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* Where do high-dimensional problem emerge?
— Spatial: generation and demand
— Temporal: multi-temporal decision-making
— Modelling: (potentially) huge feature space for statistical learning
— Multivariate/other: prices, line ratings, reliability...

« Large Feature Spaces and Hierarchies
« Dynamic Temporal Dependency

« Spatio-temporal Forecasting
— High-dimensionality and sparsity
— Dynamic dependency structures and atmospheric regimes



Contents

* Acknowledgements:
— Ciaran Gilbert, David McMillan (Strathclyde)
— Bri-Mathias Hodge, Tarek Elgindy (NREL)
— Dan Drew, Kostas Philippopoulos (Reading)

> €
Universityof <&

Strathclyde
Glasgow




High Dimension: Spatial
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« Generation:

940+ Wind Farms
1300+ Solar Farms (+domestic PV)
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High Dimension: Spatial
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« Demand:
350+ Grid Supply Points/Nodes
400,000+ Substations
40,000,000+ Smart Meters
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High Dimension: Temporal

Strathclyde
Glasgow

 Forecast errors often exhibit auto-
correlation:
— Inertia in underlying processes

« Sequential decisions/constraints require
multi-temporal modelling:
— Storage management
— Maximum/minimum run-times/down-times
— Cumulative quantities (energy, fuel)



High Dimension: Features
and Hierarchy

 Lots of (potential) explanatory information
— History
— Weather (multiple variables on a spatial grid)

— Other observations (e.g. levels in hierarchy)

— Engineering large numbers of features from modest
numbers of explanatory variables is often beneficial

« Natural hierarchies:
— Can improve model fidelity

— Consistency may be necessary for some
applications
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Wind Power Forecasting

Leveraging turbine-level data for wind power
forecasting



Large Feature Spaces and
Hierarchies

Motivation:

1. Gather as much useful information as possible to
Improve forecast skill

 NWP — multiple models and variables on a grid,
ensembles, engineered features...

« High frequency data and engineered features (especially
In very short-term)

« Other levels of hierarchy
2. Coherency across hierarchy (in some cases)
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Motivation:

1. Gather as much useful information as possible to
Improve forecast skill

 NWP — multiple models and variables on a grid,
ensembles, engineered features...

« High frequency data and engineered features (especially
In very short-term)

« Other levels of hierarchy
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* Wind farm power curve is complicated by
many factors: layout, terrain etc

* When fitting a model it is difficult to
distinguish between random variation and
true processes...

 ...Perhaps looking at individual turbines
could help!
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Set up

GBM for quantile regression q% = fésm(XNnwp)
2 Wind Farms with 35 and 56 turbines

NWP inputs plus engineered features
30 minute wind farm production
30 minute wind turbine production
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Density forecast for wind

farm

Method 1 / GBM+T

1. Produce dete.rm.in.istic g% = F&n (Xnwp, X1, o) Xn)
forecasts for individual
turbines T
2. Use these as additional X1 X2 X3) X
features
| | | | |

TTTT T
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Large Feature Spaces and
Hierarchies c

Density forecast for wind
farm = Distribution of sum
of all turbines

Method 2 / Cop

Gaussian Copula
(Joint PDF, spatial dependency
described by covariance matrix)

1. Produce multivariate density
forecast for all turbines

a) Marginals as before
b) Gaussian copula for

/\ /\/\ spatial dependency

a7 = feem1 (Xnwp) T q5 = foemz(Xnwp)

a a
_ = x
a7 = féem2(Xnwp) 9+ = forma(Xnwp)

| | | | |
TTTT T
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Large Feature Spaces and

Hierarchies

Method 1 / GBM+T

1. Produce deterministic
forecasts for individual
turbines

2. Use these as additional
features
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Method 2 / Cop

1. Produce multivariate density
forecast for all turbines

a) Marginals as before
b) Gaussian copula for
spatial dependency

de
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mmmm-

9.88 9.69 9.27 9.11

WE-A
CRPS 7.12 7.02 6.74 6.66
MAE 11.49 11.39 11.21 11.26

WEF-B

CRPS 8.20 8.10 8.00 8.02
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Solar Power Forecasting

Dynamic Temporal Dependency
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/ Density forecasts don’t givh

information about temporal
structure

[wim~2]

0 200 400 6800 80O 1000 1200

» Solar power production
looks very different on
different types of day...

Downwelling Global Solar Radiation

e ..sodo forecast errors!

\_ /
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/ Density forecasts don’t givh

information about temporal
structure
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* Solar power production !
looks very different on 2ol /, \ / \
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Different Sources of Error:
e Clear Day: Clear sky estimate (aerosol content etc)
* Partially Cloudy: Time and duration of clear/cloudy spells

e Cloudy Day: Irradiance penetrating cloud layer(s)

Global Solar
Global_Solar
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Temporal Dependency
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Gaussian Copula
Sampling

Covariance Variogram
Matrix Score
Identity 119.0 /348

Static 4111.9 27147
Dynamic 4111.6 ~7087

Downwelling Global Solar [w/m”2]
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Wind Power Forecasting
Very Short-term
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Vector Auto-regression:
p—1
N NXN
yt+1:ZAryt_r+£t ytrE{;ER ) AiER X

Full Parameterisation:

11 ai1n
A= : : = pN? parameters to estimate!
ain1 7 QiNN

Quickly becomes

impractical for large N
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Sparse Vector Auto-regression:
Set most parameters

to zero...

Ai11 0 0
0 a2 0

a;31 0 ;33

Which ones?
* Rank by a summary statistic and choose

number of parameters that minimises some
information criterion
Penalised Linear Regression




Atmospheric Regimes
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Spatio-temporal Structure:

— If VAR parameters are static, we're assuming that the
spatio-temporal structure is static
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Atmospheric Regimes
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Spatio-temporal Structure:

— If VAR parameters are static, we're assuming that the
spatio-temporal structure is static

— It is easy to track changes, albeit with some lag...

— ...we also know somethings about the underlying
weather!
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Atmospheric Regimes
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Large-scale meteorological phenomena:

— Persist for days, weeks and beyond

— Are associated with particular weather types or
anomalies

— Provide seasonal predictability and information about
short-term predictability

32
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« Large-scale regimes fundamental
to seasonal/sub-seasonal
predictability

— E.g. El Nino, North Atlantic
Oscillation (right)

« Information: Are we expecting a
wet and mild or a cold and dry
winter in Europe?

Christophe Cassou, Euro-Atlantic regimes and their teleconnections, ECMWF Seminar

on Predictability in the European and Atlantic regions, 6 — 9 September 2010

| _"INEEEEEEERN ]

-200 -150 -100 -50 0 50 100 150 200
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« Many data-driven approaches to
identification:

— Principal Components
e Classical dimension reduction

- Linear in features |
Kohonen Network (KN)

/,..---"

_—

— Kohonen Network/Self-organising Map
» Unsupervised learning/dimension reduction

 Non-linear in features Auto Encoder (AE) IR
— Auto-encoder N\

» Supervised learning

« Compression via non-linear features /

34
Figure Credit: www.asimovinstitute.org



Atmospheric Regimes
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Applications in short- and very short-term renewable
energy forecasting:

1. Spatial correlation useful in very short-term forecasts;
correlation structure depends on regime

2. Structure in day-ahead forecast uncertainty; structure
depends on regime
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1. Very short-term wind forecasting

-1

D
Yi+1 = z Ay T+ & Yo & €RY, A;€ RV
=0

Forecasts based on recent
observations at spatially
dispersed locations
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1. Very short-term wind forecasting

di11  *°° 4Aj1nN
Ai:
ain1 - Q4inNN

Recent advances focuses on structure and
dynamics of this matrix:

- Sparsity'? (large scale applications)
- Adaptive Updates3 (slow dynamics)
- Regimes? (switching, fast dynamics)
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1. Very short-term wind forecasting

Ye+1 = 9

§
ZAT,lyt—T if Regime =1

ZAT,ZJ’t—T if Regime = 2

ZAT,Myt—T if Regime = M
\

Figure Source: [4]
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Unsupervised learning

Training is entirely data-driven without using desired output examples
The objective is to find patterns in input data space:

e.g. Cluster Analysis, Dimension Reduction

Advantages of SOM

The SOM are analogous to other clustering algorithms (e.g. k-means) but provide:
= Better visualization — The resulting patterns are part of composites map

= Provides information regarding the relationship of the patterns

= Similar patterns are located close in the SOM — Dissimilar further apart

= |dentify transient states between atmospheric patterns
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Two layer network: Input layer & Output layer (PxQ neurons lattice)

Each neuron is fully connected with the input nodes and with its neighboring
neurons

A\ \§€ i
g

e Characterized by its synaptic weights vector w and by its location at the SOM

lattice

Y
X Xm Xm

Training — Learning of SOM

I ! I = Competition

e "' An input pattern is presented to the network. A metric distance (e.g. Euclidean
distance) is calculated for all neurons. The neuron with the smallest distance is the

‘winner’ (Best Matching Unit - BMU).

o——"4 = Cooperation

The BMU through a radial basis function determines the topological neighborhood
of the ‘excited’ neurons

= Adaptation
The BMU and its neighboring neurons weight vectors are updated towards the
input vector.
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= Examine the relationship of large-scale circulation and wind speeds over GB

= |dentify wind regimes with distinct spatio-temporal characteristics for use in
very-short-term forecasting

= Reanalysis Data: MERRA-2

= SLP, 2500, U,,, Vq,

= 1980 to 2014, hourly resolution

= Interpolated to 0.75°x 0.75° grid over GB
* Measurements from 23 Met Stations

= 2002-2005 (Training), 2006-2007 (Testing)

Sy




Atmospheric Classification

Self-organising Maps Strathclyde

Glasgow



(L8N

Atmospheric Classification ]

Clustering for Optimal Forecast Performance e

Glasgow

0.940

—=— Kk —means
¥  Subjective

RMSE [m/s]
0.936 0.938
[
]

0934

0.932
%

5 = 7 8 9 10
Number of Clusters, k

0.930

P2
[ ]
i



Atmospheric Classification

= University of X
Final Modes Strathclyde

Glasgow

Mode
Centroids:
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0 VAR
/v Conditional VAR with Diurnal Dummies
+ VAR with Diurnal Dummies

VAR with Mode and Diurnal Dummies
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Atmospheric Classification

Forecast Performance

Performance Improved at
all 23 locations

1-hour-ahead forecast
improved by 0.3%-4.1%

Overall 1-hour-ahead
forecast improved by 1.6%

Overall 6-hour-ahead
forecast improved by 3.1%

Site
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Persistence
VAR with Diurnal Dummies
Conditional VAR with Diurnal Dummies

!

1.0
RMSE [m/s]
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° Mode 1 ° Mode 2 e Mode 3
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" Distinct error characteristics for each mode:
= Provide decision-makers with quantified uncertainty information

=  Suggests similar regime-switching approach would be valuable for
probabilistic forecasting
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