Forecasting electricity consumption
by aggregating forecasts

Pierre Gaillard
INRIA Paris

Joint work with: Yannig Goude (EDF R&D), Gilles Stoltz (Université Paris-Sud), Raphael Nedellec (EDF), and Marie Devaine



Industrial context

* Short term prediction (one day ahead) of the electricity consumption

Mar Mer Jeu Ven Sam Dim

* Important because electricity is hard to store

Production Demand



Many models are possible

Regression models on splines (GAM)

Autoregressive models

Models on curves (CLR)

Models based on similarities in the past (KWF)

Machine learning models: random forests, boosting methods, deep learning,...

Historical models of EDF



Which model to choose?

Instead of picking one, we want to combine them

.

By
2, W 1) assigning a weight to each model

2) predicting the weighted average

How to choose the weights?



The electric environment is constantly evolving

* Changes in the usage: Electric cars, Energy saving light bulb

* Changes in the production: more renewable energy

* Political changes: opening to competition of electricity marketing and
production

We want a model that can evolve over time and adapt itself
automatically



What assumption on the data?

* The stochastic process behind electricity consumption is complicated

* Forecasting models come from different communities and make highly different
assumptions on the data

5

Hard to unify into a ’ §
common framework!

‘ We make no assumption on the data (for the combination part)

Setting of prediction of arbitrary sequences

Prediction, learning, and Games, 2006
Cesa-Bianchi and Lugosi



A sequential framework

e Eachdayt=1, ..,T
* Some experts (or models) suggest predictions xy ;

* We assignh a weight pj; to each expert k
* We predict the weighted average

Yp = E Pkt t
k

* We observe the true consumption y;

Conso.

Mar Mer Jeu Ven Sam Dim

(e



Performance criterion

* Weights are updated every day according to past performances
* Garbage in garbage out: if no expert is good, there is no hope to provide good predictions

* Goal: perform almost as well as the best fixed predictor in hindsight
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Our average error Average error of the best model

This for all possible datay tand x_t !



Application: electricity load forecasting

Goal: one day-ahead forecasting of the French electricity load

Data characteristics:
Electricity demand for EDF clients, at half-hour steps
Side information: weather (temperature, wind, nebulosity), data, loss of clients
2008 — 2011: training data set (for training the models)
2011 — 2012: test set (for combining them online)
Typical values:
Median: 43 GW, Max: 79 GW

In total there are 1696 days.

We remove uncommon days (public holidays +-2)



Data looks like...
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Expert forecasters

* GAM: generalized additive models
(see Wood 2006, Wood, Goude, Shaw 2014)

* CLR: curve linear regression
(see Cho, Goude, Brossat, Yao 2013, 2014)

* KWF: functional wavelet-kernel approach

(see Antoniadis, Paparoditis, Sapatinas 2006, Antoniadis, Brossat,
Cugliari, Poggi 2012, 2013)



How good are the experts?

Loss: RMISE and MIAPE on the testing sets (with no warm-up period)

T T ~
% Z(yt _ f&t)2 Z ‘yt . yt‘ The smaller the better!
\ t=1 1 Yt

We look at the performance of the oracles

RMSE (MW)

MAPE (MW) 1.18 1.29 1.06



The exponentially weighted average forecaster

Vovk "90
Parameter: n Littlestone and Warmuth 94

exp ( — 0>y (ys — xk,s))
Z;I'{=1 eXp ( —n 22;11 (ys — %‘,s))

Pkt =

Theoretical guarantees: for any bounded data
T

T
1 R 5 1 9 log K 7732 log K .
i Rt O
for 77=B_1 —81(;%[(

our average loss average loss of the best

expert in hindsight



Proof

Lemma (Hoeffding)

Let X be a random variable taking value in [0, B]. Then for any s € R
2

logE[e*] < sE[X] + %

1. Upper bound the instantaneous loss f,

by convexity
<

b = £(P, - X, Y1)
by Hoeffding
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Calibration of the learning rate

B Bl\/SlogK
= T

Issue: T and B are not known in advance!

Best theoretical value:

Solutions:
* Doubling trick
* Online adaptation by picking 1, according to the theoretical value 77t
* Optimization on a finite grid by choosing:

Mt € arg min {Loss of Exp. weights with n until time t — 1}
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Performance on the EDF data set

Benchmark and oracles (RMSE)
_

RMSE (MW)
VS.
Aggregated forecasts
Exp. weights (best n for theory) 644
Exp. weights (best n on data) 644

Exp. weights (best 17 tuned on data) 625



Evolution of the weights

g: — Exp. weights
- (theory)

° ' Sep ' Oct ' Nov ' Dec ' Jan ' Feb ' Mar l Avr 'May' Junl

g: < Exp. weights
N (best 7)

T T 1
Sep Oct Nov Dec Jan Feb Mar Avr  May Jun

Weights change significantly over time and do not converge



Are all forecasters useful?

Yes!
Performance of Exp. Weights with 3 forecaster: 625
Vs only best two: 644

+— Exp. weights
(best 7)
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Forecasters not considered anymore can come back if needed



Time adaptive method

If the performance of experts vary over time, we need to make sure no weight vanishes completely to
zero to never completely forget any expert.

Fixed share algorithm add a mixing step to ensure this
Q

prr1 = (1 — a)Exp. weight update + 7

Theoretical guarantees for competing with respect to the best sequences of experts (with few changes).

\/m log(K)
Our average error < + T

Similar performance on our data set than normal Exp. weights. More reactive (but less stable) weights.




Time adaptive method

Version with memory (i.e under sparsity assumption: only a small number of experts are useful)

Other solutions:
 Sliding windows
« add a forgetting discount factor yT~¢ to forget old instances

1 7
exp ( — 17 22:1 ’YT t(yt — ﬂfk,t)2)

_]_ .
D exp ( = ey 7 (e — %,t)Q)

Pkt =



Best convex combination

If an expert provides inaccurate forecasts which compensate other expert forecasts, we should

increase its weight!

More ambitious goal than competing with the best single expert:

] — 1 —
~ 2 2
T (yt - yt) ol min T Z (p " Tt — yt)
t=1 g t=1
Our average error Average error of the best fixed

combination of experts

The gradient trick formalizes this idea.

For the square loss:
(Xt — vt > (Ve — V) (Xe,t — Vi)

Our prediction
Expert k

Observation



Real data are not arbitrary...

There is regularity, structure,...

Algorithms tuned to face arbitrary data are too pessimistic and careful

Can we adapt to data to exploit its structure and improved performance? Sometimes yes!

MLPoly, AdaHedge, Squint, MLProd, BOA 3]  Exp. weights
R (theory)
Better performance: s
. C e N + ML-Poly
If some expert is significantly better \/@ | losK 1 (theory)
* If the loss function is strongly convex r r &
* Quantile bounds if many experts are good
log K ~ [log(proportion of good experts) Most of these methods. are based on well-
T ’ T calibration of the learning parameter:

Learn faster if the data allows it



Missing data (sleeping experts)
Some expert predictions may be missing at some times

Trick: replace their prediction with the one of the algorithm 7; = p; - x;

eXp ( — 7N Zi;ll (Yt — CEk,t)Q)
> exp (=0 i - 250)?)

Pkt —

This works with any algorithm and has theoretical guarantees!

Useful, if one has specialized experts

Ref: Gaillard, Stoltz, van Erven, 2015



Difference of temp. with last day Hot / cold days

Specialized experts

e st g ofsamenprs 1 (Y
on specific situations
High / low consumption Variation of temp. during the day

Examples:

* meteorological situations

Ll i
» Winter / summer r{uw M “
* High / low consumption g AR IV mm MM

Such specialized experts suggest prediction only the days corresponding to
their scenario



Enrich the set of experts? Gl o 24

The performance of our method is a trade-off between two errors

Our error = + regret

[ N\

Approximation error Estimation error

The theoretical performance increases slowly with the number of experts as  +/log(K)/T

Enriching the set of experts can be highly beneficial:
* Modifying initial experts using bagging methods
e Adding new experts that aim at correcting errors of current experts
* Specialized experts,...



Performance of adding new experts

Best expert | Best fixed Exp. Weights Exp. Weights ML-Poly
combination (best 1 for theory) (best 1) for data)

3 experts
133 experts 744 521 737 591 565
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RMSE (MW)

Performance of adding new experts
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Probabilistic prediction

Can we trust our forecasts? Renewable energies add randomness in the production.

Need of probabilistic forecasts (instead of forecasting the mean only)

Easy trick here: just change the loss function: use the quantile loss

observation

Ve

We used this method on GefCom 2014 competition with Y. Goude and R. Nedellec. Worked great!

observation

[

prévision - observation




Universality — Other data sets

Heat load forecasting

Annual position Temperature

US electricity load

Annual position Temperature

Challenge: use individual data

Electricity price

Annual position

Electric load

Groups of consumers

Annual position

Temperature




Universality — horizon of prediction

On a similar data set

* we trained 5 experts making predictions at several

horizons

* we adapted combining algorithm to multi-horizon

forecasts

Gain of performance (RMSE) with respect of the best expert
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Most of these methods are implemented

in the R-package opera

Example of usage on my webpage:

http://pierre.gaillard.me/opera.html
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http://pierre.gaillard.me/opera.html

Conclusion

 Combining forecasts can greatly improve the performance
* Building good experts is important (do it automatically)
* Well-calibration and data-adaptive methods is important

* Works quite generally

Thank you!



