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The online learning setting



Online learning in a stochastic environment

From Gerchinovitz (2013): observe random (Yt,Xt)t⩾1 recursively (online).

Aim of Online Learning

Predict Yt+1 ∈ R given Xt+1 ∈ X thanks to f̂t(Xt+1) with a learner

f̂t : X → R depending only on (Ys,Xs)1⩽s⩽t.

Remarks

- Both processes (̂ft) and (Yt,Xt) are adapted to the natural filtration (Ft) with
Ft = σ((Ys,Xs)1⩽s⩽t).

- Adversarial, iid, auto-regressive, ... are included in that general setting.
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Definition (Experts)
A dictionary {f1, . . . fM} of experts fj = (fj,t) with fj,t : X → R is given, ft =

(fj,t)1⩽j⩽M are learners adapted to (Ft).

Examples: deterministic experts, outputs of sequential statistical algorithms (Kalman
filters, OGD, ONS,…, Hazan, 2015). In all cases they are black boxes for us.

Aggregation f̂t =
∑M

j=1 πj,tfj,t = Eπt [ft ] for some weights πj,t ⩾ 0,
∑M

j=1 πj,t = 1 in
the simplex ΛM.

Weights (πj,t) are adapted to the filtration Ft. Both the experts ft and their
aggregation f̂t are learners.
Aim ⇒ Solution
Find an online aggregation procedure that is adaptive and robust in that general
framework
⇒ Bernstein Online Aggregation (BOA) algorithm provides a reasonable answer.
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The regret bound and the predic-
tive risk



Regret bound

Let ℓ(y, x) be a convex loss in x. Consider the adversarial setting with expert advice.
Definition
The regret in the expert aggregation setting is defined as

RegretT =
T∑

t=1
ℓ(Yt, f̂t−1(Xt))− min

1⩽j⩽M

T∑
t=1

ℓ(Yt, fj,t−1(Xt)).

Remark
The regret is non necessarily positive.
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Regularity of the loss

Optimal rate of convergence in
√

T achieved by OGD algorithm, Zinkevich (2003).
Definition (Exp-concavity)
The loss ℓ is δ > 0 exp-concave when

ℓ(z, x)− ℓ(z, y) ⩾ ℓ′(z, y)(x − y) + δ(ℓ′(z, y)(x − y))2, x, y, z ∈ K .

Theorem (Vovk, 1998)
When ℓ is exp-concave then the optimal fast rates are achieved by the Exponentially
Weighted Averaging with RegretT = O(log M).

Definition (EWA)
EWA algorithm computes weights, with fixed learning rate η, as

πj,t ∝ exp(−ηℓ(Yt, fj,t(Xt)))πj,t−1.
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Quantile or pinball loss

Definition (Koenker, 2005)
The quantile loss of rate τ ∈ (0, 1) is defined as

ℓτ (x, y) =

 τ(x − y), x − y > 0,
−(1 − τ)(x − y), else.
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The quantile loss is convex.
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The conditional quantile

Lemma (Koenker, 2005, Biau & Patra, 2011)
The conditional quantile satisfies

F−1
Yt|Ft−1

(τ) = arg min
q∈R

E[ℓτ (Yt, q) | Ft−1], a.s.

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Quantile risk

(x−Yt+1)

E 
(l 0

.0
5 |

 F
t )

The quantile predictive risk is exp-concave and even strongly convex. The constant of
exp-concavity depends on the conditional distribution Yt | Ft−1.
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The quantile quantile risk as objective

Minimizing the regret, hopefully

min
1⩽j⩽M

T∑
t=1

ℓτ (Yt, fj,t−1(Xt)) ≈ 0 .

For T = 1, the minimizer may achieve fj∗,0(X1) ≈ Y1 independent of τ !

Definition
The predictive risk at time t of any learner f is defined as

E[ℓτ (Yt, f(Xt)) | Ft−1]

What we gain:
- optimum close to our objective the conditional quantile,
- regularization of the objective function.
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The cumulative predictive risk

Definition (Cumulative predictive risk, W., 2017)

In the general setting, for any loss ℓ and any sequential learners f̂ = (̂ft) we define

R(̂f ) =
T∑

t=1
E[ℓ(Yt, f̂t−1(Xt)) | Ft−1]− min

1⩽j⩽M

T∑
t=1

E[ℓ(Yt, fj,t−1(Xt)) | Ft−1].

Remark

In the iid setting, we consider f̄ = T−1 ∑T
t=1 f̂t−1 and by convexity

R(̄f) = TE[ℓ(Y, f̄(X)) | f̄ ]− min
1⩽j⩽M

T∑
t=1

E[ℓ(Y, fj,t−1(X))] ⩽ R(̂f )

for some copy (Y,X).
For constants experts fj = fj,t ,t ⩾ 1, we recover usual oracle bound from the batch
setting.
Back to the adversarial setting considering the Dirac masses as conditional probabil-
ities
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Quantitative bounds and BOA



Fast regret bounds

Theorem (Fast regret bound, Cesa-Bianchi & Lugosi, 2005)
If ℓ is δ exp-concave then EWA for a well chosen η satisfies,

RegretT ⩽ C log(M).

Remark
The quantile loss is not exp-concave.
It does not exist any aggregation procedure with less than a O(

√
T) for such loss.
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And for the cumulative predictive risk?

Fast rate in expectation
EWA satisfies, for a well chosen η, the cumulative risk bound in expectation

E[R(̂f )] ⩽ C log(M).

Theorem (Slow rate in probability, Audibert, 2007)
For any learning rate, in the iid setting, EWA satisfies

P
(

R(̄f ) ⩽ C
√

T(log(M) + x)
)
⩾ 1 − e−x, x > 0,

and the rate cannot be improved.

We say that EWA is not robust in the stochastic setting.
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Robustness

Open question from Audibert (2009)
Can we modify EWA to obtain a robust and adaptive procedure in the stochastic
setting?

Fast rate in probability
The aim is to build an algorithm so that for strongly convex predictive risk E[ℓ(Yt, ·) |
Ft−1] we have

P
(

R(̄f ) ⩽ C(log(M) + x)
)
⩾ 1 − e−x, x > 0.

Usually the strong convexity constant depends on the conditional distribution Yt |
Ft−1 and is unknown. The algorithm may not depend on it.
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Regret ⇒ Cumulative risk in probability

Key idea: online to batch conversion

The sequence of differences (MT = R(̂f )−RegretT) constitutes a martingale (Zhang,
2005, Kakade & Tewari, 2008, Audibert, 2009).

Theorem (Empirical Bernstein inequalities for martingales, W. 2017)
For a martingale (Mt) such that ∆Mt ⩾ −1/2 with quadratic variation [M ]n =∑n

t=1 ∆M2
t then for any n ⩾ 1

P(Mn ⩽ [M ]n + x) ⩾ 1 − e−x, x > 0.

New adversarial to stochastic conversion

Applied to (R(̂f )− RegretT) we control the adversarial to stochastic conversion with
an observable second order term

T∑
t=1

(ℓ(Yt, f̂t−1(Xt))− ℓ(Yt, fj,t−1(Xt)))2.
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Bernstein Online Aggregation (BOA)

Idea: Include the second order term to regularize EWA
Modify the EWA by adding a second order term correction.

Definition (Bernstein Online Aggregation algorithm)
The Bernstein Online Aggregation procedure defines recursively weights as

πj,t ∝ exp(−ηℓ(Yt, f̂j,t−1(Xt))− η2(ℓ(Yt, f̂j,t−1(Xt))− Eπt [ℓ(Yt, f̂t−1(Xt)])2)πj,t−1

with some learning rate η > 0.

Theorem (Fast rate, exp-concave losses)
For exp-concave losses and for η > 0 well chosen, then BOA achieves fast rates in
probability for well chosen learning rate.

Problem: the quantile loss ℓτ is not exp-concave....
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Second order regret bound for BOA

Idea: the gradient trick

Use the linearized loss ℓ̃t(f ) = ℓ′(Yt, f̂t−1(Xt))(̂ft−1(Xt)− f (Xt)) for any learner f.

Theorem (Second order regret bound, W. 2017)

For η > 0 well chosen, as ηℓ̃t(fj ) is a centered r.v. under the distribution πt−1, we
have

˜RegretT(fj) ⩽ 2

√√√√ T∑
t=1

(ℓ′(Yt, f̂t−1(Xt))(fj(Xt)− f̂t−1(Xt))2 log(M) ,

where ˜RegretT(fj) = ℓ′(Yt, f̂t−1(Xt))(̂ft−1(Xt)− fj (Xt)).

Remark

- RegretT ⩽ max1⩽j⩽M ˜RegretT(fj) by convexity,
- Second order regret bound similar than for MLProd in Gaillard et al. (2014).
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Oracle inequality in probability for BOA

We apply the new adversarial to stochastic conversion
Theorem (Second order cumulative risk bound, W. 2017)

For η well chosen we obtain, w. p. 1 − e−x,

R(̂f) ⩽ max
1⩽j⩽M

2

√√√√ T∑
t=1

(ℓ′(Yt, f̂t−1(Xt))(f(Xt)− ft−1(Xt))2(log(M) + x).

No assumption on the stochastic environment (Yt,Xt).
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Optimality of the second order term

For ℓ a loss satisfying the following Bernstein condition, Koolen et al. (2015),

E[ℓ(Yt, x)− ℓ(Yt, y) | Ft−1] ⩾ E
[
ℓ′(Yt, y)(x − y) | Ft−1

]
+ αE

[(
ℓ′(Yt, y)(x − y)

)2 | Ft−1
]
, a.s.

Theorem (Fast rate in probability, Gaillard and W., 2018)
When the loss satisfies the Bernstein condition and η > 0 is well chosen, then

P
(

R(̂f) ⩽ R(fj) + C(log(M) + x)
)
⩾ 1 − e−x.

Remarks

- Under the Bernstein condition then E[ℓ(Yt, ·) | Ft−1] is δ exp-concave with δ ⩾ α,
- The quantile predictive risk is strongly convex and satisfies the Bernstein

condition with α depending on the conditional distribution of Yt.
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Adaptivity of BOA



Conditions on the learning rate

From the empirical Bernstein inequality we assumed ∆Mt = ηℓ̃t(fj) ⩾ −1/2 but the
linearized losses are difficult to control.
Idea: multiple learning rates

The result extends to the difference of martingale ∆Mt = ηjℓ̃t(fj) ⩾ −1/2 for multiple
learning rates as in Gaillard et al., 2014.

The requirement ∆Mt centered under πt−1 is not satisfied anymore....
Lemma (Centering under tilted weights, W. 2017)

The difference of martingale ∆Mt = ηjℓ̃t(fj) is centered under the BOA weights

πj,t ∝ ηj exp(−ηjℓ(Yt, f̂j,t−1(Xt))− η2
j (ℓ(Yt, f̂j,t−1(Xt))− Eπt [ℓ(Yt, f̂t−1(Xt)])2)πj,t−1.
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Adaptive learning rates for BOA

Using the doubling trick in Cesa-Bianchi et al. (2007), we define the adaptive BOA
procedure as

Initialization: Set Lj,0 = 0, ηj,0 = 0, πj,0 = M−1.
For: each time round t ⩾ 1,

- Compute recursively

Lj,t = Lj,t−1 + ℓ̃t(fj)(1 + ηj,t−1ℓ̃t(fj)),

- Estimate the ranges Ej,t = 2k+1 where k is the smallest integer such that
max1⩽s⩽t |ℓj,t| ⩽ 2k, 1 ⩽ j ⩽ M,

- Compute the adaptive learning rate

ηj,t = min
{

1
Ej,t

,

√
log M∑t

s=1 ℓ̃s(fj)2

}
, 1 ⩽ j ⩽ M,

- Compute the weights vector π̃t = (π̃j,t)1⩽j⩽M:

πj,t =
ηj,t exp(−ηj,tLj,t)∑M
j=1 ηj,t exp(−ηj,tLj,t)

.
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Some application



Illustrative example

Prediction of the weekly electricity consumption (Opera’s vignette, Pierre Gaillard,
EDF).
5 experts: GAM, Autoregressive models, GBM, Upper bound 1.5 ∗ max(observations),
Lower bound 0.
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Prediction intervals

Apply a mixture of the 5 experts with the quantile loss ℓτ with τ = .05 and τ = .95 in
order to obtain a prediction interval of level 90%.

EWA prediction intervals and observations
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Conclusion

- Prediction intervals can be built using quantile losses in the expert advice setting,
- a general stochastic setting is useful because conditional quantile risk are more

regular then quantile losses,
- The associated aggregation algorithms as BOA are robust and adaptive,
- It works in practice (applications at EDF, Meteo France, Advestis based on

package Opera of Pierre Gaillard, EDF).

Perspective (ongoing project with E. Adjakossa)
Adapt the aggregation procedure to the statistical predictors thanks to feedbacks.
Example: MetaGrad (Koolen and Van Erven, 2016) aggregates OGD with different
learning rates.
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Sparse rates in the iid setting (Gail-
lard & W., 2018)



Sparse rates

Theorem (Kolchintsky et al., 2011)
When ℓ is the square loss, under Restricted Eigenvalue condition on i.i.d. (Yt,Xt),
the LASSO achieves, for π∗ ∈ RM the minimizer of E[ℓ(Y,

∑M
j=1 πjfj(X))]

P
(

R(̂fLasso) ⩽ C
M∑

j=1
1π∗

j ̸=0(log M + x)
)
⩾ 1 − e−x,

where fπ =
∑M

j=1 πjXj and f̂Lasso(X) =
∑M

j=1 π
Lasso
j Xj.

With aggregation, seems difficult to compete efficiently with LASSO in RM because
any discretization grid is exponentially complex in the dimension, Gerchinovitz (2013).

Any efficient and optimal algorithm may require some Restricted Eigenvalue condition,
Zhang et al. (2014).
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Accelerable rates

Crucial second order properties of the LASSO from Giraud (2015):

For any π ∈ RM we have

R(̂fLasso) ⩽ R(π[f]) +
M∑

j=1
|πLasso

j − πj|C
√

log M
T

.

Theorem (Gaillard & W.)

BOA on experts fk(X) =
∑M

j=1 π
(k)
j Xj, 1 ⩽ k ⩽ M with ∥π(k)∥1 ⩽ 1 and the corners

of the ℓ1-ball B1, satisfies,

R(̄f) ⩽ R(̂f) ⩽ min
1⩽k⩽M

M∑
j=1

|π(k)
j − πj|C

√
log M

T
, π ∈ B1,

only if Supp(π(k))⊆ Supp(π) when ∥π∥1 = 1.
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Sparse acceleration of boa

SABOA algorithm:
- Use the doubling trick to run BOA on exponentially growing long sessions.
- At each session, apply BOA on sparse versions of the averaging of the last session

and the corners of the ℓ1-ball B1.

Theorem (Gaillard & W., 2017)
Assume the Łojasiewicz’s condition on the ℓ1-ball, there exist β > 0 and µ > 0 such
that for all π ∈ B1, it exists a minimizer π∗ ∈ B1 of the risk satisfying

µ
∥∥π − π∗∥∥2

2 ⩽ R(fπ)− R(fπ∗ ) .

Assume the set of minimizers π∗ is included in ⊆ B1−γ , γ ⩾ 0, then with probability
at least 1 − e−x

R(̂f) ⩽ sup
π∗

(log M + x)

 1
α

+
1
µ

(( M∑
j=1

1π∗
j ̸=0

)2
∧

∑M
j=1 1π∗

j ̸=0

γ2

) ,
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Conclusion on sparse optimisation
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Figure 1: Averaging accelerability for 3 different configurations.

- Versions of BOA may be used for the optimisation problem in some ℓ1-ball,
- It is an effective online algorithm, robust to the design,
- It is not as fast as LASSO in the favorable cases,
- Optimality of the new rates of convergence?
- How to tune the radius of the ℓ1-ball?

Thank you for your attention!
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