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Motivation: forecasting and evaluation
Standard setting:
▶ given historic data (and a statistical model) creating a forecast for a
target of interest

▶ target of interest Y ∼ FY , H-dimensional random variable
e.g. maximum load of tomorrow and day after tomorrow (2-dim.)

▶ in practice we never know the true FY we just observe y
▶ if we have a forecast we can only compare the performance by
comparing it with y

▶ evaluation relies on some repeatability of the forecasting experiment
▶ ways to report forecast

• point forecasting:
- X̂ estimator for e.g. E(Y ) or Med(Y )

- evaluation based on forecasting error Y − X̂, resp. y − X̂
- E can be strictly proper evaluated using MSE (mean square error)
- Med can be strictly proper evaluated using MAE (mean absolute error)
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Forecasting evaluation
probabilistic forecasting: (everything beyond point forecasting)
▶ characterises the uncertainty in the forecast, e.g.:

▶ usually forecast of marginal distributions FYh
of Y = (Y1, . . . , YH)′,

marginal densities fYh
, or quantiles qα(Yh) for α ∈ A

▶ strictly proper evaluation methods available,
e.g. continuous rank probability score (CRPS) for FYh

▶ used in e.g. Global Energy Forecasting Competitions (99%-tiles)
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Probabilistic forecasting evaluation
▶ Problem with standard probabilistic methods:

• forecasting only the marginals distributions
• ignoring the dependency structure

(source: Berk, Hoffmann, Müller (2017) International Journal of Forecasting)

▶ require full forecast FX for FY and strictly proper evaluation
method

Marginal-Copula-Scores for Multivariate Forecasting Evaluation 4 / 41



Florian Ziel House of Energy Markets and Finance, University of Duisburg-Essen

Evaluation measures for multivariate distributions
some measures available
▶ Energy score

ESβ(FX ,y) = E
(
∥X − y∥β2

)
− 1

2
E
(
∥X − X̃∥β2

)
(1)

• β > 0,X, X̃
iid∼ FX

• if H = 1 and β = 1⇝ CRPS
• strictly proper

▶ Variogram score

VSp(FX ,y;W ) =
H∑
i=1

H∑
j=1

wi,j(|yi − yj |p − E|Xi −Xj |p)2

• with p > 0 and weight matrixW = (wi,j)i,j (usually wi,j = c)
• not strictly proper (forecasts with shifted mean have same score)
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Evaluation measures for multivariate distributions

▶ Log-score
LogS(FX ,y) = log(fX(y)).

• where fX is density of FX

• strictly proper
• density forecast forX often not available (even ifX is continuous)

▶ Dawid-Sebastiani score

DSS(FX ,y) = log(|ΣX |) + (y − µX)′Σ−1
X (y − µX)

• with µX and ΣX as mean and covariance matrix ofX.
• optimal if Y is normally distributed
• not strictly proper

▶ Summary:
• only energy score and log-score strictly proper
• log-score not useful for practice as density forecast is required
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Energy Score
▶ Energy score seems to be preferable, still it is hardly applied
▶ Pinson,Tastu(2013) state that energy score is not sensitive in
changes in dependency structure, based on simulation results from
a bivariate normal distribution

(source: Pinson, Tatsu (2013))

▶ Conclusion derived by looking at relative change in scores with
respect to the true distribution
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Marginal-Copula Scores
Idea:
▶ instead of full distribution FY evaluate

• marginal distributions FYh

• copula CY of Y
• apply copula theory (Sklar’s theorem)
• hope: control somehow marginal and dependency measures

▶ marginal score: MS

MS(a) = a′MS =
H∑

h=1

ahMSh.

• where MSh is a univariate scoring rule for Yh (e.g. CRPS)
• a = (a1, . . . , aH)′ a weight vector (usually ah = 1)

▶ copula score: CS
• CS is a multivariate score for the copula CX of the copulaX
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Marginal-Copula Scores
Problem:
▶ Combine marginal score MS and copula score CS to one score
▶ looking for g : R× R → R defines CES = g(MS,CS)
such that strictly proper scoring rules can be achieved

▶ g must be strictly isotonic:

g(x1, y1)− g(x1, y2)− g(x2, y1) + g(x2, y2) > 0

for x1, x2 ∈ supp(MS) and y1, y2 ∈ supp(CS) with x1 < x2, y1 < y2
▶ possible options for g:

a) g(x, y) = w1x+ w2y for weights wi > 0 works
b) g(x, y) = wxy for weights w > 0 works on e.g. (0,∞)× (0,∞)

▶ option a) is not intuitive (due to scaling/ units)

Consider forecast for Y and cY with c > 0. For most marginal scores it
follows that MS(FY ,Y ;a) ̸= MS(FcY , cY ;a). For the popular CRPS we
even have MS(FY ,Y ;a) = 1

cMS(FcY , cY ;a), but for the copula it holds
CS(CY ,UY ) = CS(CcY ,UcY ) with UY ∼ CY and UcY ∼ CcY .
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Theorem
If the MSh is a strictly proper score for Yh and CS is a strictly proper score
for the copula CY of Y = (Y1, . . . , YH)′ then the marginal-copula score

MCS(FX ,y;a) = MS((FX1 , . . . , FXH
)′,y;a)CS(CX ,uy)

= CS(CX ,uy)
H∑

h=1

ahMSh(FXh
, yh)

with FX as cumulative distribution function, with continuous marginals
FX1 , . . . , FXH

and copula CX , ofX = (X1, . . . , XH)′ which forecasts
Y , observation vector y and copula observations
uY = (uY ,1, . . . , uY ,H)′ = (FY1(y1), . . . , FYH

(yH))′ and
a = (a1, . . . , aH)′ with ah > 0 is a strictly proper scoring rule.
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Marginal-Copula Scores
▶ Possible choices for marginal scores FYi of Y = (Y1, . . . , YH)′

• CRPS (univariate energy score)
• Log score
• Dawid-Sebastiani score
• pinball score / quantile loss on a dense grid on (0, 1)

many properties known
▶ Possible choice of the copula score for copula CY of Y

• Energy score
• Variogram score
• Log score
• Dawid-Sebastiani score

▶ (originally) proposed score:
• MS: CRPS
• CS: Energy score

▶ Notation:
• UY = (UY ,1, . . . , UY ,H)′ = (FY1(Y1), . . . , FYH (YH))′ = FY (Y )
• uY = (uY ,1, . . . , uY ,H)′ = (FY1(y1), . . . , FYH

(yH))′ = FY (y).
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Copula Energy Scores (CES)
CES: energy score of the copula minus its lower bound scaled by H− 1

2

CES(CX ,uY ) =
1√
H

(ES(CX ,uY )− lbCES)

=
1√
H

(
E (∥UX − uY ∥2)−

1

2
E
(
∥UX − ŨX∥2

)
− lbCES

)
where lbCES = 1

4 − 1
2

1√
6
due to

Lemma
√
H
4 ≤ E ∥UX − uY ∥2 ≤

√
H√
3
and

√
H
3 ≤ E

(
∥UX − ŨX∥2

)
≤

√
H√
6

▶ not a strict bound (ongoing research)
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Copula Variogram Score (CVS)

CVSp(CX ,uY ;W ) =
1

1′W1
CSp(CX ,uY ;W ) (2)

=
H∑
i=1

H∑
j=1

wi,j(|uY ,i − uY ,j |p − E|UX,i − UX,j |p)2

▶ with UX = (UX,1, . . . , UX,H)′ ∼ CX , p > 0 and weight matrix
W = (wi,j)i,j .

▶ upper bound:

VSp(CX ,uY ;W ) =

H∑
i=1

H∑
j=1

wi,j(|uY ,i − uY ,j |p − E|UX,i − UX,j |p)2 (3)

≤
H∑
i=1

H∑
j=1

wi,j(1
p − 0)2 = 1′W1, (4)

which justifies the scaling constant.
▶ lower bound is zero, as for is holds VSp(MH ,UY ;W ) = 0 if

UY ∼ MH .
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Copula Dawid-Sebastiani Score (CDSS)

CDSS(CX ,uy) = DSS(CX ,uy)

= log(det(ΣUX
)) + (uy − µUX

)′Σ−1
UX

(uy − µUX
) (5)

▶ µUX
and ΣUX

as mean and covariance matrix of UX ∼ CX .
▶ as µUX

= 1
21 and ΣUX

= SRUX
S where S = 1√

12
I and correlation

matrix RUX
it holds

CDSS(CX ,uy) = −H log(12 det(RUX
))+

1

12

(
uy − 1

2
1

)′

R−1
UX

(
uy − 1

2
1

)
▶ ⇒ only measures dependency in correlation of the copula
▶ CDSS is unbounded:
forRUX

(δ) = (1− δ)I + δ11′ then it holds limδ→1 det(RUX
(δ)) = 0.

⇒ not applicable for multiplicative marginal-copula score
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Reporting multivariate forecasts

▶ for sophisticated problems forecast distribution FX (or density fX ,
or characteristic function φX ) is not explicitly available.

▶ reporting forecast as a large ensembleX(1), . . . ,X(M) for
forecasting Y

▶ repeat N (similar) forecasting experiments in a rolling window
forecasting study: forecastsX1, . . . ,XN for Y1, . . . ,YN

▶ realised ensemble forecasts Xi = (x
(1)
i , . . . ,x

(M)
i )′ of the forecasting

distributionXi for Yi
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Illustration rolling window forecasting study
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Figure: Illustration of a rolling window forecasting study with non-overlapping
windows (si = H(i− 1)) for i = 1, . . . , 3 windows andM = 6 forecast samples
x
(1)
T,i, . . . ,x

(M)
T,i for each window i.
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Estimating the scores
▶ for standard (multivariate) scores estimation straight forward, e.g.

ESi,β(FXi
,yi) = E

(
∥Xi − yi∥β2

)
− 1

2
E
(
∥Xi − X̃i∥β2

)
(6)

= EDβ,i(Xi,yi)−
1

2
EIβ,i(Xi,yi) (7)

▶ estimated by

ÊDi,β =
1

M

M∑
j=1

∥∥∥X(j)
i − yi

∥∥∥β
2
.

and

ÊI
Kband
i,β =

1

M

M∑
j=1

K∑
k=j

∥∥∥X(j)
i −X

(j+k)
i

∥∥∥β
2

• K = M computationally expensive - but optimal
• K = 1 fast
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Estimating the copula scores
▶ UYi = (UYi,1, . . . , UYi,H)′ = (FYi,1(Yi,1), . . . , FYi,H

(Yi,H))′ with
copula observations
uYi = (uyi,1, . . . , uyi,H)′ = (FYi,1(yi,1), . . . , FYi,H

(yi,H))′ depend on
true marginals FYi,h

.
▶ estimate FYi,h

empirical distribution function (ecdf), e.g.
F̂Yi,h

(z) = F̂Yi,h
(z;Xi) =

1
M

∑M
j=1 1{x

(j)
i ≤ z},

(or the mid-point rule F̂mid
Yi,h

(z) = 1
2M

∑M
j=1 1{x

(j)
i ≤ z}+ 1{x(j)

i < z} )

ûYi = ûYi(Xi) = (F̂Yi,1(yi,1;Xi), . . . , F̂Yi,H
(yi,H ;Xi))

′.

▶ Problem:
misspecified marginal can lead to estimated copula lower scores
than the true model

▶ Solution:
Force the marginals to be uniform, while preserving the dependency
structure
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Estimating the copula scores
▶ Ri,h the rank of ûYi,h within ûY1,h, . . . , ûYN ,h.
▶ define the adjusted estimated copula observations by

û∗Yi,h
=

2Ri,h − 1

2N
.

taking values on 1
2N , . . . , 2N−1

2N
▶ resulting ecdf has minimal Komogorov-Smirnov (KS) distance to the
uniform distribution. (no other justification)

▶ estimate CXi by the empirical copula, we suggest

ĈXi(u1, . . . , uH) =
1

M

M∑
j=1

1{R̃i,j,1/M ≤ u1, . . . , R̃i,j,H/M ≤ uH}

with the ranks

R̃i,j,h =
1

2

M∑
k=1

1{x(k)i,h ≤ x
(j)
i,h}+ 1{x(k)i,h < x

(j)
i,h}

which break ties by the mid-point rule.
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Estimating the copula scores
▶ Further problem: We know

E[MS · CS] = E[MS]E[CS] + Cov[MS,CS]

▶ Thus we estimate

̂MS(a)-CSi = M̂Si(a)ĈSi − σ̂MS,CS

with σ̂MS,CS as estimator for Cov[MS,CS].
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Application in simulation studies
9 scores:
i) Energy score (ES)
ii) Variogram score (VS)
iii) Dawid-Sebastiani score (DSS)
iv) CRPS-copula energy score
v) CRPS-copula variogram score
vi) CRPS
vii) Copula energy score
viii) Copula variogram score
ix) Copula DSS score

→ evaluation for score SC using two criteria

I) relative change in score with respect to best: RelCh(SC) = SC−SC∗

SC∗

II) DM-test statistics with respect to the best
first study of Pinson, Tatsu (2013) [change in correlation of bivariate normal] using
▶ N = 29 = 512 (window length),M = 214 = 16384 (ensemble size)
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Florian Ziel House of Energy Markets and Finance, University of Duisburg-Essen

2nd Experiment: on bivariate normal distribution

▶ With µ = (0, 0)′ and Σ(ρ) =

(
1 ρ
ρ 1

)
i) (true setting): X ∼ N2(µ,Σ) with ρ =

√
2/2

ii) (symmetric mean bias): X ∼ N2(µ+ a11,Σ(ρ)) with ρ =
√
2/2

iii) (asymmetric mean bias): X ∼ N2(µ+ (a2,−a2)
′,Σ(ρ)) with

ρ =
√
2/2

iv) (smaller variance): X ∼ N2(µ, a3Σ(ρ)) with a3 < 1 and ρ =
√
2/2

v) (larger variance): X ∼ N2(µ, a4Σ(ρ)) with a4 > 1 and ρ =
√
2/2

vi) (smaller correlation): X ∼ N2(µ,Σ(a5)) with a5 < ρ
vii) (larger correlation): X ∼ N2(µ,Σ(a6)) with a6 > ρ

▶ change in biased model so that change theoretical likelihood is the
same for all settings ii) - vii)

▶ consider ρ =
√
2/2 ≈ 0.707, a5 = 0 (1 degree of freedom)⇒

likelihood reduction δ = 1
2 log(2)

(a1 =

√
δ

2−
√

2
, a2 =

√
δ

2+
√

2
, a3 ≈ 0.48124, a4 ≈ 2.62729 and a6 ≈ 0.89032)

▶ M = 213 = 8192 (ensemble sample size), N = 28 = 256 (rolling
window length), L = 26 = 64 (replications)
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Florian Ziel House of Energy Markets and Finance, University of Duisburg-Essen

3rd Experiment: Random peak study
▶ i) (true)Xi = Yi +QZi with Yi

iid∼ NH(0, I) and Zi
iid∼ U({e1, . . . , eH})

ii) (average mean)Xi
iid∼ NH(µ1, I) with µ = Q

H

iii) (zero mean)Xi
iid∼ NH(0, I)

iv) (fixed peak)Xi
iid∼ NH(µ, I) with µ = (Q, 0, . . . , 0)′

v) (rolling peak)Xi
iid∼ NH(µi, I) with µi = e1+(i−1)modH with as unit

vector for the i’th coordinate.
vi) (mixture normal with same marginals)Xi = (Xi,1, . . . , Xi,H)′ with

Xi,j
iid∼

{
N1(0, 1) Uj ≤ H−1

H

N1(Q, 1) Uj >
H−1
H

where Uj
iid∼ U([0, 1]).

vii) (shifted mean)Xi = Yi +QZi with Yi
iid∼ NH(Q/H1, I) and

Zi
iid∼ U({e1, . . . , eH})

viii) (normal with true mean and covariance)Xi
iid∼ NH(µ,Σ) with

µ = Q
H 1 and Σ = (H +Q2)/HI −Q2/H211′

▶ First: H = 3-dim. case with a peak size of Q = 5
▶ M = 214 = 16384 (ensemble sample size), N = 25 = 32 (rolling window
length), L = 26 = 64 (replications), only DM-test
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Florian Ziel House of Energy Markets and Finance, University of Duisburg-Essen

Variants of 3rd Experiment: Random peak study

a) Effect of ensemble sample sizeM

H = 3-dim. case with a peak size of Q = 5

M ∈ M = {2i|i ∈ {4, . . . , 14}} = {24, 25, . . . , 214} =
{16, 32, . . . , 16384}

b) Effect of ensemble sample dimension H
H = 9-dim. case with a peak size of Q = 5

M ∈ M = {2i|i ∈ {4, . . . , 14}} = {24, 25, . . . , 214} =
{16, 32, . . . , 16384}

Marginal-Copula-Scores for Multivariate Forecasting Evaluation 29 / 41
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Conclusions from the simulation studies

▶ Energy score is the only considered score which seems to be suitable
▶ In some cases other scores are slightly better in identifying special
features

But:
? Why is the energy score so powerful?

▶ Reason: Structure of the energy distance

dE(X,Y ) = E∥X − Y ∥β2 − 1

2
E∥X − X̃∥β2 − 1

2
E∥Y − Ỹ ∥β2

▶ dE yields energy score for observed Y (ω) = y
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Properties of the energy distance

▶ dE is zero if and only ifX d
= Y

▶ special weighted L2-distance between characteristic functions:

dE(X,Y ) =
π

H+1
2

Γ(H+1
2 )

∫
RH

|φX(z)−φY (z)|2

∥z∥H+β
2

dz (8)

for characteristic functions φX(z) = E(eiz′X) and
φY (z) = E(eiz′Y ).

▶ If considering the weighted L2-distance between φX and φY :

C

∫
Rd

ξ(z)|φX(z)−φY (z)|2 dz

then ξ(z) = ∥z∥H+β
2 is the only choice such that the distance is

scale equivariant and rotationally invariant
▶ dE measures distances betweenX and Y in C ∼= R2 not RH

⇒ should be efficient for H > 2.
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Properties of the energy distance

▶ Allows arbitrary 2-sample test
▶ Test for multivariate normality (more powerful than standard tests)
▶ Allows construction of ’β-distance-covariance’:
dstCovβ(X,Y ) = 1

C

∫
RH

∫
RH

|φX,Y (z,v)−φX(z)φY (v)|2

∥z∥β+H
2 ∥v∥β+H

2

dvdz

▶ β-distance-covariance allows tests for (multivariate) independence(!)
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Real data example
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Figure: Illustration of the rolling window forecasting, for rolling window 1, 2
and N = 19 with a small illustrative ensemble forecast with forecasting horizon
H = 12 and ensemble sample sizeM = 8 of the AR(13) model (??) shown
below.

Marginal-Copula-Scores for Multivariate Forecasting Evaluation 35 / 41



Florian Ziel House of Energy Markets and Finance, University of Duisburg-Essen

Real data example: 9 models
1a) AR(12): Yt = ϕ0 +

∑12
k=1 ϕkYt−k + εt with εt iid and E(εt) = 0.

2a) AR(13): Yt = ϕ0 +
∑13

k=1 ϕkYt−k + εt with εt iid and E(εt) = 0.
3a) AR(p): Yt = ϕ0 +

∑p
k=1 ϕkYt−k + εt with εt iid, E(εt) = 0 and

p ∈ {1, . . . , T/2} such that the corresponding Akaike information
criterion (AIC) is minimized.

1b) AR(12) as in 1a) but with comonotone residuals (i.e. (ε̂t, ε̂t+1) have
the copulaM2)

2b) AR(13) as in 2a) but with comonotone residuals (i.e. (ε̂t, ε̂t+1) have
the copulaM2)

3b) AR(p) as in 3a) but with comonotone residuals (i.e. (ε̂t, ε̂t+1) have
the copulaM2)

1c) AR(12) as in 1a) but with countermonotone residuals (i.e. (ε̂t, ε̂t+1)
have the copulaW2)

2c) AR(13) as in 2a) but with countermonotone residuals (i.e. (ε̂t, ε̂t+1)
have the copulaW2)

3c) AR(p) as in 3a) but with countermonotone residuals (i.e. (ε̂t, ε̂t+1)
have the copulaW2)
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Real data example
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Figure: Illustration of standard (left), comonotone (center) and countermonotone
(right) model simulations for the AR(13) withM = 8 paths for the last
experiment (N = 19).

▶ ensemble size: M = 216 = 65536
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Real data example: results

Score\Model AR(12) AR(13) AR(p) AR(12)-M AR(13)-M AR(p)-M AR(12)-W AR(13)-W AR(p)-W
ES 120.8 137.5 134.9 197.3 196.2 190.9 203.2 206.6 201.0
VS 158011 120657 111823 205513 133903 122607 175112 123631 114357
DSS 95.92 90.99 91.78 683635 372563 364726 995252 838370 762531

CRPS-CES 3.228 3.887 3.828 8.617 10.240 10.045 8.818 10.537 10.365
CRPS-CVS 0.3346 0.4638 0.4166 0.6357 0.7712 0.7248 0.7989 0.9954 0.9464

CRPS 28.28 33.94 33.36 28.32 33.90 33.36 28.29 33.92 33.35
CES 0.1142 0.1144 0.1146 0.3044 0.3020 0.3010 0.3118 0.3105 0.3106
CVS 0.01184 0.01367 0.01247 0.02247 0.02276 0.02171 0.02826 0.02935 0.02836
CDSS -26.06 -24.54 -23.78 - - - - - -

Table: Score averages SC across the N = 19 out-of-sample windows for the
considered scores and models. -M indecates models with comonotone
residuals, -W for countermonotone residuals.

▶ AR(12) seems to be best concerning, but not uniformly⇒
improvements possible
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Real data example: results

AR(12) AR(13) AR(p) AR(12)-M AR(13)-M AR(p)-M AR(12)-W AR(13)-W AR(p)-W

AR(12) −4.04
[<0.001]

−2.57
[0.005]

−26.53
[<0.001]

−19.57
[<0.001]

−13.39
[<0.001]

−30.02
[<0.001]

−17.90
[<0.001]

−13.02
[<0.001]

AR(13) 4.04
[>0.999]

0.73
[0.766]

−11.15
[<0.001]

−31.58
[<0.001]

−13.67
[<0.001]

−13.57
[<0.001]

−35.14
[<0.001]

−14.51
[<0.001]

AR(p) 2.57
[0.995]

−0.73
[0.234]

−9.12
[<0.001]

−14.06
[<0.001]

−29.95
[<0.001]

−10.74
[<0.001]

−16.87
[<0.001]

−31.22
[<0.001]

AR(12)-M 26.53
[>0.999]

11.15
[>0.999]

9.12
[>0.999]

0.26
[0.602]

1.08
[0.860]

−7.18
[<0.001]

−1.86
[0.031]

−0.55
[0.292]

AR(13)-M 19.57
[>0.999]

31.58
[>0.999]

14.06
[>0.999]

−0.26
[0.398]

1.39
[0.918]

−1.98
[0.024]

−9.32
[<0.001]

−1.09
[0.138]

AR(p)-M 13.39
[>0.999]

13.67
[>0.999]

29.95
[>0.999]

−1.08
[0.140]

−1.39
[0.082]

−2.28
[0.011]

−4.18
[<0.001]

−9.51
[<0.001]

AR(12)-W 30.02
[>0.999]

13.57
[>0.999]

10.74
[>0.999]

7.18
[>0.999]

1.98
[0.976]

2.28
[0.989]

−0.78
[0.219]

0.36
[0.642]

AR(13)-W 17.90
[>0.999]

35.14
[>0.999]

16.87
[>0.999]

1.86
[0.969]

9.32
[>0.999]

4.18
[>0.999]

0.78
[0.781]

1.39
[0.918]

AR(p)-W 13.02
[>0.999]

14.51
[>0.999]

31.22
[>0.999]

0.55
[0.708]

1.09
[0.862]

9.51
[>0.999]

−0.36
[0.358]

−1.39
[0.082]

Table: DM-test statistics with corresponding p-value given in squared brackets
for the energy score (ES).
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Real data example: results
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. CRPS 2-dim. CES 3-dim. CES

▶ CRPS and 2-dim. CES across horizon very useful to detect failures in
performance
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Summary

▶ Energy score is suitable distance for multivariate evaluation (in
combination with significance tests)

▶ Ensemble sample size should be as large as computationally feasible
▶ Additionally consider

• CRPS for checking individual marginals across the forecasting
horizon

• copula energy score for evaluation 2-way dependencies across the
forecasting horizon

Thank you for your attention.
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