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Pictures of Ludwig Eduard Boltzmann



S ei irgend ein Raum mit sehr vielen Gasmolekülen erfüllt, deren jedes ein einfacher
materieller Punkt ist. Jede Molekül fliege während des grössten Theiles der Zeit
geradlinig mit gleichförmiger Geschwindigkeit fort. Nur wenn sich zwei Moleküle
zufällig sehr nahe kommen, beginnen sie auf einender einzuwirken. Ich nenne diesen

Vorgang, während dessen zwei Moleküle auf einander einwirken, einen Zusammenstoss der
beiden Moleküle, ohne dass jedoch dabei an einen Stoss elastischer Körper zu denken ist ; die
während des Zusammenstosses wirksamen Kräfte können vielmehr ganz beliebig sein. Selbst
wenn zu Anfang der Zeit alle Moleküle dieselbe Geschwindigkeit besessen hätten, würden
sie dieselbe im Verlaufe der Zeit nicht immer beibehalten. In Folge der Zusammenstösse
werden vielmehr einige Moleküle grössere, andere kleinere Geschwindigkeiten annehmen,
bis sich endlich eine solche Verteilung der Geschwindigkeiten unter den Molekülen herge-
stellt hat, dass dieselbe durch die Zusammenstösse nicht weiter verändert wird. Bei dieser
schliesslich sich herstellenden Geschwindigkeitsvertheilung werden im Allgemeinen alle mög-
lichen Geschwindigkeit von Null bis zu einer sehr grossen Geschwindigkeit vorkommen. Die
Zahl der Molekülen, deren Geschwindigkeit zwischen v und v + dv liegt, wollen wir mit
F (v)dv bezeichnen. Dann bestimmt uns also die Function F die Geschwindigkeitsverthei-
lung vollständig. Für den Fall einatomiger Moleküle, den wir jetzt betrachten, fand bereits
Maxwell für F (v) den Werth Av2e−Bv2 , wobei A und B Constanten sind, so dass also die
Wahrscheinlichkeit der verschiedenen Geschwindigkeit durch eine ähnliche Formel gegeben
wird, wie die Wahrscheinlichkeit der verschiedenen Beobachtungsfehler in der Theorie der
Methode der kleinsten Quadrate. Der erste Beweis jedoch, den Maxwell für diese Formel
gab, wird von ihm selbst als unrichtig bezeichnet. Später gab er zwar einen sehr elegan-
ten Beweis dafür, dass, wenn man die obige Geschwindigkeitsvertheilung einmal unter den
Glasmolekülen hergestellt hat, dieselbe in der That durch die Zusammenstösse nicht weiter
verändert wird. Er sucht auch zu beweisen, dass es die einzige Geschwindigkeitsvertheilung
von der betrachteten Eigenschaft ist. Allein der letztere Beweis scheint mir wieder Fehl-
schlüsse zu enthalten. Es ist somit noch nicht bewiesen, dass, wie immer der Zustand des
Gases zu Anfang gewesen sein mag, er sich immer dieser von Maxwell gefundenen Grenze
nähern muss. Es könnte sein, dass es ausser dieser noch verschiedene andere mögliche Gren-
zen gibt. Dieser Beweis gelingt aber leicht mittelst der Auffassungsweise des Problems, zu
deren Auseinandersetzung ich jetzt schreiten will, und welche zudem den Vorteil bitter, dass
sie sich direct auf mehratomige Moleküle, also auf den in der Natur wahrscheinlich allein
vorkommenden Fall übertragen lässt.

Ludwig Eduard Boltzmann, extract from [2]
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Chapter 1

A numerical methodinspired by the kinetic theory

We first propose an elementary introduction to the lattice Boltzmann method. This numer-ical method has its origins in gas automata or cellular automata.

1 Thermodynamics of gases
The fluid flows can be described at several spatial and time scalings according to the inves-tigated phenomena. When the number of particles in the volume of reference is low (andin particular when the number of collisions involving these particles is low), a microscopicdescription is required and yields to predict the evolution of each individual particule. Manymodels are relevant and the most precise use quantum mechanics. One of the simplestmodels considers the particles as hard spheres moving in a straight line and interactingby bouncing. These collisions are infinitely brief phenomena during which certain physicalquantities are exchanged like momentum, energy, etc. Unfortunately, as the number of par-ticles increases, these models become unusable due to too many variables: remember thatAvogadro’s number equals to the number of carbon atoms in 12 grams is worth approxi-mately 6×1023.
On the mesoscopic scale, particles are described by a continuous variable called the ve-locity distribution function which represents the number of particles at a given time, at agiven point in space, with a given velocity. This scale is for example used to describe thestatistical velocity distribution of a gas when it is far from thermodynamic equilibrium. Thisintermediate spatial scale is relevant in the case where the unit volume contains a largenumber of particles. The particle density equation proposed by Boltzmann [2] describesthe evolution of a population of particles which relaxes towards an equilibrium given by a

7 / 42



M2 – Analyse Modélisation Simulation

Maxwell-Boltzmann distribution. This equilibrium distribution is characterized by only a fewstate variables (mass, momentum, energy, etc.) and depends very little on the underlyingmicroscopic system: many different microscopic systems have the same equilibrium. Boltz-mann further shows that a function (later called the Boltzmann’sH function) plays the roleof an entropy: it is necessarily decreasing over time for a closed system. He introduces a sta-tistical interpretation of entropy in 1877, which marked a major breakthrough in the under-standing of the transition from reversible microscopic dynamics to irreversible macroscopicevolution—the formula in engraved on his gravestone in Vienna S = k logW .
Various attempts have been proposed to obtain approximate solutions of the Boltzmannequation: Chapman [4, 5, 6] and Enskog [13, 14] independently gave two methods withidentical results, those of Enskog reusing Hilbert’s asymptotic expansion method. Enskog’smethod consists of jointly expanding the Boltzmann equation and its solution: the approxi-mation of order zero is a Maxwell-Boltzmann distribution and its moments satisfy the com-pressible Euler equations; the first order approximation is the solution of a linear equationand its moments satisfy the compressible Navier-Stokes equations. When the second orderapproximation is considered, the Burnett equations are obtained. However, these equa-tions of order 2 have never made it possible to obtain notable improvements [15, 22], theessential reason being the real difficulty of having to impose boundary conditions for higherorder derivatives. Full details of the Enskogmethod—generally referred to as the Chapman-Enskog method in the literature—are given in classic references such as Hirschfleder et al.[22], Ferziger and Kaper [15], Vincenti and Kruger [30], Chapman and Cowling [7] and Liboff[23]. These approximate solutions and the resulting models are relevant at a macroscopicscale for which the mean free path—average distance traveled by a particle between twocollisions—is very small.
We consider a simple gas with a single type of particles and no external force lying in Rd

for d ∈ {1, 2, 3}. Let’s define the particle distribution function f , function of the time t , theposition x , and the velocity c, such that the mass of the particles dρ lying in a box located at
x with a small volume dx and having a velocity c defined with a precision dc, at the time t ,is given by

dρ = f (t , x , c) dx dc.

The particle distribution function can then be used to define the macroscopic quantities as,for example, the mass ρ, the momentum q , and the energy E by
ρ(t , x ) =

∫
Rd

f (t , x , c) dc, (1.1)
q(t , x ) =

∫
Rd

cf (t , x , c) dc, (1.2)
E (t , x ) =

∫
Rd

1

2
c·cf (t , x , c) dc. (1.3)

The fluid velocity is defined as u = q/ρ.
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The particle distribution function f satisfies the Boltzmann equation
∂t f (t , x , c) + c·∂x f (t , x , c) = Q(f )(t , x , c), t > 0, x ∈ Rd, c ∈ Rd. (1.4)

In this equation, the term ∂t f + c·∂x f corresponds to a free transport at the velocity c,whereas the right member Q(f ) describes the collision between the particles of the gas.Inmost cases, for dilute gases, this operator Q is quadratic taking into account “two-points”collisions.
A microscopic analysis of the molecular collisions shows that the mass, the momentum,and the energy are conserved during the collisions. The effect on the macroscopic scalethat interest us here is that, in particular, the collision kernel Q(f ) has zero integral whentested against 1, c, and 1

2
c·c:∫

Rd

Q(f ) dc = 0,

∫
Rd

cQ(f ) dc = 0,

∫
Rd

1

2
c·cQ(f ) dc = 0. (1.5)

By injecting these hypothesis into the Boltzmann equation (1.4), the conserved quantities
m = (ρ, q ,E ) are functions of time and space that satisfy the Euler equations of gas dy-namics:

∂tm + ∂x ·ϕ = 0. (1.6)
In this equation, the flux ϕ reads

ϕ =

(∫
Rd

cf dc,

∫
Rd

c⊗cf dc,

∫
Rd

c
1

2
c·cf dc

)
.

The equation (1.6) is a systemof partial differential equations if the fluxϕ reads as a functionof the conserved quatities m . We speak about the closure of the system. The asymptoticexpansion of Hilbert [21] or the Chapman-Enskog development [7] can be used to obtain anasymptotic expressionof the flux in the limit of small Knudsennumber. TheKnudsennumber
ε is a dimensionless number defined as the ratio of the mean free path (average lengthcovered by a particle between two collisions) over a characteristic macroscopic length.

2 Cellular automata
In 1986, Frisch, Hasslacher, and Pomeau were responsible for a revolution: a simple cellularautomaton obeying a few microscopic conservation laws was capable of reproducing thecomplexity of a real fluid flow [16]. The principle of this cellular automaton is to consider ahexagonal network in which each site hosts up to six particles, each of which has a speedenabling it to move to a neighbouring point during one time step. All the particles havethe same mass, and therefore the same energy. Moreover, only one particle can be at agiven site with a given speed (exclusion principle). Without going into detail about the algo-rithm, it is made up of two phases, a transport phase during which each particle changes
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site according to its own velocity, and a collision phase during which the particles reorganisetheir velocities according to simple principles that satisfy the conservation of mass and mo-mentum. The hexagonal lattice allows this automaton to respect a fundamental property ofsymmetry in the Navier-Stokes equation: invariance by rotation–which was not the case forthe automaton of Hardy, Pomeau, and De Pazzis [18, 19] ten years earlier, in particular forthe impulse flow.
Instead of seeking mathematical models, the development of computer modelling tools ledto the idea of discrete simulators easy to program. In such an approach, the space, time,velocity, number of molecules present at a given time at a given point are discrete variables.The development of these cellular automata have been three highlights.

t t+ 1 t+ 2

Figure 1.1 – Frontal collision dynamics in the HPP [18] model.
The first idea is to use a square two-dimensional lattice. The lattice set of Gaussian integers(Z[i] ∼= Z2) has a state defined by a binary variable field being 0 or 1. A value of 0 indicatesthat the site (i, j) is empty and the value 1 it is occupied. The discret evolution of the particleson the lattice is describedby the velocities linking a vertex (i, j) to its four neighbors (i±1, j±
1). With a unity space step and unity time step, the speed range therefore take values in theset {e1,−e1, e2,−e2}, with e1 = (1, 0) and e2 = (0, 1). Each particle (or occupied site) hasone of the four previous proposed velocities. It remains to define the collision rules whenthere is a conflict to occpy a site at a new discret time. Without describing in detail here themodel of Hardy, de Pazzis, and Pomeau [18], we must build collision rules that respect theconservation of mass, momentum, and energy while taking into account a discret time andspace. The figure 1.1 describes the dynamics in the evet of a frontal collision. We remarkthat during the intermediate time t + 1, two discret particles are present at the same timeon the same vertex of the lattice.
A remarkable point in the study of the cellular automata is that it is possible (at least formally)to pass to the limit. Taking blocks of larger and larger size allows to define a macroscopicdensity ρ∞ (ratio of the number of occupied sites towards the number of sample sites) anda macroscopic momentum q∞. We introduce also a “large” time scale compared to the timescale of the simulation (equal to 1) and a “large” spatial scale compared to the lattice step(still equal to 1!). Using these continuous variables, the limit equations take the form

∂tρ
∞ + ∂x·q∞ = 0, ∂tq

∞ + ∂x·P (ρ∞, q∞) = 0,

where P is a computable function. The conservations of the mass and of the momentumare then satisfied by the cellular automata at the macroscopic limit. But the pressure tensor
P is not isotropic.
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or

t t+ 1 t+ 2

Figure 1.2 – Frontal collision dynamics in the FPP [16] model.

To remedy this defect of isotropy, Frisch, Hasslacher, and Pommeau [16] proposed to usea hexagonal lattice, i.e. vertices of the form a + bj, a, b ∈ Z and 1 + j + j2 = 0. Thediscrete velocity space contains more directions, the collision dynamics is therefore morecomplex (see figure 1.2). A random draw is needed to describe the post-collision state af-ter a frontal collision. With this new model, the hydrodynamic limit is isotropic, thereforephysically admissible. The extension to three space dimensions was realized soon after byd’Humières, Lallemand and Frisch [10] using a 4-dimensional model with 24 velocities anda face-centered cubic lattice.
However, a statistical noise—inherent to particle methods and highlighted by Orszag andYakhot [26]—aswell as the exponential complexity of the collision operator—this complexityis due to the fact that collisions between N bodies are taken into account, which is not thecase for the Boltzmann equation at the continuous level in the case of sparse gases—makingit less competitive than spectral methods in particular—and this despite numerous efforts,both theoretical and operational.

3 The lattice Boltzmann method
The first lattice Boltzmann scheme was proposed by Mac Namara and Zanetti in 1988 [24]with the explicit intention of avoiding the problem of statistical noise in cellular automata.The approach essentially consists of replacing Boolean numbers—a particle either occupiesor does not occupy a site in the lattice—with an averaged population represented by a float-ing number. The change in perspective is exactly the same as that involved in moving fromthe particle view of a gas—where each particle is tracked in its movement—to continuouskinetic theory—for which the quantity tracked is an average particle density.
Mac Namara and Zanetti keep a discret lattice but seek real unknowns f which describesthe average population on a given site, with a given velocity imposed by the geometry.
In order to eliminate the exponential complexity of the collision operator, Higuera, Succi andBenzi [20] introduce equilibrium distributions and a collisionmatrix, whichmakes it possibleto write the collision operator collision in linear form. In [27], Quian, d’Humières and Lalle-mand propose a network Boltzmann scheme—later called BGK by the community—wherethe equilibria are polynomials in mass and velocity and where the collision matrix is propor-
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tional to the identity. This scheme has since been widely used because it has satisfactoryisotropy properties and it is of order 2. This approach was then enriched by d’Humières [9]who proposed amatrix of diagonal collisions in a space other than that of density functions,called moment space. It is within this framework that we systematically place ourselves inthis dissertation. The reader interested in the historical aspect of Boltzmann network dia-grams can refer to the works [8, 29].
We consider a physical space with d dimensions, d ∈ {1, 2, 3}. In this physical space there isan infinite regular lattice denoted by L . Usually, the lattice is made up of squares for d = 2or cubes for d = 3, but it could be made up of triangles, hexagons or tetrahedrons etc. Inthis lecture, we consider lattices like L = ∆xZd, where ∆x > 0 is the spatial step of thelattice. Moreover, we introduce the time step of the scheme ∆t > 0 and the lattice velocity
λ linked by

λ =
∆x

∆t
. (1.7)

On each point of the lattice x ∈ L , some particle distribution functions are put, denoted by
fj , 0 6 j < q. For each j, the particle distribution function fj(x, t) represents the numberof particles on the vertex x ∈ L at time t that have the velocity cj , 0 6 j < q. It could beseen as a discret representation of the particle distribution function of the kinetic theory. Alattice Boltzmann scheme is then a numerical evolution of these discret values that mimicsthe Boltzmann equation (1.4) with an operator splitting. We then describe one time stepof the scheme, that is the agebraic operations used to transform the particle distributionfunctions at time t to t+∆t.
The first phase is the relaxation phase that mimics the collision: the particles on the samevertex of the lattice interact and recombine according to the laws prescribed by the scheme.We note with a superscript ? the quantities after the relaxation phase. The framework pro-posed by d’Humières [9] consists of changing the basis for writing the relaxation phase. Ainvertible matrixM is chosen to transform the vector of the particle distribution functions
f = (f0, . . . , fq−1)T into the vector of the momentsm = (m0, . . . ,mq−1)T according to therelations:

m = Mf , f = M−1m. (1.8)
The relaxation phase preserves some of these moments: we consider that the N first mo-mentsm0, . . . ,mN−1 are not modified, that reads:

m?
k = mk, 0 6 k < N. (1.9)

Usually, the N conserved moments are chosen among the conserved physical quantitieslike the mass, the momentum or the energy. This choice is obviously decisive, as we will seebelow. The q−N non-conserved moments mk, N 6 k < q are modified through a linearrelaxation toward an equilibrium state denotedmeq
k thanks to a scalar relaxation parameter

sk:
m?
k = mk + sk(m

eq
k −mk), N 6 k < q. (1.10)
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Figure 1.3 – Examples of the more classical free transport phases: the filled circle represents the
initial cell and the arrows indicate the adapted velocities used to change the site. The terminology
for the schemeDdQq is q velocities on the lattice ∆xZd in a d-dimensional space.

The second phase is the free transport: each particle move freely on the lattice accordingto its personnal velocity. Thus, the particles with the velocity cj on the vertex x ∈ L findthemselves on the vertex x+cj∆t after the time step ∆t. A key point is that, the spatial step
∆x and the time step ∆t being fixed, the velocities cj , 0 6 j < q, are chosen to satisfy
cj ∈ λZd, so that the point x+cj∆t is also on the lattice. This free transport phase readsthen

fj(t+ ∆t, x+ cj∆t) = f ?j (t, x), 0 6 j < q. (1.11)
An important property of the lattice Boltzmann method is that the transport step is treatedexactly using the method of characteristics since the discrete velocities and mesh charac-teristics allow it. No projection or reconstruction step is necessary.
Now that we have clarified the two steps of the Lattice Boltzmann method, it remains tochoose the free parameters in order to simulate the target system of partial differentialequations. These parameters are of two types: the relaxation parameters sk,N 6 k < q arescalar numbers and the equilibrium values of the non-conservedmomentsmeq

k ,N 6 k < q,are functions of the conserved moments mk, 0 6 k < N . The goal of this lesson is to givemathematical tools that can be used to fix these parameters.
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Chapter 2

Example of theD1Q2

This chapter is devoted to the first simplest scheme with only two velocities in a mono-dimensional space. This scheme is however very robust and makes it possible to simulateany scalar conservation law, even non-linear. The interested reader could find more detailsand more results in [17].
We consider the following mono-dimensional hyperbolic equation

∂tu(t, x) + ∂xϕ(u)(t, x) = 0, t > 0, x ∈ R, (2.1)
where the flux ϕ is a smooth function on R. A two-velocities lattice Boltzmann scheme isused to approximate the solution of this equation.

1 Description of the scheme
We use the notation proposed by d’Humières in [9] by considering L = ∆xZ, a regularlattice in one dimension of space with typical mesh size ∆x. The time step ∆t is determinedafter the specification of the velocity scale λ by the relation ∆t = ∆x

λ
.

Definition 2.1 – lattice velocity
The lattice velocity is defined by

λ =
∆x

∆t
. (2.2)

For the scheme denoted by D1Q2, we introduce {c0 = −λ, c1 = λ} the set of the twovelocities. We have therefore that for each node x of L , and each cj , j ∈ {0, 1}, the point
x + cj∆t is also a node of the lattice L . The aim of the D1Q2 scheme is to compute aparticles distribution vector f = (f0, f1)T on the lattice L at discrete values of time. The
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scheme splits into two phases for each time iteration: first, the relaxation phase that is localin space, and second, the transport phase for which an exact characteristic method is used.
The framework proposed by d’Humières reduced here to the two moments denoted by
m = (m0,m1)T and defined for each space point x ∈ L and for each time t by

m0 = f0 + f1, m1 = λ (−f0 + f1) . (2.3)
The matrix of the momentsM such thatm = Mf satisfies

M =

(
1 1
−λ λ

)
, M−1 =

(
1
2
− 1

2λ
1
2

1
2λ

)
. (2.4)

Let us now describe one time step of the scheme. The start point is the density vector f(t, x)in x ∈ L at time t, the moments are computed by
m(t, x) = Mf(t, x). (2.5)

The relaxation phase then reads
m?

0(t, x) = m0(t, x), m?
1(t, x) = m1(t, x) + s1(meq

1 (t, x)−m1(t, x)), (2.6)
where s1 is the relaxation parameter and meq

1 the second moment at equilibrium that is afunction ofm0. As a consequence, the first momentm0 is conserved during the relaxationphase. The densities are then computed after the relaxation phase by
f ?(t, x) = M−1m?(t, x). (2.7)

The transport phase finally reads
f0(t+ ∆t, x) = f ?0 (t, x+ ∆x), f1(t+ ∆t, x) = f ?1 (t, x−∆x). (2.8)

2 Asymptotic Analysis : the Taylor expansion method
The aim of this section is to find the equivalent equations of the scheme and in particularto fix the equilibrium value meq

1 as a function of m0 in order to ensure that the scheme isconsistent with (2.1). This reasoning consists in a formal development of the distributionfunctions f(t, x) at small ∆t and ∆x, assuming that these functions are regular enoughto use the Taylor formula. The results of this section are particular cases of the generalexpansion of Dubois [11, 12].
Remark 2.2The Taylor expansion method is a formal method to obtain the equivalent equations.A rigorous method will be given in the sequel based on a rewriting of the scheme.
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The Taylor expansion method consists in expanding the distribution functions with respectto the small parameter ∆t. Considering Eq. (2.8), we have
fj +∆t∂tfj + 1

2
∆t2∂ttfj = f ?j − cj∆t∂xf ?j + 1

2
cj·cj∆t2∂xxf ?j +O(∆t3), 0 6 j 6 1, (2.9)

where the variables x ∈ L and t have been removed for readability. As the relaxation phaseis written in the space of moments, we immediately take the moments of order 0 and 1 ofEq. (2.9) by summing over j after multiplication by 1 or by cj :
m0 + ∆t∂tm0 + 1

2
∆t2∂ttm0 = m?

0 −∆t∂xm
?
1 + λ2

2
∆t2∂xxm

?
0 +O(∆t3), (2.10)

m1 + ∆t∂tm1 + 1
2
∆t2∂ttm1 = m?

1 − λ2∆t∂xm
?
0 + λ2

2
∆t2∂xxm

?
1 +O(∆t3). (2.11)

We then consider Eqs. (2.10) and (2.11) at order k for 0 6 k 6 2.
At the zeroth order, the particle distribution functions are at equilibrium.
Proposition 2.3 – zeroth order
We assume that the relaxation parameter is non zero: s1 6= 0. Then, the particledistribution functions are close to their equilibrium values:

fj = f eq
j +O(∆t), f ?j = f eq

j +O(∆t), 0 6 j 6 1, (2.12)
and the non-conserved moment is close to its equilibrium value:

m1 = meq
1 +O(∆t), m?

1 = meq
1 +O(∆t). (2.13)

Proof. Considering Eq. (2.10) at zeroth order does not give information asm0 is conservedduring the relaxation phase (m0 = m?
0). Considering now Eq. (2.11) at zeroth order yields to

m1 = m?
1 +O(∆t). Injecting this relation in Eq. (2.6) reads

m1 = m1 + s1(meq
1 −m1) +O(∆t).

As s1 6= 0, we obtain relations (2.13). Relations (2.12) on fj and f ?j , 0 6 j < 2, are given by
f0 = 1

2
m0 − 1

2λ
m1, f ?0 = 1

2
m0 − 1

2λ
m?

1, f eq
0 = 1

2
m0 − 1

2λ
meq

1 ,

f1 = 1
2
m0 + 1

2λ
m1, f ?1 = 1

2
m0 + 1

2λ
m?

1, f eq
1 = 1

2
m0 + 1

2λ
meq

1 .

That ends the proof.
Proposition 2.4 – First order macroscopic equation
We assume that the relaxation parameter is non zero: s1 6= 0. Then, the first moment
m0 satisfies the partial differential equation

∂tm0 + ∂xm
eq
1 = O(∆t). (2.14)

As a consequence, ifmeq
1 = ϕ(m0) then the first momentm0 satisfies (2.1) at order 1.
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Proof. We consider Eq. (2.10) at order 1:
m0 + ∆t∂tm0 = m0 −∆t∂xm

?
1 +O(∆t2).

We then formally derive relation (2.13) m?
1 = meq

1 + O(∆t) to obtain the target partial dif-ferential equation. We concede that this proof is only formal for now...
Definition 2.5 – particular derivative
The j-th particular derivative associated to the velocity cj is defined by

djt = ∂t + cj·∂x, 0 6 j < q. (2.15)
We then define the equilibrium default θ by using the particular derivatives.
Definition 2.6 – equilibrium default
The equilibrium default for theD1Q2 is defined by

θ =
1∑
j=0

cj· d
j
t f

eq
j . (2.16)

Proposition 2.7
The equilibrium default θ can then be rewritten into the form

θ = ∂tm
eq
1 + λ2∂xm0. (2.17)

Proof. We expand the equilibrium default for theD1Q2:
θ = −λ

(
∂t − λ∂x

)
f eq

0 + λ
(
∂t + λ∂x

)
f eq

1 = ∂t
(
−λf eq

0 + λf eq
1

)
+ λ2∂x

(
f eq

0 + f eq
1

)
.

Using Eq. (2.3) ends the proof.
Lemma 2.8 – Transition lemmaThe second momentm1 satisfies

m1 = meq
1 −

∆t

s1

θ +O(∆t2), m?
1 = meq

1 + ∆t
(

1− 1

s1

)
θ +O(∆t2). (2.18)

Moreover, we have
f ?j − fj = ∆t djt f

eq
j +O(∆t2), 0 6 j 6 1.

Proof. We consider Eq. (2.11) at order 1:
m1 + ∆t∂tm1 = m?

1 − λ2∆t∂xm0 +O(∆t2).

18 / 42



the Lattice Boltzmann Method @B. Graille

Using Eq. (2.6) of the relaxation phase, we obtain
s1(meq

1 −m1) = ∆t
(
∂tm1 + λ2∂xm0

)
+O(∆t2).

Once again, we derive a Taylor expansion without any rigorous argument. We replace ∂tm1by ∂tmeq
1 assuming that the error is of order 1 to obtain
s1(meq

1 −m1) = ∆t
(
∂tm

eq
1 + λ2∂xm0

)
+O(∆t2) = ∆tθ +O(∆t2).

Recombining this first relation with Eq. (2.6) ends the proof.
Proposition 2.9 – Second order macroscopic equation
We assume that the relaxation parameter is non zero: s1 6= 0 and that the equilibriumvalue is given bymeq

1 = ϕ(m0). Then, the first momentm0 satisfies the second-orderpartial differential equation
∂tm0 + ∂xϕ(m0) = ∆t σ1 ∂x

[(
λ2 −

(
ϕ′(m0)

)2
)
∂xm0

]
+O(∆t2), (2.19)

with Henon’s parameter σ1 = 1/s1 − 1/2.
Let us remark that this second-order macroscopic equation (2.19) then contains a diffusionterm with a regularization effect if σ1 > 0 (that is 0 < s1 < 2) and |ϕ′(m0)| < λ. Theseconditions are indeed compatible with the stability conditions we derive in the sequel. Inorder to simulate the hyperbolic equation (2.1), the relaxation parameter s1 could be takenequal to 2. But this term has a stabilization effect and it could be sometime useful to choose
s1 smaller to minimize the oscillations around the discontinuities.
Proof. We consider Eq. (2.10) at order 2:

m0 + ∆t∂tm0 + 1
2
∆t2∂ttm0 = m0 −∆t∂x

(
meq

1 + ∆t(1− 1
s1

)θ
)

+ 1
2
λ2∆t2∂xxm0,

by combining with the previous result of the transition lemma 2. The zeroth-order termvanishes, the first-order term reads ∂tm0 +∂xϕ(m0) and the second-order one on the right-hand side
−(1

2
− 1

s1
)∂xθ = σ1∂x

(
∂tϕ(m0) + λ2∂xm0

)
= σ1∂x

[(
λ2 − ϕ′(m0)2

)
∂xm0

]
.

as ∂ttm0 = −∂txmeq
1 +O(∆t) and ∂tϕ(m0) = ϕ′(m0)∂tm0 = −ϕ′(m0)∂xm

eq
1 +O(∆t).

3 Numerical illustrations
In this section, we perform two numerical simulations, one for the transport equation witha constant velocity, and one for Burger’s equation. The lattice L is reduced to [0, 1] and ahomogeneousNeumann condition is added to treat the boundaries. In order to visualize theproperties of theD1Q2 scheme, the initial condition is chosen as a regular bump function.
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3.1 The transport equation
Let c be a real constant, we consider in this section ϕ(u) = cu. The equation reads

∂tu + ∂x(cu) = 0.

We consider a smooth initial function. The solution has the same regularity for t ≥ 0, theasymptotic analysis is then supposed to give the good estimation of the error. The resultsare given in Fig. 2.1.

Figure 2.1 – Transport equation with constant velocity c = 0.25 simulated with a D1Q2. Left:
λ = 1 and several values for the relaxation parameter; Right: s1 = 1 and several values for the
lattice velocity.

We observe that
• For λ = 1 > c = 0.25, the scheme proposes a reasonable numerical solution. Forsmall values of s1, the solution is however deteriorated with a large reduction of highand small values. For high values of s1 (close to 2), we also observe that the solutionis no more positive!• For s1 = 1, the scheme proposes a better solution when the lattice velocity λ is closeto c by higher value.

In that case, the equivalent equation (2.19) reads
∂tm0 + c∂xm0 = ∆tσ1(λ2 − c2)∂xxm0 +O(∆t2) = ∆xσ1

λ2 − c2

λ
∂xxm0 +O(∆x2).

If the space step ∆x is fixed (in the simulations, we fixed ∆x = 1/256), the numerical diffu-sion operator is proportional to σ1 and to (λ2− c2)/λ. Even if this equivalent condition onlygives asymptotic informations, the diffusion operator acts with a regularization effect if thescalar coefficient is positive, that is if 0 < s1 < 2 and |c| < λ. The other case correspondingto λ < |c| and s1 /∈ [0, 2] is not taken into account as the scheme has to be stable for van-ishing advection velocity c = 0. We then recover the behavior of the curves according to thevariations of s1 with fixed λ and vice versa.
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Figure 2.2 – Transport equation with constant velocity c = 0.25 simulated with a D1Q2. Left:
λ = 1 and several values for the relaxation parameter; Right: s1 = 1 and several values for the
lattice velocity.

The same simulations are provided for a continuous initial condition but with discontinuousderivatives. The asymptotic analysis is then not directly possible but the conclusions remainthe same.

3.2 Burgers equation
The Burgers equation is the simplest non-linear scalar equation that reads

∂tu + ∂x(u
2/2) = 0.

We consider a piecewise affine function as initial condition. The exact solution can then becomputed analyticaly also as a piecewise affine function. This solution is continuous until
t = 0.125. Then a discontinuity appears and goes to the right vith a decreasing velocity. Theresults are given in Fig. 2.3.

Figure 2.3 – Burgers equation simulated with a D1Q2. Left: λ = 1 and several values for the
relaxation parameter; Right: s1 = 1 and several values for the lattice velocity.

We observe the same behaviour
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• For λ = 1, the scheme proposes a reasonable numerical solution if the relaxationparameter s1 6 2. For small values of s1, the solution is however deteriorated witha large reduction of high and small values. For high values of s1 (close to 2), we alsoobserve that the solution is no more positive!• For s1 = 1, the scheme proposes a better solution when the lattice velocity λ is closeto 0.8 by higher value. Note that the value 0.8 is not an exact value for the change ofbehaviour and has no explaination for the moment...

4 Notions of stability
Many notions of stability are usefull for the Lattice Boltzmann method. Essentially, eachnotion is associated to the choice of a norm and the good one depends on the application.In this section, we present the von Neumann stability and the L∞-stability for theD1Q2.

4.1 The von Neumann analysis
The von Neumann analysis concerns the linear schemes. We consider in this section ϕ(u) =
cu for a constant real value c ∈ R. For ξ ∈ [−π, π], we inject in the scheme a wave with ξ asa frequency:

f0(t, x) = α0e
ixξ/∆x, f1(t, x) = α1e

ixξ/∆x.

After one time step, we obtain
m?

0(t, x) = (α0 + α1)eixξ/∆x,

m?
1(t, x) = (1− s1)λ(α0 − α1)eixξ/∆x + s1c(α0 + α1)eixξ/∆x,

f ?0 (t, x) = (1− s1
2

(1 + c
λ
))α0e

ixξ/∆x +
s1
2

(1 + c
λ
)α1e

ixξ/∆x,

f ?1 (t, x) =
s1
2

(1− c
λ
)α0e

ixξ/∆x + (1− s1
2

(1− c
λ
))α1e

ixξ/∆x,

f0(t+ ∆t, x) = (1− s1
2

(1 + c
λ
))e−iξf0(t, x) +

s1
2

(1 + c
λ
)e−iξf1(t, x),

f1(t+ ∆t, x) =
s1
2

(1− c
λ
)eiξf0(t, x) + (1− s1

2
(1− c

λ
))eiξf1(t, x).

The amplification matrix then reads
G(ξ) =

(
(1− s1

2
(1 + c

λ
))e−iξ

s1
2

(1 + c
λ
)e−iξ

s1
2

(1− c
λ
)eiξ (1− s1

2
(1− c

λ
))eiξ

)
.

Definition 2.10 – von Neumann stability
The lattice Boltzmann scheme characterized by the amplification matrixG(ξ) is saidstable if the sequel (fn)n≥0 defined by fn+1 = G(ξ)fn is bounded for any f 0 ∈ C3

and for any ξ ∈ [−π, π].
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Proposition 2.11 – von Neumann stability
The scheme is stable in the sense of von Neumann if, and only if, the minimal poly-nomial of the amplification matrixG(ξ) is a simple von Neumann polynomial for any
ξ ∈ [−π, π].

Proof. The key point is the Dunford-Jordan decomposition of the complex square matrices.The matrixG is equivalent to a block diagonal matrix that reads

Jλ1 0 0
0

0
0 0 Jλb

, where Jλk =


λk 1 0 0
0

0
1

0 0 λk



µ
k rows

µk columns

, 1 6 k 6 b.

The complex values λ1, . . . , λb are the eigenvalues of G which are not necessarily distinct.The sequel of matrices (Gn)n∈N is then bounded if, and only if, we have first |λk| 6 1, for
1 6 k 6 b, and secondµk = 1 if |λk| = 1. This condition is therefore exactly that theminimalpolynomial ofG is a simple von Neumann polynomial.
As the minimal polynomial of the amplification matrixG is not easy to determine, we pro-pose to compute its characteristic polynomial ϕ. Then, if ϕ ∈ N s , the minimal polynomialis also a simple von Neumann polynomial; if ϕ /∈ N , the minimal polynomial is not a sim-ple von Neumann polynomial; and if ϕ ∈ N \N s , the case has to be investigated moreprecisely. Fortunately, the first two case are generic and the last case is not.
Theorem 2.12 – von Neumann stability of theD1Q2The linear D1Q2 is stable in the sense of von Neumann if, and only if, one of theseproperties is true:

(i) s1 = 0;
(ii) 0 < s1 < 2 and λ ≥ |c|;
(iii) s1 = 2 and λ > |c|.

Proof. We first define t = s1 − 1 and γ = c/λ. We use the notations of Appendix B. Thecharacteristic polynomial ϕ of the matrixG reads
ϕ(z; ξ, β, t) = z2 −

(
(1− t) cos ξ + i(1 + t)γ sin ξ

)
z − t,

ϕ?(z; ξ, β, t) = −tz2 −
(
(1− t) cos ξ − i(1 + t)γ sin ξ

)
z + 1,

ϕ◦(z; ξ, β, t) = (1− t2)z − (1− t2)(cos ξ + iγ sin ξ),

ϕ•(z; ξ, β, t) = 2z − (1− t) cos ξ − i(1 + t)γ sin ξ.

We use the characterization of Th. B.8 .
ϕ ∈ N s ⇐⇒ (ϕ ∈ I and ϕ◦ ∈ N s ) or (ϕ ∈ E and ϕ• ∈ S ),

ϕ ∈ N ⇐⇒ (ϕ ∈ I and ϕ◦ ∈ N ) or (ϕ ∈ E and ϕ• ∈ N ).
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We have ϕ ∈ I ⇐⇒ |t| < 1 and ϕ ∈ E ⇐⇒ |t| = 1. The first conclusion is that thescheme is not stable for |t| > 1.
Assuming |t| < 1, we immediately have

ϕ◦ ∈ N s ⇐⇒ ϕ◦ ∈ N ⇐⇒ | cos ξ + iγ sin ξ| 6 1

⇐⇒ cos2 ξ + γ2 sin2 ξ 6 cos2 ξ + sin2 ξ

⇐⇒ γ2 6 1 or ξ ∈ {0,±π}.
We conclude that, if |t| < 1, the scheme is stable, if and only if |γ| 6 1.
For t = 1, we have ϕ• = 2(z − iγ sin ξ), then

ϕ• ∈ S ⇐⇒ |γ sin ξ| < 1 ⇐⇒ γ2 < 1/ sin2 ξ or ξ ∈ {0,±π},
ϕ• ∈ N ⇐⇒ |γ sin ξ| 6 1 ⇐⇒ γ2 6 1/ sin2 ξ or ξ ∈ {0,±π}.

We conclude that, if t = 1, the scheme is stable for |γ| < 1 and is not stable for |γ| > 1. Thecase ϕ• ∈ N \S has to be investigated. We directly write the amplification matrix for t = 1(s1 = 2) and γ = 1:
G(ξ) =

(
−e−iξ 2e−iξ

0 eiξ

)
=⇒ Gn(π/2) = in

(
1 −2n
0 1

)
.

The power ofG are not bounded for ξ = ±π/2: the scheme is not stable. The case γ = −1is exactly the same.
Finally, for t = −1, we have ϕ• = 2(z − cos ξ), then

ϕ• ∈ S ⇐⇒ ξ /∈ {0,±π}, ϕ• ∈ N is always true.
The amplification matrix reads

G(ξ) =

(
e−iξ 0

0 eiξ

)
.

The power ofG are bounded for every ξ: the scheme is stable. That ends the proof.
Illustrations of the eigenvalues of the amplification matrix are given in Fig. 2.4 and 2.5.

4.2 The maximum principle
Another notion of stability can be useful for hyperbolic scalar conservation law. In this sec-tion, we consider the general nonlinear case ϕ(u). Applying the theory of the characteritics,the exact solution of the PDE (2.1) satisfies the maximum principle:

∀t > 0, ∀x ∈ R, u 6 u(t, x) 6 u, (2.20)
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Figure 2.4 – Modulus of the eigenvalues of the amplification matrix according to the variation of
s1 and c/λ.
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Figure 2.5 – Eigenvalues of the amplification matrix according to the variation of s1 and c/λ.

with
u = min

y∈R
(u(0, y)), u = max

y∈R
(u(0, y)).
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Require the same property for the numerical solution gives then a natural notion of stability.
Theorem 2.13 –maximum principle of theD1Q2

We assume 0 < s1 6 1,meq
1 = ϕ(m0) and we introduce

M = max{|ϕ′(ξ)|, for u 6 ξ 6 u}.

Then, if λ ≥M , theD1Q2 satisfies the following maximum principle
∀k ∈ N,∀j ∈ Z, u 6 m0(k∆t, j∆x) 6 u.

Proof. We first write the relaxation phase on the particle distribution functions. We have
f ?0 =

1

2
m?

0 −
1

2λ
m?

1 =
1

2
m0 −

1− s1

2λ
m1 −

s1

2λ
meq

1 = (1− s1)f0 + s1f
eq
0 (m0),

f ?1 =
1

2
m?

0 +
1

2λ
m?

1 =
1

2
m0 +

1− s1

2λ
m1 +

s1

2λ
meq

1 = (1− s1)f1 + s1f
eq
1 (m0),

with
f eq

0 (ξ) =
1

2
ξ − 1

2λ
ϕ(ξ), f eq

1 (ξ) =
1

2
ξ +

1

2λ
ϕ(ξ).

The functions f eq
0 and f eq

1 are C1(R) and their derivative is non negative over [u, u]. Then,they are non decreasing functions over [u, u]. Moreover, we have f eq
0 (ξ) + f eq

1 (ξ) = ξ.
A recursive reasoning over k ∈ N is done. Since u(0, ·) ∈ [u, u], the initial step imposes
m0(0, j∆x) ∈ [u, u] for all j ∈ Z. Sincem1(0, ·) = ϕ(m0), we get

fj(0, ·) = f eq
j (m0(0, ·)) ∈ [f eq

j (u), f eq
j (u)], j ∈ {0, 1}.

We then assume that the three inclusions are true for a certain k ∈ N. As s ∈ (0, 1], f ?0and f ?1 are respectively convex linear combinations of f0 and f eq
0 , and f1 and f eq

1 , so that
f ?j ∈ [f eq

j (u), f eq
j (u)], 0 6 j 6 1. The transport phase just shift the distribution functions,so that the inclusions yields for f0((k + 1)∆t, ·) and f1((k + 1)∆t, ·). Finally, summing thedistribution functions gives

m0((k + 1)∆t, j∆x) ∈ [f eq
0 (u) + f eq

1 (u), f eq
0 (u) + f eq

1 (u)] = [u, u],

as f eq
0 (ξ) + f eq

1 (ξ) = ξ. That ends the proof.
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Chapter 3

A notion of consistency

Lattice Boltzmann schemes rely on the enlargement of the size of the target problem inorder to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into acollision and a stream phase. This structure, despite the well-known advantages from acomputational standpoint, is not suitable to construct a rigorous notion of consistency withrespect to the target equations and to provide a precise notion of stability. In order to al-leviate these shortages and introduce a rigorous framework, we demonstrate that any LBscheme can be rewritten as a corresponding multi-step FD scheme (Finite Differences) onthe conserved variables. This is achieved by devising a suitable formalism based on oper-ators, commutative algebra and polynomials. Therefore, the notion of consistency of thecorresponding FD scheme allows to invoke the Lax-Richtmyer theorem in the case of linearLB schemes. Moreover, we show that the frequently-used von Neumann-like stability anal-ysis for LB schemes entirely corresponds to the von Neumann stability analysis of their FDcounterpart. More generally, the usual tools for the analysis of FD schemes are now readilyavailable to study LB schemes.

1 Algebraic form of LB schemes
In this section, we present the formalism used in [1] to build the FD corresponding scheme.We first rewritte the LB scheme by using spatial and temporal shift operators.

1.1 Spatial and temporal discretization
We set the problem in any spatial dimension d = 1, 2, 3 considering the whole space Rd,because we are not interested in studying boundary conditions. The space is discretized bya d-dimensional lattice L = ∆xZd of constant step ∆x > 0 in all direction. The time is
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uniformly discretized with step∆t > 0. The discrete instants of time shall be indexed by theinteger indices n ∈ N so that the corresponding time is tn = n∆t. We finally introduce theso-called lattice velocity λ > 0 defined by λ = ∆x/∆t. Observe that the developing theoryis totally discrete and thus fully independent from the scaling between ∆x and ∆t.
Definition 3.1 – lattice velocity
The lattice velocity is defined by

λ =
∆x

∆t
. (3.1)

1.2 Discrete velocities and shift operators
The first choice to bemade when devising a lattice Boltzmann scheme concerns the discretevelocities cj , 0 6 j < q with q ∈ N?, which are multiples of the lattice velocity, namely
cj ∈ λZd for any 0 6 j < q. Therefore, particles are stuck to move–at each time step–onthe lattice L .
We denote the particle distribution functionmovingwith velocity cj by fj for every 0 6 j < q.The shift operators associated with the discrete velocities are an important element of thefollowing analysis.
Definition 3.2 – Shift operator
Let z ∈ Zd, then the associated shift operator on the latticeL , denotedTz∆x, is definedin the following way. Take ϕ : L → R be any function defined on the lattice, then theaction of Tz∆x is

(Tz∆xϕ)(x) = ϕ(x− z∆x), ∀x ∈ L .

We also introduce T d
∆x = {Tz∆x with z ∈ Zd} ∼= Zd.

The shift yields information sought in the upwind direction with respect to the consideredvelocity. Let us introduce the natural binary operation between shifts.
Definition 3.3 – Product
Let the “product” ◦ : T d

∆x×T d
∆x → T d

∆x be the binary operation defined as Tz∆x ◦Tw∆x =
Tz+w∆x , for any z, w ∈ Zd.

Henceforth, the product ◦ is understood whenever no ambiguity is possible. This operationprovides an algebraic structure to the shifts, directly inherited from that of Zd.
Proposition 3.4

(T d
∆x, ◦) forms an Abelian group.
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Moreover, there is only “one movement” for each Cartesian direction which generates theshifts. More precisely
for d = 1, let x = T1

∆x, then T 1
∆x = 〈{x}〉,

for d = 2, let x = T
(1,0)

∆x , y = T
(0,1)

∆x , then T 2
∆x = 〈{x, y}〉,

for d = 3, let x = T
(1,0,0)

∆x , y = T
(0,1,0)

∆x , z = T
(0,0,1)

∆x , then T 3
∆x = 〈{x, y, z}〉,

where 〈·〉 is the customary notation for the generating set of a group.
We can add one more binary operation, which is non-internal toT d

∆x. This yields the corner-stone of this work, namely the set of FD operators, finite combinations of weighted shiftsoperators via a sum. It is defined as follows.
Definition 3.5 – FD operators
The set of FD operators on the lattice L is defined as

Dd
∆x = RT d

∆x =

{∑
T∈T d

∆x

αTT, where αT ∈ R and αT = 0 a.e.
}
,

the group ring (or group algebra) of T d
∆x over R. The sum + : Dd

∆x × Dd
∆x → Dd

∆x theproduct ◦ : Dd
∆x ×Dd

∆x → Dd
∆x of two elements are defined by∑

T∈T d
∆x

αTT

+

∑
T∈T d

∆x

βTT

 =
∑

T∈T d
∆x

(αT + βT)T,

∑
T∈T d

∆x

αTT

 ◦
∑

T̃∈T d
∆x

βT̃T̃

 =
∑

T,T̃∈T d
∆x

αTβT̃T ◦ T̃.

Furthermore, the product of σ ∈ R with elements of Dd
∆x is given by

σ

∑
T∈T d

∆x

αTT

 =
∑

T∈T d
∆x

(σαT)T.

With the two binary operations, Dd
∆x behaves closely to Z, R or C as stated by the followingresult.

Proposition 3.6 – Ring of FD operators
(Dd

∆x,+, ◦) is a commutative ring.
Observe that (Dd

∆x,+, ◦) is not a field: not every element of Dd
∆x has multiplicative inverse,take for example the centered approximation of the derivative along x: (T−1

∆x −T1
∆x)/(2∆x).The elements having inverse are called “units” and divide all the other elements. It can beeasily seen that the units are the product of a non-zero real number and a shift in T d

∆x.Indeed (αTz∆x)
−1 = (1/α)T−z∆x for any α ∈ Rr {0} and z ∈ Zd.
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1.3 Monolithic scheme
We now introduce the vast class of lattice Boltzmann schemes we consider in the presentchapter and for which we shall explain how to find the corresponding Finite Differencescheme. Any lattice Boltzmann scheme consists in an algorithm made up of two phases:a local collision phase performed on each site of the lattice and a stream phase, where par-ticles are exchanged between different sites of the lattice. Let us recall each of them.
The N conserved moments, forming the variables of interest, are linear functions of thedistributions densities f = (f0, . . . , fq−1). Equally, the remaining q − N non-conservedmoments are linear functions of f as well. For this reason, we introduce a change of basiscalled moment matrix M ∈ G̀ q(R). Thus, the moments are recovered by m = Mf and
viceversa. The entries of M can depend on ∆x and/or on ∆t, as we have stated that thescaling does not play any role here, but cannot be a function of the space and time variables.
We follow the general formalism of D’Humières [9], which easily and effectively accountsfor multiple-relaxation-times (MRT) schemes. In this framework, the collision is written asa diagonal relaxation in the moments basis. Thus, the collision phase reads, denoting by ?any post-collision state

m?(x) = (I − S)m(x) + Smeq(x), x ∈ L . (3.2)
This part of the algorithm is local to each site of the lattice. Here

• I ∈ G̀ q(R) is the identity matrix of size q;• S ∈Mq(R) is the relaxationmatrixwhich is a singular diagonalmatrixwith rank(S) =
q −N , whereN ∈ {1, . . . , q − 1} is the number of conserved moments:

S = diag(0, . . . , 0, sN , . . . , sq−1),

where the first N entries are zero and correspond to the conserved moments, thefollowing q −N are such that sk ∈ (0, 2] forN 6 i < q;• we employ the notationmeq(x) = meq(m0(x), . . . ,mN−1(x)) for x ∈ L , wheremeq :
RN → Rq are the equilibria for the moments, which are possibly non-linear functionsof theN conservedmoments. Since these equilibria are thenmultiplied byS, the first
N components do not need to be defined.

In the collision phase Eq. (3.2), the entries ofS candependon∆xor∆t, but not on space andtime. The equilibria are allowed to follow the same dependencies plus those on space andtime and can also depend on some “external variable" as in the case of vectorial schemes[17].
As previously said, the post-collisional distributions are recovered at each node by comput-ing f ? = M−1m?. The stream phase is diagonal in the space of the distributions densities.It can be written as

f(t+ ∆t, x) = diag(T
e0

∆x, . . . ,T
eq−1

∆x )f ?(t, x), x ∈ L , (3.3)
where the unit velocity vectors ej ∈ Zd, 0 6 j < q are defined by cj = λej . For the firsttime, the matrices have entries in a commutative ring Dd

∆x instead than in the field R. The
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setMq(Dd
∆x) of square matrices of size q with entries belonging to Dd

∆x forms a ring underthe usual operations between matrices. Even if Dd
∆x is commutative from Proposition 1.2,

Mq(Dd
∆x) is not commutative for q 6 2, as for real matrices and matrices of first-orderdifferential operators.

The stream phase Eq. (3.3) can be rewritten in a non-diagonal form in the space of momentsby introducing the matrix T = M diag(T
e0

∆x, . . . ,T
eq−1

∆x )M−1. One time step of the globalscheme can then be written
m(t+ ∆t, x) = Am(t, x) + Bmeq(t, x), x ∈ L , (3.4)

withA = T (I − S) andB = TS.
Consider aD1Q2 as example (see chapter 2), we compute the matrixA andB. We have

M =

(
1 1
−λ λ

)
, M−1 =

(
1
2
− 1

2λ
1
2

1
2λ

)
, S =

(
0 0
0 s1

)
.

We then obtain, denoting x = T1
∆x and x̄ = T−1

∆x

T =

(
x+x̄

2
x−x̄
2λ

λ x−x̄
2

x+x̄
2

)
, A =

(
x+x̄

2
(1− s1) x−x̄

2λ

λ x−x̄
2

(1− s1) x+x̄
2

)
, B =

(
0 s1

x−x̄
2λ

0 s1
x+x̄

2

)
.

2 Corresponding multi-step scheme
The goal of this section is to explain the transformation of any lattice Boltzmann schemeinto a multi-step scheme which involves only the conserved moments. Indeed, the study ofthe consistency is difficult because the non conserved moments are pure numeric valueswith no corresponding physical quantities.
In order to avoid this difficulty, we try to write a scheme only on the conserved moments.The idea is to write the matrix version of the scheme (see previsou section) and then todiagonalize it.

2.1 Characteristic polynomial and Cayley-Hamilton theorem
Polynomials with coefficients in Dd

∆x and matrices with entries in Dd
∆x play a central role inwhat we are going to develop.

Definition 3.7 – Characteristic polynomial
Let R be a commutative ring and C ∈ Mr(R) for some r ∈ N?. The characteristicpolynomial of C , denoted χC ∈ R[X], is given by χC = det(XI −C), where det(·)is the determinant and I is the r × r identity matrix.
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A central result used in this work is the Cayley-Hamilton theorem for matrices over a com-mutative ring, see [3] for the proof, generalizing the same result holding for matrices on afield.
Theorem 3.8 – Cayley-Hamilton
Let R be a commutative ring andC ∈ Mr(R) for some r ∈ N?. Then χC is a monicpolynomial in the ring R[X] in the indeterminateX , under the form

χC = Xr + γr−1X
r−1 + . . . γ1X + γ0,

with (γk)06k6r ⊂ R. Then χC(C) = 0.
This result states that any square matrix with entries in a commutative ring verifies its char-acteristic equation.

2.2 Main result
In this section, we give only the main theorem for one conserved moments N = 1. Thegeneral case can be found in [1] and is just more technical to write.
Theorem 3.9 – Corresponding multi-step scheme
Let N = 1, then the lattice Boltzmann scheme given in (3.4) can be rewritten as amulti-step explicit scheme on the conserved momentm0 under the form

m0(t+ ∆t) = −
q−1∑
k=0

γkm0(t− (q − 1− k)∆t)

+

(
q−1∑
k=0

(
k∑
l=0

γq+l−kA
l

)
Bmeq(t− k∆t)

)
0

,

where (γk)06k6q are the coefficients of the characteristic polynomial of A: χA =∑q
k=0 γkX

k.

Proof. The proof only consists in using the Cayley-Hamilton theorem to the matrixA and incombining the relations to eliminate all the terms withm1, . . . ,mq−1.

3 Example of theD1Q2

We already obtained the matrix formulation of theD1Q2 with
A =

(
x+x̄

2
(1− s1) x−x̄

2λ

λ x−x̄
2

(1− s1) x+x̄
2

)
, B =

(
0 s1

x−x̄
2λ

0 s1
x+x̄

2

)
.
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Defining ι = (x + x̄)/2 and δ = (x− x̄)/2, we have ι2 − δ2 = 1. A direct calculation gives
χA = X2 − (2− s1)ιX − 1.

We then compute the corresponding two-step scheme directly as for a particular proof. Wehave
m0(t+ ∆t) = ιm0(t) + (1− s1)

1

λ
δm1(t) + s1

1

λ
δmeq

1 (t),

1

λ
δm1(t) = δ2m0(t−∆t) + (1− s1)

1

λ
ιδm1(t−∆t) + s1

1

λ
ιδmeq

1 (t−∆t),

ιm0(t) = ι2m0(t−∆t) + (1− s1)
1

λ
ιδm1(t−∆t) + s1

1

λ
ιδmeq

1 (t−∆t).

Combining these relations, we have
1

λ
δm1(t) = ιm0(t)−m0(t−∆t).

And finally
m0(t+ ∆t) = (2− s1)ιm0(t)− (1− s1)m0(t−∆t) + s1

1

λ
δmeq

1 (t).

We can then compute the equivalent equation in the sense of the finite differences by usinga Taylor expansion. We use the expansions:
xm0 = m0 − λ∆t∂xm0 +

λ2∆t2

2
∂xxm0 +O(∆t3),

x̄m0 = m0 + λ∆t∂xm0 +
λ2∆t2

2
∂xxm0 +O(∆t3).

The momentm0 satisfies
m0 + ∆t∂tm0 +

∆t2

2
∂ttm0 = (2− s1)

(
m0 +

λ2∆t2

2
∂xxm0

)
− s1

1

λ

(
λ∆t∂xm

eq
1

)
− (1 − s1)

(
m0 −∆t∂tm0 +

∆t2

2
∂ttm0

)
+ O(∆t3).

At zeroth order, it reads
m0 = (2− s1)m0 − (1− s1)m0 +O(∆t) ⇐⇒ m0 = m0 +O(∆t).

At first order, we obtain
∂tm0 = −s1∂xm

eq
1 + (1− s1)∂tm0 +O(∆t) ⇐⇒ s1(∂tm0 + ∂xm

eq
1 ) = O(∆t).

Finally, at second-order, we recover, but rigourously, the second order macroscopic equa-tion (2.19) previously obtained by the Taylor expansion method:
∂tm0 + ∂xm

eq
1 = ∆t

( 1

s1

− 1

2

)
(λ2∂xx − ∂tt)m0 +O(∆t2).
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Appendix A

Fourier Transform

It is possible to analyze a linear scheme from its Fourier transform. The obvious benefit isthat the derivation is then transformed into a multiplication.
We start by introducing the set of discrete summable square sequences scaled by the spacestep.
Definition A.1 – space `2(∆xZ)

We define the space `2(∆xZ) by
`2(∆xZ) =

{
v = (vj)j∈Z :

∑
j∈Z

|vj|2 < +∞
}

which is provided with the norm
‖v‖2

2,∆x = ∆x
∑
j∈Z

|vj|2.

On this space, we define the discret Fourier transform.
Definition A.2 – discret Fourier transform
For v ∈ `2(∆xZ), we define the function F (v) on [− π

∆x
, π

∆x
] by

F (v)(ξ) = ∆x
∑
j∈Z

vje
−ij∆xξ.

With this formula, the operator F is well defined for v ∈ `1 and we extend as usual thedefinition to `2 by density.
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Proposition A.3 – Parseval formula
The Fourier transform F : `2(∆xZ)→ L2([− π

∆x
, π

∆x
]) satisfies the Parseval formula

1

2π

∫ π/∆x

−π/∆x
|F (v)(ξ)|2 dξ = ∆x

∑
j∈Z

|vj|2.

Proof. We first assume that v ∈ `1 ∩ `2. We then finish the proof by using the density of
`1 ∩ `2 in `2.

1

2π

∫ π/∆x

−π/∆x
|F (v)(ξ)|2 dξ =

1

2π

∫ π/∆x

−π/∆x
F (v)(ξ)F (v)(ξ) dξ,

=
∆x2

2π

∫ π/∆x

−π/∆x

∑
j,k∈Z

vj v̄ke
−ij∆xξeik∆xξ dξ,

=
∆x2

2π

∑
j,k∈Z

vj v̄k

∫ π/∆x

−π/∆x
e−ij∆xξeik∆xξ dξ,

= ∆x
∑
j∈Z

|vj|2.

Of course, the exchange of summations and integrations has to be justified.
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Appendix B

Schur and von Neumann polynomials

Investigate the stability of a given scheme requires us to determine the location of roots ofamplification polynomials, and in this appendix we present an algorithm for checking theroots of such polynomials. Let ϕ ∈ C[z] be a complex polynomial of degree d,
ϕ = adz

d + . . .+ a0 =
d∑
`=0

a`z
`.

We say that ϕ is of exact degree d if ad is not zero.

1 Definitions
These definitions are based on the paper of Miller [25] and the book of Strikwerda [28].
Definition B.1 – Schur polynomial
The polynomial ϕ is a Schur polynomial if all its roots r satisfy |r| < 1.We denote by S the set of the Schur polynomials.

Definition B.2 – von Neumann polynomial
The polynomial ϕ is a von Neumann polynomial if all its roots r satisfy |r| 6 1.We denote by N the set of the von Neumann polynomials.

Definition B.3 – simple von Neumann polynomial
The polynomial ϕ is a simple von Neumann polynomial if ϕ is a von Neumann polyno-mial and its roots on the unit circle are simple roots.We denote by N s the set of the simple von Neumann polynomials.
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We finally define three operators on C[z], where the bar denotes the complex conjugate.
Definition B.4 – operator ?
For any polynomial ϕ ∈ C[z] of exact degree d we define the polynomial ϕ? by

ϕ?(z) = ā0z
d + . . .+ ād =

d∑
`=0

ād−`z
`.

Definition B.5 – operator ◦
For any polynomial ϕ ∈ C[z] of exact degree d we define the polynomial ϕ◦ by

ϕ◦(z) =
ϕ?(0)ϕ(z)− ϕ(0)ϕ?(z)

z
.

Remark thatϕ◦ is indeed a polynomial as the constant termofϕ?(0)ϕ−ϕ(0)ϕ? vanishes. It iseasy to see that the degree ofϕ◦ is less than that ofϕ. The operator ◦ is a kind of a derivativebut for complex polynomials. We also define the classical derivative for polynomials.
Definition B.6 – operator •
For any polynomial ϕ ∈ C[z] of exact degree d we define the polynomial ϕ• by

ϕ•(z) =
d−1∑
`=0

(`+ 1)a`+1z
`.

2 Theorems
The next three theorems give recursive tests for Schur, simple von Neumann and von Neu-mann polynomials. The proofs depend on Rouche’s theorem from complex analysis.
Definition B.7We denote

I =
{
ϕ ∈ C[z] s.t. |ϕ(0)| < |ϕ?(0)|

} and E =
{
ϕ ∈ C[z] s.t. ϕ◦ = 0

}
.

Theorem B.8 – Cohn-Schur
With these definitions, if ϕ ∈ C[z] of exact degree d, we have

ϕ ∈ S ⇐⇒ ϕ ∈ I and ϕ◦ ∈ S , (B.1)
ϕ ∈ N s ⇐⇒

(
ϕ ∈ I and ϕ◦ ∈ N s

) or (ϕ ∈ E and ϕ• ∈ S
)
, (B.2)

ϕ ∈ N ⇐⇒
(
ϕ ∈ I and ϕ◦ ∈ N

) or (ϕ ∈ E and ϕ• ∈ N
)
. (B.3)
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