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Assisting control room operators with
Artificial Intelligence

Antoine Marot - RTE R&D




@ Al & Power System

« Artificial Intelligence is the new electricity », Andrew Ng :@ :
f—

Litterally, Al is an electricity o
So, is Electricity already an Al ?
It is true that power systems are probably the most complex artificial systems on Earth!

But why are we talking of new Smart Grids to tackle the current Energy Transition ?
Surely we need to manage a more complex system with greater intelligence

Can Al be of any help here?
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Rethinking control room
Human-Machine Interfaces




OF THE POWER OF INTERFACES e

| Kasparov: « machines still need human guidance to play better &
Deep Blue beat Kagnz G P T R ; ipgimmicbeir interface ».

pperators to outperform a machine or

2 O

Centaur Human  Machine

Unike e ancient Greek centaur, this centaur was coined ~ 20 yeass 4

s in New York City with a famaus chess champiorship)
Deep Bue supercomputer & chess gandmaster

The sory
Betwean g

Centaur beats Gre

4 Amazon acts similarly when routng workers firoughout teir warehouse. The system has data on workers bcation firough custom lechnology. Workers tallow
\

3
& 5%
ins¥uctons on which isle 10 visit, or which robot 1o hand parcels over 10. Amazon even measures e height of each employee to make sure heyre optmzed for  Great Inferface
each product pickup.

- For better ....

— .
As it ums out for the worids best chess p L rénmass whe Firhadh g slumebrapsn
Since 2005, whee gandmast ma g won by play
Ceaus #Cs,
8y " ese players tend 10 ouplay eier




Either, Human Only

v

-Great interface

Machine only

Or...

s rénamass b Fihd gy e ddenebr s

scorpiopartnership



CONTROL CENTERS TODAY

-

What about one more screen ...?




AND TOMORROW ? ’

Yes, it is about thinking of a whole new interface ...

... But it is first a question of strategic information management




OUR PROJECT : APOGEE Pl

Supervision

Change the focus from . _ .l Bad 51gna1/n015e ratio!
Alarm monitoring . . . . ﬂ
to
Task completion! . . . . .

Timeline One smart
HYPERVISION Interface
ERYRPTTIN e ——
driving mode J O
- RO to —
. navigation mode ! 2




SEAMLESS INFORMATION & TRACEABILITY e

On-Call & Hotline  Management

TSOs & RSCI Communication

. @ L rénmans whe Fivhalbyymram dlueirapn =



ACTUAL SOURCES OF INSPIRATION ’

Personal assistant (Jarvis!) Autonomous vehicle

Find your way and pilot
VS

plan yourjourney, navigate & coordinate

Help you plan & make suggestions

NB: On the grid, you still have to define your trajectory



OBJECTIVES SINCE 2014

REALIZE AND IMPLEMENT DEVELOPED CONTROL SYSTEM PROTOTYPES

————— —
’ﬁ\\'\\~

e — e
——

Target 2018 In Real Time
In a control room

s —

\\\ — single tgefon itheQberator Station

Hypervision v — Inhovative interfaces
Contextual information and actions

—

- 7\"%@_\» -

Automation Automatic coordinated actions
on the system




@@

Problem statement
One day in control rooms




1 DAY IN CONTROL ROOM P

How can we help our dispatcher:

* Anticpate and assess risks

« Makes sense of a situation

« Speed up his remedial action
search

13




INTEGRATION IN REAL TIME OPERATIONAL PROCESS -\

Typical problem solving and decision making task

Problem identification Solution search

Decision making

:
5
O




CURRENT REAL TIME OPERATIONAL PROCESS -

Grid states Generation
= Forecast * contingencies

Limitations of only using
s{ - Only few representative snapshots studied per day (4am,9am,12pm,4pm,19pm)
» Lots of results to study but from lots of reccurent situations — no memory

» Risk study & assessment limited in depth e TR —=

« Space of tactics limited in breatdh & depth n— M_ o

* No time to make overall strategies —a o o= |
Constrs

How can we reach a better Exploration-Exploitation tradeoff near real-time ?
=> By capturing reality around our domain of operations and relying on Prior Knowledge

Unsecure grid : :

- Action space search ‘Q ! Decision
detection ! &
v

oooosEoo
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Next: AI in Apogee




TEASER: ARTIFICIAL INTELLIGENCE IN APOGEE

Generation

Labelling

Capitalization

17

Representation Learning
@ kg
Modeling
Imitation
Contextualization
Simulator
Visualization

Exploration

Reinforcement

Transfer

@ L rénmans vhe Fi-tad gy mmem sl brapsn



Any Question so far ?




CURRENT REAL TIME OPERATIONAL PROCESS -

Grid states Generation
= Forecast * contingencies

Limitations of only using
s{ - Only few representative snapshots studied per day (4am,9am,12pm,4pm,19pm)
» Lots of results to study but from lots of reccurent situations — no memory

» Risk study & assessment limited in depth e TR —=

« Space of tactics limited in breatdh & depth n— M_ o

* No time to make overall strategies —a o o= |
Constrs

How can we reach a better Exploration-Exploitation tradeoff near real-time ?
=> By capturing reality around our domain of operations and relying on Prior Knowledge

Unsecure grid : :

- Action space search ‘Q ! Decision
detection ! &
v

oooosEoo
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One key element:
Learming!




IA: FROM EXPERT TO LEARNING SYSTEMS

Logic &
Expert rules

!
|
- )

Learning &

reinforcement [

Deep blue (Kasparovs vs Machine, échecs, 1997)
Gasparov: ~50 strategies consider at each move
Machine: >1 000 000 scenarios, 8 000 heuristics

Alpha Go (Lee Sedol vs Machine, Go, 2016)
Learning by expert imitation
Reinforcement by simulation

Towards industrial Al applications in an open and complex environment ?

21



BUILDING PRIOR KNOWLEDGE ’

Deep Blue Expert Systems (top-down) vs Machine Learning (bottom-up):
".a’\ .. =N mm

-m;_ Expertize Formalization with symbolic and logical rules is hard
' | Expert
S

S

* Especially the mostintuitive concepts

-~ System Learning approach to let the machine:
@ A key catalyst: '“' "H 1 .“ 1 3
Machine the advent of Deep Learning with S A T A N
Learning Neural networks

=> powerful and flexible models for
end-to-end learning

Alpha Go Introduce Machine Learning for power grid real-time operations



ALPHA GO INSPIRATION & RECIPE -§

Focus of our

1) Learning by imitation of expert moves work today
*  With Deep learning | %
« Basedon pure observations Imitation is good to build 2
«  No objective formalization, or knowledge/expertise des{ trust with operators !

=> Need labelled data

2) A simulator to play and learn:
* To massivelyassess different states and actions for free
=> Need a fast and accurate simulator

3) An architecture tolearn strategies and improve:
* Formalize the objective and model the opponent

* Generateanenvironmentand explore scenarios with a prioris and a simulator
* Promote beneficial strategies, revise your a prioris
=> Need an environment generator and sufficient computational power

23
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Al in Apogee




ARTIFICIALINTELLIGENCE IN APOGEE

Representation Learning
® © g
Generation Modeling
Imitation
Labelling Contextualization
Simulator
Capitalization Visualization

Exploration

Reinforcement

Transfer



OUR AI PROJECT TEAM »

Apogee RTE researchers:

* Antoine Marot, Research Project Supervisor

« Rémy Clément, « Learning voltage control »

* Vincent Barbesant, « Forecasting grid states », control room operator previously

Managers:
« Benoit Jeanson, Apogee Project manager,
« Patrick Panciatici, R&D scientific advisor

PHDs:
* Benjamin Donnot, « Learning the Load-Flow with Deep Neural Nets », ending with INRIA
* Co-advised by Isabelle Guyon and Marc Shoenauer
« Balthazar Donnot, « Learning to Run a Power Grid with Reinforcement Learning », beginning with
INRIA. Data Challenge to come as well !
« Laure Crochepierre, « Interactive Machine Leaming with expert users », beginning with LORIA

Master Thesis:
« Antoine Rosin, « Event detection and labelling in energy systems », 2018 with DTU



ARTIFICIALINTELLIGENCE IN APOGEE

Representation Learning
@
Generation Modeling
Exploration
Imitation
Labelling Contextualization .
Reinforcement
Simulator
Capitalization Visualization Transfer

We Need:
1. Operator Decision Labelling to start learning
2. Need faster simulator for screening and exploration

27




AI IN APOGEE: LEARNING e

Some prerequisites

Representation Learning Adaptation
® it W

11 r]m Imitation
Labelling

o O O o O s
Capitalization




AI IN APOGEE: LEARNING

LEARNING A PHYSICAL MODEL: A CATALYST

Data

Generation

Labelling

Capitalization

Representation
@

Modeling

Contextua;\

Learning

Mgy |

Imitation

I:II:ITI:II_I

Exploration

Simulator

/"

Reinforcement

Visualizing

Learn a lot from simulators
based on physical models
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Learning a fast proxy simulator




FAST PROXY SIMULATOR FOR REINFORCEMENT -~

» We want to compute millions of power flows for screening and exploring the
action space.

» Speed up of the computation is mandatory

7Y v
AR

« Learning Physical Intuition
of Block Towers by Example »

« Introducing machine learning for power system operation support »

Physical model ) Neural network model

Very encouraging results (topologie fixe,118 nceudsvs 6000 RTE):

*  Accuracyloss of 2% (DC approximation 5-10%)

. Computation Gain *300

New neural network architecture to encode discrete topological modifications:
. « Guided dropout »



A TOY GRID EXAMPLE

32

il r - -

t : production unit
- load
- transmission line

- substation



A TOY GRID EXAMPLE

il

Given productions & loads :
def

x = ( )




A TOY LOAD-FLOW EXAMPLE

Given productions & loads :
x < ( )
y = ( )

Power Flows to compute




A NEURAL NETWORK TO LEARN IT -

900000
9900000

mvﬂ Y Y
) \_A_A_J



A TOY GRID EXAMPLE - CONTINUED-




A TOY GRID EXAMPLE - CONTINUED-

@M

(O. 0.1.0,0,0.0) Change in topology




ONE HOT ENCODING

d

()

Cold winter
Mild (reference)
Hot summer

Typical energy consumption curve in CIGRE benchmarking MV grid with standardised load profiles
T

|
Weekday

(.T1 ,T.2)=(0,0.)

(.T1 ,Té)=(1 ,0

]

)

Saturday Sunday

&

(TLT2=0.1) T Tay=(1.4)

But the reference topology occurs a
lot more often in reality.

In this setting we are not leveragingit:

» the reference topologyis encoded
in the same way as rare
interventions.

* We are somehow learning n
differentmodels for n topologies.

= Maybe we could learn a reference
model and modulate its response
for other rare conditions© -




GUIDED DROPOUT ARCHITECTURE -

e 7N I
\) \ ),
(I3 ) )
/> m ) We are learning
. N J
m a reference model
\/

? o

('T1 ,Té)=(0,0;)

O

Figure: 7 = [0,0,0...]: all the lines are connected



GUIDED DROPOUT ARCHITECTURE -

reference model
modulation

F+_/_

Opening L3

V-
[l

Figure: 7 = [1,0,0...]: only line 1 is disconnected



GUIDED DROPOUT ARCHITECTURE -

[
3%

- : reference model
| modulation
P2 . @
+ /-
| | 7 LA, Opening L6

Figure: 7 = [0,1,0...]: only line 2 is disconnected



GUIDED DROPOUT ARCHITECTURE -

pr | > reference model
; modulation
v N A a
C : fa
1 ’* + Opening L3
Opening L6
3 | 6

Figure: 7 = [1,1,0...]: line 1 and line 2 only are disconnected

a2 @ e bty o T e it



GUIDED DROPOUT = ADDITIONAL PLASTICITY s

NEUROPLASTICITY

The Ability of the Brain to Reorganize Itself,
Both in Structure and How It Functions

Backpropagation

G G OB 57 L~

NEUROGENESIS NEW SYNAPSES STRENGTHENED WEAKENED
= SYNAPSES SYNAPSES
Continuous generation
of new neurons in experiences Repetition and Connections in the
certain brain regions create new neural practice strengthens brain that aren’t used
connections neural connections become weak

New skills and

s rénamass b Fihd gy e ddenebr s



COMPARING ARCHITECTURES -

One Hot

: /

&

Guided dropout
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Learning a fast proxy simulator:
Results




EXPERIMENTAL SETTINGS s

Training dataset

@ Built training set by:
o Sample x (injections)
o Sample T (zero or one line disconnected ) 7; < 1)
o Run the physical simulator (Hades2) to get y (current flows)

| 5

Testing dataset (different from training)
x: Same distribution as training
Test: Exactly one power line disconnected > 77 =1
SuperTest: Exactly two power lines disconnected ) 7; = 2
y: Same simulator

NB: errors are always reported on data never seen during training
NB: the powergrid used is the case118 of Matpower




GENERALIZATION

L2 error (logl0. scale)

L2 error on n-1 dataset (training on n-1)

=== DC approx
= One Model

- One Var
One hot
*G. Dropout

47

100 150 200 250 300
Epoch

(a) Test set: Generalization

One Hot & G.Dropout have similar accuracy
Both do better than DC baseline (physical
model approximation)

G. Dropout requires less parameters
(20%less)




SUPER GENERALIZATION

L2 error (log10. scale)

L2 error on n-2 dataset (training on n-1)

0.0

—0.2

=== DC approx.
= (One hot
- *G, Dropout

50 100 150 200 250
Epoch

(b) "SuperTest" set: SuperGeneralization

300

Trained on N-1

.|.

Tested on N-2
*

/_

Opening Li

—/_

Opening Li

—/_

Opening Lj

G.Dropout super-generalize (not One-hot)
=> jt is able to extrapolate beyond the
distribution it knows




PERSPECTIVES Vs

First Conclusions on guided dropout

@ Train a single neural network to predict power flows for variants of grid
topology

@ ~ 300 times faster than the currently deployed AC power flow
simulator for small grids (118 nodes)

@ Up to 2 000 faster for larger grid (France EHV) for preliminary
experiments

Possible applications

@ Contingencies screening

o Risk evaluation / assessment
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reConnecting the dots




TODAY'’S REAL TIME PROCESS

Grid states Generation
= Forecast * contingencies

1

Simulator

Constraints to deal

!

with

Unsecure grid

detection

51

> Simulator

Candidate solutions

Action space search

Q

Validation by
simulation

Optimization for best
compromise

Selected Tactics

Decision
“

oooosEoo



FUTURE REAL TIME PROCESS

Grid states Generation
= Forecast * contingencies

Validation by

LearntProxy Simulator simulation

LearntProxy Simulator

Optimization for best
compromise

Candidate solutions

Constraints to deal
with

Selected Tactics

Unsecure grid

detection

Action space search ‘Q Decision £
¢

oooosEno



FUTURE REAL TIME PROCESS

Grid states Generation Learnt Generated
= Forecast * contingencies Tactics Tactics

Validation by

LearntProxy Simulator LearntProxy Simulator simulation

Optimization for best
compromise

Candidate solutions

Constraints to deal
with

Selected Strategies

Unsecure grid

detection

Action space search ‘Q Decision £
¢

oooosEno



FUTURE REAL TIME PROCESS

Grid states Generation
= Forecast * contingencies

LearntProxy Simulator

Constraints to deal

con N EVENT TIVELINE OM 201
x©O .
) =
*o =T T o

Snar;hgat reactive dri:/ir'i:crj

$

Continuous anticipation & navigation

with

Unsecure grid

detection

54

Action space search "Q

Validation by
simulation

Optimization for best
compromise

Selected Strategies

Decision
¢

oooosEno



OF THE IMPORTANCE OF PHYSICAL MODELS s

All our current Al developments are actually built on top of physical simulators | m

Some people say « Data will eat the world »
= Do we only need to collect data we observe to make sense of the world?

No we also need theory and physics to build simulators in order tog=
extrapolate to unseen distributions.

Exemple of the most data driven company in the world, Google:
«  WAYMO -> 20000 virtual vehiclesin a physical simulator!
* ML to helps extract information from a maze of data

Al=ML+Simulator

Need to know the physics of your system & environment +
model the behavior of other agents + make your own decisions

55




FUTURE REAL TIME PROCESS

Grid states Generation
= Forecast * contingencies

LearntProxy Simulator

Constraints to deal

with

Unsecure grid

detection

56

Learnt Generated
Tactics Tactics

LearntProxy Simulator

Candidate solutions

Action space search ‘Q

Validation by
simulation

Optimization for best
compromise

Selected Tactics

Decision
¢

oooosEno
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Fast Security analysis




CONTINGENCY SCREENING & RISK ASSESSMENT ~ - e

\ [_z.

r“"v,: S [+]
Objectives Residual risk after x simulated contingencies
@ Sort contingencies according to their dangerousness random —— proposed method —— ideal
e Compute with an high end simulator only the most dangerous .
o Use neural networks as a pre-filtering proxy QHEP[Q
o Benefits: el o] 0
. . e, o o R*
o Reduce computation time Oy >Q RSN, N e
o More complex contingencies taken into account o o = N
o "N-2" security - RMeSENCT)
e or "N-1" but for probabilistic grid states SE
/ =
Key concept : Residual risk S
@ Risk of NOT computing a set Z — V of contingencies | | %\ N~ Rideal(C*)
def i
R(x; 1% = Z p(z) . L(z; x) Crmodel R
set of contingencies studied zeZ-Y robability of occurrence T 0/ C’dea;/(R ") C
P 0 rank(2)/|2[ = VI/IZ] = COM/Crnax i
Residual risk = risk we have not assessed yet R*: the maximum residual risk we are willing to accept.

C*the maximum computational budget we have



CONTINGENCY SCREENING & RISK ASSESSMENT ~ -

o |
~
<

A S|
NN screening vs current N-1 operators methods Residual risk after x simulated contingencies
Operators ([] 21‘(?}30:1(1 G. Dropout Ideal random  —— proposed method ~ —— ideal
N 0.41 0.52 0.95 1]
Gini coefl. 1y £0.04 +0.01 100
R(VY) 0.50 0.58 0.46 0.44
Rmax +0.04 +0.04 +0.03 +0.03 R*
— 3 3 3 S W N A
C(R) 186 +9 +2 +9 = N
= Rmodel(c*)
£
=
Summary of the pre screening E
e Contingencies ranking: 53
o Very accurate if trained on all topologies (not feasible in practice) Rideal(c*)
o Pretty accurate if only 1% of the grids topologies it is tested on T N N N
o Always better than "N-1" strategy [for simulated data] QmOdé’(RE*
- o 01 ~idealip *y i
@ Same level of risk than "N-1" with only 2% of budget [once the CHRY) € ‘
0o . 0 rank(z)/|Z| = P|/1Z] = C(V)/Cmax 1
training is done]

4 R*: the maximum residual risk we are willing to accept.
C*the maximum computational budget we have
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Human Machine Collaboration




FUTURE REAL TIME PROCESS

Grid states Generation Learnt Generated
= Forecast * contingencies Tactics Tactics

Validation by

LearntProxy Simulator LearntProxy Simulator simulation

Optimization for best
compromise

Candidate solutions

Constraints to deal
with

Selected Strategies

Unsecure grid

detection

Action space search ‘Q Decision £
¢

oooosEno



FUTURE REAL TIME PROCESS

Learnt Generated

Grid states Generation
= Forecast * contingencies

Tactics

Tactics

Validation by

LearntProxy Simulator simulation

LearntProxy Simulator

Optimization for best
compromise

Candidate solutions

Constraints to deal
with
Al

Unsecure grid _
Actior arch Q.

detection @ : Decision £
Simulator v

Selected Strategies

oooosEno



FUTURE REAL TIME PROCESS

Grid states Generation Operator Learnt Generated
= Futur * variability strategies Tactics Tactics
Validation by
Learnt Proxy Load flow LearntProxy Load flow simulation
Optimization for best
A human- machlne collaboration compromise

Constraints to deal

with
Learnlng Selected Strategies
., —
- =
S Simulator
63



APOGEE: ASSISTANT FOR CONTROL ROOM
OPERATORS

A personnal
assistant forthe
operator




© Al & Power System

1 !

« Artificial Intelligence is the new electricity », Andrew Ng :@ )

Smart Grids

Electricity is about processing energy
while Al is about information processing !

Al could be transformative for us, leading to a new efficient cyber-physical system

with properly entangled information and physics
65



OUR REFERENCES

Related work:

Accepted

* |ERP 2017: Introducing Machine learning for power
operation support

- ESANN 2018: Fast Power system security analysis with

Guided Dropout
« |JCNN 2018: Anticipating contingengies in power grids
using fast neural net screening

In review for 2018

Dara Now

Fully connected

. e
y 7 )
Fully conmectind
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Istucion, KIE opusel wopauiobion



Thank You
For your attention!

?
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antoine.marot@rte-france.com




Annexe



ARTIFICIALINTELLIGENCE IN APOGEE

Representation Learning
@ ki
Generation Modeling
Imitation
Labelling Contextualization
Simulator
Capitalization Visualization

Exploration

Reinforcement

Transfer

@ L rimmnns b Fisbad gy s done b



ARTIFICIALINTELLIGENCE IN APOGEE

o T o O o O |
Generation

Generating multivariate
production plans with GANs

Lotent
sssss

Comezz?

1 1 161

Contextualization

MMM
Labelling

1 r1ri1m
Visualization

Predictive past event detection to look
for interesting context to relabel

i3 0
a1 e+
“ o TR

Hierarchical power grid segmentation
for flexible representations

GAN architecture O
- b _ B Infomap graph clustering algorithm
il MH (S EE AR H LI \H HHH\ |
5 & ;; 08N DW,Q;NO X
- 3889696 ~

HE T T R 800 ‘ 008
Learning complex joint distribution | aten tFS:;mzce _ .
from 2 nearby productions P French power grid segmentation

Deep autoEncoder




AI IN APOGEE: DATA e

o o O o N

N N I

Generation o e O e Y
L1 1 101
1 r1rlm o O B
Labelling
1 1 1 1m™
o Y o [ o [ | 1 ™1 M1 1rri — 1 1 M
Capitalization

71 @ Le résasy she Firtelig e docirape



AI IN APOGEE: DATA

Data
i Data quality & volume is vital for today’s Al

A e e Current situation:

Generation _ _ . _
* Few interesting situations ever happen and are observable:
I - - — « Generate realistic cases to learn from
Labelling

A COMEaE  ° Decisions are not labelled: Why did we do something ?

Capitalization

» Studies are not stored to capitalize from



AI IN APOGEE: DATA g

MM i T o o B -
Generation Labelling Capitalization
1. Simple historical replay with 1. Simulated counterfactual 1. Study and decision traceability
contingencies reasoning (whatif no operators?) in Apogee
2. Generation from learntjoint 3}
distributions with GANs =

Normal
operation

T

ddd |
+ T nd
C4->p3? 15
Check with simulator | S

2. Crossing SCADA & Exploitation

databases
. 5 Tepalogy changes during ERX cvent 245 301 on sub LATENPG i 1
Fig.1: GAN Architecture : o : : 2. Remedial Action database
] R : f
Fig.2: Learn joint distribution i‘ '
from two productions s i A
3 ‘ E'
: 1% |E
1 —_— Sepa I
H -=« ERX 2ot tiwe - 6h01
l =+ CRXendtme . 15h14
15 1 1




AI IN APOGEE: REPRESENTATION

74

Representation
@ ©

[ O [ o N |

Modeling

|

Contextualization

1 10mM1

Visualization

[ 1 1 11

[ N )

[1 1 1 M

1 1 ][]

@ Lo résmous s Fintelt o doetripre



AI IN APOGEE: ADAPTATION e

Adaptation

g

@ ig X ’ E E
|

I o O o B |
Exploration

o T O o O e |
Reinforcement

o O o O O |
Transfer

7S @ Leo rbwsens sho Plepelioncen dhetrigs



AI IN APOGEE: ADAPTATION Ve

To manage a system, it should continuously
adapt in a coherent fashion:
* For new context and new grid developments
Adaptation
8T ‘|A;“,'

Current situation:

* Expert system to discover topological remedial
actions with a physical simulator

Exploration

o N [ e I

« Reinforcement learning:

Reinforcement => Academic challenge and thesis to start
i N o O |
Transfer
 Transfer:

=> Extend Guided Dropout neural network
. . Reference model +
architecture to transfer learning problems = conditional neurons

76



AI IN APOGEE: RESEARCH STATUS

Labelling

Representation

Modeling

Learning

e

Simulator

Adaptation

R

Reinforcement

Transfer



AI IN APOGEE: REPRESENTATION P

Proper representation is important to effectively learn
* Too much information kills information => need selection
Representation @ * \Wrong detailed data is worse than no data => need abstractions

“ i (®
@ (| Current situation:

\
I O

Modeling « Detailed deterministic physical modeling in study tools

e * |neffective with uncertainties

Contextualization

* No relevant contextual indicator restitution
| o N o N o I |

=> As complexity rises, context becomes important

Visualization

« Static visual representation with interactive navigation
=>Dynamic hierarchical and task specific visualization

78 &



AI IN APOGEE: REPRESENTATION

- @

M ri
Modeling

Contextualization

| o T o N o O |
Visualization

1. New numerical object class to
model abstract information & action

Abstraction
de A "‘ Operator
7 Fill the gap
o H Simulator

2. New proxies, learning hierarchical
electrical segmentation

Recouvrement des zones par postes.

Clustering de toute la France (point figé 2012/01/19 :19)

1.

2.

Predictive event detection to look
for interesting context

Ak
G

Dynamic hierarchical and task

specific visualization:
HYPERVISION




AI IN APOGEE: LEARNING

Learning

I o O

[ N )

Imitation

[ I O o O o

Simulator

1 1 ][]




