of the mean free path (average length
covered by a particle between two collisions) over a characteristic macroscopic length.

I. 2 Cellular automata

In 1986, Frisch, Hasslacher, and Pomeau were responsible for a revolution: a simple cellular
automaton obeying a few microscopic conservation laws was capable of reproducing the
complexity of a real fluid flow [16]. The principle of this cellular automaton is to consider a
hexagonal network in which each site hosts up to six particles, each of which has a speed
enabling it to move to a neighbouring point during one time step. All the particles have
the same mass, and therefore the same energy. Moreover, only one particle can be at a
given site with a given speed (exclusion principle). Without going into detail about the algo-
rithm, it is made up of two phases, a transport phase during which each particle changes
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site according to its own velocity, and a collision phase during which the particles reorganise
their velocities according to simple principles that satisfy the conservation of mass and mo-
mentum. The hexagonal lattice allows this automaton to respect a fundamental property of
symmetry in the Navier-Stokes equation: invariance by rotation-which was not the case for
the automaton of Hardy, Pomeau, and De Pazzis [18, 19] ten years earlier, in particular for
the impulse flow.

Instead of seeking mathematical models, the development of computer modelling tools led
to the idea of discrete simulators easy to program. In such an approach, the space, time,
velocity, number of molecules present at a given time at a given point are discrete variables.
The development of these cellular automata have been three highlights.

O O O O O O O @ O

o> @ O @ O O O

O O O O O O O O
t t+1 t+2

Figure 1.1 = Frontal collision dynamics in the HPP [18] model.

The first idea is to use a square two-dimensional lattice. The lattice set of Gaussian integers
(Z[i] = 7Z?) has a state defined by a binary variable field being 0 or 1. A value of 0 indicates
that the site (¢, j) is empty and the value 1 itis occupied. The discret evolution of the particles
onthe lattice is described by the velocities linking a vertex (i, j) to its four neighbors (i+1, j+
1). With a unity space step and unity time step, the speed range therefore take values in the
set {e1, —eq, €2, —es}, with e; = (1,0) and e; = (0, 1). Each particle (or occupied site) has
one of the four previous proposed velocities. It remains to define the collision rules when
there is a conflict to occpy a site at a new discret time. Without describing in detail here the
model of Hardy, de Pazzis, and Pomeau [18], we must build collision rules that respect the
conservation of mass, momentum, and energy while taking into account a discret time and
space. The figure 1.1 describes the dynamics in the evet of a frontal collision. We remark
that during the intermediate time ¢ + 1, two discret particles are present at the same time
on the same vertex of the lattice.

Aremarkable pointin the study of the cellular automata is that it is possible (at least formally)
to pass to the limit. Taking blocks of larger and larger size allows to define a macroscopic
density p> (ratio of the number of occupied sites towards the number of sample sites) and
a macroscopic momentum ¢*. We introduce also a “large” time scale compared to the time
scale of the simulation (equal to 1) and a “large” spatial scale compared to the lattice step
(still equal to 1!). Using these continuous variables, the limit equations take the form

O™ +0:-¢ =0,  9q™ + 0, P(p™, ¢) =0,

where P is a computable function. The conservations of the mass and of the momentum
are then satisfied by the cellular automata at the macroscopic limit. But the pressure tensor
P is not isotropic.
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Figure 1.2 - Frontal collision dynamics in the FPP [16] model.

To remedy this defect of isotropy, Frisch, Hasslacher, and Pommeau [16] proposed to use
a hexagonal lattice, i.e. vertices of the form a + bj, a,b € Z and 1 + j + j2 = 0. The
discrete velocity space contains more directions, the collision dynamics is therefore more
complex (see figure 1.2). A random draw is needed to describe the post-collision state af-
ter a frontal collision. With this new model, the hydrodynamic limit is isotropic, therefore
physically admissible. The extension to three space dimensions was realized soon after by
d'Humieres, Lallemand and Frisch [10] using a 4-dimensional model with 24 velocities and
a face-centered cubic lattice.

However, a statistical noise—inherent to particle methods and highlighted by Orszag and
Yakhot [26]—as well as the exponential complexity of the collision operator—this complexity
is due to the fact that collisions between N bodies are taken into account, which is not the
case for the Boltzmann equation at the continuous level in the case of sparse gases—making
it less competitive than spectral methods in particular—and this despite numerous efforts,
both theoretical and operational.

I. 3 The lattice Boltzmann method

The first lattice Boltzmann scheme was proposed by Mac Namara and Zanetti in 1988 [24]
with the explicit intention of avoiding the problem of statistical noise in cellular automata.
The approach essentially consists of replacing Boolean numbers—a particle either occupies
or does not occupy a site in the lattice—with an averaged population represented by a float-
ing number. The change in perspective is exactly the same as that involved in moving from
the particle view of a gas—where each particle is tracked in its movement—to continuous
kinetic theory—for which the quantity tracked is an average particle density.

Mac Namara and Zanetti keep a discret lattice but seek real unknowns f which describes
the average population on a given site, with a given velocity imposed by the geometry.

In order to eliminate the exponential complexity of the collision operator, Higuera, Succi and
Benzi[20] introduce equilibrium distributions and a collision matrix, which makes it possible
to write the collision operator collision in linear form. In [27], Quian, d'Humiéres and Lalle-
mand propose a network Boltzmann scheme—later called BGK by the community—where
the equilibria are polynomials in mass and velocity and where the collision matrix is propor-
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tional to the identity. This scheme has since been widely used because it has satisfactory
isotropy properties and it is of order 2. This approach was then enriched by d’Humieres [9]
who proposed a matrix of diagonal collisions in a space other than that of density functions,
called moment space. It is within this framework that we systematically place ourselves in
this dissertation. The reader interested in the historical aspect of Boltzmann network dia-
grams can refer to the works [8, 29].

We consider a physical space with d dimensions, d € {1,2,3}. In this physical space there is
an infinite regular lattice denoted by .. Usually, the lattice is made up of squares for d = 2
or cubes for d = 3, but it could be made up of triangles, hexagons or tetrahedrons etc. In
this lecture, we consider lattices like .2 = AzZ% where Az > 0 is the spatial step of the
lattice. Moreover, we introduce the time step of the scheme At > 0 and the lattice velocity
A linked by

_A;c

A= —.
At

(1.7)

On each point of the lattice = € .Z, some particle distribution functions are put, denoted by
f: 0 < j < q. For each j, the particle distribution function fj(x,t) represents the number
of particles on the vertex » € . at time ¢ that have the velocity ¢;, 0 < j < ¢. It could be
seen as a discret representation of the particle distribution function of the kinetic theory. A
lattice Boltzmann scheme is then a numerical evolution of these discret values that mimics
the Boltzmann equation (1.4) with an operator splitting. We then describe one time step
of the scheme, that is the agebraic operations used to transform the particle distribution
functions at time ¢ to t+At.

The first phase is the relaxation phase that mimics the collision: the particles on the same
vertex of the lattice interact and recombine according to the laws prescribed by the scheme.
We note with a superscript x the quantities after the relaxation phase. The framework pro-
posed by d’'Humieres [9] consists of changing the basis for writing the relaxation phase. A
invertible matrix M is chosen to transform the vector of the particle distribution functions

f=(fo---, f,_1)" into the vector of the moments m = (m,, ..., m, ;)" according to the
relations:

m=Mf, f=M"'m. (1.8)
The relaxation phase preserves some of these moments: we consider that the NV first mo-
ments my, . .., my_, are not modified, that reads:

my =my, 0<k<N. (1.9)

Usually, the NV conserved moments are chosen among the conserved physical quantities
like the mass, the momentum or the energy. This choice is obviously decisive, as we will see
below. The g—N non-conserved moments m,, N < k < ¢ are modified through a linear
relaxation toward an equilibrium state denoted m; thanks to a scalar relaxation parameter
5

my = my, + sg(mpt —my), N <Ek<q. (1.10)
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Figure 1.3 - Examples of the more classical free transport phases: the filled circle represents the
initial cell and the arrows indicate the adapted velocities used to change the site. The terminology
for the scheme D,Q),, is q velocities on the lattice AzZ% in a d-dimensional space.

The second phase is the free transport. each particle move freely on the lattice according
to its personnal velocity. Thus, the particles with the velocity c¢; on the vertex z € £ find
themselves on the vertex x+c; At after the time step A¢. A key pointis that, the spatial step
Az and the time step At being fixed, the velocities ¢;,, 0 < j < g, are chosen to satisfy
c. € M4, so that the point z+c;At is also on the lattice. This free transport phase reads

J
then

fi(t+ Atz +c;At) = fi(t,x), 0<j<q. (1.11)

An important property of the lattice Boltzmann method is that the transport step is treated
exactly using the method of characteristics since the discrete velocities and mesh charac-
teristics allow it. No projection or reconstruction step is necessary.

Now that we have clarified the two steps of the Lattice Boltzmann method, it remains to
choose the free parameters in order to simulate the target system of partial differential
equations. These parameters are of two types: the relaxation parameters s,, N < k < g are
scalar numbers and the equilibrium values of the non-conserved moments mzq, N <k<yq,
are functions of the conserved moments m,, 0 < £ < N. The goal of this lesson is to give
mathematical tools that can be used to fix these parameters.
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m Chapter 2

Example of the D, @),

This chapter is devoted to the first simplest scheme with only two velocities in a mono-
dimensional space. This scheme is however very robust and makes it possible to simulate
any scalar conservation law, even non-linear. The interested reader could find more details
and more resultsin [17].

We consider the following mono-dimensional hyperbolic equation
Owu(t, ) + Opp(u)(t,z) =0, t>0, r€eR, 2.1)

where the flux ¢ is a smooth function on R. A two-velocities lattice Boltzmann scheme is
used to approximate the solution of this equation.

— Description of the scheme

We use the notation proposed by d'Humiéres in [9] by considering . = AxZ, a regular

lattice in one dimension of space with typical mesh size Ax. The time step At is determined

after the specification of the velocity scale X by the relation At = %.

Definition 2.1 - lattice velocity 1

The lattice velocity is defined by

Az
L -
For the scheme denoted by D,(Q,, we introduce {¢, = —\,¢; = A} the set of the two

velocities. We have therefore that for each node z of ., and each ¢;, j € {0,1}, the point
x + ¢;At is also a node of the lattice 2. The aim of the D;@Q, scheme is to compute a
particles distribution vector f = (f,, f;)* on the lattice . at discrete values of time. The
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scheme splits into two phases for each time iteration: first, the relaxation phase that is local
in space, and second, the transport phase for which an exact characteristic method is used.

The framework proposed by d’'Humieres reduced here to the two moments denoted by
m = (m,y, m,)’ and defined for each space point x € . and for each time ¢ by

my = fo + f1, my =A(—f,+ f1)- (2.3)

The matrix of the moments M such that m = M f satisfies

M:(1 1) M = *i. (2.4)
“A A .

Let us now describe one time step of the scheme. The start point is the density vector f(t, =)
inz € < attime t, the moments are computed by

N[ D=
—

m(t,x) = M f(t,x). (2.5)
The relaxation phase then reads

my(t, x) = my(t, ) mi(t,z) = my(t,x) + s;(mi(t, x) —my (¢, 2)), (2.6)

9

where s, is the relaxation parameter and m{® the second moment at equilibrium that is a
function of m,. As a consequence, the first moment m,, is conserved during the relaxation
phase. The densities are then computed after the relaxation phase by

f(t,x) = M 'm*(t,x). (2.7)
The transport phase finally reads

folt + At x) = fi(t,x + Ax), f,(t+At,z) = fi(t,x — Azx). (2.8)

) Asymptotic Analysis : the Taylor expansion method

The aim of this section is to find the equivalent equations of the scheme and in particular
to fix the equilibrium value mi? as a function of m,, in order to ensure that the scheme is
consistent with (2.1). This reasoning consists in a formal development of the distribution
functions f(¢,x) at small At and Az, assuming that these functions are regular enough
to use the Taylor formula. The results of this section are particular cases of the general
expansion of Dubois [11, 12].

Remark 2.2

The Taylor expansion method is a formal method to obtain the equivalent equations.
A rigorous method will be given in the sequel based on a rewriting of the scheme.
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The Taylor expansion method consists in expanding the distribution functions with respect
to the small parameter At. Considering Eq. (2.8), we have

[+ DO f; 4+ 5 AP0 f; = [1—c;AtD f7+ §c,-¢; A 05 [T+ O(AL), 0<j <1, (29)

where the variables x € £ and t have been removed for readability. As the relaxation phase
is written in the space of moments, we immediately take the moments of order 0 and 1 of
Eq. (2.9) by summing over j after multiplication by 1 or by ¢;:

mg + Atdymg + LAPOmy = mf — Atdym} + X A2,,my + O(AL), (2.10)
my + Atdym, + LAPOmy = m} — NAt,my + X At20,,m} + O(AL). (2.11)
We then consider Egs. (2.10) and (2.11) at order k for 0 < k£ < 2.

At the zeroth order, the particle distribution functions are at equilibrium.

Proposition 2.3 - zeroth order

We assume that the relaxation parameter is non zero: s; # 0. Then, the particle
distribution functions are close to their equilibrium values:

fi=1+0(AY),  fi=f"+0(At), 0<j<1, (2.12)
and the non-conserved moment is close to its equilibrium value:

L my; = mit + O(At), m} = mi*+ O(At). (2.13)

Proof. Considering Eq. (2.10) at zeroth order does not give information as m, is conserved
during the relaxation phase (m, = mg). Considering now Eq. (2.11) at zeroth order yields to
my, = mj + O(At). Injecting this relation in Eq. (2.6) reads

my = my + s, (mi* —my) + O(A?).

As s; # 0, we obtain relations (2.13). Relations (2.12) on f; and f7, 0 < j < 2, are given by

1 1 * 1 1 eq _ 1
Jo=3m — ﬁ fo = imo 2/\m1, o — Mo — 2/\m1 )
_ 1 * 1 eq 1
That ends the proof. O

Proposition 2.4 - First order macroscopic equation

We assume that the relaxation parameter is non zero: s; # 0. Then, the first moment
m, satisfies the partial differential equation

dymg + 0;mi* = O(At). (2.14)

As a consequence, if m{* = ¢(m,) then the first moment m,, satisfies (2.1) at order 1.
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Proof. We consider Eq. (2.10) at order 1:
my + AtOymy = my — Atd,my + O(A).

We then formally derive relation (2.13) m} = mi* + O(At) to obtain the target partial dif-
ferential equation. We concede that this proof is only formal for now... O

Definition 2.5 - particular derivative .

The j-th particular derivative associated to the velocity ¢; is defined by

& =0 +c¢;0,, 0<j<q. (2.15)
L

We then define the equilibrium default 6 by using the particular derivatives.

Definition 2.6 - equilibrium default 1

The equilibrium default for the D, @, is defined by

1
0=> c;dl f52. (2.16)
§=0

-
L

Proposition 2.7

.

The equilibrium default # can then be rewritten into the form

0 = OymS® + N\?0,my,. (2.17)

Proof. We expand the equilibrium default for the D,Q,:
0 = _/\(at - )\a’r) ‘(E)Eq + )‘(at + )\az) fq = 8t(_)\,f§q + Afleq) + >\281 ( Sq + fleq)

Using Eq. (2.3) ends the proof. O

Lemma 2.8 - Transition lemma =

The second moment m, satisfies

At 1
m; =mid — —04+ O(At?),  mf=m+ At(l — —)9 + O(A?).  (2.18)
S1 S1
Moreover, we have
3 fi = f = Atd{ f7+ O(A#), 0<j<1. |

Proof. We consider Eq. (2.11) at order 1:

m, + Atdym, = m} — N> Atd,m, + O(At?).
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Using Eq. (2.6) of the relaxation phase, we obtain
sy (mi* —my) = At(9m, + N*0,m) + O(AL).

Once again, we derive a Taylor expansion without any rigorous argument. We replace d;m,
by 9,m7* assuming that the error is of order 1 to obtain

sy (mi* —m,) = At(9mi* + N0,my) + O(A?) = At + O(A).

Recombining this first relation with Eq. (2.6) ends the proof. O

Proposition 2.9 - Second order macroscopic equation

We assume that the relaxation parameter is non zero: s; # 0 and that the equilibrium
value is given by m{® = ¢(m,). Then, the first moment m,, satisfies the second-order
partial differential equation

Bimy + Bpp(my) = At 0, 9, [(A? . (gp'<m0>)2)axm0} +O(AR), (2.19)

with Henon's parameter o, = 1/s; — 1/2.

-
Let us remark that this second-order macroscopic equation (2.19) then contains a diffusion
term with a regularization effect if o, > 0 (thatis 0 < s, < 2)and |¢'(m,)| < A. These
conditions are indeed compatible with the stability conditions we derive in the sequel. In
order to simulate the hyperbolic equation (2.1), the relaxation parameter s, could be taken
equal to 2. But this term has a stabilization effect and it could be sometime useful to choose
s, smaller to minimize the oscillations around the discontinuities.

Proof. We consider Eq. (2.10) at order 2:
Mg + Atdymg + 3 A 0umg = mg — At0; (mi* + At(1 — 1)) + A At*0pemy,

by combining with the previous result of the transition lemma 2. The zeroth-order term
vanishes, the first-order term reads d;m, + 9, (m,) and the second-order one on the right-
hand side

—(3 = 10,0 = 0,0, (Orp(my) + N20umy) = 0,0, [ (N> — ¢ (mg)?) ey ]

1

as Oymy = —0mi* + O(At) and d,p(my) = @' (mg)dmy = —¢'(my)0.mi* + O(At). O

I. 3 Numerical illustrations

In this section, we perform two numerical simulations, one for the transport equation with
a constant velocity, and one for Burger's equation. The lattice .Z is reduced to [0, 1] and a
homogeneous Neumann condition is added to treat the boundaries. In order to visualize the
properties of the D, (), scheme, the initial condition is chosen as a regular bump function.
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m 3.1 The transport equation
Let ¢ be a real constant, we consider in this section ¢(u) = cu. The equation reads
Owu + 0, (cu) = 0.
We consider a smooth initial function. The solution has the same regularity for ¢ > 0, the

asymptotic analysis is then supposed to give the good estimation of the error. The results
are given in Fig. 2.1.

Advection (A =1) Advection (s;=1)

0.0 0.2 04 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Figure 2.1 - Transport equation with constant velocity ¢ = 0.25 simulated with a D, Q). Left:
A = 1 and several values for the relaxation parameter; Right: s; = 1 and several values for the
lattice velocity.

We observe that

* For A = 1 > ¢ = 0.25, the scheme proposes a reasonable numerical solution. For
small values of s, the solution is however deteriorated with a large reduction of high
and small values. For high values of s, (close to 2), we also observe that the solution
is Nno more positive!

* For s; = 1, the scheme proposes a better solution when the lattice velocity A is close
to c by higher value.

In that case, the equivalent equation (2.19) reads

/\2 _ /,2
2O 9mg + O(AT?).

Oy + cOymy = Ato (N — ¢*)0pemy + O(AY?) = Azo, S

If the space step Az is fixed (in the simulations, we fixed Ax = 1/256), the numerical diffu-
sion operator is proportional to o, and to (A\* — ¢?)/\. Even if this equivalent condition only
gives asymptotic informations, the diffusion operator acts with a regularization effect if the
scalar coefficient is positive, thatis if 0 < s; < 2 and |c| < A. The other case corresponding
to A < |c| and s; ¢ [0,2] is not taken into account as the scheme has to be stable for van-
ishing advection velocity ¢ = 0. We then recover the behavior of the curves according to the
variations of s; with fixed A and vice versa.
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Advection (A =1) Advection (s;=1)

0.0 02 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Figure 2.2 - Transport equation with constant velocity ¢ = 0.25 simulated with a D, Q). Left:
A = 1 and several values for the relaxation parameter; Right: s, = 1 and several values for the
lattice velocity.

The same simulations are provided for a continuous initial condition but with discontinuous
derivatives. The asymptotic analysis is then not directly possible but the conclusions remain
the same.

m 32 Burgers equation

The Burgers equation is the simplest non-linear scalar equation that reads
o+ 0,(u?/2) = 0.

We consider a piecewise affine function as initial condition. The exact solution can then be
computed analyticaly also as a piecewise affine function. This solution is continuous until
t = 0.125. Then a discontinuity appears and goes to the right vith a decreasing velocity. The
results are given in Fig. 2.3.

Burgers (A=1) Burgers (s, =1)

0.0 02 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Figure 2.3 - Burgers equation simulated with a D,Q),. Left: A = 1 and several values for the
relaxation parameter; Right: s; = 1 and several values for the lattice velocity.

We observe the same behaviour
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« For A = 1, the scheme proposes a reasonable numerical solution if the relaxation
parameter s; < 2. For small values of s;, the solution is however deteriorated with
a large reduction of high and small values. For high values of s, (close to 2), we also
observe that the solution is no more positive!

+ For s; = 1, the scheme proposes a better solution when the lattice velocity A is close
to 0.8 by higher value. Note that the value 0.8 is not an exact value for the change of
behaviour and has no explaination for the moment...

B 4 Notions of stability

Many notions of stability are usefull for the Lattice Boltzmann method. Essentially, each
notion is associated to the choice of a norm and the good one depends on the application.
In this section, we present the von Neumann stability and the L*°-stability for the D, @Q),.

B’ 4.1 Thevon Neumann analysis

The von Neumann analysis concerns the linear schemes. We consider in this section p(u) =
cu for a constant real value ¢ € R. For £ € [—m, 7], we inject in the scheme a wave with ¢ as
a frequency:

folt,z) = ozoe“’f/Ax, fi(t,x) = e E/ AT

After one time step, we obtain

mis(t, ) = (ag + an)e™/A,
mi(t,z) = (1 —s)Mag — al)emé/m + sye(an + ozl)e“f/m,
() = (1= 2(1+ £))age™/57 4 3 (1 4 €)a,ei2t/Ae,

1— g)aoeiazﬁ/Ax + (1 . i(l . 2))Q1€iI§/AI,

=of
—
- - s+
S
SN— N— SN— SN— SN—
I
ol
—~

A 2 A
folt + At,x) = (1 - %(1 + ﬁ))eiigfo(t#’?) + 551(1 + %)eiigfl(tax);
filt + At a) = 3 (1= ) fot,2) + (1= F(1 = §))e* fi(t, 2).

Definition 2.10 - von Neumann stability

The lattice Boltzmann scheme characterized by the amplification matrix G(§) is said
stable if the sequel (f"),>o defined by f"*! = G(&)f" is bounded for any f° € C?
and forany ¢ € [—m, 7. ]
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Proposition 2.11 - von Neumann stability

The scheme is stable in the sense of von Neumann if, and only if, the minimal poly-
nomial of the amplification matrix G () is a simple von Neumann polynomial for any
5 € [_7Ta 7T]'

L -

Proof. The key pointis the Dunford-Jordan decomposition of the complex square matrices.
The matrix G is equivalent to a block diagonal matrix that reads

g columns
Ty, 0-eee 0 A 100
0" 3 O s
o 0 , Where J,, = [ © . 7. 7. 70 é, 1 <k<b.
; EETURRETRS B (I
O 0 Jx (P | B ¥
The complex values Ay, ..., )\, are the eigenvalues of G which are not necessarily distinct.

The sequel of matrices (G"),¢n is then bounded if, and only if, we have first |\¢| < 1, for
1 < k < b,andsecond y;, = 1if [\x| = 1. This condition is therefore exactly that the minimal
polynomial of GG is a simple von Neumann polynomial. O

As the minimal polynomial of the amplification matrix G is not easy to determine, we pro-
pose to compute its characteristic polynomial . Then, if ¢ € .4, the minimal polynomial
is also a simple von Neumann polynomial; if ¢ ¢ .47, the minimal polynomial is not a sim-
ple von Neumann polynomial; and if ¢ € A4 \.4*, the case has to be investigated more
precisely. Fortunately, the first two case are generic and the last case is not.

Theorem 2.12 - von Neumann stability of the D,Q),

The linear D, (@), is stable in the sense of von Neumann if, and only if, one of these
properties is true:
(i) s, =0;
(i) 0 < s, <2and A > |c
(i) s, =2and A > |c|.

I

J

Proof. We first definet = s; — 1 and v = ¢/\. We use the notations of Appendix B. The
characteristic polynomial ¢ of the matrix G reads
o(z;€,8,t) = 22 — ((1 —t)cos& +i(1+ t)ysinﬁ)z —t,

(2, B8,t) = =tz — (1 —t)cos € —i(1 +t)ysin€)z + 1,

0°(:€,8,t) = (1 — %)z — (1 — *)(cos € + iysin§),

©* (26, 6,t) =22 — (1 —t)cos& —i(1 +t)ysin&.
We use the characterization of Th. B.8 .

peN = (pe FLandy®’ € A7) or(p € & andp® €.Y),

peEN <= (pe FLandp® € A )or(pe&andy® e N).
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Wehave p € # <= |t| < landyp € & <= |t| = 1. The first conclusion is that the
scheme is not stable for [¢| > 1.

Assuming |t| < 1, we immediately have
P EN = e N < |cos{+iysing| <1
= cos’& +7%sin? € < cos® € +sin? €
— < loré e {0,%+n}.
We conclude that, if |{| < 1, the scheme is stable, if and only if |y| < 1.
For ¢t = 1, we have ¢* = 2(z — iy sin¢), then

* €S = |ysin¢| <1 <= +* < 1/sin*€or¢ € {0, £},
'€ N = |ysiné| <1 <= * < 1/sin*€oré € {0, 7}
We conclude that, if ¢ = 1, the scheme is stable for |y| < 1 and is not stable for |y| > 1. The

case ¢* € A\.¥ has to be investigated. We directly write the amplification matrix for ¢ = 1
(s =2)and vy = 1:

—e7 2e7H " w1l —2n
G(f)—( 0 ei§> — G"(m/2) =1 (O 1 )
The power of G are not bounded for £ = 4+ /2: the scheme is not stable. The case v = —1

is exactly the same.

Finally, for t = —1, we have ¢*® = 2(z — cos§), then
p* e S — £¢{0,£m7}, ©* € A is always true.

The amplification matrix reads
e 0
G(¢) = -
(é—) < 0 ezg
The power of GG are bounded for every &: the scheme is stable. That ends the proof. O

lllustrations of the eigenvalues of the amplification matrix are given in Fig. 2.4 and 2.5.

B 4.2 The maximum principle

Another notion of stability can be useful for hyperbolic scalar conservation law. In this sec-
tion, we consider the general nonlinear case ¢(u). Applying the theory of the characteritics,
the exact solution of the PDE (2.1) satisfies the maximum principle:

Vt>0,Vzr eR, u<u(tz) <0, (2.20)
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v J
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R J

Figure 2.4 — Modulus of the eigenvalues of the amplification matrix according to the variation of
s, and ¢/ \.
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520,00, e =1.10
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Figure 2.5 - Eigenvalues of the amplification matrix according to the variation of s; and ¢/ \.

u = max(u(0,y)).

yeR
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Require the same property for the numerical solution gives then a natural notion of stability.

Theorem 2.13 - maximum principle of the D, (), 1

We assume 0 < s; < 1, m{® = ¢(m,) and we introduce
M = max{|¢'(¢)], foru < § < T}
Then, if A > M, the D, (@, satisfies the following maximum principle

VE e N,VjeZ, u<my(kAt,jAz) <.

-
Proof. We first write the relaxation phase on the particle distribution functions. We have
.1 .1 1 1—-s5 51 e , o
fo = §mo - 2>\m1 = imo - Tlml - imlq = (L=s1)fo + 5105 (my),
, 1, 1 . 1 1—35 51 e o
fi= 5o + o= 5o + Tlml + imlq = (L=s)f1+ s/ (my),
with
1 1 1 1
eq e eq [ .

The functions 3% and f;® are C'(R) and their derivative is non negative over [u,u]. Then,
they are non decreasing functions over [u, u]. Moreover, we have f;4(¢) + f7*(&) = &.

A recursive reasoning over k € N is done. Since u(0,-) € [u,T], the initial step imposes
my(0, jAz) € [u,u] for all j € Z. Since m,(0, -) = ¢(m,), we get

£30,) = f34(mg(0,)) € [f5(w), [ (@], j € {0,1}.

We then assume that the three inclusions are true for a certain k € N. Ass € (0,1], f3
and f} are respectively convex linear combinations of f, and f;%, and f, and fi%, so that
fie [fj% (), f;*(@)], 0 < j < 1. The transport phase just shift the distribution functions,
so that the inclusions yields for f,((k + 1)At,-) and f,((k + 1)At,-). Finally, summing the

distribution functions gives
my((k + 1AL, jAz) € [f5%(u) + f(u), f6" (@) + /(W) = [u, 1],

as f34(&) + f74(€) = £ That ends the proof. =
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m Chapter 3

A notion of consistency

Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in
order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a
collision and a stream phase. This structure, despite the well-known advantages from a
computational standpoint, is not suitable to construct a rigorous notion of consistency with
respect to the target equations and to provide a precise notion of stability. In order to al-
leviate these shortages and introduce a rigorous framework, we demonstrate that any LB
scheme can be rewritten as a corresponding multi-step FD scheme (Finite Differences) on
the conserved variables. This is achieved by devising a suitable formalism based on oper-
ators, commutative algebra and polynomials. Therefore, the notion of consistency of the
corresponding FD scheme allows to invoke the Lax-Richtmyer theorem in the case of linear
LB schemes. Moreover, we show that the frequently-used von Neumann-like stability anal-
ysis for LB schemes entirely corresponds to the von Neumann stability analysis of their FD
counterpart. More generally, the usual tools for the analysis of FD schemes are now readily
available to study LB schemes.

m Algebraic form of LB schemes

In this section, we present the formalism used in [1] to build the FD corresponding scheme.
We first rewritte the LB scheme by using spatial and temporal shift operators.

m 1.1 Spatial and temporal discretization

We set the problem in any spatial dimension d = 1,2, 3 considering the whole space R¢,
because we are not interested in studying boundary conditions. The space is discretized by
a d-dimensional lattice . = AxzZ? of constant step Ax > 0 in all direction. The time is
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uniformly discretized with step At > 0. The discrete instants of time shall be indexed by the
integer indices n € N so that the corresponding time is t" = nAt. We finally introduce the
so-called lattice velocity A > 0 defined by A = Ax/At. Observe that the developing theory
is totally discrete and thus fully independent from the scaling between Ax and At.

Definition 3.1 - [attice velocity .

The lattice velocity is defined by

_Aa:

)\—E.

(3.1

B’ 1.2 Discrete velocities and shift operators

The first choice to be made when devising a lattice Boltzmann scheme concerns the discrete
velocities ¢;, 0 < j < ¢ with ¢ € N*, which are multiples of the lattice velocity, namely
¢ € A\Z4 for any 0 < j < q. Therefore, particles are stuck to move-at each time step-on
the lattice .Z.

We denote the particle distribution function moving with velocity ¢, by f; forevery 0 < j < q.
The shift operators associated with the discrete velocities are an important element of the
following analysis.

Definition 3.2 - Shift operator

Let z € Z4, then the associated shift operator on the lattice .#, denoted T, is defined
in the following way. Take ¢ : . — R be any function defined on the lattice, then the
action of 1%, is

(TR.0)(z) = p(z — zAzx), Vo € Z.

We also introduce Z¢ = {TZ, with 2z € Z¢} =~ 7.
-
The shift yields information sought in the upwind direction with respect to the considered
velocity. Let us introduce the natural binary operation between shifts.

Definition 3.3 - Product

Let the “product” o : %% x L% — Z< be the binary operation defined as T, o T, =
TS, for any z,w € Z°.
-
Henceforth, the product o is understood whenever no ambiguity is possible. This operation
provides an algebraic structure to the shifts, directly inherited from that of Z¢.

Proposition 3.4

1
(%4, 0) forms an Abelian group. F

x?
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Moreover, there is only “one movement” for each Cartesian direction which generates the
shifts. More precisely

ford=1, letx = T3, then %L = ({x}),
ford =2, letx = Tﬁ(i’o),y = TA((;’I), then %2 = ({x,y}),
ford =3, letx = TA(}E’O’O), y = TA((;’LO), z= TA((;’O’I), then %> = ({x,y,z}),

where (-) is the customary notation for the generating set of a group.

We can add one more binary operation, which is non-internal to .Z%. This yields the corner-
stone of this work, namely the set of FD operators, finite combinations of weighted shifts
operators via a sum. It is defined as follows.

Definition 3.5 - FD operators -

The set of FD operators on the lattice .Z is defined as
d _ d _ _
¢ =RZL = {ZTE% arT, where at € Randar =0 a.e.} :

the group ring (or group algebra) of 4% over R. The sum + : Z¢ x 9¢ — 9 the
producto : Z¢ x 2. — 9& of two elements are defined by

Z arl | + Z brT | = Z (at + B7)T,

TeZd TeZd TeZd
E atT | o E GzT | = E atfBsToT.
TeZd Tezl T, Tez?

Furthermore, the product of o € R with elements of %, is given by

o Z atT | = Z (cat)T.

Te%? TeZd
L _J
With the two binary operations, 9&- behaves closely to Z, R or C as stated by the following
result.

Proposition 3.6 - Ring of FD operators 1

(9., +, 0) is a commutative ring. B

Observe that (%, +,0) is not a field: not every element of Z¢, has multiplicative inverse,
take for example the centered approximation of the derivative along x: (T, — T2, )/(2Ax).
The elements having inverse are called “units” and divide all the other elements. It can be
easily seen that the units are the product of a non-zero real number and a shift in .Z%.
Indeed (aTZ,)™ = (1/a)T /7 foranya € R~ {0} and z € Z%.
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m’ 1.3 Monolithic scheme

We now introduce the vast class of lattice Boltzmann schemes we consider in the present
chapter and for which we shall explain how to find the corresponding Finite Difference
scheme. Any lattice Boltzmann scheme consists in an algorithm made up of two phases:
a local collision phase performed on each site of the lattice and a stream phase, where par-
ticles are exchanged between different sites of the lattice. Let us recall each of them.

The N conserved moments, forming the variables of interest, are linear functions of the
distributions densities f = (f;,..., f,_,). Equally, the remaining ¢ — N non-conserved
moments are linear functions of f as well. For this reason, we introduce a change of basis
called moment matrix M € G/,(R). Thus, the moments are recovered by m = M f and
viceversa. The entries of M can depend on Ax and/or on At, as we have stated that the
scaling does not play any role here, but cannot be a function of the space and time variables.

We follow the general formalism of D’'Humiéres [9], which easily and effectively accounts
for multiple-relaxation-times (MRT) schemes. In this framework, the collision is written as
a diagonal relaxation in the moments basis. Thus, the collision phase reads, denoting by *
any post-collision state

m*(z) = (I — S)m(z) + Sm*(x), reZL. (3.2)
This part of the algorithm is local to each site of the lattice. Here

« I € G/,(R) is the identity matrix of size ¢;
« § € M,(R)istherelaxation matrix which is a singular diagonal matrix with rank(S) =
qg— N,where N € {1,...,q— 1} is the number of conserved moments:

S = diag(0,...,0,8x,---,8, 1),

’»2g—1

where the first N entries are zero and correspond to the conserved moments, the
following ¢ — N are such that s, € (0,2]for N < i < ¢;

+ we employ the notation m®i(z) = m®i(my(z),...,my_,(x)) forxz € £, where m® :
RY — R? are the equilibria for the moments, which are possibly non-linear functions
of the NV conserved moments. Since these equilibria are then multiplied by S, the first
N components do not need to be defined.

In the collision phase Eq. (3.2), the entries of S can depend on Ax or At, but not on space and
time. The equilibria are allowed to follow the same dependencies plus those on space and
time and can also depend on some “external variable" as in the case of vectorial schemes
[17].

As previously said, the post-collisional distributions are recovered at each node by comput-
ing f* = M 'm*. The stream phase is diagonal in the space of the distributions densities.
It can be written as

flt+ At z) = diag(TO, ..., T (L),  z€.%, (3.3)

where the unit velocity vectors e; € 74,0 < j < q are defined by ¢; = Ae;. For the first
time, the matrices have entries in a commutative ring ¢ instead than in the field R. The
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set M, (ZX,) of square matrices of size ¢ with entries belonging to %, forms a ring under
the usual operations between matrices. Even if ¢ is commutative from Proposition 1.2,
M, (Z4,) is not commutative for ¢ < 2, as for real matrices and matrices of first-order
differential operators.

The stream phase Eq. (3.3) can be rewritten in a non-diagonal form in the space of moments
by introducing the matrix T = M diag(Tx°, ..., T\“")M L. One time step of the global
scheme can then be written

m(t + At,x) = Am(t,z) + Bm®(t, z), r €L, (3.4)
withA=T(I - S)and B=TS.

Consider a D, (), as example (see chapter 2), we compute the matrix A and B. We have

(11 o — o (0 0
() (1 A) s 0)
We then obtain, denoting x = T, and x = T

XtX X=X X+X (1 — 3 )X; 0 g x=x
_ 2 2 _ 2 172 _ 1 2)
T_ ()\XEX x+x>7 A_ (AX_X (1 —SI)X+X>7 B - (0 Slx—gx>'

2

N [—= Do

) Corresponding multi-step scheme

The goal of this section is to explain the transformation of any lattice Boltzmann scheme
into a multi-step scheme which involves only the conserved moments. Indeed, the study of
the consistency is difficult because the non conserved moments are pure numeric values
with no corresponding physical quantities.

In order to avoid this difficulty, we try to write a scheme only on the conserved moments.
The idea is to write the matrix version of the scheme (see previsou section) and then to
diagonalize it.

B 2.1 Characteristic polynomial and Cayley-Hamilton theorem

Polynomials with coefficients in 4& and matrices with entries in 4 play a central role in
what we are going to develop.

Definition 3.7 - Characteristic polynomial

Let # be a commutative ring and C € M, (%) for some r € N*. The characteristic
polynomial of C, denoted y¢ € Z|[X], is given by xc = det(XI — C), where det(-)
is the determinant and I is the r x r identity matrix.

-
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A central result used in this work is the Cayley-Hamilton theorem for matrices over a com-
mutative ring, see [3] for the proof, generalizing the same result holding for matrices on a
field.

Theorem 3.8 - Cayley-Hamilton

Let # be a commutative ring and C' € M, (Z) for some r € N*. Then x¢ is a monic
polynomial in the ring Z[X] in the indeterminate X, under the form

xoe=X"+v_1 X"+ .. 71X + Yo,

with ('}’k)nggr C Z.Then Xc(C) = 0. N

This result states that any square matrix with entries in a commutative ring verifies its char-
acteristic equation.

m’ 2.2 Main result

In this section, we give only the main theorem for one conserved moments N = 1. The
general case can be found in [1] and is just more technical to write.

Theorem 3.9 - Corresponding multi-step scheme

Let N = 1, then the lattice Boltzmann scheme given in (3.4) can be rewritten as a
multi-step explicit scheme on the conserved moment m,, under the form

q—1

my(t + At) = — Z%mo(t —(¢g—1—-k)At)

k=0
-1 k
+ ( (Z Vq—i-l_kAl) Bm®(t — kAt)) ,
k=0 0

=0

Q

where (vx)o<k<q are the coefficients of the characteristic polynomial of A: x4 =

q Xk

k=0 Tk
L -
Proof. The proof only consists in using the Cayley-Hamilton theorem to the matrix A and in
combining the relations to eliminate all the terms with m,, ..., m ;. O

3 Example of the D,Q),

We already obtained the matrix formulation of the D, (), with

X (1 — 5y) %2 0 5,52
_ 2 1/ 2) _ 12X
A‘(AX; <1—s1>X“>’ B‘(o )

2 1 2
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Defining . = (x +X)/2 and § = (x — x)/2, we have /> — §* = 1. A direct calculation gives
Xa=X>—(2—s )X —1.
We then compute the corresponding two-step scheme directly as for a particular proof. We

have

1 1
my(t + At) = tmg(t) + (1 — 31)X5m1(t) + le(Smi“q(t),
1 1 1
Xéml(t) = 0"my(t — At) + (1 — SI)XLéml(t — At) + SIXL(Smiq(t — At),

1 1
imy(t) = Pmy(t — At) + (1 — sl)XMml(t — At) + SlXMmE{q(t — Ab).

Combining these relations, we have

1
X(Sml(t) = umy(t) — my(t — At).

And finally

my(t + At) = (2 — sy)emg(t) — (1 — sy)my(t — At) + 81/1\5m‘°iq(t).

We can then compute the equivalent equation in the sense of the finite differences by using
a Taylor expansion. We use the expansions:

N A ‘
xXmy = my — AAtO,m, + Tammo + O(At?),

N AL? :
xmgy = my + AALO,mg + ?(meo + O(A#).

The moment m,, satisfies

At? A2AL? 1
mg + Atoym, + TOttmo =(2—s) <m0 + Tﬁxmm()) —s1y </\At0xm§q>

—(1—s) <m0 — Atdymy + A;Zaﬁm()) + O(At%).
At zeroth order, it reads
my = (2 —s;)my — (1 — sy)my + O(At) <= my =my + O(At).
At first order, we obtain
Omy = —$,0.m* + (1 — s,)0kmy + O(Al) <= s,(Fymy + 0mi?) = O(AL).

Finally, at second-order, we recover, but rigourously, the second order macroscopic equa-
tion (2.19) previously obtained by the Taylor expansion method:

11
Bymy + BymSe = At(— - é) (\20, — D)y + O(AF).

S1






[ ]
universite

PARIS-SACLAY

the Lattice Boltzmann Method @B. Graille

m Appendix A

Fourier Transform

It is possible to analyze a linear scheme from its Fourier transform. The obvious benefit is
that the derivation is then transformed into a multiplication.

We start by introducing the set of discrete summable square sequences scaled by the space
step.

Definition A.1 - space (*(AxZ)

.
We define the space (?(AxZ) by
P (AzZ) = {v = (v))jez : Z v;|? < +oo}
jez
which is provided with the norm
10]l3.0 = Az Y o]
jeL
L -

On this space, we define the discret Fourier transform.

Definition A.2 - discret Fourier transform 1

For v € (*(AzZ), we define the function .# (v) on [, ] by

F(v)(€) = Az Z vje AT,
JEZ

L -

With this formula, the operator .# is well defined for v € ¢! and we extend as usual the
definition to /2 by density.
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Proposition A.3 - Parseval formula

The Fourier transform .7 : (*(AxZ) — L*([—<, &=]) satisfies the Parseval formula

1 7w/ Az

| Z )& dé = Az Juj]*.

2m —m/Az jET

L -

Proof. We first assume that v € ¢ N (2. We then finish the proof by using the density of
AN eZin 2.

w/Ax N -
[ reere - 1 so@Fm@
—7/Ax

2m —7/ Az
2 w/Ax
— 7AJ/ Uj??ke*iijgeikAxf d¢,
27 Jrjae S
ASL’2 7w/ Az 3 '
_ Z Uj/l_}k/ efz]AxfezkAxﬁ df,
2m jkeZ —7/Ax
2
= Az ) |u]*
JEL
Of course, the exchange of summations and integrations has to be justified. O
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m Appendix B

Schur and von Neumann polynomials

Investigate the stability of a given scheme requires us to determine the location of roots of
amplification polynomials, and in this appendix we present an algorithm for checking the
roots of such polynomials. Let ¢ € C|z] be a complex polynomial of degree d,

d

d ¢
Y = a4z +...+a0:E apz" .
=0

We say that ¢ is of exact degree d if a4 is not zero.

I. 1 Definitions

These definitions are based on the paper of Miller [25] and the book of Strikwerda [28].

Definition B.1 - Schur polynomial

The polynomial ¢ is a Schur polynomial if all its roots r satisfy |r| < 1.
We denote by . the set of the Schur polynomials.

Definition B.2 - von Neumann polynomial

The polynomial ¢ is a von Neumann polynomial if all its roots r satisfy |r| < 1.
We denote by .4 the set of the von Neumann polynomials.

Definition B.3 - simple von Neumann polynomial

The polynomial ¢ is a simple von Neumann polynomial if ¢ is a von Neumann polyno-
mial and its roots on the unit circle are simple roots.
We denote by .#* the set of the simple von Neumann polynomials.

J4 L J4 L Jd

-
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We finally define three operators on C|[z], where the bar denotes the complex conjugate.

Definition B.4 - operator x _I

For any polynomial ¢ € C|[z] of exact degree d we define the polynomial ¢* by

J

L
Definition B.5 - operator o 1

For any polynomial ¢ € C|[z] of exact degree d we define the polynomial ¢° by

©*(0)p(2) — 90(0)90*(2).

©°(2) =

L -

Remark that ¢° isindeed a polynomial as the constant term of ¢*(0)—(0)* vanishes. Itis
easy to see that the degree of ©° is less than that of . The operator o is a kind of a derivative
but for complex polynomials. We also define the classical derivative for polynomials.

Definition B.6 - operator e

.

For any polynomial ¢ € C|[z] of exact degree d we define the polynomial ¢* by

9

-1

P*(2) = 3 (0 + Dag 2"
J4

Il
o

-
L

I. 2 Theorems

The next three theorems give recursive tests for Schur, simple von Neumann and von Neu-
mann polynomials. The proofs depend on Rouche’s theorem from complex analysis.

Definition B.7 =

We denote

7 = {go € Clz] s.t. |p(0)| < |¢*(0)|} and & — {go € Clz] st ¢° = o}.

-

_J
Theorem B.8 - Cohn-Schur =

With these definitions, if ¢ € C|z] of exact degree d, we have

€S <= pe fLandp’ €. ¥, (B.1)
peEN — (peFandy’ € M) or(pe andy® €.S), (B.2)
peN = (peFandp’c AN)or(pefandy® e A). (B.3)



[ ]
universite

PARIS-SACLAY

the Lattice Boltzmann Method @B. Graille

References

(1]

(2]

(3]

(4]

(5]

(6]

(/]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Thomas Bellotti, Benjamin Graille, and Marc Massot. “Finite Difference formulation of any lat-
tice Boltzmann scheme”. Numerische Mathematik 152.1 (Sept. 1, 2022), pp. 1-40.

L. Boltzmann. “Weitere Studien Uber das Warmegleichgewicht unter Gasmolekulen”. Sitzungs-
berichte Akademie der Wissenschaften 66 (1872), pp. 275-370.

James W. Brewer, John W. Bunce, and Fred S. Van Vleck. Linear Systems over Commutative Rings.
Lecture Notes in Pure and Applied Mathematics. CRC Press, Apr. 22, 1986. 220 pp.

S. Chapman. “On the Law of Distribution of Molecular Velocities, and on the Theory of Viscosity
and Thermal Conduction, in a Non-Uniform Simple Monoatomic Gas". Phil. Trans. Roy. Soc.
Lond. A 216 (1916), pp. 279-348.

S. Chapman. “The Kinetic Theory of Simple and Composite Monoatomic Gases: Viscosity, Ther-
mal Conduction, and Diffusion”. Proc. Roy. Soc. Lond. A 93 (1916), pp. 1-20.

S. Chapman. “On the Kinetic Theory of a Gas. Part II: A Composite Monoatomic Gas: Diffusion,
Viscosity, and Thermal Conduction”. Phil. Trans. Roy. Soc. Lond. A 217 (1918), pp. 115-197.

S.ChapmanandT. G. Cowling. The Mathematical Theory of Non-Uniform Gases. third. Cambridge
Mathematical Library, 1970.

S. Chen and G. D. Doolen. “Lattice Boltzmann Method for Fluid Flow”. Ann. Rev. Fluid Mech. 30
(1998), pp. 329-364.

D. d'Humiére. “Generalized Lattice-Boltzmann equations”. Rarefied Gas Dynamics: Theory and
simulation. Vol. 159. AIAA Progress in astronomics and aeronautics, 1992, pp. 450-458.

D. d'Humieres, P. Lallemand, and U. Frisch. “Lattice gas models for 3D hydrodynamics”. Euro-
phys. Lett. 2.4 (1986), pp. 291-297.

F. Dubois. “Une introduction au schéma de Boltzmann sur réseau”. ESAIM Proc. 18 (2007),
pp. 181-215.

F. Dubois. “Equivalent partial differential equations of a lattice Boltzmann scheme”. Computers
and Mathematics with Applications. 55 (2008), pp. 1441-1449.

D. Enskog. “Kinetiche Theorie der Vorgange in Massig Verdinnten Gases”. Inaugural Disserta-
tion. Uppsala, 1917.

D. Enskog. “The numerical calculation of phenomena in fairly dense gases”. Arkiv Mat. Astr. Fys
16.1(1921), pp. 1-60.




M2 - Analyse Modélisation Simulation

[ ]
universite
PARIS-SACLAY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. H. Ferziger and H. G. Kaper. Mathematical Theory of Transport Processes in Gases. North-
Holland Publishing Company, Amsterdam, 1972.

U. Frisch, B. Hasslacher, and Y. Pomeau. “Lattice gas automata for the Navier-Stokes equa-
tions". Physical Review Letters 56.14 (1986), pp. 1505-1508.

Benjamin Graille. “Approximation of mono-dimensional hyperbolic systems: a lattice Boltz-
mann scheme as a relaxation method". Journal of Computational Physics 266 (2014), pp. 74-
88.

J. Hardy, O. de Pazzis, and Y. Pomeau. “Time evolution of a two-dimensional model system I:
invariant states and time correlation functions”. J. Math. Phys. 14 (1973), 1746(14pp).

J.Hardy, O. de Pazzis,and Y. Pomeau. “Molecular dynamics of a lattice gas: transport properties
and time correlation functions”. Physical review A 13 (1976), pp. 1949-1961.

F. Higuera, S. Succi, and R. Benzi. “Lattice gas dynamics with enhanced collisions”. Europhys.
Lett. 9.7 (1989), pp. 663-668.

D. Hilbert. Grundziige einer Allgemeinen Theorie der Linearen Integralgleichungen. Chelsea Pub-
lishing Co., New York, 1953.

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird. Molecular Theory of Gases and Liquids. John Wiley
& Sons, Inc., New York, 1954.

R. L. Liboff. Kinetic Theory: Classical, Quantum, and Relativistic Descriptions. Second Edition. John
Wiley & Sons, Inc., New York, 1998.

G.McNamara and G. Zanetti. “Use of the Boltzmann equation to simulate lattice gas automata”.
Phys. Rev. Lett. 61.20 (1988), pp. 2332-2335.

JohnJ. H. Miller. “On the Location of Zeros of Certain Classes of Polynomials with Applications
to Numerical Analysis”. IMA Journal of Applied Mathematics 8.3 (1971), pp. 397-406.

S. Orszag and V. Yakhot. “Reynolds number scaling of cellular automaton hydrodynamics”.
Phys. Rev. Lett. 56.16 (1986), pp. 1691-1693.

Y. H. Qian, D. d'Humiéres, and P. Lallemand. “Lattice BGK Models for Navier-Stokes equation”.
Europhys. Lett. 17.6 (1992), pp. 479-484.

John C. Strikwerda. Finite difference schemes and partial differential equations. 2nd ed. Philadel-
phia: Society for Industrial and Applied Mathematics, 2004. 435 pp.

S. Succi. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Numerical Mathematics
and Scientific Computation. Clarendon Press, 2001.

W. G. Vincenti and C. H. Jr Kruger. Introduction to Physical Gas Dynamics. Second Printing. John
Wiley & Sons, Inc., New York, 1967.




	A numerical method inspired by the kinetic theory
	Thermodynamics of gases
	Cellular automata
	The lattice Boltzmann method

	Example of the D1Q2
	Description of the scheme
	Asymptotic Analysis : the Taylor expansion method
	Numerical illustrations
	The transport equation
	Burgers equation

	Notions of stability
	The von Neumann analysis
	The maximum principle


	A notion of consistency 
	Algebraic form of LB schemes
	Spatial and temporal discretization
	Discrete velocities and shift operators
	Monolithic scheme

	Corresponding multi-step scheme
	Characteristic polynomial and Cayley-Hamilton theorem
	Main result

	Example of the D1Q2

	Fourier Transform 
	Schur and von Neumann polynomials 
	Definitions
	Theorems

	References

