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Motivation: forecasting and evaluation 1
Standard setting:

» given historic data (and a statistical model) creating a forecast for a
target of interest

» target of interest Y ~ Fy, H-dimensional random variable
e.g. maximum load of tomorrow and day after tomorrow (2-dim.)

» in practice we never know the true Fy we just observe y

» if we have a forecast we can only compare the performance by
comparing it with y
» evaluation relies on some repeatability of the forecasting experiment
> ways to report forecast
¢ point forecasting:

- X estimator for e.g. E(Y) or Med(Y')

- evaluation based on forecasting error Y — X, resp. y — X

- E can be strictly proper evaluated using MSE (mean square error)

- Med can be strictly proper evaluated using MAE (mean absolute error)
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Forecasting evaluation 1

probabilistic forecasting: (everything beyond point forecasting)
» characterises the uncertainty in the forecast, e.g.:

Observed
—— Quantile:1%
Quantile:5%

Quantile:10%
Quantile:20%6
Quantile:30%
—— Quantile:10%
—— Quantile:50%
Quantile:60%
Quantile:70%
Quantile:80%6
Quantile:90%
Quantile:05%4
Quantile:99%

entsoe forecast

Iy in GW

Load of CTY_DE_German,

Jun 24 Jun 26 Jun 28 Jun 20 aur 2
=018 Time in UTC

» usually forecast of marginal distributions Fy, of Y = (Y1,...,Yy)’,
marginal densities fy, , or quantiles g, (Y},) fora € A

» strictly proper evaluation methods available,
e.g. continuous rank probability score (CRPS) for Fy,

» used in e.g. Global Energy Forecasting Competitions (99%-tiles)

Marginal-Copula-Scores for Multivariate Forecasting Evaluation



Florian Ziel House of Energy Markets and Finance, University of Duisburg-Essen

Probabilistic forecasting evaluation 1
» Problem with standard probabilistic methods:

e forecasting only the marginals distributions
e ignoring the dependency structure
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(source: Berk, Hoffmann, Miiller (2017) International Journal of Forecasting)

» require full forecast Fx for Fy and strictly proper evaluation
method
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Evaluation measures for multivariate distributions 1
some measures available

» Energy score
1 —_—
ESs(Fx,y) = E (I1X —ylly) —5E(IX - XII5)

3 tid

e >0, X,X X Fy
o if H=1and =1~ CRPS
o strictly proper

» Variogram score

H H
VS,(Fx,y; W) = > wijlly: — yl” — B|X; — X,[P)?
i=1 j=1

e with p > 0 and weight matrix W = (w; ;) ; (usually w; ; = ¢)
e not strictly proper (forecasts with shifted mean have same score)
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Evaluation measures for multivariate distributions 1

» Log-score
LogS(Fx,y) = log(fx(v)).

e where fx is density of Fx
o strictly proper
e density forecast for X often not available (even if X is continuous)

» Dawid-Sebastiani score
DSS(Fx,y) =log(|Zx|) + (¥ — px)'Sx (y — px)

e with px and X x as mean and covariance matrix of X.
e optimal if Y is normally distributed
e not strictly proper

» Summary:

e only energy score and log-score strictly proper
e log-score not useful for practice as density forecast is required
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Energy Score 1

» Energy score seems to be preferable, still it is hardly applied

» Pinson,Tastu(2013) state that energy score is not sensitive in
changes in dependency structure, based on simulation results from
a bivariate normal distribution
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(source: Pinson, Tatsu (2013))
» Conclusion derived by looking at relative change in scores with
respect to the true distribution
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Marginal-Copula Scores 1

Idea:
» instead of full distribution Fy evaluate
e marginal distributions Fy,
copula Cy of Y

apply copula theory (Sklar’s theorem)
hope: control somehow marginal and dependency measures

» marginal score: MS

H
MS(a) = a’'MS =) " a,MS;,.
h=1

e where MS,, is a univariate scoring rule for Y}, (e.g. CRPS)
e a=(ay,...,an) aweightvector (usually a5, = 1)

» copula score: CS

e CSis a multivariate score for the copula Cx of the copula X
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Marginal-Copula Scores 1

Problem:
» Combine marginal score MS and copula score CS to one score
» looking for g : R x R — R defines CES = g(MS, CS)
such that strictly proper scoring rules can be achieved
» g must be strictly isotonic:

g(x1,y1) — g(x1,y2) — g(x2,y1) + g(22,92) > 0

for 1,z € supp(MS) and y1, y2 € supp(CS) with x1 < z2,y1 < Y2
» possible options for g:
a) g(z,y) = wiz + woy for weights w; > 0 works
b) g(x,y) = wzy for weights w > 0 works on e.g. (0,00) x (0, c0)

» option a) is not intuitive (due to scaling/ units)

Consider forecast for Y and ¢Y with ¢ > 0. For most marginal scores it
follows that MS(Fy, Y; @) # MS(F.y,cY;a). For the popular CRPS we
even have MS(Fy,Y;a) = 1MS(F,y,cY;a), but for the copula it holds
CS(CY7 Uy) = CS(Ccy, Ucy) with UY ~ Cy and UcY ~ Ccy.
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1

If the MSy, is a strictly proper score for Yy, and CS is a strictly proper score
for the copula Cy of Y = (Y1,...,Yx)' then the marginal-copula score

Theorem

MCS(FX7y7 a) = MS((FXU oo ,FXH),,y;G,)CS(CX,’U,y)

H
= CS(Cx,uy) Y anMSp(Fx, . yn)
h=1

with Fx as cumulative distribution function, with continuous marginals
Fx,,...,Fx, and copula Cx, of X = (X1, ..., Xg) which forecasts
Y, observation vector y and copula observations

uy = (uY,l, 000 ,uY7H)’ = (Fyl (yl), 000 ,FYH (yH))’ and

a = (ai,...,ag)" with a, > 0 is a strictly proper scoring rule.
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Marginal-Copula Scores

» Possible choices for marginal scores Fy, of Y = (Y1,...,Yy)
CRPS (univariate energy score)
Log score
Dawid-Sebastiani score
pinball score / quantile loss on a dense grid on (0,1)
many properties known
» Possible choice of the copula score for copula Cy of Y’
o Energy score
e Variogram score
e lLog score
o Dawid-Sebastiani score

» (originally) proposed score:
o MS: CRPS
e CS: Energy score
» Notation:
L] UY = (UYJ, ey UY’H)I = (F‘y1 (Y1)7 ey FYH (YH))/ = Fy(Y)
o uy = (uy,.uym) = (B (1), Fyy (yn)) = Fy (y).

1
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Copula Energy Scores (CES)

CES: energy score of the copula minus its lower bound scaled by H 2

CES(Cx,uy) = (ES(C_)(,UY) — IbCES)

sl =~

1 _
(B0~ urly) - 38 (1Ux - Tl - s )

where Ibcgs = 1 — %% due to
Lemma
I <E|Ux — uyll, < ¥F and T <E(|Ux - Uxll2) < ¥Z J

» not a strict bound (ongoing research)
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Copula Variogram Score (CVS) 1
1

CVSP(C"X7 Uy, W) = WCSP(CJQ uy; W) (2)

H H
=> > wij(luyi—uy " = ElUx,i — Ux ;|)*
i=1 j=1
» withUx = (Ux1,...,Ux u) ~ Cx, p > 0 and weight matrix
W = (w; ;)i

» upper bound:

wi j(|uy,i —uy j|” —E[Ux,; —Ux;|")> (3

M=
M=

VSP(Cx,’LLY; W) =

s
Il
-
<.
Il
-

w; ; (17 —0)> =1'W1, (4)

M=
M=

Il
-

<

i=17

which justifies the scaling constant.
» lower bound is zero, as for is holds VS,(My,Uy; W) = 0 if
Uy ~ My.
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Copula Dawid-Sebastiani Score (CDSS) 1

CDSS(Cx, uy) = DSS(Cx, uy)

= log(det(Suy ) + (uy — puy)' S (uy — puy)  (5)

» puy and 3y, as mean and covariance matrix of Ux ~ Cx.
> as puy = 31 and By, = SRy, S where S = \/%I and correlation
matrix Ry, it holds

1 1.\’ 1
CDSS(Cx,uy) = —H log(12 det(RUX))—i-ﬁ (uy - 21) R{]i (uy - 21)

» = only measures dependency in correlation of the copula

» CDSS is unbounded:
for Ry, (8) = (1 —6)I + 611’ then it holds lims_,; det(Ry, (6)) = 0.
= not applicable for multiplicative marginal-copula score
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1

for sophisticated problems forecast distribution Fx (or density fx,
or characteristic function ¢x) is not explicitly available.

reporting forecast as a large ensemble X ... X for
forecasting Y’

repeat N (similar) forecasting experiments in a rolling window
forecasting study: forecasts X1,..., Xy for Y7,..., Yy

realised ensemble forecasts X; = (x§1>, . ,ccl(-M))' of the forecasting
distribution X; for Y;

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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lllustration rolling window forecasting study 1

15 in-sample window i=1 forecast i=1
3 104
R
0 : T T T T T
0 24 48 72 96 120 144
Time
15 in—-sample window i=2 forecast i=2
g 104
s .| S N s
01— T T T T
0 24 48 72 96 120 144
Time
15 o in—sample window i=3 forecast i=3
g 104
S 5 Mo’ég&
0 T T
0 24 48 72 96 120 144
Time

Figure: lllustration of a rolling window forecasting study with non-overlapping
windows (s; = H(i — 1)) fori =1,...,3 windows and M = 6 forecast samples

(1) (M) ; i
Try, ..., xp,; foreach window i.
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Estimating the scores 1

» for standard (multivariate) scores estimation straight forward, e.g.

1 —

ES:o(Fx,ow:) = E (11X —will]) - sE(IX: - Xi05)  ®
1

= EDpi(Xi, 9i) — SElpi( X, 1) (7)

» estimated by

and

2

e K = M computationally expensive - but optimal
o K =1 fast

Marginal-Copula-Scores for Multivariate Forecasting Evaluation



Florian Ziel House of Energy Markets and Finance, University of Duisburg-Essen

Estimating the copula scores 1
» Uy, = (in’l, ceey UYi,H)/ = (FYi,l(lfiJ)? R FYi,H (Y;7H))/ with
copula observations

wy, = (uy, 1, -ty i) = (Fy, (9i1), -5 FY, 4 (9i.0))" depend on
true marginals Fy; , .

» estimate Fy, i empirical distribution function (ecdf), e.g.
By (2) = By, (2 4) = 4 5L 1wy <2},
(or the mid-point rule Fid (2) = 54 M 1{zl) < 2} + 1{z{) < 2})

Gy, = Gy, (X)) = (P, (415X, -+ By (i3 X))

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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1

> Uy, = Uy,1s- - Uyn) = (Fy,, (Yia), - Fy, 5 (Yim))" with
copula observations

wy, = (uy, 1, -ty i) = (Fy, (9i1), -5 FY, 4 (9i.0))" depend on
true marginals Fy; , .

estimate Fy, i empirical distribution function (ecdf), e.g.
By (2) = By, (2 4) = 4 5L 1wy <2},
(or the mid-point rule Fid (2) = 54 M 1{zl) < 2} + 1{z{) < 2})

Gy, = Uy, (X)) = (Fy,, (4i1; %), o, By, (i X))

Problem:
misspecified marginal can lead to estimated copula lower scores
than the true model
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Estimating the copula scores 1
» Uy, = (in’l, ceey UYi,H)/ = (FYi,l(lfiJ)? R FYi,H (Y;7H))/ with
copula observations

wy, = (Uy; 1, Uy, 1) = (Fy;, (Wi1), - -+, Fy; (i) depend on
true marginals Fy; , .

» estimate Fy, i empirical distribution function (ecdf), e.g.
Fy(2) = P, (5:%) =y £ el <23,
(or the mid-point rule F{}“‘i (z) = 557 ijl l{ml(j) <z} + ]l{mgj) < z})

Gy, = Uy, (X)) = (Fy,, (4i1; %), o, By, (i X))

» Problem:
misspecified marginal can lead to estimated copula lower scores
than the true model

» Solution:
Force the marginals to be uniform, while preserving the dependency
structure

Marginal-Copula-Scores for Multivariate Forecasting Evaluation



Florian Ziel House of Energy Markets and Finance, University of Duisburg-Essen

Estimating the copula scores 1

» R, the rank of uy; , within Uy, p, ..., Uy, h-
» define the adjusted estimated copula observations by

s 2R, — 1
u),i,h = T

: 1 2N—1
taking values on 55,. .., *55

» resulting ecdf has minimal Komogorov-Smirnov (KS) distance to the
uniform distribution. (no other justification)

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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Estimating the copula scores 1

» R, the rank of uy; , within Uy, p, ..., Uy, h-
» define the adjusted estimated copula observations by

. 2Ry 1

Uy, =
Y;,h N
: 1 2N—1
taking values on 55,. .., *55

» resulting ecdf has minimal Komogorov-Smirnov (KS) distance to the
uniform distribution. (no other justification)
» estimate C'x, by the empirical copula, we suggest
. 1M _
Cx,(u1,.. un) = ; 1{Rij1/M <wui,...,Riju/M<ug}
with the ranks

M

~ 1

Rijn=5 > Uayl) < alh} + 1al)) <o)
k=1

which break ties by the mid-point rule.
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Estimating the copula scores 1
» Further problem: We know
E[MS - CS] = E[MS]E[CS] + Cov[MS, CS]

» Thus we estimate

—

MS(a)-CS; = MS;(a)CS; — Gys.cs

with o cs as estimator for Cov[MS, CS].

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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Application in simulation studies 1
9 scores:
i) Energy score (ES)
i) Variogram score (VS)
iii) Dawid-Sebastiani score (DSS)
iv) CRPS-copula energy score
v) CRPS-copula variogram score
vi) CRPS
vii) Copula energy score
viii) Copula variogram score

ix) Copula DSS score
— evaluation for score SC using two criteria
_ 5c-5¢
sc”

I) relative change in score with respect to best: RelCh(SC)

[) DM-test statistics with respect to the best
first study of Pinson, Tatsu (2013) [change in correlation of bivariate normal] using

> N =27 =512 (window length), M = 2'* = 16384 (ensemble size)

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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2nd Experiment: on bivariate normal distribution 1
> With i = (0,0) and (p) = ( ; f )

i) (true setting): X ~ Na(u, 2) with p = /2/2
ii) (symmetric mean bias): X ~ Na(p + a11, X(p)) with p = /2/2
iii) (asymmetric mean bias): X ~ N (u + (a2, —az2)’, X(p)) with

p=v2/2

iv) (smaller variance): X ~ Na(p,a3X(p)) with az < 1 and p = v/2/2
v) (larger variance): X ~ Na(p,as3(p)) with ag > 1 and p = v/2/2
vi) (smaller correlation): X ~ Na(u, X(a5)) with as < p

vii) (larger correlation): X ~ Na(p, X(ag)) with ag > p

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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2nd Experiment: on bivariate normal distribution 1
> With i = (0,0) and (p) = ( ; f )

i) (true setting): X ~ Na(u, 2) with p = /2/2

ii) (symmetric mean bias): X ~ Na(p + a11, X(p)) with p = /2/2

iii) (asymmetric mean bias): X ~ N (u + (a2, —az2)’, X(p)) with

p=v2/2

) (smaller variance): X ~ Na(u,a3X(p)) with az < 1 and p = v/2/2

v) (larger variance): X ~ Na(p,as3(p)) with ag > 1 and p = v/2/2

) (smaller correlation): X ~ Na(p, X (as5)) with as < p
vii) (larger correlation): X ~ Na(p, X(ag)) with ag > p

» change in biased model so that change theoretical likelihood is the
same for all settings ii) - vii)

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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2nd Experiment: on bivariate normal distribution 1
> With i = (0,0) and (p) = ( ; f )

i) (true setting): X ~ Na(u, 2) with p = /2/2
ii) (symmetric mean bias): X ~ Na(p + a11, X(p)) with p = /2/2
iii) (asymmetric mean bias): X ~ N (u + (a2, —az2)’, X(p)) with
p=v2/2
) (smaller variance): X ~ Na(u,a3X(p)) with az < 1 and p = v/2/2
v) (larger variance): X ~ Na(p,as3(p)) with ag > 1 and p = v/2/2
) (smaller correlation): X ~ Na(p, X (as5)) with as < p
vii) (larger correlation): X ~ Na(p, X(ag)) with ag > p
» change in biased model so that change theoretical likelihood is the
same for all settings ii) - vii)
» consider p = /2/2 ~ 0.707, a5 = 0 (1 degree of freedom) =
likelihood reduction § = 3 log(2)

— ) _ ) ~ ~ ~
(ap =,/ 2oV as = /2+\/§, a3 ~ 0.48124, ay =~ 2.62729 and ag ~ 0.89032)

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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2nd Experiment: on bivariate normal distribution 1

> With i = (0,0) and (p) = ( ; f )

i) (true setting): X ~ Na(u, 2) with p = /2/2
ii) (symmetric mean bias): X ~ Na(p + a11, X(p)) with p = /2/2
iii) (asymmetric mean bias): X ~ N (u + (a2, —az2)’, X(p)) with
= \/5/2
iv) (smaller variance): X ~ Na(p,a33(p)) with az < 1 and p = v/2/2
v) (larger variance): X ~ Na(p,as3(p)) with ag > 1 and p = v/2/2
vi) (smaller correlation): X ~ Na(u, X(a5)) with as < p
vii) (larger correlation): X ~ Na(p, X(ag)) with ag > p
» change in biased model so that change theoretical likelihood is the
same for all settings ii) - vii)
» consider p = /2/2 ~ 0.707, a5 = 0 (1 degree of freedom) =
likelihood reduction § = 3 log(2)
(a1 = \/%, as = \/%, a3z & 0.48124, ag =~ 2.62729 and ag ~ 0.89032)
> M =213 = 8192 (ensemble sample size), N = 28 — 256 (rolling
window length), L = 2% = 64 (replications)

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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3rd Experiment: Random peak study 1
> ) (true) X; = Y + QZ; with Y; S Ny (0,T) and Z; S U({er,. .. en})
ii) (average mean) X; iid Ny (pl, I) with = %
iii) (zero mean) X; iid Ny (0,1)
iv) (fixed peak) X; " Ny (p, I) with g = (Q,0,...,0)
v) (rolling peak) X; i"NOIJ\/H(W, I) with p; = €14 (i—1)modmr With as unit

vector for the i'th coordinate.
vi) (mixture normal with same marginals) X; = (X, 1,...,X; g)’ with

id JN1(0,1) U < £ iid
X, ; here U; 9 4(]0, 1)).
N {/\G(Q,l) U; > 21 where U; ~u([0. 1)
iid

vii) (shifted mean) X; =Y; + QZ; withY; ~ Ny (Q/H1,I) and
Z S U{er, ... en)) )

viii) (normal with true mean and covariance) X; id Ny (p, X) with
p=%1and ¥ = (H +Q?/HI — Q*/H?11

Marginal-Copula-Scores for Multivariate Forecasting Evaluation



3rd Experiment: Random peak study 1

| 2

vii)

viii)
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true) X; = Y; + QZ; with Y; S N5 (0,T) and Z; S UU({er,. .. en})

(

(average mean) X; iid Ny (pl, I) with = %

(zero mean) X; iid Ny (0,1)

(fixed peak) X; % Ny (s, I) with g = (Q,0,...,0)

(rolling peak) X; ENH(W, I) with p; = €14 (i—1)modrr With as unit
vector for the i'th coordinate.

(mixture normal with same marginals) X; = (X, 1,...,X; g)’ with

id JN1(0,1) U < £ iid
X, ; here U; 9 4(]0, 1)).
N {/\G(Q,l) U; > 21 where U; ~u([0. 1)
iid

(shifted mean) X; = Y; + QZ; with Y; ~ Ny (Q/H1,T) and
Z, % U({e, ... en}) )

(normal with true mean and covariance) X id Ny (p, X) with
p=%1and ¥ = (H +Q?/HI — Q*/H?11

» First: H = 3-dim. case with a peak size of Q@ =5
» M =2 = 16384 (ensemble sample size), N = 25 = 32 (rolling window
length), L = 25 = 64 (replications), only DM-test

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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Variants of 3rd Experiment: Random peak study

a) Effect of ensemble sample size M
H = 3-dim. case with a peak size of @ =5

MeM= {2Z|7, € {4,,14}} = {24725’”"214} _
{16,32,...,16384}
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1

Variants of 3rd Experiment: Random peak study

a) Effect of ensemble sample size M
H = 3-dim. case with a peak size of @ =5

MeM= {2Z|7, € {4,,14}} = {24725’”"214} _
{16,32,...,16384}

b) Effect of ensemble sample dimension H
H = 9-dim. case with a peak size of @ =5

MeM=1{2ic{4,..,14}}={242°,...,211) =
{16,32,...,16384}
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Conclusions from the simulation studies 1

» Energy score is the only considered score which seems to be suitable

» In some cases other scores are slightly better in identifying special
features

But:
¢ Why is the energy score so powerful?
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Conclusions from the simulation studies 1

» Energy score is the only considered score which seems to be suitable

» In some cases other scores are slightly better in identifying special
features

But:
¢ Why is the energy score so powerful?
» Reason: Structure of the energy distance

1 = 1 =
dp(X,Y) =E|X - Y|l; - JEIX — X5 - E[Y ~ Y|,

» dp yields energy score for observed Y (w) = y

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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Properties of the energy distance 1

» dg is zero if and only if X dy
» special weighted L?-distance between characteristic functions:

H+1

T2 lex(z) — ey (2)|?
X.Y) =
is(X, ¥) r(fz“)/ﬂw P

for characteristic functions ¢ x (2) = E(e**'X) and
oy (2) = E(*7).
» If considering the weighted L2-distance between ¢ x and @y

c / £(2)lox(2) - oy (2) dz
Rd

then £(z) = ||z||§+ﬁ is the only choice such that the distance is
scale equivariant and rotationally invariant

» dp measures distances between X and Y in C = R? not R?
= should be efficient for H > 2.

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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Properties of the energy distance 1
» Allows arbitrary 2-sample test

» Test for multivariate normality (more powerful than standard tests)

» Allows construction of ’3-distance-covariance’:
— 2
dstCovg(X,Y) = & fan fau lvx,yﬂ(:ng)wﬁ':;ﬁg)ﬁ{y(v)| dvd 2

» (-distance-covariance allows tests for (multivariate) independence(!)

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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Real data example

1 N =1, in-sample | out-of-;
: i sample;

Airline passengers
100 300 500
1

T T ‘\ - T T T
1950 1952 1954 1956 1958 1960

4 N =2, in-sample T out-of-

Airline passengers
100 300 500
1

T T — : T T T
1950 1952 1954 1956 1958 1960

Airline passengers
100 300 500
1

T T T - T T ‘\
1950 1952 1954 1956 1958 1960
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Florian Ziel

Real data examp|e° 9 models

1a) AR(12): Y; = ¢ + Zk 1 OkYi—i + ¢ with g, iid and E(g;) = 0.
2a) AR(13) 3 = ¢y + Zk 1 OeYi—k + e with g iid and E(e;) = 0.
3a) AR(p) <Z>0 + > b OkYi—k + & with g iid, E(e;) = 0 and

pE {1, ..., T/2} such that the corresponding Akaike information

criterion (AIC) is minimized.
1b) AR(12) as in 1a) but with comonotone residuals (i.e. (&;,&;41) have

the copula My)
2b) AR(13) as in 2a) but with comonotone residuals (i.e. (£;,&.+1) have

the copula My)
3b) AR(p) as in 3a) but with comonotone residuals (i.e. (;,8;+1) have

the copula My)
1c) AR(12) as in 1a) but with countermonotone residuals (i.e. (&;,&141)

have the copula W5)
2¢) AR(13) as in 2a) but with countermonotone residuals (i.e. (£;,8;41)

have the copula W5)
3¢) AR(p) as in 3a) but with countermonotone residuals (i.e. (&;,&¢+1)

have the copula W5)

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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Real data example

House of Energy Markets and Finance, University of Duisburg-Essen

1

o i out-of- o i out-of- o i out-of-

S in-sample sample g in-sample sample g in-sample sample
g g g
2 S 4 238 ® g y
g = / g = g @ /\
e g ING @ g = ‘/\/ \
£3 \V/ £ % £F | b
< 1 < <

) o o

o o (=3 (=

) = -

T T T T T T
1959 1960 1959 1960 1959 1960

Figure: Illustration of standard (left), comonotone (center) and countermonotone
(right) model simulations for the AR(13) with M = 8 paths for the last
experiment (N = 19).

» ensemble size: M = 216 = 65536
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Real data example: results

Score\Model  AR(12) AR(13) AR(p) AR(12)-M  AR(13)-M  AR(p)-M  AR(12)-W AR(13)-W  AR(p)-W
ES 120.8 137.5 134.9 197.3 196.2 1909 203.2 206.6 201.0

VS 158011 120657 111823 | 205513 133903 122607 175112 123631 114357

DSS  95.92 90.99 91.78 683635 372563 364726 995252 838370 762531
CRPS-CES  3.228 3.887 3.828 | 8.617 10.240 10.045 8.818 10.537 10.365
CRPS-CVS 0.3346 0.4638 0.4166 0.6357 0.7712 0.7248 0.7989 0.9954 0.9464
CRPS 2828 | 33.94 3336 28.32 3390 33.36 28.29 @ 33.92 33.35

CES 0.1142 0.1144 0.1146 0.3044 0.3020 0.3010 0.3118 0.3105 0.3106

CVS 0.01184 0.01367 0.01247 0.02247 0.02276 0.02171 0.02826 0.02935 0.02836
CDSS -26.06 = -24.54 -23.78 - -

Table: Score averages SC across the N = 19 out-of-sample windows for the
considered scores and models. -M indecates models with comonotone
residuals, -W for countermonotone residuals.

> AR(12) seems to be best concerning, but not uniformly =
improvements possible

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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Real data example: results

AR(12) AR(13) AR(p) AR(12-M  AR(13)-M  AR(P)-M  AR(12-W  AR(13}-W  AR(p)-W
AR(12) —4.04 —-2.57 —26.53 —19.57 —13.39 —30.02 —17.90 —13.02
[<0.001] [0.005] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]
AR(13) 4.04 0.73 —11.15 —31.58 —13.67 —13.57 —35.14 —14.51
[>0.999] [0.766] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]
AR(p)  2.57 —0.73 —9.12 —14.06 —29.95 —10.74 —16.87 —31.22
[0.995] [0.234] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]
AR(12)-M | 26.53 11.15 9.12 0.26 1.08 —7.18 —1.86 —0.55
[>0.999] [>0.999] [>0.999] [0.602] [0.860] [<0.001] [0.031] [0.292]
AR(13)-M | 19.57 31.58 14.06 —0.26 1.39 —-1.98 —-9.32 -1.09
[>0.999] [>0.999] [>0.999] [0.398] [0.918] [0.024] [<0.001] [0.138]
AR(p)-M| 13.39  13.67 29.95 —-1.08 —1.39 —2.28 —4.18 -9.51
[>0.999] [>0.999] [>0.999] [0.140] [0.082] [0.011] [<0.001] [<0.001]
AR(12)-W | 30.02 13.57 10.74 7.18 1.98 2.28 —0.78 0.36
[>0.999] [>0.999] [>0.999] [>0.999] [0.976] [0.989] [0.219]  [0.642]
AR(13)-W | 1790 35.14 16.87 1.86 9.32 4.18 0.78 1.39
[>0.999] [>0.999] [>0.999] [0.969] [>0.999] [>0.999] [0.781] [0.918]
AR(p)-W | 13.02 1451 31.22 0.55 1.09 9.51 —0.36 —1.39
[>0.999] [>0.999] [>0.999] [0.708] [0.862] [>0.999] [0.358] [0.082]

Table: DM-test statistics with corresponding p-value given in squared brackets
for the energy score (ES).

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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Real data example: results
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» CRPS and 2-dim. CES across horizon very useful to detect failures in
performance

ula-Scores for M

ivariate Forecasting Evaluation
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Summary 1

» Energy score is suitable distance for multivariate evaluation (in
combination with significance tests)

» Ensemble sample size should be as large as computationally feasible

» Additionally consider

e CRPS for checking individual marginals across the forecasting

horizon
e copula energy score for evaluation 2-way dependencies across the

forecasting horizon

Marginal-Copula-Scores for Multivariate Forecasting Evaluation
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Summary 1

» Energy score is suitable distance for multivariate evaluation (in
combination with significance tests)

» Ensemble sample size should be as large as computationally feasible
» Additionally consider

e CRPS for checking individual marginals across the forecasting

horizon
e copula energy score for evaluation 2-way dependencies across the

forecasting horizon

Thank you for your attention.
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