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Abstract

Spectral and scattering theory of massive Pauli-Fierz Hamiltonians is studied. Asymp-
totic completeness of these Hamiltonians is shown. The proof consists of three parts. The
first is a construction of asymptotic fields and a proof of their Fock property. The second part
is a geometric analysis of observables. Its main result is what we call geometric asymptotic
completeness. Finally, the last part is a proof of asymptotic completeness itself.

1 Introduction

Our paper is devoted to a class of Hamiltonians used in physics to describe a quantum system
(“matter” or “an atom”) interacting with a bosonic field (“radiation”). K and K are respectively
the Hilbert space and the Hamiltonian describing the matter. The bosonic field is described by a
Fock space Γ(h) with the one-particle space h = L2(IRd, dk), where IRd is the momentum space,
and a free Hamiltonian of the form

dΓ(ω(k)) =
∫
ω(k)a∗(k)a(k)dk.

The function ω(k) is called the dispersion relation. The interaction of the “matter” and the
bosons is described by the operator

V =
∫
a∗(k)v(k)dk + hc,

where IRd 3 k → v(k) is a function with values in operators on K. Thus, the system is described
by the Hilbert space H := K ⊗ Γ(h) and the Hamiltonian

H = K ⊗ 1l + 1l⊗ dΓ(ω(k)) + V.(1.1)
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The class of such Hamiltonians is very common in the physics literature. It is also quite natural
from the mathematical point of view, as in particular we will see in our paper. Nevertheless, it
does not seem to have a generally accepted name. We will call the Hamiltonians of the form
(1.1) Pauli-Fierz Hamiltonians. In the thirties, Pauli and Fierz wrote a paper on nonrelativistic
quantum electrodynamics [PF], where a Hamiltonian of the form (1.1) was obtained, and since
then the name Pauli-Fierz Hamiltonian has been occasionally used in this context (see for
example [Bl]).

Let us describe some typical examples of Pauli-Fierz Hamiltonians.
If dimK = 1, then they are exactly solvable – by a Bogolyubov transformation they are

equivalent to a quadratic bosonic Hamiltonian.
If dimK = 2, K = σz and v(k) = g(k)σx, where σz, σx are Pauli matrices and g(k) is a real

function on IRd, then the Hamiltonian H goes under the name of a spin-boson Hamiltonian. In
a sense, it is the simplest non-trivial example of a Pauli-Fierz Hamiltonian.

After a certain approximation (dropping interaction terms quadratic in the fields) nonrela-
tivistic quantum electrodynamics can also be put in the form (1.1). In this case ω(k) = |k| and
K is a Schrödinger Hamiltonian (see [CT, BFS] ).

If the bosonic field describes a relativistic particle of mass m, then the dispersion relation is
of the form ω(k) =

√
m2 + k2.

Various branches of physics, such as solid state theory and quantum optics, furnish more
examples of Hamiltonians of the form (1.1). The bosonic field may describe effective quasipar-
ticles, eg. phonons. ω(k) is then a phenomenological dispersion relation and can be, to a large
extent, an arbitrary function. The matter Hamiltonian K and the interaction V may also vary
depending on the model. Therefore, from the physical point of view, it seems natural to consider
the class of Pauli-Fierz Hamiltonians under as broad conditions as possible.

Let us now describe the assumptions that we will impose on the Hamiltonian H in our paper.
First of all, we will assume that the function v̂(x) decays sufficiently fast in the space vari-

ables. We call this the short-range condition. Physically, it means that the interaction is well
localized. This assumption is needed to prove the existence of asymptotic fields. Note, however,
that the results about the location of spectrum (our analog of the HVZ theorem) and the Mourre
estimate hold under weaker decay condition on v̂(x).

Secondly, we will assume that the dispersion relation is positive and bounded away from
zero, that is

inf ω(k) := m > 0.(1.2)

The number m is sometimes called the mass of the field and (1.2) is the positive mass assumption.
Besides, we will make some other technical assumptions on ω(k) (which in general can be
relaxed): we will assume that zero is the only critical point of ω(k), all the derivatives of
ω(k) are bounded and lim|k|→∞ ω(k) = +∞. Thus, a typical dispersion relation satisfying our
assumptions is ω(k) =

√
m2 + k2. Unfortunately, due to the assumption (1.2), the dispersion

relation ω(k) = |k| is not covered by our paper. We hope that our results, appropriately
modified, can be extended to this case – under suitable conditions on the decay of v(k) as
k → 0. The assumption (1.2) means that there is no “infra-red problem”. This assumption
plays an important role in our considerations and relaxing it will entail additional technical
difficulties.

Finally, we assume that the matter Hamiltonian K has a compact resolvent. Physically,
this means that the Hilbert space K is supposed to describe a confined system, eg. K is finite
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dimensional or K = −1
2∆ + W (x) with lim|x|→∞W (x) = ∞. Note also that this assumption

plays a role only in the so-called HVZ theorem, the Mourre estimate and its consequences, and in
the last stage of the proof of the asymptotic completness. The existence of asymptotic fields, the
Fock property of wave operators and the geometric asymptotic completeness are true without
this assumption.

In Section 3 we describe some general properties of the Pauli-Fierz Hamiltonians. We prove
the self-adjointness of these Hamiltonians and some other technical properties.

In Section 4 we impose the condition that the resolvent of K is compact. Under this condi-
tion, we show an analog of the HVZ theorem. This theorem says that the essential spectrum of
H equals [E0 + m,∞[ where E0 is the infimum of the spectrum of H. This clearly implies the
existence of a ground state. This theorem is well known [GJ1, BFS, AH] (although the proofs
found in the literature seem to be more complicated). We show also the Mourre estimate for
Pauli-Fierz Hamiltonians. Its proof mimicks the proof of its analog from the case of N -body
Schrödinger operators. One of the key new ingredients is the induction with respect to the
energy interval: in the nth step, the theorem is proven for the energy in [E+ (n−1)m,E+nm[.
Note that the proof breaks down if m = 0. An immediate consequence of the Mourre estimate
is the local finiteness of the pure point spectrum away from the threshold set.

The remaining part of our paper is devoted to the scattering theory of Pauli-Fierz Hamilto-
nians. The first step of scattering theory for such Hamiltonians is the existence of the so-called
asymptotic fields. They are defined as the limits on a dense domain of the usual fields in the
so-called interaction picture:

a],+(h) := lim
t→∞

eitHa](ht)e−itH ,

where a](h) equals either a∗(h) – the creation operator – or a(h) – the annihilation operator,
and ht := e−itω(k)h. The asymptotic creation and annihilation operators satisfy the canonical
commutation relations (CCR). Let the Hilbert space K+ be defined as the space of the states
annihilated by asymptotic annihilation operators a+(h). Physically, it can be understood as the
space of asymptotic (“dressed”) matter – it contains states with no asymptotically free bosons.
Define H+ := K+⊗Γ(h) – the full asymptotic Hilbert space. Then, there is a natural definition
of an isometric operator Ω+ : H+ → H interwining the usual and the asymptotic fields:

Ω+a](h) = a],+(h)Ω+.

The operator Ω+ can be defined as a wave operator by the formula

Ω+ := s- lim
t→∞

eitHIe−itH+
,(1.3)

where
H+ = K+ ⊗ 1l + 1l⊗ dΓ(ω(k))

is a (non-interacting) asymptotic Hamiltonian defined on H+ and I : H+ → H is a certain
naturally defined “identification operator”.

Note that the above results about scattering theory for massive Pauli-Fierz Hamiltonians,
possibly in a weaker form, can be extended to the mass zero case.

Using the positive mass assumption one can show that the operator Ω+ is unitary. This
means, in particular, that the representation of the CCR given by the asymptotic fields a+(h)
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is of the Fock type. Note that, in the case of a zero mass, depending on the assumptions on
v(k), the unitarity of Ω+ may be violated, which means that the asymptotic fields may have
non-Fock components. It may even happen that the space K+ is reduced to {0}.

The construction of asymptotic fields and of the wave operator use rather straightforward
methods and has been essentially known for a long time. Up to technicalities related to the
unboundedness of field operators, it follows by the so-called Cook’s method. Very similar results,
including the fact that the positivity of mass implies the Fock property, are contained in a series
of papers by Høegh-Krohn [HK1, HK2, HK3].

After the asymptotic fields are defined, it is natural to ask how to characterize the space
of asymptotic matter K+, and its analog for t → −∞, K−. A property, which is physically
desirable is the equality

K− = K+.(1.4)

This property implies in particular the unitarity of the scattering operator

S := Ω+∗Ω−.

It is easy to show that
Ran1lpp(H) ⊂ K− ∩ K+,

where Ran1lpp(H) denotes the space of bound states of H. Thus, it is natural to expect that, if
the matter system K is not to large, then

K+ = K− = Ran1lpp(H).(1.5)

Clearly, (1.5) implies (1.4). We call the property (1.5) asymptotic completeness. The remaining
part of our paper is devoted to proving this property.

The eighties and the early nineties were a period when a substantial progress was reached
in our understanding of scattering theory for N -body Schrödinger Hamiltonians. In papers
[E, SigSof, Gr, De1, Ya] efficient techniques have been developed, which made it possible to
prove asymptotic completeness for long-range systems with an arbitrary number of particles. A
natural next step was to apply these techniques to Hamiltonians of quantum field theory. This
was the idea behind the work of one of the authors [Ge], where asymptotic completeness for the
spin-boson Hamiltonian with a particle number cut-off was proved.

In Section 6 we show a number of propagation estimates for Pauli-Fierz Hamiltonians. These
estimates are very similar to the analogous estimates from the case of N -body Schrödinger
Hamiltonians. This section can be viewed as a technical introduction to the next section, were
more conceptual results will be given. Section 6 can be skipped on the first reading.

Section 7 is devoted to a proof of asymptotic completeness for massive Pauli-Fierz Hamil-
tonians. Most of the section is devoted to a proof of an intermediate result called geometric
asymptotic completeness. In order to formulate this result one needs observables such as Γ(q(xt )),
with q ∈ C∞0 (IRd) and q = 1 in a neighborhood of zero, which localize in space. Using such
observables, we construct a certain projection P+

0 projecting onto the states that for a large time
do not spread faster than o(t). The precise statement of geometric asymptotic completeness is

RanP+
0 = K+.(1.6)

The proof of geometric asymptotic completeness has a number of ingredients known from N -
body Schrödinger operators, such as propagation estimates and asymptotic observables. One of
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the main new ideas, is the use of certain natural operators Pk(f0, f∞). The operator Pk(f0, f∞)
describes the states with exactly k bosons multiplied by f∞, and the rest multiplied by f0.
Using asymptotic observables constructed with help of such operators, we construct mutually
orthogonal projections P+

k , which project onto the states with exactly k asymptotically free
bosons. The projections P+

k form a partition of unity on the space H, that is, their sum is the
identity. We show that RanP+

k is the range of the wave operator Ω+ restricted to k-particle
states.

The reader familiar with the scattering theory of N -body systems, as described in [De1,
DeGe], will note a very close analogy. In the proof of the asymptotic completeness of N -
body Schrödinger Hamiltonians, one of the important steps is the following: using asymptotic
observables one constructs certain projections 1lZa(P+) that form a partition of unity on the
Hilbert space. Then one shows that Ran1lZa(P+) equals the range of the wave operator Ω+

a .
The proof of geometric asymptotic completeness does not use the assumption of the com-

pactness of the resolvent of K. This assumption is needed in Subsection 7.8, where we show
asymptotic completeness itself. Here, the basic tool is the minimal velocity estimate, which is
a consequence of the Mourre estimate. We show that states spreading not faster than o(t) are
exactly the bound states, in other words

RanP+
0 = Ran1lpp(H).(1.7)

Now (1.6) and (1.7) imply asymptotic completeness (1.5). Note that all these arguments are
very close to the arguments used in the scattering theory of N -body Schrödinger operators.

Our paper is essentially self-contained. In Section 2 we describe all the concepts related
to Fock spaces that we need. We recall some basic constructions such as the operators Γ(q)
and dΓ(b) [BSZ, Sim, RS]. We introduce also a number of definitions that seem to be new
in the literature. They were very useful in our paper and we think that they may find an
application outside of our work. In particular, let us mention the operators Qk(f0, f∞), which
have very interesting properties playing an imporant role in our proof of geometric asymptotic
completeness.

Physically, asymptotic completeness means that for large times states evolve according to a
simpler evolution. In particular, it implies that the usual formalism of scattering theory involving
a unitary scattering operator is justified. The scattering operator is one of the central objects
of quantum field theory, usually introduced in a formal, perturbative way. Our article shows
that, at least for a certain class of relatively simple but nontrivial models, the usual physical
formalism is well-founded.

Let us mention another physical consequence of asymptotic completeness. Let us assume
additionally that the interacting Hamiltonian has only one bound state, which can be shown in
some cases, at least for small coupling (see [OY, BFS]). Then, as noted in [HuSp1], asymptotic
completeness implies the property of return to equilibrium. This property plays an important
role in statistical physics [BR].

We believe that our result is just one of initial steps of a mathematical study of scattering in
quantum field theory. Quantum field theory is a vast subject with diverse models and various
interesting problems [Frie, He, GJ2, BSZ, Ha, We]. ¿From the point of view of scattering theory
one can distinguish certain natural classes of models. First of all, one should distinguish:
(1a) models with a localized interaction;
(1b) models with a translation invariant interaction.
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Secondly one should make the following distinction:
(2a) models conserving the number of particles;
(2b) models changing the number of particles.
Clearly, models with the property (1b) or (2b) are more difficult than models with the property
(1a) or (2a) respectively. Pauli-Fierz Hamiltonians are models with a localized interaction,
but they do not conserve the number of particles – they are of type (1a,2b). We hope that the
methods of our article can be extended to treat the scattering theory of other models of this type.
For example, after minor modifications, one can extend our results to the interactions containing
a term quadratic in the fields with a sufficiently small coupling constant. Likewise, instead of
bosonic fields one can study fermionic fields. The extensively studied [Sim, HK3, GJ1, GJ2]
P (φ)2 model with a spacial cutoff also belongs to the type (1a,2b) – it would be interesting to
study asymptotic completeness also in this case.

Scattering theory for translation invariant models (1b) is more difficult. There exists however
one case where this problem seems to be well understood – it is the class of models considered
in [De2]. These models are of type (1b,2a), they are however quite special – they conserve
the number of particles of each species and they are Galilei-covariant, which is also a severe
restriction. In the case of these models, the Hilbert space can be split into sectors and within
each sector they are described by an N -body Schrödinger Hamiltonian.

There exist also some partial results in the case of relativistic quantum field theory. The
Haag-Ruelle theory (see [Ha] and references therein) and its continuation due to Buchholz and
Fredenhagen [BF] allow us to define asymptotic fields in an axiomatic local quantum field theory.
One can also show asymptotic completeness for low energies and small coupling constants in the
λφ4

2 model [CD, Ia].
A lot of research was devoted to Hamiltonians of quantum field theory in the sixties and the

early seventies. Let us mention in particular the book by Friedrichs [Frie], which in a mathe-
matically rigorous way described the perturbative approach to quantum field theory, papers of
Høegh-Krohn [HK2, HK1, HK3], early papers on the constructive field theory (see [GJ1] and
references in [GJ2, Sim]), papers of Fröhlich on translation-invariant models [Fro1, Fro2] and
the work of Davies on the weak-coupling limit for Pauli-Fierz-type Hamiltonians [Da1, Da2]. It
seems that in the late seventies and the eigthies there was a long period when little research on
this subjects was performed (see however [A1, A2, OY, Ma, Sp1]). The Euclidean [GJ2, Sim]
and the axiomatic [Ha] approaches replaced the Hamiltonian approach to quantum field theory.
It was also a period of a considerable progress in the study of Schrödinger operators, especially
the N -body Schrödinger operators [E, SigSof, Gr, De1, Ya, DeGe]. In the recent years one
can see a renewed interest in Hamiltonians of quantum field theory, at least in the Pauli-Fierz
Hamiltonians. Let us mention the paper of Huebner and Spohn [HuSp1] where wave operators
for the spin-boson Hamiltonian were shown to exist and the problem of asymptotic completeness
for such operators was discussed. Note in particular, that the formula (1.3) comes from this
paper. Other results on the bound states and resonances of Pauli-Fierz Hamiltonians were given
recently in [HuSp2, BFS, AH, JP1, JP2, JP3, Sp2, Sp3, Sk].

Acknowledgements. We would like to thank V. Bach, J. Fröhlich and H. Spohn for useful discus-
sions. The work of Jan Dereziński is a part of the project nr 2 P03 029 08 financed by Komitet Badań
Naukowych in the years 1995-97.
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2 Basic constructions in bosonic Fock spaces

2.1 Introduction

In this section we describe various general constructions related to bosonic Fock spaces, which
we will use in our paper. In Subsections 2.2– 2.8 we recall various well known objects and their
properties, such as field operators, the operators dΓ and Γ. In the remaining part of the section
we introduce concepts that seem not to belong to the standard tools used in the literature, but
nevertheless we think that they can be useful outside of our work.

Among the constructions that we present let us mention the operators Qk(f) and Pk(f),
used to define certain partitions of unity on the Fock space Γ(h), which have very useful pos-
itivity properties. Their use is one of the key ideas of the proof of the geometric asymptotic
completeness, presented in Section 7.

We also describe operators Γ̌(j), which map the Fock space Γ(h) into the doubled Fock space
Γ(h)⊗Γ(h). The operators Γ̌(j) are easily defined using the usual functor Γ and the identification
of the spaces Γ(h)⊗ Γ(h) and Γ(h⊕ h).

One of the main tools used in the “geometric approach to scattering theory” is calculating
the so-called Heisenberg derivative. It is therefore useful to introduce certain operators dΓ(q, r),
dQk(f, g) and dΓ̌(j, k), which arise when one computes the Heisenberg derivative of Γ(q), Qk(f)
and Γ̌(j) respectively.

Subsections 2.8 and 2.9 are devoted to the operators Γ(q) and dΓ(q, r). Subsections 2.10
and 2.11 are devoted to the operators Qk(f) and dQk(f, g). Subsections 2.13, 2.14 are devoted
to the operators Γ̌(j), dΓ̌(j, k). In our exposition, we tried to present the properties of these
objects stressing their analogies.

2.2 Bosonic Fock spaces

Let h be a Hilbert space, which we will call the 1-particle space. Let ⊗ns h denote the symmetric
nth tensor power of h. Let Sn denote the orthogonal projection of ⊗nh onto ⊗ns h. We define the
Fock space over h to be the direct sum

Γ(h) :=
∞⊕
n=0

⊗ns h.

Ω will denote the vacuum vector – the vector 1 ∈ C = ⊗0
sh. The number operator N is defined

as
N
∣∣∣⊗n

s
h

= n1l.

The space of finite particle vectors, for which 1l[n,+∞](N)u = 0 for some n ∈ IN, will be denoted
by Γfin(h).

2.3 Creation and annihilation operators

If h ∈ h, we define the creation operator a∗(h) by setting

a∗(h) : Γ(h)→ Γ(h),

a∗(h)u :=
√
n+ 1Sn+1h⊗ u, u ∈ ⊗ns h.
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a(h) denotes the adjoint of a∗(h), and is called the annihilation operator. Both a∗(h) and a(h)
are defined on Γfin(h) and can be extended to densely defined closed operators on Γ(h). By
writing a](h) we will mean both a∗(h) and a(h). Note the canonical commutation relations:

[a(h1), a∗(h2)] = (h1|h2)1l,

[a(h2), a(h1)] = [a∗(h2), a∗(h1)] = 0.

It follows from the boundedness of [a(h), a∗(h)] that a(h) and a∗(h) have the same domain.

Lemma 2.1 i) ∥∥∥(N + 1)p
n
Π
i=1

a](hi)(N + 1)−p−
n
2

∥∥∥ ≤ Cn,p n
Π
i=1
‖hi‖,

ii) the map

hn 3 (h1, . . . , hn) 7→ (N + 1)p
n
Π
i=1

a](hi)(N + 1)−p−
n
2 ∈ B(Γ(h))

is norm continuous.
iii) If w − limi→∞ hij = 0, and hij ∈ h are uniformly bounded, then

s- lim
i→∞

(N + 1)p
n
Π
j=1

a(hij)(N + 1)−p−
n
2 = 0.

2.4 Field operators

We define the field operator

φ(h) :=
1√
2

(a∗(h) + a(h)), h ∈ h.

The operators φ(h) are essentially selfadjoint on Γfin(h) and can be extended to self-adjoint
operators on Γ(h). We have

a∗(h) = 1√
2
(φ(h)− iφ(ih)),

a(h) = 1√
2
(φ(h) + iφ(ih)),

[φ(h1), φ(h2)] = iIm(h1|h2).

The following proposition is useful when one tries to reconstruct creation-annihilation oper-
ators from field operators.

Proposition 2.2 If q, p are self-adjoint operators on a Hilbert space H satisfying [q, p] = i1l in
the sense of forms on D(q) ∩ D(p), then the operators

a∗ :=
1√
2

(q − ip), a :=
1√
2

(q + ip)

defined on D(q) ∩ D(p) are closed.
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Proof. We have
1
2(‖qu‖2 + ‖pu‖2) = ‖a∗u‖2 − 1

2 = ‖au‖2 + 1
2 .

D(q) is complete with the norm ‖qu‖ and D(p) is complete with the norm ‖pu‖. Hence D(q) ∩
D(p) is complete with the norm

√
‖qu‖2 + ‖pu‖2. 2

Lemma 2.3 i)
‖(N + 1)p

n
Π
i=1

φ(hi)(N + 1)−p−n/2‖ ≤ Cn,p
n
Π
i=1
‖hi‖.

ii) The map
hn 3 (h1, . . . , hn) 7→ (N + 1)p

n
Π
i=1

φ(hi)(N + 1)−p−n/2

is continuous for the norm topology.

2.5 Weyl operators

We introduce also the Weyl operators:

W (h) := eiφ(h).

Note the identities:
[φ(h),W (g)] = Im(g|h)W (g),

W (g)φ(h)W (−g) = φ(h)− Im(g|h),

W (h)W (g) = e−i 1
2
Im(h|g)W (h+ g).

(2.1)

Proposition 2.4 i) For 0 ≤ ε ≤ 1

‖(W (h)− 1l)u‖ ≤ Cε‖|φ(h)|εu‖.

ii) the map
IR 3 s 7→W (sh)(N + 1)−

1
2

is C1 in the strong topology and the map

IR 3 s 7→W (sh)(N + 1)−
1
2
−ε

is C1 in the norm topology. More precisely,

lim
s→0

sup
‖h‖≤C

s−1
∥∥∥(W (sh)− 1l− isφ(h))(N + 1)−1/2−ε

∥∥∥ = 0.

iii)
‖(W (h1)−W (h2))u‖ ≤ Cε‖h1 − h2‖ε

(
(‖h1‖2 + ‖h2‖2)

ε
2 ‖u‖+ ‖(N + 1)

ε
2u‖

)
.
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Proof. i) follows from the spectral theorem and the inequality

|eis − 1| ≤ Cε|s|ε.

ii) follows from Lemma 2.3. To show iii) we note that

W (h1)−W (h2) = W (h1)(1l− e−
i
2
Im(h1|h2))

+e−
i
2
Im(h1|h2)W (h1)(1l−W (h2 − h1)).

We note also that
|1− e−

i
2
Im(h1|h2)| ≤ Cε|Im(h1|h2)|ε,

|Im(h1|h2)| ≤ 1√
2
‖h1 − h2‖

√
‖h1‖2 + ‖h2‖2,

and by i)

‖(1l−W (h2 − h1))u‖ ≤ Cε‖|φ(h2 − h1)|εu‖ ≤ Cε‖h2 − h1‖ε‖(N + 1)
ε
2u‖.

2

2.6 Operator dΓ

If b is an operator on h, we define the operator

dΓ(b) : Γ(h)→ Γ(h),

dΓ(b)
∣∣∣⊗n

s
h

:=
n∑
j=1

1l⊗ · · · ⊗ 1l︸ ︷︷ ︸
j−1

⊗b⊗ 1l⊗ · · · ⊗ 1l︸ ︷︷ ︸
n−j

.

An important example is the number operator

N = dΓ(1).

Lemma 2.5 i) Heisenberg derivatives:

d
dtdΓ(b) = dΓ( d

dtb),

[dΓ(b1),dΓ(b2)] = dΓ([b1, b2]).

ii) Commutation properties:

[dΓ(b), a∗(h)] = a∗(bh),

[dΓ(b), a(h)] = −a(b∗h),

[dΓ(b), iφ(h)] = φ(ibh), if b = b∗

W (h)dΓ(b)W (−h) = dΓ(b)− φ(ibh)− 1
2Re(bh|h) if b = b∗.

iii) If b1 ≤ b2, then dΓ(b1) ≤ dΓ(b2). Moreover,

‖N−
1
2 dΓ(b)u‖ ≤ ‖dΓ(b∗b)

1
2u‖.
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2.7 Tensor product of Fock spaces

Let hi, i = 1, 2 be Hilbert spaces. Let pi be the projection of h1⊕ h2 onto hi, i = 1, 2. We define

U : Γ(h1 ⊕ h2)→ Γ(h1)⊗ Γ(h2),

by
UΩ = Ω⊗ Ω,

Ua](h) =
(
a](p1h)⊗ 1l + 1l⊗ a](p2h)

)
U, h ∈ h1 ⊕ h2.

(2.2)

Since the vectors a∗(h1) · · · a∗(hn)Ω form a total family in Γ(h), and since U preserves the
canonical commutation relations, we see that U extends as a unitary operator from Γ(h1 ⊕ h2)
to Γ(h1)⊗ Γ(h2). Moreover one has the following identity:

UdΓ

([
b1 0
0 b2

])
= (dΓ(b1)⊗ 1l + 1l⊗ dΓ(b2))U.(2.3)

It is easy to check that on ⊗ns (h1 ⊕ h2), U is given by

U
∣∣∣
⊗ns (h1⊕h2)

=
n∑
k=0

√
n!

(n− k)!k!
p1 ⊗ · · · ⊗ p1︸ ︷︷ ︸

n−k

⊗ p2 ⊗ · · · ⊗ p2︸ ︷︷ ︸
k

.

2.8 Functor Γ

Let hi, i = 1, 2 be Hilbert spaces. Let q : h1 7→ h2 be a bounded linear operator. We define

Γ(q) : Γ(h1) 7→ Γ(h2)

Γ(q)
∣∣∣⊗n

s
h1

= q ⊗ · · · ⊗ q.

The Γ functor has the following properties:

Lemma 2.6 i) Relationship with dΓ: assume h1 = h2. Then

edΓ(b) = Γ(eb).

ii) Intertwining properties:

Γ(q)a∗(h1) = a∗(qh1)Γ(q), h1 ∈ h1,

Γ(q)a(q∗h2) = a(h2)Γ(q), h2 ∈ h2.

iii) Commutation properties: assume h1 = h2. Then

[a∗(h),Γ(q)] = a∗((1− q)h)Γ(q),

[a(h),Γ(q)] = −Γ(q)a((1− q∗)h).

iv) If ‖q‖ ≤ 1, then
‖Γ(q)‖ ≤ 1.
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Let us note some additional properties in the isometric and unitary cases.

Lemma 2.7 i) If q is isometric, that is q∗q = 1, then

Γ(q)a](h1) = a](qh1)Γ(q),

Γ(q)φ(h1) = φ(qh1)Γ(q).

ii) If q is unitary, then
Γ(q)a](h)Γ(q−1) = a](qh),

Γ(q)φ(h)Γ(q−1) = φ(qh).

2.9 Operator dΓ(q, r)

Let q, r be operators from h1 to h2. We define

dΓ(q, r) : Γ(h1)→ Γ(h2),

dΓ(q, r)
∣∣∣⊗n

s
h1

=
n∑
j=1

q ⊗ · · · ⊗ q︸ ︷︷ ︸
j−1

⊗r ⊗ q ⊗ · · · ⊗ q︸ ︷︷ ︸
n−j

.

Lemma 2.8 i) Relationship with dΓ and Γ:

dΓ(1, r) = dΓ(r),

dΓ(r, r) = NΓ(r).

If q is invertible, then
dΓ(q, r) = dΓ(rq−1)Γ(q) = Γ(q)dΓ(q−1r).

ii) Heisenberg derivatives of Γ(q):

dΓ(b2)Γ(q)− Γ(q)dΓ(b1) = dΓ(q, b2q − qb1),

d
dtΓ(q) = dΓ(q, d

dtq).

iii) Intertwing properties:

a(h2)dΓ(q, r) = dΓ(q, r)a(q∗h1) + Γ(q)a(r∗h1),

dΓ(q, r)a∗(h1) = a∗(qh1)dΓ(q, r) + a∗(rh1)Γ(q).

iv) Commutation properties: assume h1 = h2. Then

[a(h),dΓ(q, r)] = −dΓ(q, r)a((1− q∗)h) + Γ(q)a(r∗h),

[a∗(h), dΓ(q, r)] = a∗((1− q)h)dΓ(q, r)− a∗(rh)Γ(q).

v) If ‖q‖ ≤ 1 then we have the following estimate:

|(u2|dΓ(q, r2r1)u1)| ≤ ‖dΓ(r2r
∗
2)

1
2u2‖‖dΓ(r∗1r1)

1
2u1‖.

vi) If ‖q‖ ≤ 1 then
‖N−

1
2 dΓ(q, r)u‖ ≤ ‖dΓ(r∗r)

1
2u‖.
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Proof. Let us indicate the proof of parts v) and vi), the other being elementary. For an operator
r acting on h, we set

rj := 1l⊗ · · · ⊗ 1l︸ ︷︷ ︸
j−1

⊗r ⊗ 1l⊗ · · · ⊗ 1l︸ ︷︷ ︸
n−j

, acting on ⊗ns h.

For ui ∈
⊗n

s hi, we have:

|(u2|dΓ(q, r2r1)u1)| ≤
n∑
j=1

‖(r2r
∗
2)

1
2
j u2‖‖(r∗1r1)

1
2
j u1‖,

since ‖q‖ ≤ 1. By the Cauchy-Schwarz inequality, we have

n∑
j=1
‖(r2r

∗
2)

1
2
j u2‖‖(r∗1r1)

1
2
j u1‖ ≤

(
n∑
j=1

(u2|(r2r
∗
2)ju2)

) 1
2
(

n∑
j=1

(u1|(r∗1r1)ju1)

) 1
2

= ‖dΓ(r2r
∗
2)

1
2u2‖‖dΓ(r∗1r1)

1
2u1‖,

which proves v). To prove vi), we have for u ∈
⊗n

s h:

‖dΓ(q, r)u‖ ≤
n∑
j=1

‖rju‖ ≤ n
1
2 ‖dΓ(r∗r)

1
2u‖,

again by the Cauchy-Schwarz inequality. 2

2.10 Operators Pk and Qk

Let f0, f∞ be operators from h1 to h2. Let f := (f0, f∞). We define the operators Pk(f) =
Pk(f0, f∞) and Qk(f) = Qk(f0, f∞) for k ∈ IN by setting

Pk(f) : Γ(h1)→ Γ(h2),

Pk(f)
∣∣∣⊗n

s
h1

:=
∑

]{i|εi=∞}=k
fε1 ⊗ · · · ⊗ fεn ,

Qk(f) : Γ(h1)→ Γ(h2),

Qk(f)
∣∣∣⊗n

s
h1

:=
∑

]{i|εi=∞}≤k
fε1 ⊗ · · · ⊗ fεn ,

where εi = 0,∞. The following properties of Qk(f), Pk(f) can be verified by direct inspection.

Lemma 2.9 i)
P1(f) = dΓ(f0, f∞),

Qk(f) =
k∑
j=0

Pj(f), Pk(f) = Qk(f)−Qk−1(f),

P0(f) = Q0(f) = Γ(f0),

Pk(qf) = Γ(q)Pk(f), Qk(qf) = Γ(q)Qk(f).

13



ii) Intertwining properties (we set Q−1(f) = 0):

Qk(f)a∗(h1) = a∗(f0h1)Qk(f) + a∗(f∞h1)Qk−1(f),

a(h2)Qk(f) = Qk(f)a(f∗0h2) +Qk−1(f)a(f∗∞h2).

iii) Commutation properties: assume h1 = h2. Then

[a(h), Qk(f)] = −Qk(f)a((1− f∗0 )h) +Qk−1(f)a(f∗∞h),

[a∗(h), Qk(f)] = a∗((1− f0)h)Qk(f)− a∗(f∞h)Qk−1(f).

iv) Assume h1 = h2. If 0 ≤ f0, 0 ≤ f∞, f0 + f∞ ≤ 1, then

0 ≤ Qk(f) ≤ Γ(f0 + f∞), 0 ≤ Pk(f) ≤ Γ(f0 + f∞).

Proposition 2.10 Let f = (f0, f∞) and f̃ = (f̃0, f̃∞) and f̃0f∞ = 0. Then

Ql(f̃)Pk(f) = 0, l < k,(2.1)

Qk(f̃)Pk(f) = Pk(f̃)Pk(f) = Pk(f̃0f0, f̃∞f∞),(2.2)

Ql(f̃)Qk(f) = Ql(f̃0f0, f̃∞(f0 + f∞)),

Pl(f̃)Qk(f) = Pl(f̃0f0, f̃∞(f0 + f∞)),
l ≤ k.(2.3)

2.11 Operator dQk(f, g)

For f = (f0, f∞) and g = (g0, g∞) we define

dQk(f, g) : Γ(h1)→ Γ(h2),

dQk(f, g)
∣∣∣⊗n

s
h1

:=
n∑
j=1

∑
]{i|εi=∞}≤k

fε1 ⊗ · · · ⊗ fεj−1 ⊗ g0 ⊗ fεj+1 ⊗ · · · ⊗ fεn

+
n∑
j=1

∑
]{i|εi=∞}≤k−1

fε1 ⊗ · · · ⊗ fεj−1 ⊗ g∞ ⊗ fεj+1 ⊗ · · · ⊗ fεn .

Lemma 2.11 i)
dQ0(f, g) = dΓ(f0, g0).

ii) Heisenberg derivatives of Qk(f):

dΓ(d2)Qk(f)−Qk(f)dΓ(d1) = dQk(f, d2f − fd1),

d
dtQk(f) = dQk(f, d

dtf).

iii) Intertwining properties:

a(h2)dQk(f, g) = dQk(f, g)a(f∗0h2) + dQk−1(f, g)a(f∗∞h2)

+Qk(f)a(g∗0h2) +Qk−1(f)a(g∗∞h2),

dQk(f, k)a∗(h1) = a∗(f0h1)dQk(f, g) + a∗(f∞h1)dQk−1(f, g)

+a∗(g0h1)Qk(f) + a∗(g∞h1)Qk−1(f).
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iv) Commutation properties: assume h1 = h2. Then

[a(h),dQk(f, g)] = −dQk(f, g)a((1− f∗0 )h) + dQk−1(f, g)a(f∗∞h)

+Qk(f)a(g∗0h) +Qk−1(f)a(g∗∞h),

[a∗(h),dQk(f, g)] = a∗(1− f0)h)dQk(f, g)− a∗(f∞h)dQk−1(f, g)

−a∗(g0h)Qk(f)− a∗(g∞h)Qk−1(f).

v) If h1 = h2, 0 ≤ f0, 0 ≤ f∞, f0 + f∞ ≤ 1, g0, g∞ are selfadjoint, then

|(u2|dQk(f, g)u1)| ≤ ‖dΓ(|g0|)
1
2u2‖‖dΓ(|g0|)

1
2u1‖+ ‖dΓ(|g∞|)

1
2u2‖‖dΓ(|g∞|)

1
2u1‖.

vi) If h1 = h2, 0 ≤ f0, 0 ≤ f∞, f0 + f∞ ≤ 1, then we have the estimates

‖N−
1
2 dQk(f, g)u‖ ≤ ‖dΓ(g∗0g0 + g∗∞g∞)

1
2u‖.

Proof. As for Lemma 2.8, we content ourselves to indicate the proofs of parts v) and vi), the
rest of the lemma being easy to check. To prove v), we write

dQk(f, g) =
n∑
j=1

Mj,0g0,j +Mj,∞g∞,j ,

where
Mj,0 =

∑
]{i|εi=∞}=k

fε1 ⊗ · · · ⊗ fεj−1 ⊗ 1l⊗ fεj+1 ⊗ · · · ⊗ fεn ,

Mj,∞ =
∑

]{i|εi=∞}=k−1
fε1 ⊗ · · · ⊗ fεj−1 ⊗ 1l⊗ fεj+1 ⊗ · · · ⊗ fεn .

Since f0 + f∞ ≤ 1, we have ‖Mj,0‖ ≤ 1, ‖Mj,∞‖ ≤ 1. Then we argue as in the proof of Lemma
2.8, writing gε = g2,εg1,ε for g1,ε = |gε|

1
2 , g2,ε = sgngε|gε|

1
2 . A similar argument gives the proof of

vi), following the proof of Lemma 2.8 vi). 2

2.12 Partitions of unity

In this subsection we further study the operators Pk, Qk under the additional assumption

h1 = h2 = h, f0 + f∞ = 1.

Lemma 2.12 i) If h1 = h2 = h, 0 ≤ f0, 0 ≤ f∞, f0 + f∞ = 1 then the operators Pk(f) form
a partition of unity on Γ(h):

s- lim
k→∞

Qk(f) = 1l, s−
∞∑
k=0

Pk(f) = 1l.

ii) Intertwining properties:

a(h)Qk(f) = Qk(f)a(h)− Pk(f)a(f∞h) = Qk−1(f)a(h) + Pk(f)a(f0h),

Qk(f)a∗(h) = a∗(h)Qk(f)− a∗(f∞h)Pk(f) = a∗(h)Qk−1(f) + a∗(f0h)Pk(f).
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iii) Commutation properties:

[a(h), Qk(f)] = −Pk(f)a(f∞h),

[a∗(h), Qk(f)] = a∗(f∞h)Pk(f).

Finally, the operators Pk(f) and Qk(f) have other special properties, which will play an imporant
role in our geometric analysis of scattering.

Proposition 2.13 Let f0 + f∞ = 1, f̃0 + f̃∞ = 1.
i) Let f̃0f∞ = 0. Then for l ≤ k

Ql(f̃)Qk(f) = Ql(f̃),

Pl(f̃)Qk(f) = Pl(f̃).

ii) If 0 ≤ f0 ≤ f̃0 ≤ 1l, then
Qk(f) ≤ Qk(f̃).

Proof. i) follows from Prop. 2.10. Let us prove ii). Note that if f = (f0, f∞) satisfies
f0 + f∞ = 1, and depends on some parameter s then

d
ds
f0 = − d

ds
f∞, [b, f0] = −[b, f∞].

We observe now that the operator dQk(f, g) under the condition

g∞ = −g0(2.4)

has a simpler form:

dQk(f, g)
∣∣∣⊗n

s
h

=
n∑
j=1

∑
]{i|εi=∞}=k

fε1 ⊗ · · · ⊗ fεj−1 ⊗ g0 ⊗ fεj+1 ⊗ · · · ⊗ fεn(2.5)

Clearly, (2.5) is nonnegative if f0 ≥ 0, f∞ ≥ 0 and g0 ≥ 0. Now to prove ii), we set

fs := (1− s)f + sf̃ , s ∈ [0, 1].

We have:
d
ds
Qk(fs0 ) = dQk(fs, (f̃0 − f0, f0 − f̃0)) ≥ 0,

by (2.5). This completes the proof of ii). 2
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2.13 Operator Γ̌

Along with the space Γ(h) we will consider the space Γ(h ⊕ h) ' Γ(h) ⊗ Γ(h). We will use the
notation

N0 := N ⊗ 1l, N∞ := 1l⊗N.

Let j0, j∞ be two operators on h. Set j = (j0, j∞). We identify j with the operator

j : h→ h⊕ h,

jh := (j0h, j∞h).

We have
j∗ : h⊕ h→ h,

j∗(h0, h∞) = j∗0h0 + j∗∞h∞,

and
j∗j = j∗0j0 + j∗∞j∞.

By second quantization, we obtain the map

Γ(j) : Γ(h)→ Γ(h⊕ h).

Let U denote the unitary operator identifying Γ(h⊕h) with Γ(h)⊗Γ(h) introduced in Subsection
2.7. We define

Γ̌(j) : Γ(h)→ Γ(h)⊗ Γ(h),

Γ̌(j) := UΓ(j).

Another formula defining Γ̌(j) is

Γ̌(j)Πn
i=1a

∗(hi)Ω := Πn
i=1 (a∗(j0hi)⊗ 1l + 1l⊗ a∗(j∞hi)) Ω⊗ Ω, hi ∈ h.(2.6)

Finally, if we denote by Ik the natural isometry between
⊗n h and

⊗n−k h⊗
⊗k h, then we

have:
1l{k}(N∞)Γ̌(j)

∣∣∣⊗n

s
h

= Ik
√

n!
(n−k)!k! j0 ⊗ · · · ⊗ j0︸ ︷︷ ︸

n−k

⊗ j∞ ⊗ · · · ⊗ j∞︸ ︷︷ ︸
k

.

Lemma 2.14 i)
Γ̌(j̃)∗1l{1,...,k}(N∞)Γ̌(j) = Qk(j̃∗0j0, j̃

∗
∞j∞),

Γ̌(j̃)∗1l{k}(N∞)Γ̌(j) = Pk(j̃∗0j0, j̃
∗
∞j∞).

ii) Intertwining properties:

Γ̌(j)a∗(h) = (a∗(j0h)⊗ 1l + 1l⊗ a∗(j∞h)) Γ̌(j),

Γ̌(j)a(j∗0h) = a(h)⊗ 1lΓ̌(j),

Γ̌(j)a(j∗∞h) = 1l⊗ a(h)Γ̌(j).

iii) Commutation properties:

(a∗(h)⊗ 1l)Γ̌(j)− Γ̌(j)a∗(h) = (a∗((1− j0)h)⊗ 1l− 1l⊗ a∗(j∞h))Γ̌(j),

(a(h)⊗ 1l)Γ̌(j)− Γ̌(j)a(h) = −Γ̌(j)a((1− j∗0)h).
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iv) Γ̌(j) is bounded iff ‖j∗0j0 + j∗∞j∞‖ ≤ 1, and then

‖Γ̌(j)‖ = 1.

Proof. i) is a direct computation. ii)–iv) follow from Subsects. 2.7, 2.8. 2

Let us note some additional properties of Γ̌ in the isometric case.

Lemma 2.15 Assume
j∗0j0 + j∗∞j∞ = 1.(2.7)

(This assumption implies that j is isometric, that is j∗j = 1). Then
i)

Γ̌(j)∗Γ̌(j) = 1l.

ii) Intertwining properties:

Γ̌(j)a](h) =
(
a](j0h)⊗ 1l + 1l⊗ a](j∞h)

)
Γ̌(j),

Γ̌(j)φ(h) = (φ(j0h)⊗ 1l + 1l⊗ φ(j∞h)) Γ̌(j).

iii) Let b be an operator on h. Then

dΓ(b) = Γ̌(j)∗ (dΓ(b)⊗ 1l + 1l⊗ dΓ(b)) Γ̌(j) + 1
2dΓ(ad2

j0b+ ad2
j∞b).

Proof. i) and ii) are direct consequences of Lemma 2.14. Property iii) is a kind of IMS
localization formula which is shown by direct computation. 2

2.14 Operator dΓ̌(j, k)

Let j = (j0, j∞), k = (k0, k∞) be maps from h to h ⊕ h. Let U be the operator constructed in
Subsect. 2.7. We set

dΓ̌(j, k) : Γ(h)→ Γ(h)⊗ Γ(h),

dΓ̌(j, k) := UdΓ(j, k).

The operator dΓ̌(1, k) = UdΓ(k) will be denoted simply by dΓ̌(k).

Lemma 2.16 i) Heisenberg derivative of Γ̌(j):

d
dt Γ̌(j) = dΓ̌(j, d

dtj),

(dΓ(b)⊗ 1l + 1l⊗ dΓ(b)) Γ̌(j)− Γ̌(j)dΓ(b) = dΓ̌(j, ǎdb(j)).

Here b is an operator on h and

ǎdb(j) : h→ h⊕ h,

ǎdb(j)h := ([b, j0]h, [b, j∞]h).
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ii) Intertwining properties:

a(h)⊗ 1ldΓ̌(j, k) = dΓ̌(j, k)a(j∗0h) + Γ̌(j)a(k∗0h),

(a∗(j0h)⊗ 1l + 1l⊗ a∗(j∞h))dΓ̌(j, k) + (a∗(k0h)⊗ 1l + 1l⊗ a∗(k∞h))Γ̌(j) = dΓ̌(j, k)a∗(h).

iii) Commutation properties:

a(h)⊗ 1ldΓ̌(j, k)− dΓ̌(j, k)a(h) = −dΓ̌(j, k)a((1− j∗0)h) + Γ̌(j)a(k∗0h),

a∗(h)⊗ 1ldΓ̌(j, k)− dΓ̌(j, k)a∗(h) = (a∗((1− j0)h)⊗ 1l− 1l⊗ a∗(j∞h))dΓ̌(j, k)

−(a∗(k0h)⊗ 1l + 1l⊗ a∗(k∞h))Γ̌(j).

iv) If j∗0j0 + j∗∞j∞ ≤ 1, k0, k∞ are self-adjoint, we have the estimate:

|(u2|dΓ̌(j, k)u1)| ≤ ‖dΓ(|k0|)
1
2 ⊗ 1lu2‖‖dΓ(|k0|)

1
2u1‖

+‖1l⊗ dΓ(|k∞|)
1
2u2‖‖dΓ(|k∞|)

1
2u1‖.

v) If j∗0j0 + j∗∞j∞ ≤ 1, then

‖(N0 +N∞)−
1
2 dΓ̌(j, k)u‖ ≤ ‖dΓ(k∗0k0 + k∗∞k∞)

1
2u‖.

Proof. All statements follow directly from analogous statements in Lemma 2.8 and from the
identities in Subsect. 2.7. The only point which deserve some care is iv). To prove iv), we write
k = k0 + k∞, where k0 = (k0, 0), k∞ = (0, k∞), and use Lemma 2.8 v), writing k0 as r2r1 with
r2 = (|k0|

1
2 , 0), r1 = sgnk0|k0|

1
2 , and k∞ as r2r1 with r2 = (0, |k∞|

1
2 ), r1 = sgnk∞|k∞|

1
2 . 2

2.15 Scattering identification operators

Let
i : h⊕ h→ h,

(h0, h∞) 7→ h0 + h∞.

An important role in scattering theory is played by the following identification operator (see
[HuSp1]):

I := Γ(i)U∗ = Γ̌(i∗)∗ : Γ(h)⊗ Γ(h)→ Γ(h).

Note that since ‖i‖ =
√

2, the operator Γ(i) is unbounded.
Another formula defining I is:

I
n
Π
i=1

a∗(hi)Ω⊗
p

Π
i=1

a∗(gi)Ω :=
p

Π
i=1

a∗(gi)
n
Π
i=1

a∗(hi)Ω, hi, gi ∈ h.(2.8)

If h = L2(IRd, dk), then we can write still another formula for I:

Iu⊗ ψ =
1

(p!)
1
2

∫
ψ(k1, · · · , kp)a∗(k1) · · · a∗(kp)udk, u ∈ Γ(h), ψ ∈ ⊗ps h.(2.9)

We deduce from (2.8) that

I(N + 1)−k/2 ⊗ 1l restricted to Γ(h)⊗⊗ks h is bounded.(2.10)
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Lemma 2.17 Let b be an operator on h. Then

i) dΓ(b)I = I(dΓ(b)⊗ 1l + 1l⊗ dΓ(b)),

ii) φ(h)I − I(φ(h)⊗ 1l) = 1√
2
I1l⊗ a(h), h ∈ h.

Proof. i) follows from Lemma 2.16 i). ii) follows from Lemma 2.15 ii). 2

It is easy to construct a right inverse to the identification operator I. Let j0, j∞ be two
operators on h such that 0 ≤ j0 ≤ 1, 0 ≤ j∞ ≤ 1, and j0 + j∞ = 1. Let j = (j0, j∞) : h→ h⊕ h,
as in Subsect. 2.13. Clearly, 0 ≤ j∗j ≤ 1, hence ‖j‖ ≤ 1, and therefore Γ̌(j) is a bounded
operator. We have ij = 1, hence

IΓ̌(j) = 1l.

We also have
I1l{1,...,k}(N∞)Γ̌(j) = Qk(j),

I1l{k}(N∞)Γ̌(j) = Pk(j).
(2.11)

2.16 Space of additional degrees of freedom

In this subsection we fix some notation which will be used in the next section to define the
interaction part of the Hamiltonian.

Suppose that K is a Hilbert space. If v ∈ B(K,K ⊗ h), then we can define a∗(v), a(v), φ(v)
as unbounded operators on K ⊗ Γ(h):

a∗(v)
∣∣∣
K⊗
⊗n

s
h

:=
√
n+ 1

(
1lK ⊗ Sn+1

)(
v ⊗ 1l⊗n

s
h

)
,

a(v) := (a∗(v))∗,

φ(v) := 1√
2
(a(v) + a∗(v).

They satisfy the estimates
‖a](v)(N + 1)−

1
2 ‖ ≤ ‖v‖,(2.12)

where ‖v‖ is the norm of v in B(K,K⊗ h). Clearly, the condition v ∈ B(K,K⊗ h) is equivalent
to

v∗v ∈ B(K).

If h = L2(IRd,dk), then the operator v can be represented as a function k 7→ v(k) ∈ B(K)
(defined a.e), and the condition v ∈ B(K,K ⊗ h) is equivalent to∫

v∗(k)v(k)dk ∈ B(K).(2.13)

(2.13) is implied in particular by ∫
‖v(k)‖2B(K)dk <∞.
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3 Pauli-Fierz Hamiltonians

3.1 Introduction

In this section we introduce the class of Hamiltonians that we will study in this paper and we
give some examples. We also describe a number of related definitions which will be useful in
our study, in particular the “extended Hamiltonian” Hext. At the end of this section we prove
some technical estimates concerning the Hamiltonian H.

3.2 Hamiltonian

Let K be a Hilbert space representing the degrees of freedom of the atomic system. The Hamil-
tonian describing the atomic system is denoted by K. We assume that K is selfadjoint on
D(K) ⊂ K and bounded below. A condition that will be sometimes imposed is

(H0) (K + i)−1 is compact.

Its physical interpretation is that the atomic system is confined.
Let h = L2(IRd, dk) be the 1−particle Hilbert space in the momentum representation and

let Γ(h) be the bosonic Fock space over h, representing the field degrees of freedom. We will
denote by k the momentum operator of multiplication by k on L2(IRd,dk), and by x = i∇k the
position operator on L2(IRd,dk). Let ω ∈ C(IRd, IR) be the boson dispersion relation. A general
condition which will always be assumed is:

(H1)



∇ω ∈ L∞(IRd),

∇ω(k) 6= 0 for k 6= 0,

lim|k|→∞ ω(k) = +∞,

inf ω(k) = ω(0) =: m > 0.

The quantity m = inf ω(k) is called the boson rest mass and plays a very important role in our
analysis. The typical example is of course the relativistic dispersion relation ω(k) = (k2 +m2)

1
2 .

We will sometimes need the following smoothness assumption:

(H2) |∂αk ω(k)| ≤ Cα, |α| ≥ 1.

The Hamiltonian describing the field is equal to dΓ(ω(k)).
The Hilbert space of the interacting system is

H := K ⊗ Γ(h).

The interaction between the atom and the boson field is described with a coupling operator v
satisfying

(I1) v ∈ B(K,K ⊗ h).

As we saw in Subsect. 2.16, condition (I1) is implied by the stronger condition

(I1)′
∫
‖v(k)‖2B(K)dk <∞.
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The interaction term is equal to:

V := φ(v) =
1√
2

(a∗(v) + a(v)).

We consider the Hamiltonian
H := H0 + V, acting on H,

where
H0 := K ⊗ 1l + 1l⊗ dΓ(ω(k)).

Proposition 3.1 Assume hypotheses (H1) and (I1). Then V is H0−bounded with the infinites-
imal bound. Consequently H is selfadjoint on D(H0) and bounded below.

Proof. It follows from (2.12) and from the positivity of the mass that

‖a](v)(H0 + 1)−
1
2 ‖ ≤ C‖v‖.(3.1)

This implies that V is H0-bounded with the infinitesimal bound. 2

To study the scattering theory for H, in particular to establish the existence of asymptotic
fields, we will need to impose a stronger condition on the interaction v:

(SR) ‖1l[R,∞[(|x|)v‖B(K,K⊗h) ≤ CR−1−µ, µ > 0.

This assumption is an analog of the short-range condition in non-relativistic scattering.
Note that without much additional work, essentially all our results could be proven under a

somewhat weaker assumption

(SR′) ‖1l[R,∞[(|x|)(i +K)−1v‖B(K,K⊗h) ≤ CR−1−µ, µ > 0.

We will use the following notations for various Heisenberg derivatives:

d0 = ∂
∂t + [ω(k), i·], acting on B(h),

D0 = ∂
∂t + [dΓ(ω(k)), i·], acting on B(Γ(h)),

D = ∂
∂t + [H, i·], acting on B(H).

Note that we have
D0dΓ(b) = dΓ(d0b).

3.3 Examples

Our first example is the spin-boson model, where the small system is simply a two components
spin. We have then K = C2, K = σz, and v(k) = σx⊗ g(k), for a scalar function g ∈ L2(IRd,C).
Here σx, σy, σz are the Pauli matrices. So the spin-boson Hamiltonian is given by

H = σz ⊗ 1l + 1l⊗ dΓ(ω) + σx ⊗ φ(g), acting on C2 ⊗ Γ(L2(IRd)).

Recently there has been a renewed interest in the scattering theory for the spin-boson model,
in connection with the problem of radiative decay. In [HuSp2], Huebner and Spohn proved a
Mourre estimate for the massive spin-boson model for a small coupling constant. In [HuSp1]
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the scattering theory for the spin -boson model is connected to the radiative decay problem and
various questions are formulated.

Our second example is a simplified Hamiltonian of an atom iteracting with a massive rela-
tivistic bosonic field. (Note that a similar Hamiltonian was contained in the paper by Pauli and
Fierz [PF], except that the field was electromagnetic, and hence massless). In this case

K := L2(IR3N ),

K =
N∑
j=1

1
2
D2
xj +

N∑
j=1

W (xj) +
∑
i<j

U(xi − xj).

Here W is the interaction between one electron and the nucleus and U the electron-electron
interaction. If we assume that the potential W tends to +∞ at infinity, ie that the atom is
confined, then condition (H0) is satisfied.

The boson dispersion relation is ω(k) = (k2 +m2)
1
2 . The interaction V is given by

V =
N∑
j=1

∫
(v(k, xj)a∗(k) + v(k, xj)a(k))dk,

where xj denotes the position of the jth electron and v(k, x) is a function

IR3 × IR3 3 (k, x) 7→ v(k, x) ∈ C.

In order to satisfy condition (SR), we need to assume that

supx
( ∫
|y|>R |v̂(y, x)|2dy

) 1
2 ≤ CR−1−µ,(3.2)

where v̂(y, x) denotes the Fourier transform of v(k, x) with respect to the first variable. (3.2) is
satisfied if for instance

v(k, x) = ρ(x)eik·xω(k)−
1
2χ(k),

where ρ ∈ S(IRd) is a spacial cut-off and χ ∈ S(IRd) is an ultraviolet cutoff.
Note that if one uses the condition (SR′), then one can treat a somewhat more general, and

perhaps even more physical, class of Hamiltonians. (SR′) is implied by the following hypothesis:

W (x) ≥ C0〈x〉σ, for some C0 > 0, σ ≥ 0,

sup
x

( ∫
|y|>R |v̂(y, x)|2〈x〉−2σdy

) 1
2 ≤ CR−1−µ.

(3.3)

In particular, (3.3) is a consequence of the following conditions:

W (x) ≥ C0〈x〉1+µ, for some C0 > 0,

v(k, x) = eikxω(k)−
1
2χ(k),

(3.4)

where χ ∈ S(IRd) is an ultraviolet cutoff. Note that under the condition (3.4) the interaction V
is translation invariant. Nevertheless, the atomic Hamiltonian K has to be confining, and hence
it is not translation invariant.

For more discussion of similar models, their relationship with quantum electrodynamics and
their validity the reader should consult [BFS].
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3.4 Extended Hilbert space

Along with the space
H = K ⊗ Γ(h),

we will use the “extended space”

Hext := H⊗ Γ(h) = K ⊗ Γ(h)⊗ Γ(h).

The extended Hilbert space is very convenient to set up the scattering theory for H. We will
use the notation

N0 := 1l⊗N ⊗ 1l, N∞ := 1l⊗ 1l⊗N.

We will also need the “extended Hamiltonian” and the “extended free Hamiltonian”

Hext := H ⊗ 1l + 1l⊗ dΓ(ω(k)),

Hext
0 := H0 ⊗ 1l + 1l⊗ dΓ(ω(k)).

It is useful to introduce the following asymmetric Heisenberg derivatives:

ď0f(t) := ∂
∂tf(t) + (ω(k)⊕ ω(k))if(t)− if(t)ω(k),

f(t) ∈ B(h, h⊕ h),

Ď0F (t) := ∂
∂tF (t) + (dΓ(ω)⊗ 1l + 1l⊗ dΓ(ω))iF (t)− iF (t)dΓ(ω),

F (t) ∈ B(Γ(h),Γ(h)⊗ Γ(h)),

ĎB(t) := ∂
∂tB(t) +HextiB(t)− iB(t)H,

B(t) ∈ B(H,Hext).

Note that we have
Ď0dΓ(f) = dΓ̌(ď0f).

For a selfadjoint operator A, we will denote by Hcomp(A) the subspace of vectors u ∈ H such
that u = χ(A)u, for some χ ∈ C∞0 (IR). In particular, the space Hcomp(N) is the space Γfin(h) of
finite particle vectors.

3.5 Number-energy estimates

This subsection is devoted to some rather elementary bounds. Note that these bounds fail if the
boson mass m is zero. They imply directly that in the estimates of Sect. 2, the factor (N + 1)
can be replaced by (H + i). This observation will be used often in the sequel.

Lemma 3.2 Assume the hypotheses (H1), (I1).
i) Then uniformly for z in a compact set of C, we have

(N + 1)−m(z −H)−k(N + 1)m+k ∈ O(|Imz|−Cm,k).

ii) Let χ ∈ C∞0 (IR). Then
‖Nmχ(H)Np‖ <∞, n, p ∈ IN.
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Proof. Clearly, adjNH = φ(ijv). By hypothesis (I1) φ(ijv)(H + i)−1 is bounded. We have

(H + z)−1Nk = N(H + z)−1Nk−1 + (H + z)−1φ(iv)(H + z)−1Nk−1.

Moving repeatedly factors of N to the left, we get

(H + z)−1Nk = Nk(H + z)−1 +
k∑
i=1

Nk−l(H + z)−1Bl(z),

with Bl(z) ∈ O(|Imz|−l). Therefore, using

N(H + z)−1 ∈ O(|Imz|−1)

we see that
(N + 1)−k+1(H + z)−1(N + 1)k ∈ O(|Imz|−k).

This implies i). ii) follows directly from i) by writing

Nmχ(H)Np =
m
Π
k=1

Nm−k(H + i)−1Nk−m−1(H + i)mχ(H)(H + i)p
p

Π
k=1

Nk−p−1(H + i)−1Np−k.

2

We will use the following notation: for an operator B(t) ∈ B(H) depending on some param-
eter t we will write

B(t) ∈ (N + 1)mON (tp)

if ‖(N + 1)−m−kB(t)(N + 1)k‖ ≤ Ck〈t〉p, k ∈ ZZ.

Likewise, for an operator C(t) ∈ B(H,Hext) we will write

C(t) ∈ ǑN (tp)(N + 1)m

if ‖(N0 +N∞)−m−kC(t)(N + 1)k‖ ≤ Ck〈t〉p, k ∈ ZZ.

Finally we will frequently use the following functional calculus formula (see [HS, DeGe]) for
χ ∈ C∞0 (IR):

χ(A) =
i

2π

∫
C
∂ zχ̃(z)(z −A)−1dz ∧ d z,(3.5)

where χ̃ ∈ C∞0 (C) is an almost analytic extension of χ satisfying

χ̃|IR = χ,

|∂ zχ̃(z)| ≤ Cn|Imz|n, n ∈ IN.

3.6 Commutator estimates

In this subsection we estimate commutators between some operators considered in Sect. 2 and
functions of H and Hext.
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Lemma 3.3 Let f0 ∈ C∞0 (IRd), f∞ ∈ C∞(IRd), 0 ≤ f0, 0 ≤ f∞, f0 + f∞ ≤ 1, f0 = 1 near
0 (and hence f∞ = 0 near 0). Set f := (f0, f∞) and, for R ≥ 1, fR = (fR0 , f

R
∞), where

fR0 (x) = f0( xR), fR∞(x) = f∞( xR). Assume hypotheses (H1), (H2). Let χ ∈ C∞0 (IR). Then for
m ∈ IN, one has

Nm[χ(H), Qk(fR)]χ(H) ∈
{
o(R0) under (I1),
O(R−1) under (SR).

(3.6)

Lemma 3.4 Let j0 ∈ C∞0 (IRd), j∞ ∈ C∞(IRd), 0 ≤ j0, 0 ≤ j∞, j2
0 + j2

∞ ≤ 1, j0 = 1 near 0
(and hence j∞ = 0 near 0). Set j := (j0, j∞) and for R ≥ 1 jR = (jR0 , j

R
∞). Assume hypotheses

(H1), (H2).

i) (Hext + i)−1Γ̌(jR)− Γ̌(jR)(H + i)−1 ∈
{
o(R0) under (I1),
O(R−1) under (SR).

ii) Let χ, χ̃ ∈ C∞0 (IR). Then

(N0 +N∞)m
(
χ(Hext)Γ̌(jR)− Γ̌(jR)χ(H)

)
χ̃(H) ∈

{
o(R0) under (I1),
O(R−1) under (SR).

Proof of Lemma 3.3. Let m(R) := o(R0), if hypothesis (I1) holds, and m(R) := O(R−1),
if hypothesis (SR) holds. Let us show the first estimate.

[H0, Qk(fR)] = dQk(fR, [ω(k), fR]) ∈ ON (R−1)(N + 1),(3.7)

using Lemma 2.11 vi) and pseudodifferential calculus. Using then Lemma 2.9 iii), and the fact
that 0 6∈ supp f∞, 0 6∈ supp (1− f0) we have

[V,Qk(fR)] = 1√
2

(
a∗((1− fR0 )v)Qk(fR)− a∗(fR∞v)Qk−1(fR)

−Qk(fR)a((1− fR0 )v) +Qk−1(fR)a(fR∞v)
)

∈ n(R)(N + 1)
1
2 ,

(3.8)

where n(R) = o(R0) under hypothesis (I1), and n(R) = O(R−1−µ) under hypothesis (SR).
Hence

[H,Qk(f t)] ∈ m(R)(N + 1).

Next we use the functional calculus formula (3.5), which yields

Nm[χ(H), Qk(f t)]χ(H)

= i
2π

∫
C ∂ zχ̃(z)Nm(z −H)−1[H,Qk(f t)](z −H)−1χ(H)dz ∧ d z.

(3.9)

By Lemma 3.2,
Nm(z −H)−1(N + 1)−m+1 ∈ O(|Imz|−Cm),(3.10)

‖(1 +N)mχ̃(H)‖ ≤ C.
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This shows that the integrand in (3.9) is bounded by O(|Imz|−p)t−1 for some p, and completes
the proof of the lemma. 2

Proof of Lemma 3.4. Using Lemma 2.16 i), we obtain

Hext
0 Γ̌(jR)− Γ̌(jR)H0 = dΓ̌(jR, ǎdω(k)j

R) ∈ ǑN (R−1)(N + 1).

Likewise, using Lemma 2.14 iii),

V ⊗ 1lΓ̌(jR)− Γ̌(jR)V = 1√
2

(
a∗((1− jR0 )v ⊗ 1l− 1l⊗ a∗(jR∞v)Γ̌(jR)− Γ̌(jR)a((1− jR0 )v)

)
∈ ǑN (n(R))(N + 1)

1
2 .

(3.11)

Therefore,
HextΓ̌(jR)− Γ̌(jR)H ∈ ǑN (m(R))(N + 1).(3.12)

This implies i).
Using then formula (3.5), we have

(N0 +N∞)m
(
χ(Hext)Γ̌(jR)− Γ̌(jR)χ(H)

)
χ̃(H)

= i
2π

∫
C ∂ zχ̃(z)(N0 +N∞)m(z −Hext)−1

(
HextΓ̌(jR)− Γ̌(jR)H

)
(z −H)−1χ̃(H)dz ∧ d z.

By the same argument as in Lemma 3.2, we have

(N0 +N∞)m(z −Hext)−1(N0 +N∞)−m+1 ∈ O(|Imz|−Cm).

Then we argue as in the proof of Lemma 3.3. 2

4 Spectral analysis of Pauli-Fierz Hamiltonians

4.1 Introduction

In this section we study the properties of the spectrum of H. The results of this section are
fairly parallel to their analogs in the theory of N -body Schrödinger operators.

In Subsect. 4.2 we will show an analog of the HVZ theorem describing the essential spectrum
of H. It will obviously imply the existence of a ground state of H. Note that in the massless
case under certain additional assumptions, it is also possible to prove the existence of a ground
state, but the result is deeper then (see [BFS, AH, Sp3]).

In Subsect. 4.3 we will prove the finiteness of the imbedded pure point spectrum outside of
thresholds – a result that follows from an analog of the Mourre estimate, which we also prove
in this subsection. Let us stress that the assumption that the boson mass is positive plays an
important role in the results of Subsects 4.2, 4.3.

If A is an operator, then σ(A) denotes its spectrum, σpp(A) its pure point spectrum and
σess(A) its essential spectrum. For a Borel subset U ⊂ IR we use 1lU (A) to denote the spectral
projection of A onto U .
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4.2 HVZ theorem and existence of a ground state

Let us state the main result of this subsection.

Theorem 4.1 Assume hypotheses (H0), (H1), (I1). Then

σess(H) = [inf σ(H) +m,+∞[.

Consequently, inf σ(H) is a discrete eigenvalue of H.

We will make use of the partitions of unity of Subsect. 2.12. Recall that to construct this
partition we pick functions j0, j∞ ∈ C∞(IRd) with 0 ≤ j0 ≤ 1, j0 ∈ C∞0 (IRd), j0 = 1 near 0 and
j2
0 + j2

∞ = 1. For R ≥ 1, jR is defined as in Subsect. 3.6. We will also set qR = (jR0 )2.

Lemma 4.2 Assume hypotheses (H0), (H1) and (I1). Then the operator Γ(qR)(H + i)−1 is
compact on H.

Proof. Since D(H) = D(H0), we see that it is enough to show the compactness of Γ(qR)(H0 +
i)−1. Since 1l[n,+∞[(N)(H0 + i)−1 tends to 0 in norm when n → ∞, it suffices to prove that
Γ(qR)(H0 + i)−1 is compact on every n-particle sector. But

Γ(qR)(H0 + i)−1
∣∣∣
K⊗
⊗n

s
h

= Πn
i=1j

2
0(xiR )(i +K +

∑n
i=1 ω(Di))−1

is compact, using hypotheses (H0) and (H1). 2

Proof of Theorem 4.1. We prove first the ⊂ part of the theorem. Let χ ∈ C∞0 (] −
∞, inf σ(H) +m[). Because of suppχ, we have:

χ(Hext) = χ(Hext)1l{0}(N∞).

Hence, using twice Lemma 3.4, we have

χ(H) = χ(H)Γ̌(jR)∗Γ̌(jR) = Γ̌(jR)∗χ(Hext)Γ̌(jR) + o(R0)

= Γ̌(jR)∗χ(Hext)1l{0}(N∞)Γ̌(jR) + o(R0) = Γ̌(jR)∗1l{0}(N∞)Γ̌(jR)χ(H) + o(R0).

The operator Γ̌(jR)∗1l{0}(N∞)Γ̌(jR)χ(H) = Γ(qR)χ(H) is compact by Lemma 4.2. Hence χ(H)
is compact as a limit of compact operators.

Let us now prove the ⊃ part of the theorem. Note that it follows from the ⊂ part of the
theorem that H admits a ground state. Let λ > inf σ(H)+m. Let w be a ground state of H. Let
h ∈ C∞0 (IRd) with

∫
h(k)dk = 1 and let x0 ∈ IRd, x0 6= 0, k0 ∈ IRd, k0 6= 0, ω(k0) = λ− inf σ(H).

Choose a sequence (Rj) such that limj→∞ j
−1Rj =∞ and define hj ∈ C∞0 (IRd) by setting

hj(k) = jd/2h(j(k − k0))eiRj〈k,x0〉.

Then ‖hj‖ = 1, w − limj→∞ hj = 0 and limj→∞(ω(k)− ω(k0))hj = 0. Let

uj := a∗(hj)w.

We have limj→∞ ‖uj‖ = 1 and, by Lemma 2.1 iii), w − limj→∞ uj = 0. Now

(H − λ)uj = a∗(hj)(H − λ)w + a∗(ω(k)hj)w + (v|hj)w

= a∗
(
(ω(k)− ω(k0))hj

)
w + (v|hj)w ∈ o(j0),

when j →∞. Since uj tends weakly to 0, we have constructed a Weyl sequence for λ. 2
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4.3 The Mourre estimate and local finiteness of point spectrum

Let τ := σpp(H) +mIN×, where IN× is the set of positive integers. Elements of τ will be called
thresholds, in analogy with the case of N−particle Schrödinger operators.

Let a be the operator on h defined as a = 1
2 (∇ω(k) ·Dk +Dk · ∇ω(k)). Under hypothesis

(H2) a is selfadjoint with domain D(a) := {h ∈ h | ah ∈ h}.
We assume in this section that

(I2) ‖av‖B(K,K⊗h) <∞.

Let A = 1lK ⊗ dΓ(a). Note that [H, iA], defined as a quadratic form on D(A) ∩ D(H) equals

[H, iA] = dΓ(|∇ω(k)|2) + φ(iav).

Moreover D(A)∩D(H) contains the space Γfin(S(IRd)) which is a core for H. So [H, iA] extends
as an operator bounded on D(H), similar to H, with ω(k) replaced by |∇ω(k)|2 and v by iav.
Finally using the fact that D(H) = D(H0), it is easy to check that eiαA leaves D(H) invariant
and that sup|α|<1 ‖HeiαAψ‖ <∞ for ψ ∈ D(H).

Consequently Lemma 3.4 applies to [H, iA]. Another consequence of hypothesis (I2) is that
[H, iA](H + i)−1 is bounded.

Theorem 4.3 Assume the hypotheses (H0), (H1), (H2), (I1), (I2). Then
i) Let λ ∈ IR\τ . Then there exists ε > 0, C0 > 0 and a compact operator K0 such that

1l[λ−ε,λ+ε](H)[H, iA]1l[λ−ε,λ+ε](H) ≥ C01l[λ−ε,λ+ε](H) +K0.

ii) for all [λ1, λ2] such that [λ1, λ2] ∩ τ = ∅, one has

dim1lpp
[λ1,λ2](H) <∞.

Consequently σpp(H) can accumulate only at τ , which is a closed countable set.
iii) Let λ ∈ IR\(τ ∪ σpp(H)). Then there exists ε > 0, C0 > 0 such that

1l[λ−ε,λ+ε](H)[H, iA]1l[λ−ε,λ+ε](H) ≥ C01l[λ−ε,λ+ε](H).

Proof. The proof will have the same logical structure as in the case of N−particle Schrödinger
operators. Let

d(λ) :=
Ω⊥

inf
{σpp(H)+dΓ(ω(k))=λ}

dΓ(|∇ω(k)|2)

= inf
{ n∑
i=1
|∇ω(ki)|2

∣∣∣ λ1 +
n∑
i=1

ω(ki) = λ, n = 1, 2, . . . , λ1 ∈ σpp(H)
}
,

d̃(λ) := inf
{σpp(H)+dΓ(ω(k))=λ}

dΓ(|∇ω(k)|2)

= inf
{ n∑
i=1
|∇ω(ki)|2

∣∣∣ λ1 +
n∑
i=1

ω(ki) = λ, n = 0, 1, 2, . . . , λ1 ∈ σpp(H)
}
.
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The superscript Ω⊥ in the definition of d(λ) means that one excludes the vacuum sector to
compute the infimum. Let us note that

d̃(λ) :=

 d(λ), λ 6∈ σpp(H),

0, λ ∈ σpp(H),

We introduce also “smeared out” versions of the functions d(λ) and d̃(λ). We set

∆κ
λ := [λ− κ, λ+ κ]

and
dκ(λ) := inf

µ∈∆κ
λ

d(µ),

d̃κ(λ) := inf
µ∈∆κ

λ

d̃(µ).

Note that the following inequality holds

Ω⊥

inf
(
d̃κ(λ− dΓ(ω(k))) + dΓ(|∇ω(k)|2)

)
≥ dκ(λ).(4.1)

or in other words, if n = 1, 2, . . . then

d̃κ
(
λ−

n∑
i=1

ω(ki)
)

+
n∑
i=1
|∇ω(ki)|2 ≥ dκ(λ).

We will use an induction with respect to n ∈ IN. Let us first list the statements that we will
show. We put E0 := inf σ(H).
H1(n) : Let ε > 0 and λ ∈ [E0, E0 + nm[. Then there exists a compact operator K0, an interval
∆ 3 λ such that

1l∆(H)[H, iA]1l∆(H) ≥ (d(λ)− ε)1l∆(H) +K0.

H2(n) : Let ε > 0 and λ ∈ [E0, E0 + nm[. Then there exists an interval ∆ 3 λ such that

1l∆(H)[H, iA]1l∆(H) ≥ (d̃(λ)− ε)1l∆(H).

H3(n) : Let κ > 0, ε0 > 0 and ε > 0. Then there exists δ > 0 such that for all λ ∈ [E0, E0 +
nm− ε0], one has

1l∆δ
λ
(H)[H, iA]1l∆δ

λ
(H) ≥ (d̃κ(λ)− ε)1l∆δ

λ
(H).

S1(n) : τ is a closed countable set in [E0, E0 + nm].
S2(n) : for all λ1 ≤ λ2 ≤ E0 + nm with [λ1, λ2] ∩ τ = ∅, we have dim1lpp

[λ1,λ2](H) <∞.
For all n ∈ IN, we will describe the proof the following implications:

H1(n)⇒ H2(n),

H2(n)⇒ H3(n),

H1(n)⇒ S2(n),

S2(n− 1)⇒ S1(n),

S1(n) and H3(n− 1)⇒ H1(n).
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Note first that the statements H1(1) and S1(1) are immediate since the spectrum of H is discrete
in [E0, E0 +m[. Note also that the implication S2(n− 1)⇒ S1(n) is obvious. The proofs of the
implications H1(n)⇒ H2(n), H2(n)⇒ H3(n), H1(n)⇒ S2(n) are standard abstract arguments
which adapt directly to the present setting (see eg [Mo] and [FH]). It remains to prove that
S1(n) and H3(n− 1)⇒ H1(n).

Using Lemma 3.4 for H and [H, iA], we write, for χ ∈ C∞0 ([E0, E0 + nm[),

χ(H)[H, iA]χ(H) = Γ̌(jR)∗1l{0}(N∞)Γ̌(jR)χ(H)[H, iA]χ(H)

+Γ̌(jR)∗1l[1,∞[(N∞)Γ̌(jR)χ(H)[H, iA]χ(H)

= Γ(qR)χ(H)[H, iA]χ(H)

+Γ̌(jR)∗1l[1,∞[(N∞)χ(Hext)[Hext, iA]χ(Hext)Γ̌(jR) + o(R0).

(4.2)

The first term of (4.2) is compact by Lemma 4.2. The second term in the r.h.s. of (4.2) we
estimate by diagonalizing dΓ(ω(k)) and dΓ(|∇ω(k)|2) on the range of 1l[1,+∞[(N∞). Using the
closedness of τ in [E0, E0 + nm], i.e the induction hypothesis S1(n), we see that

d(λ) = sup
κ>0

dκ(λ),

for λ ∈ [E0, E0 +nm[. So we may choose κ small enough so that dκ(λ) ≥ d(λ)− ε/3. Next using
H3(n− 1) we choose δ such that for λ ∈ [E0, E0 + nm− ε0[, we have

1l∆δ
λ
(H + dΓ(ω(k)))

(
[H, iA]⊗ 1l + 1l⊗ dΓ(|∇ω(k)|2)

)
1l∆δ

λ
(H + dΓ(ω(k)))1l[1,∞[(N∞)

≥ 1l∆δ
λ
(H + dΓ(ω(k)))

(
d̃κ(λ− dΓ(ω(k))) + dΓ(|∇ω(k)|2)− ε

3

)
1l[1,∞[(N∞)

≥ (dκ(λ)− ε
3)1l∆δ

λ
(H + dΓ(ω(k)))1l[1,∞[(N∞)

≥ (d(λ)− 2ε
3 )1l∆δ

λ
(H + dΓ(ω(k)))1l[1,∞[(N∞).

Using again Lemmas 3.4 and 4.2, this yields, for suppχ ⊂ [λ− δ, λ+ δ],

χ(H)[H, iA]χ(H) ≥ (d(λ)− 2ε/3)χ2(H) +K1 + o(R0),

where K1 is compact. Picking R large enough, this proves H1(n). 2

5 Asymptotic fields and wave operators

5.1 Introduction

In this section we describe the existence of asymptotic fields. Using these fields we define wave
operators. Results of this section follow easily by the Cook method and were well known for
a long time (see for example [HK1, HK2]). They are the analog of the existence of the wave
operators in non-relativistic scattering theory and serve as the conceptual basis for the scattering
theory in QFT.

Note that most of the results, after minor modifications, hold even if the mass of the bosons
is zero. The most important exception is the unitarity of the wave operator, which implies the
Fock property of the asymptotic commutation relations.
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5.2 Asymptotic fields

In all this section, we will assume the conditions (H1), (H2), (I1) and (SR).
For h ∈ h we set ht := e−itω(k)h. We denote by h0 ⊂ h the space C∞0 (IRd\{0}).

Theorem 5.1 i) For all h ∈ h the strong limits

W+(h) := s- lim
t→+∞

eitHW (ht)e−itH(5.1)

exist. They are called the asymptotic Weyl operators. For h ∈ h0 the limit in (5.1) is a norm
limit. For all h ∈ h and ε > 0 the asymptotic Weyl operators can be also defined using the norm
limit:

W+(h)(i +H)−ε = lim
t→+∞

eitHW (ht)(i +H)−εe−itH .(5.2)

ii) The map
h 3 h 7→W+(h)(5.3)

is strongly continuous and the map

h 3 h 7→W+(h)(i +H)−ε(5.4)

is norm continuous.
iii) The operators W+(h) satisfy the Weyl commutation relations:

W+(h)W+(g) = ei 1
2
Im(h|g)W+(h+ g).

iv) The Hamiltonian preserves the asymptotic Weyl operators:

eitHW+(h)e−itH = W+(h−t).(5.5)

Proof. It follows from Lemma 2.7 ii) that

W (ht) = e−itH0W (h)eitH0 ,

which implies that, as a quadratic form on D(H0), one has

∂tW (ht) = −[H0, iW (ht)].(5.6)

Using (5.6) and the fact that D(H) = D(H0), we have, as quadratic forms on D(H),

∂teitHW (ht)e−itH = ieitHIm(ht|v)W (ht)e−itH .

Integrating this relation we obtain (first as a quadratic form identity on D(H0), then by a simple
argument, as an operator identity)

eitHW (ht)e−itH −W (h) = i
∫ t

0
eisHIm(hs|v)W (hs)e−isHds.

Using assumption (SR) and stationary phase arguments, we obtain that, for h ∈ h0,

‖(ht|v)‖B(K) ≤ Ct−1−µ,(5.7)
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which proves the existence of the norm limit (5.1) for h ∈ h0. For h ∈ h, let hn ∈ h0 such that
h = limn→∞ hn. Using the fact that ‖(N + 1)ε(i +H)−ε‖ <∞ and Prop. 2.4 iii), we have

lim
n→∞

sup
t∈IR
‖ (W (hn,t)−W (ht)) (i +H)−ε‖ = 0.

This implies the existence of the norm limit (5.2) for all h ∈ h. Now (5.2) implies (5.1). This
ends the proof of i) .

We have

‖ (W+(h)−W+(g)) ‖ ≤ limt→+∞ ‖eitHW (ht)(H + i)−εe−itH − eitHW (gt)(H + i)−εe−itH‖

= limt→+∞ ‖ (W (ht)−W (gt)) (H + i)−ε‖ ≤ C‖h− g‖ε,

by Prop. 2.4 iii), which implies the norm continuity of (5.4). This implies the strong continuity
of (5.3) and completes the proof of ii). Finally iii) and iv) are immediate. 2

For two operators A1, A2 on a Hilbert space H, we make the convention that D(A1A2) :=
{u ∈ D(A2)|A2u ∈ D(A1)}.

Theorem 5.2 i) For any h ∈ h there exists a selfadjoint operator φ+(h), called the asymptotic
field, such that

W+(h) = eiφ+(h).

ii) For hi ∈ h, 1 ≤ i ≤ n, D((H + i)n/2) ⊂ D(Πn
1φ

+(hi)), and

n
Π
i=1

φ+(hi)(H + i)−n/2 = lim
t→+∞

eitH n
Π
i=1

φ(hi,t)e−itH(H + i)−n/2.

We have the bound
‖Πn

1φ
+(hi)(H + i)−n/2‖ ≤ CnΠn

1‖hi‖.(5.8)

iii) the map
hn 3 (h1, . . . , hn) 7→ Πn

1φ
+(hi)(H + i)−

n
2 ∈ B(H)

is norm continuous.
iv) The operators φ+(h) satisfy in the sense of quadratic forms on D(φ+(h1)) ∩ D(φ+(h2)) the
canonical commutation relations

[φ+(h2), φ+(h1)] = iIm(h2|h1).(5.9)

v)
eitHφ+(h)e−itH = φ+(h−t).

vi) For h ∈ h0, φ+(h)− φ(h) is bounded and

lim
t→∞

(eitHφ(ht)e−itH − φ+(h)) = 0.

Proof. By Thm. 5.1 ii), s 7→ W+(sh) is a strongly continuous unitary group. Thus the
existence of φ+(h) follows by Stone’s theorem. This proves i).

To prove ii), let us first establish the existence of the norm limit

R(h1, . . . , hn) := lim
t→+∞

eitH n
Π
i=1

φ(hi,t)(H + i)−n/2e−itH , hi ∈ h.(5.10)
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The Heisenberg derivative Dφ(ht) (first defined as a quadratic form on D(H), then as a bounded
operator on H) equals Im(ht|v). We deduce from this and Lemma 2.3 i) that similarly

D
n
Π
i=1

φ(hi,t)(H + i)−n/2 =
n∑
j=1

Im(hj,t|v)
n
Π
i 6=j

φ(hi,t)(H + i)−n/2.

For h ∈ h0, the existence of the limit (5.10) follows then from (5.7) and Lemma 2.3 i). Moreover,
for h ∈ h0, we have

φ+(h)− φ(h) =
∫+∞

0 eitHIm(ht|v)e−itHdt,

φ+(h)− eitHφ(ht)e−itH =
∫+∞
t eitHIm(ht|v)e−itHdt,

which proves vi).
Next, for hi ∈ h, we approximate hi by sequences hi,n ∈ h0, and use Lemma 2.3 ii) to obtain

the existence of (5.10).
Let us now prove ii) by induction on n. To prove the induction assumption for n we have

to show that D((H + i)n/2) ⊂ D(Πn
1φ

+(hi)) and that Πn
1φ

+(hi)(H + i)−n/2 = R(h1, . . . , hn).
Note that by Lemma 2.3 i) , we have ‖R(h1, . . . , hn)‖ ≤ CnΠn

i=1‖hi‖, which will then imply the
bound (5.8). This amounts to prove that

R(h1, . . . , hn)u = lim
s→0

1
s (W+(sh1)− 1l)

n
Π
i=2

φ+(hi)(H + i)−n/2u, u ∈ H.(5.11)

Note that by the induction assumption, we have D((H + i)n/2) ⊂ D(Πn
2φ

+(hi)) and

n
Π
i=2

φ+(hi)(H + i)−n/2 = lim
t→+∞

eitH n
Π
i=2

φ(hi,t)(H + i)−n/2e−itH .(5.12)

Using (5.12) and the fact that eitHW (sh1,t)e−itH is uniformly bounded in t, we have

1
s (W+(sh1)− 1l)

n
Π
i=2

φ+(hi)(H + i)−n/2u

= lim
t→+∞

eitH 1
s (W (sh1,t)− 1l)

n
Π
i=2

φ(hi,t)(H + i)−n/2e−itH ,

so to prove (5.11), we have to check that

lim
s→0

lim
t→+∞

eitHR(s, t)e−itHu = 0,(5.13)

for
R(s, t) :=

(
1
s (W (sh1,t)− 1l)

n
Π
i=2

φ(hi,t)− i
n
Π
1
φ(hi,t)

)
(H + i)−n/2.(5.14)

Using Prop. 2.4 ii) and Lemma 2.3 i), we see that R(s, t) is uniformly bounded in s, t. So it
suffices to prove (5.13) for u ∈ D((H + i)ε), ε > 0. Again by Prop. 2.4 ii) and Lemma 2.3 i), we
obtain

lim
s→0

sup
t∈IR
‖R(s, t)(H + i)−ε‖ = 0,

which proves (5.13) for u ∈ D((H + i)ε) and hence for all u ∈ H.
Property iii) follows from the existence of the norm limit in ii) and Lemma 2.3 ii) .
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Next for ui ∈ D(φ+(hi)), i = 1, 2 we set

f(t2, t1) := (W+(−t2h2)u2|W+(t1h1)u1)− (W+(−t1h1)u2|W+(t2h2)u1)eit1t2Im(h2|h1).

We know that f(t2, t1) = 0. By Stone’s theorem we are allowed to compute the derivative:

0 = ∂t2∂t1f(0, 0) = −(φ+(h2)u2|φ+(h1)u1) + (φ+(h1)u1|φ+(h2)u2)− iIm(h2|h1)(u2|u1).

This proves iv). Finally v) follows from Thm. 5.1 iv). 2

Theorem 5.3 For any h ∈ h, the asymptotic creation and annihilation operators defined on
D(a+](h)) := D(φ+(h)) ∩ D(φ+(ih)) by

a+∗(h) := 1√
2

(φ+(h)− iφ+(ih)) ,

a+(h) := 1√
2

(φ+(h) + iφ+(ih)) .

are closed.
ii) For hi ∈ h, 1 ≤ i ≤ n, D((H + i)n/2) ⊂ D(Πn

1a
+](hi)) and

Πn
1a

+](hi)(i +H)−
n
2 = lim

t→∞
eitHΠn

1a
](hi,t)(i +H)−

n
2 e−itH .

iii) We have the bound

‖Πn
1a

+](hi)u‖ ≤ CΠn
1‖hj‖‖(H + i)

n
2 u‖,

and the map
hn 3 (h1, . . . , hn) 7→ Πn

1a
+,](hj)(i +H)−

n
2 ∈ B(H)

is norm continuous.
iv) The operators a+] satisfy in the sense of forms on D((i + H)

1
2 ) the canonical commutation

relations
[a+(h1), a+∗(h2)] = (h1|h2)1l,

[a+(h2), a+(h1)] = [a+∗(h2), a+∗(h1)] = 0.

v) One has
eitHa+](h)e−itH = a+](h−t).(5.15)

The following infinitesimal version of (5.15) is true for h ∈ D(ω) in the sense of forms on D(H).
It is known as the pullthrough formula:

a+∗(h)H = Ha+∗(h)− a+∗(ωh),

a+(h)H = Ha+(h) + a+(ωh).
(5.16)

vi) For h ∈ h0, the operators a+,](h)− a](h) are bounded and

lim
t→∞

(eitHa](ht)e−itH − a+,](h)) = 0.
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Proof. The closedness of a](h) follows from Prop. 2.2 and Thm. 5.2.
To prove the pullthrough formula we write in the sense of forms on D(H):

a+](h)
(

e−isH−1l
−is

)
=
(
a+](h−s)−a+](h)

−is

)
+
(

e−isH−1l
−is

)
a+](h).

Letting s tend to 0 and using iii), we obtain (5.16). The other statements follow from analogous
statements in Thm. 5.2. 2

The following result is due to Høegh-Krohn [HK3].

Corollary 5.4 For h ∈ h, one has:

a+(h)1l]−∞,λ](H)H ⊂ 1l]−∞,λ−m](H)H.

Proof. It follows from the spectral theorem that u = 1l]−∞,λ](H)u if and only if the function

IR 3 t 7→ eitHu ∈ H

has an analytic extension to Imz < 0 satisfying ‖eizHu‖ ≤ Ce|Imz|λ for Imz < 0.
Let u = 1l]−∞,λ](H)u. Using (5.15), we have:

eitHa+(h)u = a+(eitω(k)h)eitHu, t ∈ IR.

Since H and ω(k) are bounded below, the right hand side is analytic in Imz < 0, with an
analytic extension equal to a+(e−izω(k)h)eizHu for Imz < 0 (remember that a+(h) is antilinear
in h). Moreover using (3.1) one obtains

‖a+(e−izω(k)h)eizHu‖ ≤ ‖a+(e−izω(k)h)1l]−∞,λ](H)‖‖eizH1l]−∞,λ](H)u‖

≤ C‖e−izω(k)h‖e|Imz|λ ≤ C‖h‖e|Imz|(λ−m).

This proves that 1l]−∞,λ−m](H)a+(h)u = a+(h)u as claimed. 2

5.3 Asymptotic spaces

We define the asymptotic matter space to be

K+ := {u ∈ H | a+(h)u = 0, h ∈ h}.

The asymptotic space is defined as

H+ := K+ ⊗ Γ(h).

Proposition 5.5 i) K+ is a closed H−invariant space.
ii) K+ is included in the domain of

a+∗(h1) · · · a+∗(hn) for all h1, . . . , hn ∈ h.

iii)
Hpp(H) ⊂ K+.

36



Proof. K+ is obviously closed since a+(h) are closed operators. The fact that K+ is invariant
under e−itH follows from (5.15). Let us prove ii) by induction on n. Since a+∗(h) and a+(h)
have the same domain, ii) is true for n = 1. Assume that ii) is true for n − 1. By the remark
above, it suffices to check that for u ∈ K+, a+∗(h2) · · · a+∗(hn)u ∈ D(a+(h1)). But this follows
from the canonical commutation relations and the fact that u ∈ K+.

Now suppose that Hu = Eu. Then

eitHa(ht)e−itHu = (E + i)eit(H−E)a(ht)(H + i)−1u.(5.17)

But w − limt→∞ ht = 0 and hence by Lemma 2.1 iii)

s- lim
t→∞

a(ht)(H + i)−1 = 0.

Therefore, the limit of (5.17) is zero, which means that a+(h)u = 0. This proves iii). 2

5.4 Wave operators

The asymptotic matter Hamiltonian and the asymptotic Hamiltonian are defined by the formulas

K+ := H
∣∣∣
K+
, H+ := K+ ⊗ 1l + 1l⊗ dΓ(ω).

We also define

Ω+ : H+ → H,

Ω+ψ ⊗ a∗(h1) · · · a∗(hn)Ω := a+∗(h1) · · · a+∗(hn)ψ, h1, . . . , hn ∈ h, ψ ∈ K+.
(5.18)

The map Ω+ is called the wave operator. The following theorem is due to Høegh-Krohn [HK2].

Theorem 5.6 Ω+ is a unitary map from H+ to H such that:

a+](h)Ω+ = Ω+1l⊗ a](h), h ∈ h,

HΩ+ = Ω+H+.

Proof. Using the canonical commutation relations and the definition of K+, it is easy to
see that Ω+ is isometric. Moreover it follows from Thm. 5.3 v) that

eitHΩ+ = Ω+eitH+
.

Let u ∈ (RanΩ+)⊥. Since RanΩ+ is H−invariant, we may assume that u = 1l]−∞,λ](H)u. By
Thm. 5.3 ii), u belongs to the domain of Πn

1a
+(hi) for any hi ∈ h, 1 ≤ i ≤ n.

By Corollary 5.4, if nm > λ− inf σ(H), then

a+(h1) · · · a+(hn)u = 0, ∀h1, . . . , hn ∈ h.(5.19)

Let n0 be the smallest positive integer with the property (5.19). This implies that v =
a+(h2) · · · a+(hn0)u ∈ K+. So we have

0 =
(
u|a+∗(h2) · · · a+∗(hn0)v

)
= ‖v‖2.

Thus we have shown that

a+(h2) · · · a+(hn0)u = 0, ∀h2, . . . , hn0 ∈ h,

which is a contradiction. 2
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5.5 Extended wave operator

Recall that in Subsect. 3.4 we introduced the extended Hilbert space and the extended Hamil-
tonian

Hext = H⊗ Γ(h), Hext = H ⊗ 1l + 1l⊗ dΓ(ω(k)).

Clearly, H+ is a subspace of Hext and

H+ = Hext
∣∣∣
H+
.

Sometimes we will also need the “extended wave operator”. Its domain can be chosen to be

D(Ωext,+) :=
∞⊕
n=0

D((H + i)
n
2 )⊗⊗ns h,

which is a dense subset of Hext. Now we set

Ωext,+ : D(Ωext,+)→ H,

Ωext,+ψ ⊗ a∗(h1) · · · a∗(hn)Ω := a+∗(h1) · · · a+∗(hn)ψ, ψ ∈ D((H + i)
n
2 ).

(5.20)

Note that Ωext,+ is an unbounded operator. Clearly,

Ωext,+
∣∣∣
H+

= Ω+.(5.21)

We will sometimes treat Ω+ as a partial isometry equal to zero on the orthogonal complement
of H+ inside Hext. We can then write the following identity:

Ω+ = Ωext,+1lH+ .(5.22)

5.6 Another construction of the wave operators

Recall that in Subsect. 2.15, we defined the (unbounded) identification operator I : Γ(h)⊗Γ(h)→
Γ(h). By the same symbol we will denote the operator

1lK ⊗ I : Hext = K ⊗ Γ(h)⊗ Γ(h)→ H = K ⊗ Γ(h).

Theorem 5.7 i) Let w ∈ D((H + i)k/2) with w = 1l{k}(N∞)w. Then the limit

lim
t→+∞

eitHIe−itHext
w

exists and equals Ωext,+w.
ii) Let w ∈ Hcomp(Hext). Then the limit

lim
t→+∞

eitHIe−itHext
w(5.23)

exists and equals Ωext,+w. In particular, Ωext,+χ(Hext) is bounded for χ ∈ C∞0 (IR).
iii) Let w ∈ H+ ∩Hcomp(Hext). Then the limit

lim
t→+∞

eitHIe−itH+
w(5.24)

exists and equals Ω+w.
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Proof. Let us first show i). Let w ∈ D((H + i)k/2) with w = 1l{k}(N∞)w. Since by (2.10)
I(H + i)−k/2 ⊗ 1l{k}(N∞) is a bounded operator, it suffices to prove i) for w = ψ ⊗ Πk

i a
∗(hi)Ω,

ψ ∈ D((H + i)k/2), hi ∈ h. It follows from property (2.8) of I that

eitHIe−itHext
ψ ⊗Πk

1a
∗(hi)Ω = eitHΠk

1a
∗(hi,t)e−itHψ.

i) follows then from Thm. 5.3 ii).
To prove ii), we observe that since the boson mass is positive, vectors in Hcomp(Hext) are

also in Hcomp(H) and in Hcomp(N∞). So ii) follows from i). Finally iii) follows from ii) by
(5.21). 2

6 Propagation estimates

In this section, which serves as a technical preparation for Sect. 7, we collect various propagation
estimates about the evolution e−itH which will be used in the next section. They closely resemble
propagation estimates used in the scattering theory for N -body Schrödinger operators, especially
those introduced in [Gr].

In all this section we will assume the conditions (H1), (H2), (I1), (SR). Finally we men-
tion that all the results of this section hold also for the dynamics e−itHext

with the obvious
modifications.

6.1 Large velocity estimate

In this subsection we derive a standard large velocity estimate. It means that no boson can
asymptotically propagate in the region |x| > vmaxt, where the maximal velocity vmax is equal to

vmax := sup
k
|∇ω(k)|.

Proposition 6.1 Let χ ∈ C∞0 (IR). For R′ > R > vmax, one has∫ ∞
1

∥∥∥dΓ
(

1l[R,R′](
|x|
t

)
) 1

2

χ(H)e−itHu
∥∥∥2 dt

t
≤ C‖u‖2.

Proof. Let F ∈ C∞(IR) be a cutoff function equal to 1 near ∞, to 0 near the origin, with
F ′(s) ≥ 1l[R,R′](s). Let

Φ(t) := χ(H)dΓ
(
F ( |x|t )

)
χ(H),

b(t) := d0F (xt ).

By pseudodifferential calculus, and then taking into account the support of F ′, we obtain

b(t) = F ′( |x|t )
(
− |x|t + x

|x|t∇ω(k)
)

+O(t−2)

≤ −C0
t F
′( |x|t ) +O(t−2),

for some C0 > 0. Hence

D0dΓ
(
F ( |x|t )

)
= dΓ (b(t)) ≤ −C0

t dΓ
(
F ′( |x|t )

)
+ CN

t2
.
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Moreover,
[V, idΓ

(
F ( |x|t )

)
] = φ(iF ( |x|t )f) ∈ ON (t−1−µ)(N + 1)

1
2 .

Thus
DΦ(t) = χ(H)

(
D0dΓ( |x|t )

)
χ(H) + χ(H)

[
V, idΓ( |x|t )

]
χ(H)

≤ −t−1C0χ(H)dΓ
(
F ′( |x|t )

)
χ(H) +O(t−1−µ).

By Lemma A.1, we obtain the desired result. 2

6.2 Phase space propagation estimate

This subsection is devoted to a more subtle propagation estimate. Its intuitive meaning is that
along the evolution of an asymptotically free boson the instantaneous velocity ∇ω(k) and the
average velocity x

t converge to each other as time goes to ∞.

Proposition 6.2 Let χ ∈ C∞0 (IR), 0 < c0 < c1. Set

Θ[c0,c1](t) := dΓ
(
〈xt −∇ω(k), 1l[c0,c1](xt )(

x
t −∇ω(k))〉

)
.

Then ∫ ∞
1
‖Θ[c0,c1](t)

1
2χ(H)e−itHu‖2 dt

t
≤ C‖u‖2.

Proof. We start by recalling a well-known construction, which can be viewed as a trivial version
of the construction of the Graf vector field (see eg [Gr]). It is easy to see that there exists a
function R0(x) such that

R0(x) = 0, for |x| ≤ c0
2 ,

R0(x) = 1
2x

2 + c, for |x| ≥ 2c1,

∇2
xR0(x) ≥ 1l[c0,c1](|x|).

We fix the parameter c1 > vmax + 1, choose a constant c2 > c1 + 1 and consider

R(x) := F (|x|)R0(x),

for F (s) = 1, s ≤ c1, F (s) = 0, s ≥ c2. The function R satisfies now:

∇2
xR(x) ≥ 1l[c0,c1](|x|)− C1l[vmax+2,c2],

|∂αxR(x)| ≤ Cα.
(6.1)

It clearly suffices to prove Prop. 6.2 for c1 > vmax + 1, which we will assume in what follows.
Let

b(t) := R(xt )−
1
2

(
〈∇R(xt ),

x
t −∇ω(k)〉+ hc

)
.

We consider the propagation observable

Φ(t) = χ(H)dΓ (b(t))χ(H).
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Using first pseudodifferential calculus, and then (6.1), we obtain

d0b(t) = 1
t 〈
x
t −∇ω(k),∇2R(xt )

x
t −∇ω(k)〉+O(t−2)

≥ 1
t 〈
x
t −∇ω(k), 1l[c0,c1](

|x|
t )xt −∇ω(k)〉

−C
t 1l[vmax+2,c2](

|x|
t ) +O(t−2).

This gives

D0Φ(t) = dΓ (d0b(t)) ≥ 1
tΘ[c1,c2](t)− C

t dΓ
(
1l[vmax+2,c2](

|x|
t )
)

+ON (t−2)(N + 1).(6.2)

Moreover, using pseudodifferential calculus and hypothesis (SR), we have

‖b(t)v‖ ≤ C‖F ( |x|t ≥ c0)v‖+O(t−2) ∈ O(t−1−µ).

Hence
[V, idΓ (b(t))] = φ(ib(t)v) ∈ ON (t−1−µ)(N + 1)

1
2 .

So we finally obtain

DΦ(t) = χ(H)
(
D0dΓ(b(t))

)
χ(H) + χ(H)[iV,dΓ(b(t))]χ(H)

≥ 1
tχ(H)Θ[c1,c2](t)χ(H) +O(t−1−µ).

Using Lemma A.1, we obtain the desired result. 2

6.3 Improved phase-space propagation estimate

In this subsection, we will improve Prop. 6.2.

Proposition 6.3 Let 0 < c0 < c1, J ∈ C∞0 ({c0 < |x| < c1}), χ ∈ C∞0 (IR). Then for 1 ≤ i ≤ d

∫ +∞

1

∥∥∥∥∥dΓ
(∣∣∣∣J (xt

)(
xi
t
− ∂iω(k)

)
+ hc

∣∣∣∣) 1
2

χ(H)e−itHu

∥∥∥∥∥
2

dt
t
< C‖u‖2.

Before starting the proof, we need some technical preparation.

Lemma 6.4 Let A = (xt − ∇ω(k))2 + t−δ, δ > 0. Let J, J1, J2 ∈ C∞0 (IRd) with J1 = 1 near
supp J , J2 = 1 near supp J1, 0 ≤ J2 ≤ 1. Then

i) J(xt )A
1
2 = O(1),

ii) [A
1
2 , J(xt )] = O(tδ/2−1),

iii) d0A
1
2 = −1

tA
1
2 +O(t−1−δ/2).

For 1 ≤ i ≤ d and for ε = inf(δ, 1− δ/2)

iv) |J(xt )(
xi
t − ∂iω(k)) + hc| ≤ CJ2(xt )A

1
2J2(xt ) + Ct−ε/2,

v) J(xt )(
xi
t − ∂iω(k))A

1
2J1(xt ) + hc ≤ C

〈
(xt −∇ω(k)), J2

2 (xt )(
x
t −∇ω(k))

〉
+ Ct−ε.
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Proof. i) is immediate using that ‖J(xt )A
1
2 ‖ = ‖J(xt )AJ(xt )‖

1
2 ∈ O(1).

To prove ii) and iii), we use the identities

eitω(k)A
1
2 e−itω(k) = (x

2

t2
+ t−δ)

1
2 =: A0,

eitω(k)J(xt )e
−itω(k) = J(v),

for v := x
t +∇ω(k). It is easy to check using pseudodifferential calculus that [v,A0] ∈ O(t−1+δ/2).

ii) follows then easily from the following functional calculus formula:

J(v) = (2π)−n
∫
Ĵ(ξ)ei〈ξ,v〉dξ.

To prove iii), we notice that

eitω(k)d0A
1
2 e−itω(k) =

d
dt
A0 = −1

t
A0 +O(t−δ/2−1),

by a direct computation.
Let us now prove iv). Set

B0 := J(xt )(
xi
t − ∂iω(k)) + hc,

B2 := J1(xt )A
1
2J1(xt ).

By pseudodifferential calculus and ii) we have

B2
0 = viJ

2(xt )vi +O(t−1) ≤ CviJ4
1 (xt )vi + Ct−1

= CJ2
1 (xt )v

2
i J

2
1 (xt ) +O(t−1) = CJ2

1 (xt )AJ
2
1 (xt ) +O(t−δ)

= CJ1(xt )A
1
2J2

1 (xt )A
1
2J1(xt ) +O(t−ε) = CB2

2 +O(t−ε).

(6.3)

Since the function λ 7→ λ
1
2 is matrix monotone (see [BR, Sect. 2.2.2]), we deduce from (6.3)

that
|B0| ≤ C(B2

2 + t−ε)
1
2 ≤ CB2 + Ct−ε/2.

which proves iv).
To prove v), we write using pseudodifferential calculus and ii):

J(xt )(
xi
t − ∂iω(k))A

1
2J1(xt ) + hc

= viJ(xt )A
1
2 + hc +O(t−1+δ/2) = A

1
2 viA

− 1
2J(xt )A

1
2 + hc +O(t−1+δ/2)

≤ CA+ Ct−1+δ/2 ≤ C(xt −∇ω(k))2 + Ct−ε,

since viA−
1
2 is bounded. Next we use that B1 = J2(xt )B1J2(xt ) +O(t−∞) to obtain v). 2

Proof of Prop. 6.3. Let
b(t) = J(xt )A

1
2J(xt ),

where
A = (xt −∇ω(k))2 + t−δ,

42



and J, J1 ∈ C∞0 ({c0 ≤ |x| ≤ c1}), 0 ≤ J ≤ 1, J = 1 near supp J1. Let

Φ(t) = −χ(H)dΓ(b(t))χ(H).

Note that by Lemmas 6.4 i) and 3.2, Φ(t) ∈ O(1). Using Lemmas 6.4 i) and 3.2 and hypothesis
(SR), we have

[V, idΓ(b(t))] = φ(ib(t)v) ∈ ON (t−1−µ)(N + 1)
1
2 .(6.4)

Next, we have
D0dΓ(b(t)) = dΓ(d0b(t)),

and
d0b(t) =

(
d0J(xt )

)
A

1
2J(xt ) + hc + J(xt )

(
d0A

1
2

)
J(xt ).(6.5)

By Lemma 6.4 iii)

d0A
1
2 = −A

1
2

t
+O(t−1−δ/2),

and by Lemma 6.4 iv), we obtain, for some C0 > 0,

−J(xt )
(
d0A

1
2

)
J(xt ) ≥

C0
t |J1(xt )(

xi
t − ∂iω(k)) + hc| − Ct−1−ε.(6.6)

Next by pseudodifferential calculus, we have

d0J(xt ) = −1
t 〈∇J(xt ),

x
t −∇ω(k)〉+ hc +O(t−2),

which, by Lemma 6.4 v), gives, for J2 ∈ C∞0 ({c0 ≤ |x| ≤ c1}), J2 = 1 near supp J ,

−
(
d0J(xt )

)
A

1
2J(xt ) + hc ≥ −C

t 〈
x
t −∇ω(k), J2(xt )(

x
t −∇ω(k))〉+O(t−1−ε).(6.7)

Collecting (6.4), (6.6) and (6.7), we obtain finally, for some ε > 0,

−DΦ(t) = χ(H)[V, idΓ(b(t))]χ(H) + χ(H)
(
d0dΓ(b(t))χ(H)

≥ C0
t χ(H)dΓ(|J1(xt )(

xi
t − ∂iω(k) + hc|)χ(H)

−C
t χ(H)dΓ(〈xt −∇ω(k), J2(xt )(

x
t −∇ω(k))〉)χ(H) +O(t−1−ε).

(6.8)

Since by Prop. 6.2 the second term in the right hand side of (6.8) is integrable along the
evolution, we obtain the proposition. 2

6.4 Minimal velocity estimate

This subsection is devoted to the proof of the minimal velocity estimate. It will use the Mourre
estimate shown in Subsect. 4.3.

Proposition 6.5 Assume additionally that (H0) holds. Let χ ∈ C∞0 (IR) be supported in IR\(τ ∪
σpp(H)). Then there exists ε > 0 such that∫ +∞

1

∥∥∥∥Γ(1l[0,ε]
( |x|
t

))
χ(H)e−itHu

∥∥∥∥2 dt
t
≤ C‖u‖2.
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Proof. Let us first prove the proposition for χ supported near an energy level λ ∈ IR\(τ ∪
σpp(H)). By Thm. 4.3, we will find χ ∈ C∞0 (IRd) equal 1 near λ with suppχ close enough to λ
such that for some C0 > 0

χ(H)[H, iA]χ(H) ≥ C0χ
2(H).(6.9)

Let ε > 0 be a number that will be fixed later on. Let q ∈ C∞0 ({|x| ≤ 2ε}) such that 0 ≤ q ≤ 1,
q = 1 near on {|x| ≤ ε} and let qt = q(xt ).

Let
Φ(t) := χ(H)Γ(qt)

A

t
Γ(qt)χ(H).

Note that
±Γ(qt)

A

t
Γ(qt) ≤ Cε(N + 1),(6.10)

which, using Lemma 3.2, shows that Φ(t) is uniformly bounded. We compute its Heisenberg
derivative:

DΦ(t) = χ(H)dΓ(qt,d0q
t)At Γ(qt)χ(H) + hc

+χ(H)[V, iΓ(qt)]At Γ(qt)χ(H) + hc

+t−1χ(H)Γ(qt)[H, iA]Γ(qt)χ(H)

−t−1χ(H)Γ(qt)At Γ(qt)χ(H)

=: R1(t) +R2(t) +R3(t) +R4(t).

By Lemma 2.9 iii) and condition (SR), we have [V, iΓ(qt)] ∈ ON (t−1−µ)(N + 1)
1
2 , which implies

that
‖R2(t)‖ ∈ O(t−1−µ).(6.11)

Let us now consider R1(t). We have

d0q
t = − 1

2t〈
x
t −∇ω(k),∇q(xt )〉+ hc + rt =: 1

t g
t + rt,

where rt ∈ O(t−2). By Lemma 2.8 vi), we have

‖χ(H)dΓ(qt, rt)At Γ(qt)χ(H)‖ ∈ O(t−2).(6.12)

Next we set

B1 := χ(H)dΓ(qt, gt)(N + 1)−
1
2 , B∗2 := (N + 1)

1
2
A

t
Γ(qt)χ(H),

and use the inequality

χ(H)dΓ(qt, gt)At Γ(qt)χ(H) = t−1B1B
∗
2 + t−1B2B

∗
1 ≥ −ε−1

0 t−1B1B
∗
1 − ε0t−1B2B

∗
2 .(6.13)

We have

B2B
∗
2 = χ(H)Γ(qt)

A2

t2
(N + 1)Γ(qt)χ(H).

Introducing cutoff functions χ̃ ∈ C∞0 (IR) and q̃ ∈ C∞0 (IRd) with χ̃χ = χ, q̃q = q, it is easy to
check that

Γ(qt)A
2

t2
Γ(qt) ≤ C(N + 1)Γ(qt)2(N + 1),

χ(H)(N + 1)pχ(H) ≤ Cχ2(H), p ∈ IN.
(6.14)
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This gives using Lemma 3.3

−B2B
∗
2 ≥ −Cχ(H)(N + 1)3/2Γ(qt)2(N + 1)3/2χ(H)

= −CΓ(qt)χ(H)(N + 1)3χ(H)Γ(qt) +O(t−1)

≥ −C1Γ(qt)χ2(H)Γ(qt)− Ct−1

≥ −C1χ(H)Γ(qt)2χ(H)− Ct−1.

(6.15)

Next we write
B1B

∗
1 = χ(H)dΓ(qt, gt)(N + 1)−1dΓ(qt, gt)χ(H),

and use Lemma 2.8 vi) to obtain

|(u|B1B
∗
1u)| = ‖(N + 1)−

1
2 dΓ(qt, gt)χ(H)u‖2

≤ ‖dΓ(gt∗gt)
1
2χ(H)u‖2.

Using Prop. 6.2, we obtain ∫ ∞
1
‖B1e−itHu‖2 dt

t
≤ C‖u‖2.(6.16)

Using Lemma 3.3, we have

R3(t) = t−1Γ(qt)χ(H)[H, iA]χ(H)Γ(qt) +O(t−2)

≥ C0t
−1Γ(qt)χ2(H)Γ(qt)− Ct−2

≥ C0t
−1χ(H)Γ2(qt)χ(H)− Ct−2.

(6.17)

On the other hand, we have by (6.10) and (6.14)

−R4(t) ≤ C ε
tχ(H)(N + 1)

1
2 Γ2(qt)(N + 1)

1
2χ(H)

≤ C ε
tΓ(qt)χ(H)(N + 1)χ(H)Γ(qt) + Ct−2

≤ C2
ε
tΓ(qt)χ2(H)Γ(qt) + Ct−2

≤ C2
ε
tχ(H)Γ(qt)2χ(H) + Ct−2.

(6.18)

Collecting (6.15), (6.17) and (6.18) we obtain

−ε0t−1B∗2(t)B2(t) +R3(t) +R4(t)

≥ (−ε0C1 + C0 − εC2)t−1χ(H)Γ(qt)2χ(H)− Ct−2.
(6.19)

We pick now ε and ε0 small enough so that C̃0 := −ε0C1 + C0 − εC2 > 0. Using (6.11), (6.16)
and (6.19) we conclude that

DΦ(t) ≥ C̃0

t
χ(H)Γ2(qt)χ(H)−R(t)− Ct−1−µ,

where R(t) is integrable along the evolution. By Lemma A.1, this proves the proposition for χ
with support close enough to an energy level λ ⊂ IR\(τ ∪σpp(H)). To prove the Proposition for
all χ supported in IR\(τ ∪ σpp(H)) we use the argument in [DeGe, Prop. 4.4.7]. 2
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7 Asymptotic completeness

7.1 Introduction

In this subsection we describe the main results of this section (and of the whole article). They
will be formulated in the following four theorems.

Theorem 7.1 Assume hypotheses (H1), (H2), (I1) and (SR). Let q ∈ C∞0 (IRd), 0 ≤ q ≤ 1,
q = 1 near 0. Set qt(x) = q(xt ). Then there exists

s- lim
t→∞

eitHΓ(qt)e−itH =: Γ+(q),

We have
Γ+(qq̃) = Γ+(q)Γ+(q̃),

0 ≤ Γ+(q) ≤ Γ+(q̃) ≤ 1l, 0 ≤ q ≤ q̃ ≤ 1,

[H,Γ+(q)] = 0.

The above theorem, or actually its generalization, will be proven in Thm. 7.5.
Using this theorem, we define

P+
0 := s- lim

n→∞
Γ+(qn),

where qn ∈ C∞0 is a decreasing sequence of functions such that qn ↘ 1l{0}.

Theorem 7.2 P+
0 does not depend on the choice of the sequence qn. It satisfies

(P+
0 )2 = P+

0 , [H,P+
0 ] = 0.

The first important result of this section is the following theorem, which we call geometric
asymptotic completeness.

Theorem 7.3 Assume hypotheses (H1), (H2), (I1) and (SR). Then the space of asymptotic
matter is equal to the space of states living near the origin:

K+ = RanP+
0 .

The second main result is the standard asymptotic completeness, which holds under the
additional condition (H0).

Theorem 7.4 Assume hypotheses (H0), (H1), (H2), (I1) and (SR). Then the space of asymp-
totic matter is equal to the space of bound states of H:

K+ = Hpp(H).
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7.2 An asymptotic partition of unity

Let f0 ∈ C∞0 (IRd), f∞ ∈ C∞(IRd), 0 ≤ f0, 0 ≤ f∞, f0 + f∞ ≤ 1, f0 = 1 near 0 (and hence
f∞ = 0 near 0). Set f := (f0, f∞). Set also f t = (f t0, f

t
∞), where f t0(x) = f0(xt ), f

t
∞(x) = f∞(xt ).

Theorem 7.5 i) The following limits exist:

Q+
k (f) := s- lim

t→+∞
eitHQk(f t)e−itH ,

P+
k (f) = Q+

k (f)−Q+
k−1(f) = s- lim

t→∞
eitHPk(f t)e−itH .

ii) For q ∈ C∞(IRd) such that 0 ≤ q ≤ 1, ∇q ∈ C∞0 (IRd), q = 1 on a neighborhood of zero and
qt := q(xt ), there exists

Γ+(q) := s- lim
t→∞

eitHΓ(qt)e−itH .

Clearly,
P+

0 (f) = Q+
0 (f) = Γ+(f0).

iii)
[Q+

k (f), H] = 0.

iv) If 0 ≤ q ≤ 1, q = 1 near 0, then

Q+
k (fq) = Q+

k (f)Γ+(q),

where qf = (qf0, qf∞).
v)

0 ≤ Q+
k1

(f) ≤ Q+
k2

(f) ≤ Γ+(f0 + f∞), k1 ≤ k2,

s- lim
k→∞

Q+
k (f) = Γ+(f0 + f∞).

‖(H + i)−1
(
Q+
k (f)− Γ+(f0 + f∞)

)
‖ ≤ C(k + 1)−1.

If, moreover, f0 + f∞ = 1, then

s- lim
t→∞

Q+
k (f) = 1l, ‖(H + i)−1

(
Q+
k (f)− 1l

)
‖ ≤ C(k + 1)−1.

vi) If f̃ = (f̃0, f̃∞) is another pair of functions satisfying the conditions stated at the beginning
of this subsection, and moreover, f̃0f∞ = 0, then

Q+
k (f̃)P+

k (f) = P+
k (f̃)P+

k (f) = P+
k (f̃0f0, f̃∞f∞).

Proof. Let us first prove i). Using Lemma 3.3 for m = 0 and a density argument, it suffices
to prove the existence of

s- lim
t→+∞

eitHχ(H)Qk(f t)χ(H)e−itH .

We compute the Heisenberg derivative:

χ(H)DQk(f t)χ(H) = χ(H)dQk(f t,d0f
t)χ(H) + χ(H)[V, iQk(f t)]χ(H),
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by Lemma 2.11. From (3.8) and Lemma 3.2 we obtain

‖χ(H)[V, iQk(f t)]χ(H)‖ ∈ O(t−1−µ).(7.1)

Next we compute:

d0f
t =

d∑
1

1
t
gti + rt,

where
gti = −1

2

(
(xit − ∂iω(k))∂if(xt ) + hc

)
= (gti,0, g

t
i,∞),

and rt ∈ O(t−2). Using Lemma 2.11 vi) and Lemma 3.2, we obtain that

‖χ(H)dQk(f t, rt)χ(H)‖ ∈ O(t−2).(7.2)

On the other hand, using Lemma 2.11 v), we have

|(u2|χ(H)dQk(f t, gti)χ(H)u1)| ≤ ‖dΓ(|gti,0|)
1
2χ(H)u2‖‖dΓ(|gti,0|)

1
2χ(H)u1‖

+‖dΓ(|gti,∞|)
1
2χ(H)u2‖‖dΓ(|gti,∞|)

1
2χ(H)u1‖.

(7.3)

Hence the existence of the limits i) follows from (7.1)–(7.3), Proposition 6.3 and Lemma A.1.
ii) is obvious and iii) follows by Lemma 3.3. iv) follows from

Qk(f tqt) = Qk(f t)Γ(qt).

The first statement of v) follows from Lemma 2.9 iv), and the second follows from the third. To
see the third statement we first observe that

‖(N + 1)−1(Qk(f t)− Γ(f t0 + f t∞))‖ ≤ (k + 1)−1,

which implies

‖(H + i)−1(Qk(f t)− Γ(f t0 + f t∞))‖ ≤ ‖(H + i)−1(N + 1)‖(k + 1)−1.(7.4)

This completes the proof of v). vi) follows from Prop. 2.10. 2

An analogous theorem is true for the free Hamiltonian, but it is much easier. It follows
within each n-particle sector by the stationary phase method. Note that in the free case one
does not need to assume that the cutoff is one near zero.

Proposition 7.6 Let f0 ∈ C∞0 (IRd), f∞ ∈ C∞(IRd) with f0 + f∞ ≤ 1. Then

s- lim
t→∞

eitdΓ(ω(k))Qk(f t)e−itdΓ(ω(k)) = Qk(f(∇ω(k))).
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7.3 Asymptotic projections

In this section, using the monotonicity properties of the observables Qk(f t) with respect to f∞,
we prove the existence of the limits

P+
k (U) := s- lim

f∞→1lU
P+
k (f),

where U is an open or closed set in IRd\{0}. The range of Pk(U)+ consists of the states with
exactly k bosons with an asymptotic velocity in U . P+

k (U) are a mutually orthogonal family of
projections with sum equal to one.

Let U ⊂ IRd be an open set with 0 6∈ U . Let f∞,n ∈ C∞0 (IRd) be a sequence of cutoff
functions. We will say that f∞,n ↗ 1lU if

0 ≤ f∞,n ≤ 1lU , f∞,n ≤ f∞,n+1, f∞,n+1f∞,n = f∞,n, f∞,n → 1lU pointwise.(7.5)

Similarly if U ⊂ IRd is a closed set with 0 6∈ U , we say that f∞,n ↘ 1lU if

1lU ≤ f∞,n ≤ 1, f∞,n ≤ f∞,n+1, f∞,n+1f∞,n = f∞,n+1, f∞,n → 1lU pointwise.(7.6)

For such sequences of cutoff functions and fn = (f0,n, f∞,n) with f0,n = 1− f∞,n, we denote by
P+
k,n, Q

+
k,n the operators P+

k (fn), Q+
k (fn).

Theorem 7.7 i) Let U ⊂ IRd\{0} be an open (resp. closed) set. Let fn be a sequence of cutoff
functions such that f∞,n ↗ 1lU (resp. f∞,n ↘ 1lU ). Then the limits

Q+
k (U) := s- lim

n→∞
Q+
k,n

exist and are independent of the sequence f∞,n. Moreover {Q+
k (U)}k∈IN is an increasing family

of projections such that

[Qk(U)+, H] = 0, s- lim
k→∞

Qk(U)+ = 1l.

ii) The limits
P+
k (U) := s- lim

n→∞
P+
k,n

exist and are independent of the sequence fn. Moreover, we have

P+
k (U) = Q+

k (U)−Q+
k−1(U).

The family {P+
k (U)}k∈IN is a family of mutually orthogonal projections such that

[P+
k (U), H] = 0, s−

∞∑
k=0

P+
k (U) = 1l.

iii) If f = (f0, f∞) satisfies the hypotheses of Subsect. 7.2 and f0 + f∞ = 1, supp f∞ ⊂ U , then

Q+
k (f)Q+

k (U) = Q+
k (U).(7.7)
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Of particular importance are the projections Q+
k (IRd\{0}), P+

k (IRd\{0}), which will be denoted
simply by Q+

k , P
+
k in what follows. The range of P+

k corresponds to the states with exactly k
asymptotically free bosons.

Proof of Thm. 7.7. It suffices to consider the case when U is an open set. The case of a
closed set is similar. We deduce first from Prop. 2.13 that if f∞,n ↗ 1lU in the sense of (7.5),
we have

Q+
k,n+1 ≤ Q

+
k,n, Q+

l,mQ
+
k,n = Q+

l,m, l ≤ k, n < m.(7.8)

Using (7.8) and Lemma A.3, we obtain the existence of

Q+
k (U) = s- lim

n→∞
Q+
k,n

and hence of Pk(U)+.
Let us check that Qk(U)+ is independent of the sequence f∞,n. Let f∞,n, f̃∞,n be two

sequences with f∞,n, f̃∞,n ↗ 1lU in the sense of (7.5). Then there exists a sequence mn ∈ IN
tending to ∞ such that f∞,n ≤ f̃∞,mn . This implies that

Q+
k (fn) ≤ Q+

k (f̃mn),

which shows that
lim
n→∞

Q+
k (fn) ≤ lim

n→∞
Q+
k (f̃mn) = lim

n→∞
Q+
k (f̃n).

Hence Q+
k (U) is independent of the sequence fn.

We deduce from Thm. 7.5 v) that

0 ≤ Q+
k (U) ≤ 1,

‖(H + i)−1(Qk(U)+ − 1l)‖ ≤ C(k + 1)−1,

which implies the strong convergence of Q+
k (U) to 1l. The fact that Q+

k (U) commutes with H
follows also from Thm. 7.5.

We deduce from (7.8) that

Q+
l (U)Q+

k (U) = Q+
l (U), l ≤ k.

This implies that {Q+
k }k∈IN is an increasing family of projections. Finally iii) follows from Prop.

2.13. 2

7.4 Asymptotic projections and asymptotic fields

In this subsection, we prove that applying an asymptotic annihilation operator a+(h) amounts
to decrease the number of asymptotically free bosons by one. As an immediate consequence we
obtain that the range of P+

0 is included in the space of asymptotic matter K+.

Proposition 7.8 Assume the hypotheses (H1), (H2), (I1), (SR). Then the following identities
hold in the sense of quadratic forms on D((H + i)

1
2 ):

a+(h)Q+
k = Q+

k−1a
+(h), h ∈ h.

a+(h)P+
k = P+

k−1a
+(h), h ∈ h.
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Proof. It is enough to prove the identity involving Q+
k . By the continuity of h 7→ a](h)(H+

i)−
1
2 it is enough to assume that h ∈ h0. Let f∞,n ↗ 1lIRd\{0} in the sense of (7.5) and f0,n =

1− f∞,n. We have

(i +H)−
1
2

(
a+(h)Q+

k −Q
+
k−1a

+(h)
)
(i +H)−

1
2

= lim
n→∞

lim
t→+∞

eitH(i +H)−
1
2

(
a(ht)Qk(f tn)−Qk−1(f tn)a(ht)

)
(i +H)−

1
2 e−itH .

(7.9)

By Lemma 2.12 ii), we have

a(ht)Qk(f tn)−Qk−1(f tn)a(ht) = Pk(f tn)a(f t0,nht).(7.10)

Since h ∈ h0 and ht = e−itω(k)h, we see by stationary phase arguments that, for n ≥ n0,
‖f t0,nht‖ ∈ o(t0). This gives

‖
(
a(ht)Qk(f tn)−Qk−1(f tn)a(ht)

)
(H + i)−

1
2 ‖ ∈ o(t0),

which implies that (7.9) is zero. 2

Corollary 7.9 Assume the hypotheses (H1), (H2), (I1), (SR). Then

RanP+
0 ⊂ K

+.

Proof. Let u ∈ RanP+
0 and let un ∈ D(H) ∩ RanP+

0 be a sequence converging to u. By Prop.
7.8 we have a+(h)un = 0, h ∈ h, and hence un ∈ K+. Since K+ is closed, u ∈ K+. 2

7.5 Geometric inverse wave operators

Let j0 ∈ C∞0 (IRd), j∞ ∈ C∞(IRd), 0 ≤ j0, 0 ≤ j∞, j2
0 + j2

∞ ≤ 1, j0 = 1 near 0 (and hence j∞ = 0
near 0). Set j := (j0, j∞). Set also jt = (jt0, j

t
∞), where jt0(x) = j0(xt ), j

t
∞(x) = j∞(xt ).

As in Subsection 2.15, we identify the pair jt with an operator jt : h→ h⊕h and we introduce
the operator Γ̌(jt) : Γ(h)→ Γ(h)⊗Γ(h). We use the same notation Γ̌(jt) to denote the operator
1lK ⊗ Γ̌(jt) : H = K ⊗ Γ(h)→ Hext = K ⊗ Γ(h)⊗ Γ(h).

Theorem 7.10 i) The following limits exist:

s- lim
t→+∞

eitHext
Γ̌(jt)e−itH ,(7.11)

s- lim
t→+∞

eitH Γ̌(jt)∗e−itHext
.(7.12)

If we denote (7.11) by W+(j), then (7.12) equals W+(j)∗. If we set

W+
k (j) := 1l{k}(N∞)W+(j),

then
W+
k (j) = s- lim

t→+∞
eitHext

1lk(N∞)Γ̌(jt)e−itH .
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ii) One has
W+(j)(H + i)−1 = (Hext + i)−1W+(j),

W+(j)χ(H) = χ(Hext)W+(j), χ ∈ C∞0 (IR).

iii) Let q0, q∞ ∈ C∞(IRd), ∇q0,∇q∞ ∈ C∞0 (IRd), 0 ≤ q0, q∞ ≤ 1, q0 = 1 near 0. Set j̃ :=
(j̃0, j̃∞) := (q0j0, q∞j∞). Then

Γ+(q0)⊗ Γ(q∞(∇ω(k)))W+(j) = W+(j̃).

iv) Let q ∈ C∞, ∇q ∈ C∞0 , 0 ≤ q ≤ 1, q = 1 near zero. Then

W+(j)Γ+(q) = W+(qj),

where qj = (qj0, qj∞).
v) Let j̃ = (j̃0, j̃∞) be another pair satisfying the conditions stated at the beginning of this
subsection. (Note that 0 ≤ j̃0j0, 0 ≤ j̃∞j∞, j̃0j0 + j̃∞j∞ ≤ 1 and j̃0j0 = 1 near zero). Then

W+(j̃)∗W+(j) = Γ+(j̃0j0 + j̃∞j∞),

W+
k (j̃)∗W+

k (j) = P+
k (j̃0j0, j̃∞j∞).

In particular, if j2
0 + j2

∞ = 1, then W+(j) is isometric.
vi) Let j0 + j∞ = 1. If u ∈ D((H + i)k/2) then W+

k (j)u ∈ D((H + i)k/2)⊗
⊗k

s h ⊂ D(Ωext,+) and

Ωext,+W+
k (j)u = P+

k (j)u.

If u ∈ Hcomp(H) then W+(j)u ⊂ D(Ωext,+) and

Ωext,+W+(j)u = u.

Proof. Let us first prove the existence of the limit (7.11), the case of (7.12) being similar.
Using Lemma 3.4 and a density argument, it suffices to prove the existence of

s- lim
t→∞

eitHext
χ(Hext)Γ̌(jt)χ(H)e−itH ,

for some χ ∈ C∞0 (IR). We compute the asymmetric Heisenberg derivative

χ(Hext)ĎΓ̌(jt)χ(H) = χ(Hext)Ď0Γ̌(jt)χ(H)

+iχ(Hext)(V ⊗ 1lΓ̌(jt)− Γ̌(jt)V )χ(H).

¿From (3.11), we obtain

‖χ(Hext)(V ⊗ 1lΓ̌(jt)− Γ̌(jt)V )χ(H)‖ ∈ O(t−1−µ).(7.13)

On the other hand by Lemma 2.16, we have Ď0Γ̌(jt) = dΓ̌(jt, ď0j
t), and, by pseudodifferential

calculus,

ďt0j
t =

d∑
1

1
t
kti + rt,
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where
kti = (kt0,i, k

t
∞,i), ktε,i = −1

2((xit − ∂iω(k))∂ijε(xt ) + hc),

and rt ∈ O(t−2). Using Lemma 2.16 v) and Lemma 3.2, we obtain

‖χ(Hext)dΓ̌(jt, rt)χ(H)‖ ∈ O(t−2).(7.14)

Using then Lemma 2.16 iv), we obtain

|(u2|χ(Hext)dΓ̌(jt, kti)χ(H)u1)|

≤ ‖(dΓ(|kt0,i|)
1
2 ⊗ 1l)χ(Hext)u2‖‖dΓ(|kt0,i|)

1
2χ(H)u1‖

+‖(dΓ(|kt∞,i|)
1
2 ⊗ 1l)χ(Hext)u2‖‖dΓ(|kt∞,i|)

1
2χ(H)u1‖.

(7.15)

Hence the existence of the limit (7.11) follows from (7.13)–(7.15), Proposition 6.3 and Lemma
A.1.

ii) follows from Lemma 3.4. iii) follows from Prop. 7.6 and the fact that

Γ(qt0)⊗ Γ(qt∞)Γ̌(jt) = Γ̌(j̃t).

iv) follows from
Γ̌(jt)Γ(jt) = Γ̌((jq)t).

v) follows from
Γ̌∗(j̃t)Γ̌(jt) = Γ(j̃t0j

t
0 + j̃t∞j

t
∞),

Γ̌∗(j̃t)1l{k}(N∞)Γ̌(jt) = Pk(j̃t0j
t
0, j̃

t
∞j

t
∞).

Up to technical details due to the unboundedness of I, vi) can be considered as a special case
of v) with j̃ = (1, 1) . To prove vi) we note that it follows from ii) that W+(j) is bounded from
D((H+ i)k) to D((Hext + i)k) for k ∈ IN. This extends to all k ∈ IR+ by interpolation. By Thm.
5.7 i), we have for w ∈ H ⊗

⊗k
s h

Ωext,+(H + i)−k/2w = lim
t→+∞

eitHIe−itHext
(H + i)−k/2w.

Since by (2.10) I(H + i)−k/21l{k}(N∞) is a bounded operator, we can use the chain rule of the
wave operators and write

Ωext,+W+
k (j)u = lim

t→+∞
eitHI1l{k}(N∞)Γ̌(jt)e−itHu = P+

k (j)u,

by (2.11). Finally the second statement of vi) is an immediate consequence of the first. 2

7.6 Asymptotic absolute continuity

In this subsection we will prove that if U is a closed set of Lebesgue measure 0 with 0 6∈ U , then
P0(U)+ = 1l, which means that there are no bosons living asymptotically in U . This property
will be needed in the next section to effectively decouple bosons close to the origin from bosons
close to infinity.
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Theorem 7.11 Assume the hypotheses (H1), (H2), (I1), (SR). Let U ⊂ IRd\{0} be a compact
set of measure zero. Then

P+
0 (U) = 1l.

Proof. Let j = (j0, j∞) be as in Subsection 7.5. Assume additionally that j2
0 + j2

∞ = 1 and
j∞ = 1 near U . Let qn ∈ C∞(IRd\{0}), 0 ≤ qn, qn ↗ IRd\U in the sense of (7.5). For large
enough n we have j0qn = j0. Hence

Γ+(qn) = Γ+(qn)W+(j)∗W+(j)

= W+(j0, j∞qn)∗W+(j)

= W+(j)∗1l⊗ Γ(qn(∇ω(k)))W+(j),

by Thm. 7.10. But
s- lim
n→∞

qn(∇ω(k)) = 1l.

Therefore,
s- lim
n→∞

Γ(qn(∇ω(k))) = 1l,

and
P+

0 (U) = s- lim
n→∞

Γ+(qn) = 1l.

2

Note in parenthesis another result, which follows from exactly the same arguments.(This
result will not be used in the proof of asymptotic completeness).

Proposition 7.12 Assume hypotheses (H1), (H2), (I1), (SR). Let U ⊂ IRd\{0} be an open or
close set such that

U ∩∇ω(IRd) = ∅.
Then

P+
0 (U) = 1l.

7.7 Geometric asymptotic completeness

In this subsection we will show Theorem 7.3. It will follow from the following theorem, which
gives an explicit construction of the inverse wave operator Ω+∗ in terms of the geometric inverse
wave operators.

Theorem 7.13 Let jn = (j0,n, j∞,n) satisfy the conditions of Subsect. 7.5. Additionally,
assume that j2

0,n + j2
∞,n = 1 and j∞,n ↗ 1lIRd\{0} in the sense of (7.5). Then

W+ := s- lim
n→∞

∞∑
k=0

W+
k (jn)P+

k

exists. One has
W+ = Ω+∗,(7.16)

and
RanW+ = H+ = RanP+

0 ⊗ Γ(h).
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Proof. Set
fn = (f0,n, f∞,n) := (j2

0,n, j
2
∞,n)

f0
n = (f0

0,n, f
0
∞,n) := (j0,n, 1− j0,n),

f∞n = (f∞0,n, f
∞
∞,n) := (1− j∞,n, j∞,n),

fn,m = (f0,n,m, f∞,n,m) = (j0,nj0,m, j∞,nj∞,m).

Let m ≤ n and u ∈ H such that P+
k u = u. By density we may assume that u ∈ Hcomp(H).

Note that since j∞,n ↗ 1lIRd\{0} in the sense of (7.5), we have j0,nj∞,m = 0, which by Thm. 7.5
vi) gives

P+
k (fn,m) = P+

k (f0
n)P+

k (f∞m ).(7.17)

Now we compute

‖W+
k (jn)u−W+

k (jm)u‖2 = ‖W+
k (jn)u‖2 + ‖W+

k (jm)u‖2 − 2Re(W+
k (jn)u|W+

k (jm)u)

= (u|P+
k (fn)u) + (u|P+

k (fm)u)− 2Re(u|P+
k (fn,m)u)

= (u|P+
k (fn)u) + (u|P+

k (fm)u)− 2Re(P+
k (f∞m )u|P+

k (f0
n)u),

where in the last step we used (7.17). Clearly,

f∞,n, f
0
∞,n, f

∞
∞,n ↗ IRd\{0}

in the sense of (7.5). Hence

s- lim
n→∞

P+
k (fn) = s- lim

n→∞
P+
k (f0

n) = s- lim
n→∞

P+
k (f∞n ) = P+

k .

Therefore, from P+
k u = u we see that

s- lim
n,m→∞

‖W+
k (jn)u−W+

k (jm)u‖ = 0.

In other words, the sequence Wk(jn)u is Cauchy, and hence convergent.
Let us check that the limit

s- lim
n→∞

W+
k (jn)u =: W+

k u

does not depend on the choice of the sequence jn. In fact if jn, j̃n are two sequences with
jn, j̃n ↗ 1lIRd\{0}, we can find a sequence mn tending to ∞ such that j0,nj̃∞,mn = 0. Then we
argue as above.

By Theorem 7.10 ii) we see that

W+χ(H) = χ(Hext)W+.

If q ∈ C∞0 (IRd), q = 1 in a neighborhood of 0, 0 ≤ q ≤ 1 and qj0,n = j0,n, then by Thm. 7.10
iii)

Γ+(q)⊗ 1lW+
k (jn) = W+

k (jn).

Therefore,
Γ+(q)⊗ 1lW+ = W+.
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Hence
P+

0 ⊗ 1lW+ = W+.

Thus
RanW+ ⊂ RanP+

0 ⊗ Γ(h) ⊂ K+ ⊗ Γ(h) = H+.(7.18)

Let us now show (7.16). Let u ∈ Hcomp(H), u = P+
k u. By Thm. 7.11, we can choose a

sequence εn ↘ 0 such that

s- limn→∞ P
+
0 ([ 1

n − εn,
1
n + εn])u = u.(7.19)

We can demand that the sequence jn = (j0,n, j∞,n) used to define W+ satisfies additionally

supp j0,n ⊂ [0, 1
n + εn], supp j∞,n ⊂ [ 1

n − εn,∞[.

Note that qn := (j0,n + j∞,n)−1 ≤ 1 and qn = 1 outside of [ 1
n − εn,

1
n + εn]. Hence, by (7.19)

s- lim
n→∞

Γ+(qn)u = u.

Set j̃n = (j̃0,n, j̃∞,n) = (qnj0,n, qnj∞,n). Then j̃0,n + j̃∞,n = 1. Hence, by Thm. 7.10 vi),
W+(j̃n)u ∈ D(Ωext,+) and

Ωext,+W+
k (j̃n) = P+

k (j̃n).

Let χ ∈ C∞0 (IR) such that u = χ(H)u. Using the fact that Ωext,+χ(Hext) is bounded, we have:

u = P+
k u = limn→∞ P

+
k (j̃n)u

= limn→∞Ωext,+χ(Hext)W+
k (j̃n)u

= Ωext,+χ(Hext) limn→∞W
+
k (j̃n)u

= Ωext,+χ(Hext) limn→∞W
+
k (jn)Γ+(qn)u

= Ωext,+χ(Hext) limn→∞W
+
k (jn)u

= Ωext,+χ(Hext)W+u = Ωext,+W+u.

Hence
Ωext,+W+u = u.

But by (5.22)
Ωext,+1lH+ = Ω+.

Therefore, by (7.18)
Ω+W+ = 1lH.

The fact that Ω+ is unitary from H+ to H implies now

W+ = Ω+∗, RanW+ = H+.

Hence by (7.18) we obtain (7.16). 2
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7.8 Asymptotic completeness

In this subsection, we will prove that P+
0 = 1lpp(H). Combined with Thm. 7.13, this will

complete the proof of asymptotic completeness. Thm. 7.15 below will be a consequence of the
Mourre estimate of Subsect.4.3. We first show that condition (SR) implies condition (I2).

Lemma 7.14 Hypothesis (SR) implies hypothesis (I2).

Proof. Assume that (SR) holds. Let us prove that 〈x〉v ∈ B(K,K ⊗ h) which implies (I2).
Equivalently we will show that

∞∑
1

nvn ∈ B(K,K ⊗ h).(7.20)

for vn := 1l[n,n+1](〈x〉)v. If we set wn = 1l[n,+∞[(〈x〉)v, use vn = wn+1 − wn and sum by parts in
(7.20), we see that the convergence of (7.20) follows from (SR). 2

Theorem 7.15 Assume the hypotheses (H0), (H1), (H2), (I1) and (SR). Then

1lpp(H) = P+
0 .

Proof. By Proposition 5.5 and geometric asymptotic completeness we already know that

Hpp(H) ⊂ K+ = RanP+
0 .

Let us now prove that P+
0 ≤ 1lpp(H). Let χ ∈ C∞0 (IR\(τ ∪ σpp(H))). Using an argument

contained eg. in [DeGe, Prop. 4.4.8], we deduce from Prop. 6.5 in Sect. 6 that there exists
ε > 0 such that for q ∈ C∞0 (IRd) with q(x) = 1 for |x| < ε we have Γ+(q)χ(H) = 0. This implies
that

P+
0 ≤ 1lσpp∪τ (H).

Since τ is a closed countable set and σpp(H) can accumulate only at τ , we see that 1lpp(H) =
1lσpp∪τ (H). This completes the proof of the theorem. 2

A Appendix

The following lemma describes an argument commonly used to prove the so called propagation
estimates (see [DeGe, Sect. 8.4] and references therein).

Lemma A.1 Let H be a self-adjoint operator and D the corresponding Heisenberg derivative

D :=
d
dt

+ i[H, ·].

Suppose that Φ(t) is a uniformly bounded family of self-adjoint operators. Suppose that there
exist C0 > 0 and operator valued functions B(t) and Bi(t), i = 1, . . . , n, such that

DΦ(t) ≥ C0B
∗(t)B(t)−

n∑
i=1

B∗i (t)Bi(t),

∞∫
1
‖Bi(t)e−itHφ‖2dt ≤ C‖φ‖2, i = 1, . . . , n.
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Then there exists C1 such that ∫ ∞
1
‖B(t)e−itHφ‖2dt ≤ C1‖φ‖2.(A.1)

Next we describe how one uses propagation estimates to prove the existence of asymptotic
observables.

Lemma A.2 Let H1 and H2 be two self-adjoint operators. Let 2D1 be the corresponding asy-
metric Heisenberg derivative:

2D1Φ(t) :=
d
dt

Φ(t) + iH2Φ(t)− iΦ(t)H1.

Suppose that Φ(t) is a uniformly bounded function with values in self-adjoint operators. Let
D1 ⊂ H be a dense subspace. Assume that

|(ψ2|2D1Φ(t)ψ1)| ≤
n∑
i=1
‖B2i(t)ψ2‖‖B1i(t)ψ1‖,

∞∫
1
‖B2i(t)e−itH2φ‖2dt ≤ C‖φ‖2, φ ∈ H, i = 1, . . . , n,

∞∫
1
‖B1i(t)e−itH1φ‖2dt ≤ C‖φ‖2, φ ∈ D1, i = 1, . . . , n.

Then the limit
s- lim
t→∞

eitH2Φ(t)e−itH1

exists.

Finally, we describe a simple lemma about the convergence of positive operators.

Lemma A.3 Let Qn be a commuting sequence of selfadjoint operators such that:

i) 0 ≤ Qn ≤ 1, Qn+1 ≤ Qn, Qn+1Qn = Qn+1,

or
ii) 0 ≤ Qn ≤ 1, Qn ≤ Qn+1, Qn+1Qn = Qn.

Then the limit
Q = s- lim

n→∞
Qn.

exists and is a projection.

Proof. Note that case ii) reduces to case i) by considering the operators (1−Qn), so it suffices
to consider case i).

Clearly we have
Q = inf

n
Qn = w − lim

n→∞
Qn.

We use the identity
QnQm = Qm, for m > n,
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and let m tend to ∞, which gives QnQ = Q. Letting then n tend to ∞ we get Q2 = Q. Next
we have Q2

n ≤ Qn and Qn+1 = Qn+1Qn ≤ Q2
n, which gives

Qn+1 ≤ Q2
n ≤ Qn.

Letting n tend to ∞, we get
Q = w − lim

n→∞
Q2
n.

Then we compute
lim
n→∞

‖(Q−Qn)u‖2 = lim
n→∞

(
(Q2

n −Q)u|u
)

= 0,

which proves that Q = s- limn→∞Qn. 2
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[BFS] V. Bach, J. Fröhlich, I. Sigal: Quantum electrodynamics of confined non-relativistic
particles, Sonderforschungsbereich 288 preprint, 1996

[BR] Bratteli, O, Robinson D. W.: Operator Algebras and Quantum Statistical Mechanics,
Springer Berlin 1981

[BSZ] Baez, J.C, Segal, I.E., Zhou, Z.: Introduction to Algebraic and Constructive Quantum
Field Theory, Princeton University Press, Princeton 1992

[Bl] P. Blanchard: Discussion mathematique du modèle de Pauli et Fierz relatif à la catas-
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[HuSp1] Hübner, M., Spohn, H.: Radiative decay: nonperturbative approaches, Rev. Math.
Phys 7 (1995) 363-387

60
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