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• Where do high-dimensional problem emerge?
– Spatial: generation and demand

– Temporal: multi-temporal decision-making

– Modelling: (potentially) huge feature space for statistical learning

– Multivariate/other: prices, line ratings, reliability…

• Large Feature Spaces and Hierarchies

• Dynamic Temporal Dependency

• Spatio-temporal Forecasting
– High-dimensionality and sparsity

– Dynamic dependency structures and atmospheric regimes
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High Dimension: Spatial

• Generation:
940+ Wind Farms

1300+ Solar Farms (+domestic PV)
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High Dimension: Spatial

• Demand:
350+ Grid Supply Points/Nodes

400,000+ Substations

40,000,000+ Smart Meters
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High Dimension: Temporal

• Forecast errors often exhibit auto-
correlation:
– Inertia in underlying processes

• Sequential decisions/constraints require 
multi-temporal modelling:
– Storage management

– Maximum/minimum run-times/down-times

– Cumulative quantities (energy, fuel)
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High Dimension: Features 

and Hierarchy

• Lots of (potential) explanatory information
– History

– Weather (multiple variables on a spatial grid)

– Other observations (e.g. levels in hierarchy)

– Engineering large numbers of features from modest 
numbers of explanatory variables is often beneficial

• Natural hierarchies:
– Can improve model fidelity

– Consistency may be necessary for some 
applications
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Wind Power Forecasting
Leveraging turbine-level data for wind power 

forecasting



Large Feature Spaces and 

Hierarchies

Motivation:

1. Gather as much useful information as possible to 

improve forecast skill

• NWP – multiple models and variables on a grid, 

ensembles, engineered features…

• High frequency data and engineered features (especially 

in very short-term)

• Other levels of hierarchy

2. Coherency across hierarchy (in some cases)
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Large Feature Spaces and 

Hierarchies

• Wind farm power curve is complicated by 
many factors: layout, terrain etc

• When fitting a model it is difficult to 
distinguish between random variation and 
true processes…

• …Perhaps looking at individual turbines 
could help!
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Large Feature Spaces and 

Hierarchies
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Set up

• GBM for quantile regression 𝑞𝛼 = 𝑓GBM
𝛼 (𝒙NWP)

• 2 Wind Farms with 35 and 56 turbines
• NWP inputs plus engineered features
• 30 minute wind farm production
• 30 minute wind turbine production



Large Feature Spaces and 

Hierarchies
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Method 1 / GBM+T

1. Produce deterministic 
forecasts for individual 
turbines

2. Use these as additional 
features

𝒙(1) 𝒙(2) 𝒙(3) 𝒙(4)

…

𝑞𝛼 = 𝑓GBM
𝛼 (𝒙NWP, 𝒙1, … , 𝒙𝑁)

Density forecast for wind 
farm



Density forecast for wind 
farm = Distribution of sum 

of all turbines

Large Feature Spaces and 

Hierarchies
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Method 2 / Cop

1. Produce multivariate density 
forecast for all turbines 

a) Marginals as before
b) Gaussian copula for 

spatial dependency

…

Gaussian Copula
(Joint PDF, spatial dependency 

described by covariance matrix)

𝑞1
𝛼 = 𝑓GBM,1

𝛼 (𝒙NWP)

𝑞2
𝛼 = 𝑓GBM,2

𝛼 (𝒙NWP)

𝑞3
𝛼 = 𝑓GBM,3

𝛼 (𝒙NWP)

𝑞4
𝛼 = 𝑓GBM,4

𝛼 (𝒙NWP)



Large Feature Spaces and 

Hierarchies

15

Method 1 / GBM+T

1. Produce deterministic 
forecasts for individual 
turbines

2. Use these as additional 
features

Method 2 / Cop

1. Produce multivariate density 
forecast for all turbines 

a) Marginals as before
b) Gaussian copula for 

spatial dependency



Large Feature Spaces and 

Hierarchies
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WF-B



Large Feature Spaces and 

Hierarchies
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WF-A



Large Feature Spaces and 

Hierarchies
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WF Score AnEn GBM GBM+T Cop

WF-A
MAE 9.88 9.69 9.27 9.11

CRPS 7.12 7.02 6.74 6.66

WF-B
MAE 11.49 11.39 11.21 11.26

CRPS 8.20 8.10 8.00 8.02



Solar Power Forecasting
Dynamic Temporal Dependency



Dynamic Temporal Structure

20

• Density forecasts don’t give 
information about temporal 
structure

• Solar power production 
looks very different on 
different types of day…

• …so do forecast errors!



Dynamic Temporal Structure
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Temporal Dependency
Different Day Types

Different Sources of Error:

• Clear Day: Clear sky estimate (aerosol content etc)

• Partially Cloudy: Time and duration of clear/cloudy spells

• Cloudy Day: Irradiance penetrating cloud layer(s)



Temporal Dependency
Single Day Type
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Gaussian Copula
Sampling

Covariance 
Matrix

MV 
Energy 
Score

Variogram
Score

Identity 419.0 27348

Static 411.9 27147

Dynamic 411.6 27087



Wind Power Forecasting
Very Short-term



Vector Auto-regression:

Full Parameterisation:

Quickly becomes 
impractical for large 𝑵

parameters to estimate!

Wind Power Forecasting
Very Short-term



Sparse Vector Auto-regression:

Which ones?
• Rank by a summary statistic and choose 

number of parameters  that minimises some 
information criterion

• Penalised Linear Regression

Set most parameters 
to zero…

Wind Power Forecasting
Very Short-term



Atmospheric Regimes

Spatio-temporal Structure:

– If VAR parameters are static, we’re assuming that the 

spatio-temporal structure is static
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Atmospheric Regimes

Spatio-temporal Structure:

– If VAR parameters are static, we’re assuming that the 

spatio-temporal structure is static

– It is easy to track changes, albeit with some lag…

– …we also know somethings about the underlying 

weather!
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Atmospheric Regimes

Large-scale meteorological phenomena:

– Persist for days, weeks and beyond

– Are associated with particular weather types or 

anomalies

– Provide seasonal predictability and information about 

short-term predictability
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Atmospheric Regimes

• Large-scale regimes fundamental 

to seasonal/sub-seasonal 

predictability

– E.g. El Nino, North Atlantic 

Oscillation (right)

• Information: Are we expecting a 

wet and mild or a cold and dry 

winter in Europe?
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Atmospheric Regimes

• Many data-driven approaches to 

identification:

– Principal Components

• Classical dimension reduction

• Linear in features

– Kohonen Network/Self-organising Map

• Unsupervised learning/dimension reduction

• Non-linear in features

– Auto-encoder

• Supervised learning

• Compression via non-linear features
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Atmospheric Regimes

Applications in short- and very short-term renewable 
energy forecasting:

1. Spatial correlation useful in very short-term forecasts; 
correlation structure depends on regime

2. Structure in day-ahead forecast uncertainty; structure 
depends on regime

35



Atmospheric Regimes

1. Very short-term wind forecasting

36

Forecasts based on recent 
observations at spatially 

dispersed locations



Atmospheric Regimes

1. Very short-term wind forecasting
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Recent advances focuses on structure and 
dynamics of this matrix:

- Sparsity1,2 (large scale applications)
- Adaptive Updates3 (slow dynamics)
- Regimes4 (switching, fast dynamics)



Atmospheric Regimes

1. Very short-term wind forecasting

38
Figure Source: [4]



Advantages of SOM

The SOM are analogous to other clustering algorithms (e.g. k-means) but provide:

 Better visualization – The resulting patterns are part of composites map

 Provides information regarding the relationship of the patterns

 Similar patterns are located close in the SOM – Dissimilar further apart

 Identify transient states between atmospheric patterns

Unsupervised learning
Training is entirely data-driven without using desired output examples
The objective is to find patterns in input data space:
e.g. Cluster Analysis, Dimension Reduction

Atmospheric Classification
Self-organising Maps



Architecture

 Two layer network: Input layer & Output layer (PxQ neurons lattice)

 Each neuron is fully connected with the input nodes and with its neighboring
neurons

 Characterized by its synaptic weights vector w and by its location at the SOM
lattice

Best Matching Unit

Training – Learning of SOM
 Competition
An input pattern is presented to the network. A metric distance (e.g. Euclidean
distance) is calculated for all neurons. The neuron with the smallest distance is the
‘winner’ (Best Matching Unit - BMU).

 Cooperation
The BMU through a radial basis function determines the topological neighborhood
of the ‘excited’ neurons

 Adaptation
The BMU and its neighboring neurons weight vectors are updated towards the
input vector.

Atmospheric Classification
Self-organising Maps



Objective

 Examine the relationship of large-scale circulation and wind speeds over GB

 Identify wind regimes with distinct spatio-temporal characteristics for use in
very-short-term forecasting

Data

 Reanalysis Data: MERRA-2

 SLP, Z500, U10, V10

 1980 to 2014, hourly resolution

 Interpolated to 0.75°x 0.75° grid over GB

 Measurements from 23 Met Stations

 2002-2005 (Training), 2006-2007 (Testing)

Atmospheric Classification
Case Study and Application



Atmospheric Classification
Self-organising Maps



Atmospheric Classification
Clustering for Optimal Forecast Performance



Mode 
Centroids:

Atmospheric Classification
Final Modes



Atmospheric Classification
Final Modes



Atmospheric Classification
Forecast Performance



Atmospheric Classification
Forecast Performance

 Performance Improved at
all 23 locations

 1-hour-ahead forecast 
improved by 0.3%-4.1%

 Overall 1-hour-ahead 
forecast improved by 1.6%

 Overall 6-hour-ahead 
forecast improved by 3.1%



Atmospheric Classification
Forecast Performance

 Distinct error characteristics for each mode:

 Provide decision-makers with quantified uncertainty information

 Suggests similar regime-switching approach would be valuable for 
probabilistic forecasting
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