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Introduction to GAMs

Generalized additive model (GAM) (Hastie and Tibshirani, 1990):

Loadi |xi ∼ Distr{Loadi |θ1 = µ(x), θ2, . . . , θp},

where

E(Loadi |xi ) = µ(xi ) = g−1
{ m∑

j=1

fj(xi )
}
,

and g is the link function.

fj ’s can be fixed (parametric) or smooth effects with coefficients β.

θ2, . . . , θp control scale, shape of distribution.
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Introduction to GAMs

Example: a Gaussian GAM for expected load is

E(Loadi ) =
7∑

j=1

βjw
j
d(i) · Day-of-week factor

+ β8Loadi−48 · Lagged load

+ f1(ti ) · Long-term trend

+ f2(Ti ) · Temperature

+ f3(T s
i ) · Smoothed temperature

+ f4(toyi ), · Time-of-year

where T s
i = αTi + (1− α)T s

i−1, with α = 0.05.
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Introduction to GAMs

Using mgcv R package (Wood, 2001):

fit <- gam(load ~ dow + load48 + s(time) + s(temp) +

s(tempSmo) + s(toy),

family = gaussian, data = UKload)
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Figure: Effects of t, T , T s and toy.
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Introduction to GAMs

Recall model structure:

E(Load|x) = g−1
{
f1(x) + f2(x) + · · ·

}
,

Smooth effects built using spline bases

fj(x) =
r∑

k=1

βkbk(x)

where bk ’s are known, βk ’s unknown.

To determine complexity of fj(x):

the basis rank r is large enough for sufficient flexibility

a complexity penalty on β controls the wiggliness of the effects
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Introduction to GAMs

β̂ is the maximizer of penalized log-likelihood

β̂ = argmax
β

PenLogLik(β|γ) = argmax
β

{ goodness of fit︷ ︸︸ ︷
Ly (β) − Pen(β|γ)︸ ︷︷ ︸

penalize complexity

}
where:

Ly (β) =
∑

i log p(yi |β) is log-likelihood

Pen(β|γ) penalizes the complexity of the fj ’s

γ > 0 smoothing parameters (↑ γ ↑smoothness)

Concrete example E(Load|x) = f (x1) + g(x2, x3):

Pen(β|γ) ≈ γ1

∫
f 2
x1x1

dx1 + γ2

∫
g2
x2x2

+ 2g2
x2x3

+ g2
x3x3

dx2dx3
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Introduction to GAMs

mgcv uses a hierarchical fitting framework:

1 Select γ to determine smoothness

γ̂ = argmax
γ

LAML(γ)

where LAML(γ) ≈ p(y |γ) =
∫
p(y ,β|γ)dβ.

2 For fixed γ, estimate β to determine actual fit

β̂ = argmax
β

PenLogLik(β|γ).
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Introduction to GAMs

There are alternatives to mgcv, such as:

mboost (Hothorn et al., 2010)

gamlss (Rigby and Stasinopoulos, 2005)

brms (Bürkner et al., 2017)

BayesX (Brezger et al., 2003)

Each offers much flexibility (e.g. classes of smooth effects and
distributions).

Practical advantages of mgcv’s GAM fitting methods:

1 little tuning needed (automatic smoothing selection parameter)

2 efficient and stable numerical implementation

Next we’ll see how these can be scaled to large data sets.
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GAMs for Big Data

Example: a Gaussian GAM for expected load is

E(Loadi ) =
7∑

j=1

βjw
j
d(i) · Day-of-week factor

+ β8Loadi−48 · Lagged load

+ f1(ti ) · Long-term trend

+ f2(Ti ) · Temperature

+ f3(T s
i ) · Smoothed temperature

+ f4(toyi ), · Time-of-year

where T s
i = αTi + (1− α)T s

i−1, with α = 0.05.

It is standard practice to model the 48 30min slots separately.

So we need to fit 48 models.
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GAMs for Big Data

Example: a more ambitious model is

E(Loadi ) =
7∑

j=1

βjw
j
d(i) · Day-of-week factor

+ f (todi )Loadi−48 · Lagged load

+ te1(ti , todi ) · Long-term trend

+ te2(Ti , todi ) · Temperature

+ te3(T s
i , todi ) · Smoothed temperature

+ te4(toyi , todi ), · Time-of-year

where

tod is time of day 1, . . . , 48

te’s are 2D tensor product smooths

f (todi )Loadi−48 is varying coefficient effect
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GAMs for Big Data

Tensor products te(x, z) useful when x and z are different units (e.g. x

= temper, y = time of day).

Construction: make a spline fz(z) a function of x by letting its coefficients
vary smoothly with x
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GAMs for Big Data

x-penalty: average wiggliness of red curves
z-penalty: average wiggliness of green curves
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GAMs for Big Data

We can use mgcv’s Big Data methods to model all 48 time slots jointly:

fit <- bam(load ~ dow + s(tod, by = load48) +

te(time, tod) + te(toy, tod) +

te(temp, tod) + te(tempSmo, tod),

data = UKload,

discrete = TRUE,

nthreads = 16)
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GAMs for Big Data

Why is this useful? Some answers:

statistical efficiency → share information across time-of-day (a.k.a.
instant)

ease of use and interpretation

To see why we need Big Data methods notice that:

n is 48 times bigger than a 30min model

tensor product can have large number of basis functions

te(T, tod) =
J∑

j=1

K∑
k=1

βijbj(T)bk(tod) =
J∑

j=1

K∑
k=1

βij b̃jk(T, tod)

so tensor effect has J × K coefficients.
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GAMs for Big Data

Recall that we are modelling E(load|x).

Here E(load|xi ) can be written as Xiβ, where Xi row of

X =


1 1(dow1 = Mon) · · · b11(T1, tod1) · · · bJK (T1, tod1) · · ·
1 1(dow2 = Mon) · · · b11(T2, tod2) · · · bJK (T2, tod2) · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·


with n rows and

d = p + J × K + · · · ,

columns.

Bottom line: X can get very big, which causes problems:

storing X takes too much memory

computing things involving X (e.g. XTX or QR(X)) takes time
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GAMs for Big Data

bam() implements memory-saving methods of Wood et al. (2015):

do not create X but only sub-blocks:

X =


X11 X12

X21 X22
...

...
XB1 XB2


do not store them either, but create them when needed;

any computation involving X is based on the blocks;

use parallelization when possible;

Block-oriented methods can be used also to perform fast model updates:

fit <- bam.update(fit, data = newData, chunk.size = 1e4)
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GAMs for Big Data

Faster computation and memory savings using Wood et al. (2017).

Simple observation is that many variables are discrete in nature:

time of day (tod) ∈ {1, . . . , 48}
time of year (toy) ∈ {1, . . . , 365}
temperature (T) ∈ {. . . ,−0.1, 0, 0.1, 0.2, . . . }

There is room for data compression, example:

we have 10 year of data and 48× 365 obs per year

effect of toy is

s(toy) =

p∑
i=1

βibi (toy).

so model matrix part X of toy is (10 ∗ 48 ∗ 365)× p

compressed model matrix X̄ is 365× p

saving factor #elem(X)/#elem(X̄) = 10 ∗ 48 ∗ p
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GAMs for Big Data

Discretization can be applied to variables that are not “naturally” discrete.

Sampling variability is O(n−
1
2 ), so discretizing in m = O(n

1
2 ) bins is ok.

Wood et al. (2017) use discretization to fit UK black smoke pollution data
from 2000 stations, with n = 108 and p = 104.

With latest mgcv version, the model

log(bsi ) = f1(yi ) + f2(doyi ) + f3(dowi ) + f4(yi , doyi ) + f5(yi , dowi )

+f6(doyi , dowi ) + f7(ni , ei ) + f8(ni , ei , yi ) + f9(ni , ei , doyi )

+f10(ni , ei , dowi ) + f11(hi ) + f12(T0
i , T

1
i ) + f13(T̄1i , T̄2i )

+f14(ri ) + αk(i) + bid(i) + ei

can be fitted in 5min on 8 cores.
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GAMs for Big Data

fit <- bam(load ~ dow + s(tod, by = load48) +

te(time, tod) + te(toy, tod) +

te(temp, tod) + te(tempSmo, tod),

data = UKload,

discrete = TRUE,

nthreads = 16)
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From GAMs to GAMLSS

Generalized Additive Models for Location Scale and Shape (GAMLSS,
Rigby and Stasinopoulos (2005)) let scale and shape change with x.

GAMLSS model structure:

Load|x ∼ Distr{y |θ1 = µ1(x), θ2 = µ2(x), . . . , θp = µp(x)},

where

µ1(x) = g−1
1

{ m∑
j=1

f 1
j (x)

}
,

...

µp(x) = g−1
p

{ m∑
j=1

f pj (x)
}
,

and g1, . . . , gp are link function.
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From GAMs to GAMLSS

Example: Gaussian model for location and scale:

y |x ∼ N{y |µ(x), σ(x)}

where

µ(x) =
m∑
j=1

f 1
j (x), σ(x) = exp

{ m∑
j=1

f 2
j (x)

}
and g2 = log to guarantee σ > 0.

For electricity load forecasting:

fit <- gam(list(load ~ dow + te(time, instant) +

te(load48, instant) + ...,

~ dow + s(temp) + s(instant) + s(toy)),

family = gaulss, ...)
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From GAMs to GAMLSS
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GAMLSS models can be quite complex, eg. shash family from mgcFam:

fit <- gam(list(load ~ s(time) + ..., # location

~ s(temp) + ..., # scale

~ s(toy) + ..., # skewness

~ s(instant) + ...), # kurtosis

family = shash, ...)
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From GAMs to GAMLSS

GAMLSS models are flexible but need to specify a model per parameter.

Exhaustive/automated model search very expensive.

Fasiolo et al. (2018) argue in favour of visual interactive model building.

New visual methods implemented by mgcViz R package.
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From GAMs to GAMLSS

GAMLSS useful to model whole distribution Load|x not just E(Load|x).
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Still parametric assumption on Distr(load|x).

In QGAMs we model quantiles individually.
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From GAMLSS to QGAM

Quantile regression models the τ -th quantiles of y , conditionally on x.

Relevant for continuous y .

Define F (y |x) = Prob(Y ≤ y |x).

The τ -th (τ ∈ (0, 1)) quantile is µτ (x) = F−1(τ |x).
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From GAMLSS to QGAM

Quantile regression estimates conditional quantiles µτ (x) directly.

No model for p(y |x).
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From GAMLSS to QGAM

The τ -th quantile is
µ = F−1(τ |x),

and it is the minimizer of

L(µ|x) = E
{
ρτ (y − µ)|x

}
,

where
ρτ (z) = (τ − 1)z1(z < 0) + τz1(z ≥ 0),

is the “pinball” loss.
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From GAMLSS to QGAM

This is implemented by qgam R package (Fasiolo et al., 2018):

fit <- qgam(load ~ dow + s(load48) + ..., qu = 0.7)
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From GAMLSS to QGAM

Consider three data sets and 11:30-12:00 daily slot.

Divided between training (black) and testing (grey).

Forecast 20 quantiles between τ = 0.05 and τ = 0.95.

Testing procedure, alternate the steps:

1 predict one week ahead and calculate pinball loss

2 refit using also data from that week
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From GAMLSS to QGAM

Model is

µτ (Loadi ) =
7∑

j=1

βjw
j
d(i) · Day-of-week factor

+ s1(Loadi−48) · Lagged load

+ s2(ti ) · Long-term trend

+ s3(Ti ) · Temperature

+ s4(T s
i ) · Smoothed temperature

+ s5(toyi ), · Time-of-year

We consider:

qgam with σ calibrated by bootstrapping (slow)

qgam with σ calibrated by Bayesian sandwich (fast)

quantGAM method of Gaillard et al. (2016)

gradient boosting with mboost (Hothorn et al., 2010)
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From GAMLSS to QGAM

Results on GEFCom, UK and French data

Nice that:

bootstrap and sandwich QGAM give same results

QGAM and quantGAM perform similarly on GEFCom data set

CPU times:

sandwich: 1 to 4 seconds

bootstrap: 15 to 30 seconds

boosting: 90 to 700 seconds (but more in practice)
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Extreme quantile regression

QGAMs are based on the pinball loss.

For extreme quantiles this is very asymmetric.
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When predicting extreme demand, we expect high variance unless n >> p.
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Extreme quantile regression

Distributional GAMs and GAMLSS have more bias, but less variance.

Could we improve predictions by mixing quantile and distributional GAMs?

Natural approach in GAM context is stacked regression (Breiman, 1996).

Let µj(x) be prediction for j-th model, fitted on training data.

Then we estimate the ensemble weights using fresh data:

α = argmin
α

n∑
i=1

ρτ

yi −
m∑
j=1

αjµj(xi )


where

∑m
j=1 αj = 1.

Difficulty: ρτ is highly skewed for τ ≈ 1 → high variance in stacking.
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Extreme quantile regression

Candidate models for the stacked regression:

QGAMs
probabilistic GAMs
Generalized Pareto GAMs (for extreme quantiles)
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It would be interesting to model weight as a function
Distributional GAMs and GAMLSS have more bias, but less variance.

Could we improve predictions by mixing quantile and distributional GAMs?

Natural approach in GAM context is stacked regression (Breiman, 1996).

Let µj(x) be prediction for j-th model, fitted on training data.

Then we estimate the ensemble weights using fresh data:

α = argmin
α

n∑
i=1

ρτ

yi −
m∑
j=1

αjµj(xi )


where

∑m
j=1 αj = 1.
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Multi-resolution GAMs for daily max

Related problem is modelling max demand over time horizon.

We have 30min electricity demand L1:T , over n days.

We want to predict yi , the maximal demand on the i-th day.
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We need to deal with data at different resolutions.
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Multi-resolution GAMs for daily max

Modelling approach:

distribution for day max yi is Generalized Extreme Value (GEV)

capture information at 30min resolution using functional effects

1D functional effects:

naive approach E(yi ) = β1Tempi1 + · · ·+ β48Tempi
48 + · · ·

functional E(yi ) =
∑48

k=1 β(k)Tempi
k + · · · where β(k) smooth

2D functional effects:

naive approach E(yi ) = f1(Tempi
1) + · · ·+ f48(Tempi

48) + · · ·

functional E(yi ) =
∑48

k=1 te(Tempi
k , k) + · · ·
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Multi-resolution GAMs for daily max

Final model for daily max on UK data is

E(yi ) =
7∑

k=1

βkI(wdi = k) + s1(toyi ) + s2(ti )

+
48∑
k=1

te1(tempi
k , k) +

48∑
k=1

te2(tempSi
k , k) +

48∑
k=1

te3(Li−1
k , k),

with yi ∼ GEV.

RMSE on test set (last year of UK data):

Multi-resolution: 14317 (best)

Big model by-instant: 17889

48 models by-instant: 17228
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Multi-resolution GAMs for daily max

Note yi does not need to be daily max:

total demand in a day (yi ∼ Normal?)

position of daily max (yi ∈ {1, . . . , 48}, yi ∼ OCAT?)

and functional structure stays the same.

We can be multi-resolution across space:

E(W tot
i ) =

∑
k

te(lonk , latk , Ŵ
i
k) + · · ·

≈
∫

f
{

lon, lat, Ŵ (lon, lat)
}
d lon d lat + · · ·

Doable in mgcv, but see also refund package (Crainiceanu et al., 2012).
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