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Preliminary comment: I fixed some mistakes in this version. I am so happy that I
managed to ut it online. I’ll fix more mistakes and replace soon, now that I know how to do
it!

I’ll try to do these notes in english (I have to take the decision before the classes start);
sorry if I guessed wrong. Also, this is only my second attempt, so be sure that there will be
lots of mistakes, typos, and omissions.

I have been using a lot the notes of Frédéric Paulin called “Compléments de théorie
spectrale et d’analyse harmonique”, still on his web page, that correspond to a course he did
some years ago for the “magistère 2nde année”. He had much more time, so I will need to
skip many things. Said in another way, if what I say here is not clear, probably the answer
to your question is in his text.

The general idea will be to explain the first results for spectral theory, for operators
defined on a Banach space (often a Hilbert space). One of the goals is to be able to compute
functions of the operator, as you probably did already when you used the Cayley-Hamilton
theorem to compute P (A) when A ∈Mn is a matrix and P is a polynomial.

We’ll do the theory for bounded operators, but curiously our main example will be the
Laplacian ∆ on a domain of Rn, which is an unbounded operator. There is a difference
(sorry about that), but also many things go through, and there are ways to apply the theory
of bounded operators. So the difference is not enormous. But I don’t want to have to worry
about domains of operators, or to give the correct definition of a self-adjoint (unbounded)
operator.

We’ll try to discuss how to use spectral theory (in our special case, the eigenfunctions of
∆) to do a little bit of harmonic analysis, or solve PDE’s.

For the harmonic analysis, I will do some things connected to the application in mind,
but this will also be a good excuse to mention results like the Hardy-Littlewood maximal
theorem, the Lebesgue density theorem, and Poincaré inequalities, which I think everyone
should know.

Concerning these notes, the general principle is that I try to be self-contained, and that
if you do not know some of the ingredients that I use here (for instance, Banach-Alaoglu),
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it is probably even more important for you to check these out than the class itself, because
you are more likely to need them often.

I will try to correct some mistakes as time passes and put the new one on line. Not sure
exactly at which speed.
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1 Compact operators

1.1 Notations and Definitions

For the moment we consider a bounded operator u : E → F , where E and F are Banach
spaces. That is, E and F are complete normed vector spaces, and for the moment E and F
can be real or complex, we won’t see the difference. For me operator means linear mapping
(and I am mostly thinking of spaces E and F of infinite dimensions). I recall the definition
of bounded soon below.

We’ll denote by BE (or B when E is obvious from the context) the open unit ball in E.
That is, BE =

{
x ∈ E ; ||x||E < 1

}
. We also denote by BE =

{
x ∈ E ; ||x||E < 1

}
the

closed ball, and often we just write ||x|| instead of ||x||E.
More generally, BE(x, r) =

{
y ∈ E ; ||y−x||E < r

}
and BE(x, r) =

{
y ∈ E ; ||y−x||E ≤

r
}

. I will write B(x, r) instead of BE(x, r) when the context allows.
Recall that a linear mapping u : E → F is bounded when there is a constant C ≥ 0 such

that ||u(x)||F ≤ C||x||E for all x ∈ E. The smallest such constant C is then called the norm
of u, and denoted by |||u|||.

Recall that a bounded set (of E, say) is just a set which is contained in some ball B(0, R)
in E.

Recall that for a linear mapping u : E → F , u is bounded IFF (my way of saying if and
only if) the image of BE by u is a bounded set, IFF the image of any bounded set of E by
u is a bounded set, IFF u is continuous at 0, IFF u is continuous at some point x ∈ E, IFF
u is continuous at every point x ∈ E.

This should be an easy exercise for you. I still recall that for instance if f is continuous
at 0, then (taking ε = 1 in the usual definition of continuity at 0), there is δ > 0 such that
||u(x)||F ≤ 1 when x ∈ BE(0, δ). Then u is bounded, with norm at most δ−1, and more
generally u(A) ⊂ BF (0, δ−1R) for any A ⊂ E such that A ⊂ BE(0, R). The rest of the
verification is of the same type; I skip.

Definition 1.1. Let u : E → F be a bounded operator. We way that u is compact when
u(BE) is a relatively compact subset of F , which means that its closure (in F ) is compact.

When I say compact, it is for the topology of F given with its norm. We’ll rarely use
weak topologies in this text. Bounded is needed here; otherwise u(BE) is not bounded, hence
u(BE) cannot be compact.

And if u is compact, u(A) is relatively compact (i.e., its closure is compact) in F for every
bounded set A ⊂ E; indeed A ⊂ BE(0, R) for some R, hence u(A) ⊂ u(BE(0, R)) = Ru(BE)
is relatively compact.

Because of the Bolzano-Weierstrass theorem, we can also say that u is compact if, for
any sequence {xn} in E, we can find a subsequence {xnk

} such that the sequence of images
{u(xnk

)} converges (in F ). This will be very convenient.
The next proposition is an example of how easy it is fm me to fall directly from a cliff

(check what I say). In my earlier version I forgot to require E is reflexive [Later I may try
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to check whether this could also work when it is the dual of some Banach space E0. But let
me take no further risk and try not to confuse matters too much.]

Proposition 1.2. Let u : E → F be a bounded operator, and suppose that E is reflexive.
Then u(BE) is closed. If in addition u is compact, then u(BE) is compact.

Since it is clear that u is compact if u(BE) is compact, we see that if E is reflexive,

(1.1) The bounded operator u : E → F is compact if and only if u(BE) is compact.

I said Proposition because it was not as obvious as it could have been. And I’ll need
to add a counterexample for some case when E is not reflexive The main point is the first
sentence about closure; the other one is an easy consequence because the definition says that
u(BE) is relatively compact.

The beginning of the proof is what it should be: given y in the closure of the image (we
have to prove that it lies in the image), we find a sequence {xn} in BE such that yn = u(xn)
converges to y.

Now we want to find x ∈ BE such that u(x) = y. Of course E is not locally compact in
general, so we cannot find a subsequence that converges in E. But we can use the fact that
E is reflexive, i.e., E is the topological dual of its topological dual F = E∗. The Banach-
Alaoglu theorem says that the closed unit ball of the topological dual F ∗ of a space F (here,
we take F = E∗ is weakly-∗ compact.

Here the sequence {xn} lies in the closed unit ball of E = F ∗, so we can extract a
subsequence, which I will denote {xnk

}, that converges weak-∗ to some x ∈ E. This means
that the effect of xnk

on any ϕ ∈ F converges to x(ϕ). Or, using that F is the dual of E
(and the pairing is the same), that

(1.2) ϕ(xnk
) converges to ϕ(x)

for every ϕ ∈ F = E∗.
Anyway, we found an x ∈ E, and this should be a good sign. We now want to check that

u(x) = y, or equivalently, that ψ(u(x)) = ψ(y) for any ψ ∈ E∗. [We’ll probably use again
this fact that if all ψ ∈ E∗ vanish on some z ∈ E, then z = 0, which we see as a consequence
of the Hahn-Banach theorem.]

So we pick ψ, and apply (1.2) with ϕ = ψ ◦u, i.e., ϕ(z) = ψ(u(z)) for z ∈ E. Notice that
ϕ is continuous because u is bounded. We get that

(1.3) lim
k→+∞

ψ(u(xnk
)) = ψ(u(x)).

Now u(xnk
) = ynk

, which converges to y in F , so (since ψ is continuous), limk→+∞ ψ(u(xnk
)) =

ψ(y). Thus ψ(u(x)) = ψ(y) for every ψ, hence y = u(x), and this completes the proof of the
proposition.

Because of my earlier lack of attention, I now need to convince that u(BE) is not always
closed. And if we trust the proposition, it is better to try this in a space like `1 or L1. Here is,
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I think, an example. Consider L1 = L1(R, dx), where dx is the Lebesgue measure. Consider
the intervals In = [−2−n, 2−n]. To each f ∈ L1 associate the sequence u(f) = {cn} ∈ `∞(N),
where cn = (1 + n)−1

´
In
f(x)dx. I want to check that u(B) is not closed in `∞, where B is

the closed ball in L1. First the image contains any sequence {cn}, where cn = (1 + n)−1αn
and {αn} is any decreasing sequence such that 0 ≤ αn ≤ 1 and that tends to 0. But the
closure of this set of sequences also cotains the sequence {(1 + n)−1}. This last one is not
autorized, because it actually belongs to the Dirac mass at 0, i.e., there is no function in L1

such that
´
In
f(x)dx = 1 for all n.

If we only wanted the image u(E) to be closed, the situation was even worse, because the
inclusion of a dense subspace E of some space F is typically a counterexample. For instance
the inclusion of W 12(R) below in L2(R) is continuous with a dense image.

Some examples.
When E is of finite dimension, every linear operator is continuous (take a basis, and

use the formula u(
∑
λiej) =

∑
λiu(ei), and also compact (because BE is compact and u is

continuous).
Most bounded operators u : E → F are not compact (if E and F are of infinite di-

mensions), and for instance the identity I : E → E is not compact because BE is not
compact.

The simplest examples of compact operators are the bounded finite rank operators,
i.e., the bounded u = E → F such that u(E) is of finite dimension. This is a little more
general than the example where the dimension of E is finite, but not much.

I claim we should understand the bounded finite rank operators in a fairly brutal way.
Let u be such an operator. First select a finite collection of vectors ei ∈ E such that the u(ei)
span u(E). We can take the set with the smallest possible number of elements, and then the
u(ei) are independent (otherwise we can organize a more efficient set of ei), hence are a basis
of u(E). We also use the boundedness of u to say that the kernel K =

{
x ∈ E ; u(x) = 0

}
is a closed vector subspace of E.

Next we check that E is the direct sum ofK and the space L spanned by the ei. Obviously,
u|L : L → I is a bijection, where we set I = u(E) = u(L). Next every x ∈ E has a
decomposition x = xK + xL: we pick xL ∈ L with u(xL) = u(x) (it is even unique), and
obviously xK = x− xL lies in K. It is also clear that if 0 = xK + xL, then u(xL) = 0, then
xL = 0; because of this the sum is direct (the decomposition is unique).

Call π the induced projection from E to L (parallel to K). We also claim that π is
continuous, as the composition of u : E → I, followed by u−1

|L : I → L (linear in finite

dimensions).
Finally, u is just obtained as the composition u|L ◦ π of a continuous linear projection on

L and a finite-dimensional mapping.
We will see later that in Hilbert spaces the simplest example is in fact enough to get all

the compact operators, by taking limits.
We’ll also see other examples of compact operators soon. But let us state the stability

results first.
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Theorem 1.3.

• If u, v : E → F are compact operators, then u+ v is compact too.

• If u : E → F is compact and v : F → G is bounded, then v ◦ u is compact.

• If u : E → F is bounded and v : F → G is compact, then v ◦ u is compact.

• If the sequence {uk} of compact operators from E to F converges for the operator norm,
and if each uk is compact, then the limit is compact too.

I should probably have replaced the first point with the more comprehensive “the set
of compact operators from E to F is a vector space, in fact a Banach space when you put
the operator norm on it.” And for the Banach space story, the last point of the theorem is
useful.

The simplest is probably to use the criterion with sequences for each of the four items. For
instance, for the third one, we start from a bounded sequence {xn} in E; since u is bounded,
the sequence {u(xn)} is bounded too. And since v is compact, there is a subsequence of
{v(u(xn))} that converges.

For the last item with limits, let {uk} be a norm-convergent sequence of compact oper-
ators, and choose any bounded sequence {x`} in E. Since u1 is compact we can extract a
sequence x`j such that the u1(x`j) converge. Since u2 is compact, we can extract again, and
find a new subsequence, which we shall still call x`j to save notation, such that the u2(x`j)
converge too. And so on. In fact, by taking a diagonal subsequence, we even can find x`j
(always denoted the same way), so that {uk(x`j)}j≥1 converges for every k.

Let v denote the limit of the uk. Thus |||v − uk||| tends to 0. We want to show that
{v(x`j)}j≥1 converges. Or that it is a Cauchy sequence. So we estimate, for j, m ≥ 0

||v(x`j)− v(x`m)|| ≤ ||uk(x`j)− uk(x`m)||+ ||v(x`j)− uk(x`j)||+ ||v(x`m)− uk(x`m)||
≤ ||uk(x`j)− uk(x`m)||+ 2|||v − uk|||M,

(1.4)

where M is an upper bound for the ||x`||. We conclude as usual: given ε > 0, we can choose
k so that 2|||v − uk|||M < ε/2 and then we use the convergence of the uk(x`j) to prove that
for j and m large enough, ||uk(x`j)− uk(x`m)|| ≤ ε/2.

Some things will be easier when we deal with Hilbert spaces, for instance the following.

Corollary 1.4. Let E be a Banach space and F a Hilbert space, and let u be a bounded
operator from E to F . Then u is compact if and only if u is the limit, for the operator norm,
of a sequence of finite rank operators.

Or in other words, if for each ε > 0, we can find a finite rank operator v such that
|||u− v||| ≤ ε.

We have seen in the theorem that limits of finite rank operators are compact, so now we
take a compact operator (with values in a Hilbert space) and an ε > 0, and we try to find a
finite rank operator at distance at most ε.

We know that K = u(BE) is compact, and in particular it is completely bounded (in
french, précompact). That is, for each ε > 0 there is a finite set Y ⊂ K such the balls
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B(y, ε), y ∈ Y , cover K. [Otherwise, we could find an infinite sequence {yj} in K such that
the balls B(yj, ε) are disjoint, and no subsequence of {yj} would ever converge.] Call L the
linear span of Y (a finite-dimensional vector space in F ), and π the orthogonal projection
on L. Let us try the finite rank operator v = π ◦ u. Let us check that |||v − u||| ≤ 2ε; this
will be enough (we could have started with ε/2).

Pick x ∈ BE; we want to check that ||u(x)−π(u(x))|| ≤ 2ε. But u(x) ∈ B(y, ε) for some
y ∈ Y , and now ||π(u(x))−u(x)|| ≤ ||π(u(x))−π(y)||+ ||π(y)−y||+ ||y−u(x)||. The second
term vanishes, and the other two are less than ||u(x)− y|| ≤ ε; the result follows.

Amusing fact: the corollary is wrong for general Banach spaces, and Paulin refers to the
book of Lindenstrauss and Tzafiri (Springer 79), which I think is a very nice book on the
geometry of Banach spaces anyway. If wr try the proof above, it is true that we fall on a
continuous projection on the space L, but its norm may go wild when L gets large, and L
large is needed when ε gets small.

Yet we’ll consider that compact operators are the next best thing after finite rank. If
we were to compare with classes of functions, finite rank operators could correspond to
polynomials, or Hermite functions, or your preferred class of functions with some definite
algebraic property, and compact operators with continuous functions which tend to 0 at
infinity (or something like this). Then there are more precise classes of compact operators
(like Schatten classes) which would correspond to functions with some given smoothness
and/or decay at infinity.

1.2 Duality: transposed operators

Now we rapidly discuss duality and transposed operators.
In this paragraph again, E and F are Banach spaces (real or complex, but we’ll say

complex and you can replace with real and remove the bars if you want).
The have (topological) duals E∗ and F ∗. Thus E∗ is the (complex) Banach space com-

posed of all the bounded linear forms ϕ : E → C. The norm on E∗ is the operator norm,
i.e., ||ϕ||E∗ = sup

{
|ϕ(x)| ; x ∈ BE

}
.

And now every bounded operator u : E → F has a unique transposed operator
tu : F ∗ → E∗, defined by the fact that for ψ ∈ F ∗, tu(ψ) is the element ϕ ∈ E∗ such that

(1.5) ϕ(x) := tu(ψ)(x) = ψ(u(x)) for every x ∈ E.

For my personal convenience, and at the price of maybe slightly abusing notation, I tend to
prefer writing this as

(1.6) 〈tu(ψ), x〉E∗,E = 〈ψ, u(x)〉F ∗,F

where 〈·, ·〉 denotes a linear form applied to a vector. Here I made it explicit by mentioning
as a subscript in the bracket notation the different spaces where the duality occurs, but you
can guess that the idea is to get rid of these subscript when we can. This way also, the job
will be done when we switch to Hilbert spaces, where brackets will simply be scalar products.
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It is standard (and we leave as an exercise) that |||tu||| = |||u|||. Or in other words, the
transposition is an isometry from the Banach space L(E,F ) of bounded linear operators
from E to F , onto the space L(F ∗, E∗).

Recall that E ⊂ E∗∗ (with a natural inclusion). Then t(tu) : E∗∗ → F ∗∗ and its restriction
to E ⊂ E∗∗ is equal to u. Indeed, for x ∈ E, t(tu)(x) lies in F ∗∗, it is a form on F ∗, and its
effect on ψ ∈ F ∗ is

〈t(tu)(x), ψ〉F ∗∗,F ∗ = 〈x,t u(ψ)〉E∗∗,E∗ = 〈tu(ψ), x〉E∗,E = 〈ψ, u(x)〉F ∗,F

where the second part acknowledges the inclusion E ⊂ (E∗)∗, and the last one is the definition
of the transpose. The last term can also be written 〈u(x), ψ〉F ∗∗,F ∗ because F ⊂ (F ∗)∗, and
we get the result. Hope I did not lose myself in the notation.

Here is one last stability result.

Theorem 1.5. (Shauder) Let u : E → F be a compact operator between Banach spaces.
Then tu : F ∗ → E∗ is compact too.

The proof may look a little ugly to you. But remember that we want to do compactness,
in a context where we have sets of functions (the linear forms), so it is not shocking to use
Arzela-Ascoli as below.

Set K = u(BE) ⊂ F ; this is a compact metric space, and now call C(K) the set of
continuous mappings f : K → C (or R if our Banach spaces are real). We put the sup norm
(the norm of uniform convergence on K) on C(K), and this makes it a Banach space too.

Now consider A ⊂ C(K), the subset of functions f that come from elements of BF ∗ .
That is, A is the set of restrictions to K ⊂ F of continuous linear forms on F , of norm ≤ 1.
In particular, all the elements of A are 1-Lipschitz on K (so they are equicontinuous). Also,
they take values in B(0,M) ⊂ C, with M = |||u|||, because K ⊂ BF (0,M).

The Arzela-Ascoli Theorem says that A is a relatively compact subset of C(K).
We are now ready to prove that tu is compact. Recall it acts on F ∗. Take a bounded

sequence {ψk} in F ∗; we may as well suppose that ψk ∈ BF ∗ . We extract a subsequence so
that the restrictions of the ψkj to K (they lie in A) have a convergent subsequence in C(K).
By the Cauchy criterion, this means that ai,j = ||ψkj − ψki ||L∞(K) tends to 0 when i and j
tend to +∞. But

ai,j = sup
y∈K
|ψkj(y)− ψki(y)| = sup

x∈BE

|ψkj(u(x))− ψki(u(x))| = sup
x∈BE

|tu(ψkj)(x)−t u(ψki)(x)|

= sup
x∈BE

∣∣[tu(ψkj) − tu(ψki)](x)
∣∣ = |||tu(ψkj)−t u(ψki |||

and since ai,j tends to 0, we get that the tu(ψkj) converge in E∗, as needed.

Comment: the converse is also true: if u ∈ L(E,F ) and tu is compact, then u is compact
as well. We already know from the theorem that ũ =t (tu) is compact, and we have seen
that the restriction of ũ to E is u; we get that the image u(BE) is relatively compact in
BF ∗∗ . Now u(BE) ⊂ F , and F is closed in F ∗∗ (the image of F by an isometry), so u(BE)
is also relatively compact in BF , as needed.
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1.3 First spectral properties of compact operators

Now we consider a complex Banach space, and compact operators from E to E.
Set L(E) = L(E,E) for convenience (bounded endomorphisms). We start with the

definition of the spectrum of u ∈ L(E,E), then we go as fast as we can to simple spectral
properties of compact operators. Later we return to the spectrum and the resolvent. In
what follows, I (or some times IE denotes the identity operator E → E.

Definition 1.6. For u ∈ L(E), the spectrum of u, denoted by Sp(u), is the set of λ ∈ C
such that λI − u is not invertible. The resolvent of u is the mapping Ru : C \Sp(u)→ L(E)
defined by Ru(λ) = (u− λI)−1.

We put the definition of Ru because it often goes with the spectrum, but we’ll not use
it soon. We will comment a little bit on the spectrum, then say something for compact
operators, then return to the spectrum and resolvent in the following subsections.

When E is of finite dimension, Sp(u) is the set of eigenvalues of u, because if u − λI
is not invertible, is neither injective nor surjective, and in particular it has a nontrivial
kernel. Hence in that case Sp(u) is the set of roots of the characteristic polynomial P (λ) =
det(λI − u).

Simple examples. In infinite dimensions, things are more complicated. We still have
a theorem of Banach that says that if λI − u is bijective, then its inverse u−1 : E → E
is bounded as well. So there is no confusion in the definition: invertible means that u
is bijective, and it also means that there is a bounded operator u−1 : E → E such that
u−1 ◦ u = u ◦ u−1 = I.

1. But u (or u− λI) can be injective but not surjective: in the Hilbert space

(1.7) `2 = `2(N) =
{
{xn}n≥0 ;

∑
n

|xn|2 < +∞
}

the direct shift S is an example. It is given by S(x) = y, where y0 = 0 and yn = xn−1 when
n ≥ 1. Here and below, the notation is that x = {xn} and y = {yn}. It is an isometry, but
its image is the proper closed subset

{
{xn} ∈ `2 ; x0 = 0

}
.

For u = S, λ = 0 lies in the spectrum, but it is not an eigenvalue, since u has no kernel.

2. It can also happen that u (or u−λI) is surjective, but not injective. This is even easier to
realize, but anyway the backwards shift T is an example, where T is defined by T (x) = y,
where yn = xn+1 for n ≥ 0.

3. Our favorite diagonal example in `2 = `2(N). The operator S is brutally non surjective,
but it can also happen that u is injective, not surjective, but its image is dense. Denote by
{en}n≥0 the usual orthonormal basis of `2. Thus en has only one non-zero component, which
is 1 standing at the n-th coordinate.

Let Λ = {λn}n≥0 be a bounded sequence, and define uΛ by

(1.8) uΛ(en) = λnen.
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In other words, uΛ(x) = y, where x = {xn}, y = {nn}, and yn = λnxn for all n.
If none of the λk is zero, uΛ is injective and in addition the image of u is dense. However,

if λn tends to 0, or even if it is not bounded from below, the following things happen. First,
u cannot be invertible, because if it were we would have u−1(en) = λ−1

n en (recall there is
no choice because u is injective); this does not define a bounded mapping u−1. In addition,
the image u(`2) is not closed, because we know it is dense, and if it were equal to `2 our
mapping would be bijective. It is not hard either to find points x = {xn} that do not lie in
the image: just make sure that

∑
n λ
−2
n x2

n diverges. Finally, we have no bound c > 0 such
that ||u(x)|| ≥ c||x|| for x ∈ `2, i.e., the injectivity does not come with bounds.

All these bad properties are related: if we could find c > 0 such that ||u(x)|| ≥ c||x|| for
x ∈ `2, we would get that u(`2) is closed and u : `2 → u(`2) is invertible, and would rather
be as in our first example of shift.

Exercise. Check that the operator uΛ : `2 → `2 is compact in and only if limn→+∞ λn = 0.
Notice that this is not shocking, here E is a Hilbert space, and we have a nice way to
approximate uΛ by finite rank operators.

We’ll return to the spectrum later, but let us state the promised simple spectral properties
of compact operators.

Theorem 1.7. Let u : E → E be a compact operator. Then

• The kernel of I − u has a finite dimension;

• The image of I − u is closed;

• If I − u is injective, then it is surjective (and I − u is invertible).

Denote by N the kernel of v = I − u. If x ∈ N , then u(x) = x and so N ∩BE ⊂ u(BE).
Thus N ∩ BE is a compact set (we don’t need Proposition 1.2 for this, we know that N is
closed because u is continuous). This forces N to be finite-dimensional.

Incidentally, since we shall be doing this sort of argument repeatedly, let us check this
fact that locally compact implies finite dimensional. Suppose E is not finite dimensional,
and define by induction a subspace Vn of dimension n and a vector yn ∈ E \ Vn (so that we
can continue with the space Vn+1 spanned by yn and Vn). First, Vn is closed (because it is
finite-dimensional; use a basis to find a bijection ψn from Vn to Cn, then notice that ψn and
ψ−1
n are continuous because of the equivalence of norms, and complete the argument as you

like). So dn = dist(yn, Vn) > 0. Pick a point zn of Vn such that ||yn − zn|| = dn (or is even
close to dn). Set en = (yn− zn)/||yn− zn||. This new point of Vn+1 has a unit norm, and the
distance from en to Vn is dist(en, Vn) ∼ d−1

n dist(yn − zn, Vn) = d−1
n dist(yn, Vn) = 1 because

zn ∈ Vn. Now we cannot extract a converging subsequence of the en, because each one lies
at distance ≥ 1/2 from the space Vn that contain the previous ones.

We’ll use this sort of argument repeatedly. Some times it is confusing because it looks
like we project yn on Vn, but we know that maybe there is no projection on Vn of norm 1
(or with uniform bounds in its norm), and yet we manage. for the subresult

Next we show that L, the image of v = I − u, is closed. Let w ∈ L be given; we want
to show that w ∈ L, and we may assume that w 6= 0. Let {yk} be a sequence in L that
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converges to w; by definition we may write

(1.9) yk = xk − u(xk) = v(xk),

for some xk ∈ E, and where we set v = I − u.
A little bit of psychology first. First observe that there is usually more than one solution

to (1.9). In fact, if x′k is another solution of (1.9), then v(x′k)−v(xk) = 0, hence x′k−xk ∈ N .
So the set of solutions to (1.9) is just our initial point xk, plus the vector space N .

We may want to choose xk correctly (or if we did not do that, replace it with another
solution), because if we can make the sequence {xk} converge to some limit x, then we
will get that yk = v(xk) converges to y = v(x), which will prove that y lies in the image
of v = I − u, as desired. Of course we could add huge elements of N to the xk and ruin
everything.

Pick any xk as above; we may have to replace it with another point. Set dk = dist(xk, N) =
infz∈N ||z − xk||. Since N is a vector space of finite dimension, we know that we can
find zk ∈ N such that dk = ||xk − zk||. [Hint: we can restrict our attention to the set
K =

{
z ∈ N ; ||z − xk|| ≤ dk + 1

}
, and then use the continuity of the distance and the

compactness of K.] We claim that using the point x′k = xk − zk may be more clever, but let
us first get rid of an unpleasant case.

Suppose dk = ||xk − zk|| tends to +∞. Set wk = d−1
k (xk − zk) = xk−zk

||xk−zk||
; this is a unit

vector, and by definition of a compact operator, we can replace {wk} with a subsequence
so that {u(wk)} converges to some limit ξ. As “usual”, we now replace sequences with
subsequences without even changing their names: we should be writing u(wkj) but we won’t.
Notice that

wk − u(wk) = v(wk) = d−1
k v(xk − zk) = d−1

k v(xk)

because zk ∈ N . But v(xk) = yk has a limit by construction, hence wk − u(wk) tends to 0.
Recall that u(wk) tends to ξ, so wk tends to ξ too, and now we also get that u(wk) tends to
u(ξ), so u(ξ) = ξ and ξ ∈ N .

Yet wk = d−1
k (xk − zk) so dist(wk, N) = d−1

k dist(xk − zk, N) = d−1
k dist(xk, N + zk) = 1

because N is a vector space and zk ∈ N . This is impossible because wk tends to ξ ∈ N .
So dk = ||xk − zk|| does not tend to +∞, and by replacing {xk} with a subsequence

we may assume that dk stays bounded. Since u is compact, we can extract again so that
u(xk − zk) has a limit ζ. But by (1.9),

(1.10) yk = v(xk) = v(xk − zk) = (xk − zk)− u(xk − zk).

Now yk tends to y and u(xk − zk) tends to ζ; so xk − zk tends to y + ζ, and now v(xk − zk)
tends to v(y + ζ). By the first part of (1.10), y = v(y + ζ) and hence y ∈ v(E). This proves
that v(E) is closed, as needed for the second part.

Now we suppose that v is injective and prove it is surjective. Suppose not. Set E0 = E
and E1 = v(E0); by assumption E1 is strictly smaller than E0. We proved that it is closed.

Next we want to show that u|E1 satisfies the assumptions of the theorem. This first means
that u(E1) ⊂ E1. And indeed, if x ∈ E1, u(x) = (I−v)(x) = x−v(x) lies in E1. In addition,
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u(BE ∩E1) is contained in the compact set u(BE), which is also contained in E1 (because it
is closed). So it is a compact subset of E1, as needed.

We also claim that E2 = v(E1), which is closed for the same reason as E1 was, is
strictly contained in E1. Suppose for a minute that E2 = E1. Consider x ∈ E0 \ E1; since
v(x) ∈ E1 = E2, we can find y ∈ E1 such that v(y) = v(x), contradicting the injectivity of
v. So E2 is strictly contained in E1.

At this point we can iterate: the mappings u and v preserve E2, the restriction of u to
E2 is compact, and v|E2 is injective. By induction, there is a strictly decreasing sequence of
nested closed sets En = v(En−1) ( En−1. We want to show that this cannot happen.

For each integer n, choose xn ∈ En \ En+1. Notice that dist(xn, En+1) > 0 (because
En+1 is closed), so we can find yk ∈ En+1 such that ||yn − xn|| ≤ 2 dist(xn, En+1). Then set
zn = xn − yn and z̃n = zn/||zn||.

Notice that for m < n, we have ζ := z̃m−v(z̃m)+v(z̃n) ∈ En+1 just because En+1 = v(En)
and then this set is preserved by u and v. Then

||u(z̃n)− u(z̃m)|| = ||[z̃n − v(z̃n)]− [z̃m − v(z̃m)]|| = ||z̃n − ζ||
≥ dist(z̃n, En+1) = ||zn||−1 dist(zn, En+1)

because u = I − v, and by definitions. Now dist(zn, En+1) = dist(xn − yn, En+1) =
dist(xn, En+1) because yn ∈ En+1, so finally ||u(z̃n) − u(z̃m)|| ≥ 1/2. Then there is no
way we can extract a converging subsequence from {u(z̃n)}, which is a contradiction because
the z̃n lie on the unit sphere and u is compact. This contradiction shows that v was in fact
surjective, and this completes the proof of the theorem.

I can’t resist commenting on the proof. It will happen often in these early results that
each step of the proof is easy and the whole proof is a little confusing. It could be that I am
saying this because I am not used to the story, but a priori I want to blame it on the unfair
strength and mystery of elementary algebra.

Next we check properties of compact operators more directly related to the spectrum.

Theorem 1.8. Let u : E → E be a compact operator, and assume E is a Banach space of
infinite dimension over C (in finite dimension, we already know enough). Then

• 0 ∈ Sp(u) (but it is not always an eigenvalue)

• If λ ∈ Sp(u) \ {0}, then it is an eigenvalue, and the kernel of u− λI is finite-dimensional

• Each λ ∈ Sp(u) \ {0} is an isolated point in Sp(u)

• Sp(u) is a compact subset of C.

Thus either Sp(u) is finite, or it is composed of a sequence (of eigenvalues) in R \ {0}
that tends to 0, plus 0 (we will see soon that Sp(u) is closed).

Of course, many of the properties above are no longer true with general bounded opera-
tors. For instance, the operators uΛ, where Λ is a bounded sequence, ot the operators in L2

of multiplication by a function, already give some examples.
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The simplest example of uΛ on `2 (where limn→+∞ λn = 0 because u is compact) gives
a realistic idea of what u is doing spectrally. Of course here we do not say that there is an
orthonormal basis of eigenvectors; we do not even have a scalar product and even in Hilbert
spaces this is wrong in general.

The case when u = uΛ and λn 6= 0 for all n shows that 0 can be in the spectrum without
being an eigenvalue.

If E is a Banach space over the reals, we cannot diagonalize so easily, but we can always
consider the complex extension of E and the complex extension ũ of u (defined by ũ(x+iy) =
u(x) + iu(y)), which is compact too, and apply the theorem to ũ.

Let us prove all this. Suppose 0 /∈ Sp(u). Then u is invertible, and BE = u(u−1(BE)) ⊂
u(B(0,M)) for M = |||u−1|||. This forces BE to be relatively compact (in E), which is wrong
in infinite dimension. So 0 ∈ Sp(u).

Next let λ ∈ Sp(u) \ {0}, and assume that it is not an eigenvalue. Apply the previous
proposition to λ−1u. Since the kernel of I − λ−1u is {0}, I − λ−1u is injective, so it is
invertible. Then λI − u is invertible too, a contradiction.

So λ ∈ Sp(u) \ {0} is an eigenvalue, and Theorem 1.7 says that the kernel of I − λ−1u
(which is also the kernel of λI − u) is finite-dimensional.

Now we need to check that λ is isolated in Sp(u). Suppose not; then there is an injective
sequence {λn} in Sp(u) that converges to λ. We have seen that λn is an eigenvalue, so we
can find en ∈ E, of norm 1, such that u(en) = λnen. As before, we want to construct a
sequence of unit vectors whose images by u are far from each other, so we modify the en.

Call En the vector space spanned by e1, . . . , en. We need to know that

(1.11) eigenvectors associated to different eigenvalues are always independent,

so let us check this (standard proof, sorry). Let e1, ..., en be eigenvectors associated to the
different eigenvectors λ1, ..., λn. Suppose e1, ..., en−1 are independent, but en =

∑
j<n µjej;

we want to check that this is impossible. Apply u; this gives λnen =
∑

j<n µjλjej. But also
λnen =

∑
j<n λnµjej. By independence, λnµj = λjµj for all j < n; hence µj = 0 for all j, a

contradiction which proves (1.11).
Now {En} is a strictly increasing sequence of subspaces (by (1.11)), which are closed

because they are finite-dimensional.
Take e′1 = 0 and, for n ≥ 2 choose e′n ∈ En−1 such that dist(en, En−1) ≤ dist(en, e

′
n) ≤

2 dist(en, En−1) (notice that dist(en, En−1) > 0). Set fn = en − e′n and f̃n = fn/||fn||.
Pick m > n and consider ζ = e′n

λn||fn|| + f̃m
λm

. By construction, u(ζ) ∈ En−1, so

||u(
f̃n
λn

)− u(
f̃m
λm

)|| = ||u(
en

λn||fn||
− e′n
λn||fn||

− f̃m
λm

)|| = ||u(
en

λn||fn||
)− u(ζ)||

= || en
||fn||

− u(ζ)|| ≥ dist(
en
||fn||

, En−1) =
1

||fn||
dist(en, En−1) ≥ 1

2

(1.12)

Now the sequence { f̃n
λn
} lies in a fixed ball of E (recall that limn→+∞ λn = λ > 0), so, since
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u is compact, we should be able to extract a convergent subsequence from
{
u
(
f̃n
λn

)}
; this is

clearly impossible by (1.12); this contradiction proves that λ is isolated.
This almost concludes the proof of Theorem1.8; we still need to check that Sp(u) is

compact; we’ll see a general easy proof for bounded operators soon; of course we could
deduce “closed” from the points above, but let us not even bother.

2 More about the spectrum in general

We start with a few additional definitions concerning the spectrum of a bounded operator on
the Banach space E. It will be more convenient to assume immediately that E is a complex
Banach space; in the real case, the situation is not bad anyway: we can always extend E and
u to be complex, use the results below on the extension, and maybe return to u if needed.

2.1 The resolvent

Definition 2.1. Let u ∈ L(E), where E is a complex Banach space.
A regular value of u is a λ ∈ C such that u− λI is invertible. Thus the set of regular

values is C \ Sp(u). We’ll see soon that it is an open set and Sp(u) is compact.
The resolvent of u is the mapping Ru : C \ Sp(u)→ L(E) defined by

(2.1) Ru(λ) = (u− λI)−1 for λ ∈ C \ Sp(u).

The resolvent looks complicated (how do you compute it exactly?), but is is nonetheless
very useful, for instance to compute functions of u (we will probably not do this here,
but there are formulas for computing f(u) by integrating Ru(λ)dλ on a path against some
appropriate function). And at least, on its domain, Ru is a nice function. The main result
here is the analyticity of Ru on C \ Sp(u).

Theorem 2.2. Let E be a Banach space over C and u ∈ L(E). The spectrum Sp(u) is a
nonempty compact subset of C and Ru : C \ Sp(u)→ L(E) is analytic.

Maybe you are surprised by the notion of analytic functions f with values in the Banach
space F = L(E), but this is not too complicated.

One way to feel better about this notion, with a low cost, is to say that f is analytic as
soon as, for any linear form Φ on F , the mapping Φ◦f (with values in C) is analytic. But we
do not need to worry, the weak definition of analytic given above is equivalent to a stronger
one, where we say that f is given, near every point of its (open) domain of definition, by a
normally convergent power series. This is not too hard to prove, because (if f is continuous,
say) we can use the Cauchy formula, first on Φ ◦ f , to estimate the size of all the derivatives
of any Φ◦f . This is then enough to prove the existence of the local description by convergent
power series (and even with precise estimates on the size of the terms). We don’t need any
of this for the moment because in our situation we’ll get the power series description directly
for Ru.
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Anyway, let u ∈ L(E) and λ0 ∈ C \Sp(u) be given. We want to show that there exists a
small r > 0 such that B(λ0, r) does not meet the spectrum and Ru(λ) is given by a converging
power series on B(λ0, r).

We want to reduce to the following basic case where the inverse is given by a Neumann
series.

Lemma 2.3. Let v ∈ L(E) be such that |||v||| < 1. Then I − v is invertible, and its inverse
is given by the series

(2.2) (I − v)−1 =
∑
n≥1

vn

where the series converges for the operator norm.

The proof is easy: the series converges normally because |||vn||| ≤ |||v|||n; then the fact

that (I − v)
(∑

n≥1 v
n
)

=
(∑

n≥1 v
n
)

(I − v) = I is proved by simple manipulations on

norm-convergent power series.

Return to λ0 ∈ C \ Sp(u). Set v0 = (u − λ0I)−1, which exists by assumption, and try
r = |||v0|||−1. Let λ ∈ B(λ0, r); we want to invert u− λI, so we write

(2.3) (u− λI)v0 = (u− λ0I)v0 − (λ− λ0)v0 = I − (λ− λ0)v0.

We are lucky: v = (λ− λ0)v0 has a norm |||v||| ≤ (λ− λ0)|||v0||| < 1, so we can invert I − v
and [(u−λI)v0]−1 = (I − v)−1 =

∑
n≥0(λ−λ0)nvn0 . Then of course u−λI = [(u−λI)v0]v−1

0

is invertible too, and its inverse is

(2.4) (u− λI)−1 = v0[(u− λI)v0]−1 =
∑
n≥0

(λ− λ0)nvn+1
0 .

This is the power series expansion that we were waiting for. So far we have that Sp(u) is
closed and Ru is analytic on its complement.

Let us check that |λ| ≤ |||u||| for λ ∈ Sp(u) (so that Sp(u) is bounded). For λ such that
|λ| > |||u|||, λI − u = λ(I − λ−1u), and since |||λ−1u||| < 1 by assumption, we can apply
Lemma 2.3, and get that I − λ−1u and hence also λI − u are invertible. So λ /∈ Sp(u).

Finally we need to know that Sp(u) 6= ∅. First observe that

(2.5) lim
λ→∞
|||Ru(λ)||| = 0

because we just saw that for |λ| large, Ru(λ) = (λI − u)−1 = λ−1(I − λ−1u)−1, and then
|||(I − λ−1u)−1||| ≤ 2 as soon as |||λ−1u||| ≤ 1/2, by (2.2).

Now, if Sp(u) = ∅, Ru is an analytic function on C that tends to 0 at∞, and by Liouville’s
theorem it must be zero. Don’t worry about the fact that it is valued in L(E), because for
any bounded linear form ϕ on L(E), we get by composition that ϕ ◦Ru is a (usual) nalytic
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function on C that vanishes at ∞, hence ϕ ◦ Ru(λ) = 0 for every λ ∈ C and every ϕ, and
the conclusion follows.

Another important object is the

(2.6) spectral radius ρ(u) = sup
λ∈Sp(u)

|λ| ≤ |||u|||.

The last inequality is what we checked at the end of the lemma above, with the Neumann
series trick.

The inequality can be strict, even in the Euclidean R2 and even if u is diagonalizable
(but not in an orthonormal basis). For instance take u(e1) = e1 + e2, u(e2) = ae2 with a
very close to 1. The matrix is diagonalizable, with two different eigenvalues 1 and a, but the
norm is at least ||u(e1)|| ≥

√
2.

In fact there is a formula for the spectral radius:

(2.7) ρ(u) = lim
n→+∞

||un||1/n = inf
n>0
||un||1/n,

which is even what we’ll use as a definition when we discuss C∗-algebras (and there is no
notion of eigenvalue).

Now why do we get the second inequality and why do (2.7) and (2.6) give the same
number?

For the second inequality, this uses the fact that the sequence {ak}, where ak = |||uk|||,
is not any sequence at randon, it has some regularity, which comes from the fact that

(2.8) ak+l ≤ akal for 0 ≤ k, l < +∞.

In the context of u here, this is just the fact that |||uk ◦ ul||| ≤ |||uk||| |||ul|||; in the later
case of C∗ algebras, this will be the same thing, coming from the basic rule ||uv|| ≤ ||u|| ||v||
for the norm. I won’t do the full detail, but then the simplest to understand what is
going on is probably to take f(k) = ln(ak), so that (2.8) becomes the subadditivity rule
f(k + l) ≤ f(k) + f(l).

I pass the study of such sequences, and the fact that they behave in a vaguely linear way,
so that for instance 1

n
f(n) tends to be decreasing and go to a limit. This eventually yields

that limn→+∞ ||un||1/n = infn>0 ||un||1/n as above.
I also pass the proof of the fact that the two definitions of ρ coincide. If I recall, this

is a not too complicated argument, using the discussion above and the Cauchy formula for
the analytic function Ru. At least you can guess that if |||uk||| < Ak for some k, then the
Neumann series trick and the control on the |||un|||, n large, that we get, shows that λI − u
is invertible as soon as |λ| > A. Then you can let k tend to +∞ and get one estimate.

Let us give a simple example instead of proving. On Cm we can already have a good idea
of what happens, because u is equivalent to a linear matrix with a Jordan decomposition;
the spectral radius is the largest size for an eigenvalue, and it is easy to see that the leading
term for the norm of a large power of a Jordan matrix with eigenvalue λ is just |λ|n.
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2.2 Hilbert spaces and the adjoint

We will continue with the case when E is a Hilbert space (we will keep it complex for the
same reasons as above). We exclude the case when E = {0} to avoid trouble with some of
the statements (for instance, when E = {0}, we have one operator u and its spectrum is
empty. I think. But truly I don’t want to think about that.)

Let us denote by 〈u, v〉 the scalar product of the two vectors u, v ∈ E. Let us adopt the
notation that 〈u, v〉 is linear in u and semilinear in v. That is, 〈u, λv〉 = λ〈u, v〉. Typical
example on Cn: 〈u, v〉 =

∑n
j=1 ujvj.

Recall that by a theorem of Riesz, E can be identified to its topological dual (written E∗

above). The identification mapping, we shall call it Ψ for a minute, and then we’ll forget
it, is given by Ψ(v) = ϕv, where for v ∈ E, ϕv is the continuous linear form given by
ϕv(u) = 〈u, v〉. The main point of the Riesz theorem is that every element of E∗ is a ϕv.
We also know (and this is easy) that |||ϕv||| = ||v|| (Ψ is an isometry), but alas Ψ is only
semilinear: Ψ(λv) = λΨ(v).

The proof of the theorem of Riesz is easy (very little structure is needed), but this is
misleading: the Riesz representation theorem is very powerful. One illustration
among others: try to prove directly (without Riesz), even in the simple case of finite Borel
measures on R, the Radon-Nikodym theorem that says that any finite measure ν that is
absolutely continuous with respect to the finite measure µ is given by a density f ∈ L1(µ).

Return to u ∈ L(E) on a Hilbert space. When we identify E∗ with E, the transposed
operator becomes what we call an adjoint. Let us give the definition anyway. The adjoint
of u is the operator u∗ ∈ L(E) such that for every choice of x, y ∈ E,

(2.9) 〈u∗(x), y〉 = 〈x, u(y)〉
Note first that the existence of u∗(x) comes from the fact that y → 〈x, u(y)〉 is continuous
semi-linear form (if you don’t like, take the conjugates), so it is given by the scalar product
(here on the right) by some element of E, which we call u∗(x). This element is unique. Then
u∗ is linear: easy because both sides of (2.9) are linear, and by uniqueness of u∗(x).

It is now also easy to check that u → u∗ is a semi-linear mapping, that (u∗)∗ = u, and
that |||u∗||| = u. Also, (u◦v)∗ = v∗ ◦u∗. Needless to say that these properties are proved like
the same ones for transposed operators (in fact, it is the same thing). Things are simpler
here because Hilbert spaces are reflexive (by Riesz again!).

For the same sort of reasons, let us leave as an exercise to check that u∗ is compact if
and only if u is compact.

Notice that u∗ is invertible iff u is invertible, with (u∗)−1 = (u−1)∗ This is now easy to
check because I just gave the formula.

Recall that in Cn, taking the adjoint of u amounts by taking the adjoint of its matrix M ,
where the adjoint is M∗ = tM = tM .

Exercise. Prove that |||u ◦ u∗||| = |||u∗ ◦ u||| = |||u|||2. The operators u ◦ u∗ and u∗ ◦ u are
often nicer to use because they are self-adjoint.

Exercise. Check that the adjoint of the operator uΛ of (1.8) is uΛ′ , where λ′n = λn for
n ≥ 0.
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Definition 2.4. Let u ∈ L(E) (a complex Hilbert space) be given.

• We say that u is self-adjoint when u = u∗;

• We say that u is normal when uu∗ = u∗u;

• We say that u is unitary when uu∗ = I = u∗u (we need both, think about the shift!); then
u is obviously invertible, but it is also an isometry: ||u(x)|| = ||x|| for x ∈ E.

• u is a projection if u2 = u.

The point of “normal” is that many properties of self-adjoint operators also hold for
normal operators. For instance the fact that eigenvectors associated to different eigenvalues
are orthogonal, or (hence) the diagonalization in finite dimensions.

Exercise. Check that every unitary u is an isometry. Check that u ∈ L(E) is unitary as
soon as it is an isometry. [Hint: there is a way to compute a bilinear form from its quadratic
form, and similarly for sesquilinear forms.]

Exercise. Check that if u ∈ L(E) is a projection, its image L is closed, there is a direct
decomposition E = L + N , where N is the kernel of u, and u(x + y) = x when x ∈ L and
y ∈ N . When in addition u∗ = u, L is orthogonal to N (and u is the orthogonal projection
on L).

2.3 First spectral properties of self-adjoint operators

We start with simple properties of general u ∈ L(E) (which will simplify when u∗ = u).
First

(2.10) Sp(u∗) = Sp(u) (complex conjugation).

This is easy: if λ /∈ Sp(u), i.e., u−λI is invertible, then its adjoint u∗−λI is invertible, and
so λ /∈ Sp(u∗); the other direction is the same for u∗. Next

(2.11) Ker(u∗) = Im(u)⊥ and Ker(u) = Im(u∗)⊥

where we denote by Ker(u) the kernel of u, and by Im(u) its image. Since (u∗)∗ = u, we
just need to check the first part. If x ∈ Ker(u∗) and y ∈ Im(u), we can write y = u(z)
for some z ∈ E and then 〈x, y〉 = 〈x, u(z)〉 = 〈u∗(x), y〉 = 0. So the spaces are orthogonal.
Conversely, if x ∈ E is orthogonal to Im(u), then for all y ∈ E 〈u∗(x), y〉 = 〈x, u(y)〉 = 0, so
u∗(x) is orthogonal to the whole word, hence u∗(x) = 0, as needed.

Obviously, it follows that

(2.12) if u = u∗, then Ker(u) = Im(u)⊥.

Next we check that

(2.13) if u = u∗, then Sp(u) ⊂ R.
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We already know that Sp(u) is symmetric with respect to the real axis, but this is not
enough!

We first check the easier fact that eigenvalues for u are real. Indeed, if u(x) = λx for some
x 6= 0, then λ||x||2 = 〈u(x), x〉 = 〈x, u∗(x)〉 = 〈x, u(x)〉 = λ||x||2; we divide by ||x||2 6= 0 and
get that λ is real.

Note that we’ll often see the quantity 〈u(x), x〉 for self-adjoint operators; in particular
studying it gives a good idea of where the spectrum is (see near (2.19)).

Now we can check that if λ ∈ C is not real, then v = u− λI is invertible. Observe that
for all x ∈ E, and as above, 〈u(x), x〉 = 〈x, u∗(x)〉 = 〈x, u(x)〉 = 〈u(x), x〉, so 〈u(x), x〉 is
always real. For x ∈ E,

(2.14) 〈v(x), x〉 = 〈u(x), x〉 − λ||x||2.

Write λ = a + ib, with b 6= 0. Since 〈u(x), x〉 is real, so |〈v(x), x〉| is at least as large as its
imaginary part, which is |b|||x||2. That is, we proved that

(2.15) ||v(x)||||x|| ≥ |〈v(x), x〉| ≥ |b|||x||2

hence, for x 6= 0,

(2.16) ||v(x)|| ≥ |b|||x||.

Thus, not only v is injective, but with uniform bounds that imply more: v(E) is a closed
space and v : E → v(E) is invertible (with norm at most |b|−1). We leave the details as an
exercise.

Now, since v also is self-adjoint, by (2.12) the orthogonal of v(E) is the kernel of v, which
is {0}. So in fact v(E) = E, and we have shown that v is invertible; (2.13) follows.

We continue with the list of properties of self-adjoint operators. Let us check that

(2.17) if u = u∗ and the vector space F is such that u(F ) ⊂ F then u(F⊥) ⊂ F⊥.

That is, F⊥ also is invariant under u. Indeed if x ∈ F⊥, then for all y ∈ F , 〈u(x), y〉 =
〈x, u∗(y)〉 = 〈x, u(y)〉 = 0 because u(y) ∈ F . It follows that x ∈ F⊥, as announced. Notice
that we did not require F to be closed, but if F is invariant, then its closure too, because u
is continuous.

The orthogonality of different eigenspaces is of constant use: for u ∈ L(E), x, x′ ∈ E,
λ, λ′ ∈ C,

(2.18) if u = u∗, u(x) = λx and u(x′) = λ′x′, with λ′ 6= λ, then 〈x, y〉 = 0.

This is because λ〈x, y〉 = 〈u(x), y〉 = 〈x, u(y)〉 = 〈x, λ′y〉 = λ
′〈x, y〉 = λ′〈x, y〉, where I used

the fact that since λ′ is an eigenvalue for u, it lies in the spectrum, so it is real. We get that
λ〈x, y〉 = λ′〈x, y〉, hence 〈x, y〉 = 0 as needed.
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Next the “variational” characterization of the two extremities of the spectrum (we will
see a generalization later, with Rayleigh quotients). Suppose u∗ = u, and set

(2.19) m = inf
{
λ ; λ ∈ Sp(u)

}
and M = sup

{
λ ; λ ∈ Sp(u)

}
(this makes sense since Sp(u) ⊂ R). Then m and M lie in the spectrum Sp(u), and

(2.20) m = inf
{
〈u(x), x〉 ; x ∈ E, ||x|| = 1

}
and M = sup

{
〈u(x), x〉 ; x ∈ E, ||x|| = 1

}
.

Let M ′ denote the supremum at the end of (2.20). We first check that if λ ∈ (M ′,+∞),
then u − λI is invertible; this will show that M ≤ M ′. We proceed as for (2.13), but from
the right instead of from above. Set v = u− λI; then for x ∈ E,

(2.21) 〈v(x), x〉 = 〈u(x), x〉 − λ||x||2 ≤ −(λ−M ′)||x||2.

By Cauchy-Schwarz, we now get that

(2.22) ||v(x)||||x|| ≥ |〈v(x), x〉| ≥ (λ−M ′)||x||2,

and then ||v(x)|| ≥ |b|||x|| (as in (2.16)). Again this forces v to be an isomorphism on its
closed image v(E); it also implies that Ker(v) = {0}, hence by (2.12) v(E) is dense. As
before, v is invertible, as needed for the proof that M ≤M ′.

Next we check that M ′ ∈ Sp(u); once we do this, we get that M = M ′, the same proof
(or replacing u with −u) gives the first part of (2.20), and we already know that m and M
lie in the spectrum, because it is closed.

Set v = M ′I − u. Then for ||x|| = 1, 〈v(x), x〉 = M ′ − 〈u(x), x〉 ≥ 0 by definition of M ′.
Consider the sesquilinear form Φ on E×E defined by Φ(x, y) = 〈v(x), y〉. We just said that
Φ(x, x) ≥ 0 for all x, and by Cauchy-Schwarz for this form,

(2.23) |〈v(x), y〉|2 ≤ 〈v(x), x〉〈v(y), y〉

[if you are afraid that it does not hold for degenerate forms, either check or add ε〈x, y〉 to Φ
and then let ε go to 0]. Then use (2.23) to write

||v(x)||2 = sup
||y||=1

|〈v(x), y〉|2 ≤ 〈v(x), x〉 sup
||y||=1

〈v(y), y〉

and now by the usual Cauchy-Schwarz

(2.24) ||v(x)||2 ≤ 〈v(x), x〉 |||v|||.

Now where is the problem? By definition of M ′ as a sup, we can find a sequence {xn} in
the unit sphere of E such that 〈v(xn), xn〉 = M ′−〈u(xn), xn〉 tends to 0. By (2.24), ||v(xn)||
tends to 0 too. This is not possible if we assumed that M ′ /∈ Sp(u), because v is invertible
and so 1 = ||xn|| = ||v−1(xn)|| ≤ |||v−1||| ||xn||. This concludes our proof of (2.20).

20



Some further comments. Concerning (2.20), it is curious that there is no more direct
proof of the fact that M ′ lies in the spectrum. Somehow the proof uses the scaling of the
size of the errors, rather than just their sign.

It can happen that M (and m would be the same) is not an eigenvalue. This is the case,
for instance, if u = uΛ (as in (1.8)), for an increasing sequence such that limn→+∞ λn = M ,
but M is never reached.

We won’t resist mentioning a last result (for the moment), called Weyl’s criterion. Let
us say that λ is an approximate eigenvalue for u when we can find a sequence {xn} in the
unit sphere of E, such that

(2.25) lim
n→+∞

||u(xn)− λxn|| = 0.

Let us even call σ(u) (the Weyl spectrum of u) the set of approximate eigenvalue for u. In
general, we have that

(2.26) σ(u) ⊂ Sp(u),

because when λ ∈ C \ Sp(u), u − λI is invertible, so ||u(x) − λx|| ≥ c||x|| for some c > 0
and (2.25) cannot happen. The amusing thing is that when u ∈ L(E) is self-adjoint, the
converse is true:

(2.27) if u∗ = u, then σ(u) = Sp(u).

Let us check this, as usual by contradiction, so let us assume that u∗ = u and λ ∈
Sp(u) \σ(u). Notice that λ is real (by (2.13)), and is not an eigenvalue (because eigenvalues
are approximate eigenvalues!). So v = u−λI is injective, hence by (2.12) v(E) is dense. On
the other hand, since λ /∈ σ(u), we can find ε > 0 such that ||v(x)|| ≥ ε for all x in the unit
sphere. We have seen that already: then v is an isomorphism on its image, which is closed,
hence v(E) = E (it was dense), and v is invertible, a contradiction that proves (2.27).

Exercise. Let u ∈ L(E) be self-adjoint. Prove that u is nonnegative (i.e., 〈u(x), x〉 ≥ 0 for
all x ∈ E) if and only if Sp(u) ⊂ [0,+∞).

Exercise Consider E = L2(Rn, dµ), with a measure µ that may as well be the Lebesgue
measure. Let u = uf denote the operator of multiplication by the given bounded function f .
In some way, this is a variant of the example above with `2, and in a way u already comes
as diagonalized as possible.

1. Check that λ = 0 is an eigenvalue for u if and only if µ(f−1({0})) 6= 0.

2. Check that u is invertible if and only if there is an r > 0 such that µ(f−1(B(0, r)) = 0.

3. Check that u is self-adjoint if and only if f(x) ∈ R for µ-almost every x ∈ Rn.

Exercise. Consider the Fourier transform F : L2(Rn) → L2(Rn), which I choose to be
defined so that

(2.28) Ff(ξ) = (2π)−n/2
ˆ
x∈Rn

e−i〈x,ξ〉f(x)dx
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for f ∈ L1 ∩L2, and the normalization is chosen so that F is an isometry of L2. Recall that
its inverse F−1 is given by the same formula, but with ei〈x,ξ〉. Do the exercise only if you
already know about F .

1. Find a formula for 〈Ff, g〉 when f, g are in a dense class.

2. What is the adjoint of F?

3. Is F unitary?

4. Can you prove that 1 is an eigenvalue for F?
It looks like we should be able to say more (from the question 3), but this is not so clear

to me at this point.

Exercise Use the two previous exercises to construct an exercise on Fourier multipliers
(defined by u : g 7→ F−1(mF(g))).

2.4 Spectral decomposition of self-adjoint compact operators

We add more properties and get a simpler description of u. In what follows, E is a Hilbert
space (certainly not {0}, but the interesting case is when E is infinite-dimensional).

And u ∈ L(E) is now assumed to be both self-adjoint and compact. Let us already recall
what we know about the spectrum of u.

First, Sp(u) ⊂ [−|||u|||, |||u|||] ⊂ R (because u∗ = u).
When E is infinite-dimensional, 0 ∈ Sp(u), but it does not need to be an eigenvalue.
Each point of Sp(u) \ {0} is an isolated point of Sp(u) and is an eigenvalue with a finite

multiplicity (see Theorem 1.8).
Hence the set of positive spectral values (or here eigenvalues) is either empty, or finite,

or can be organized as a decreasing sequence that tends to 0. Similarly, the set of negative
spectral values is either empty, or finite, or can be organized as an increasing sequence that
tends to 0.

We add two new pieces of information here. For λ ∈ Sp(u), call Eλ = Ker(u − λI) the
vector space spanned by the corresponding eigenfunction. It could happen (as in the case of
uΛ when the λn are positive and tend to 0) that E0 = {0}. Anyway,

(2.29) E is the direct orthogonal sum of the Eλ, λ ∈ Sp(u).

This is a nice decomposition of E adapted to u. In finite dimensions, this just means that
when u is self-adjoint, we can diagonalize u in an orthonormal basis (take an orthonormal
basis of each Eλ).

Let us check this. Notice that Eλ is closed because it is the kernel of a bounded operator.
Then u(Eλ) ⊂ Eλ by definition. Also, Eλ ⊥ Eµ when λ 6= µ, by (2.18). Call F the linear
span of the Eλ; let us show that F is dense. Suppose not; then F⊥ is not reduced to {0}.
Since u(F ) = F , we also get that u(F⊥) ⊂ F⊥ (see (2.17)). So we can consider ũ, the
restriction of u to F⊥.

By construction, ũ has no eigenvalue. It is also a compact self-adjoint operator (the
formula that defines self-adjoint is still valid on a smaller space), so we know that its spectrum
is {0} (recall that the empty set is impossible because of Liouville).
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Now we apply (2.20) and find that u(x) ⊥ x for all x ∈ F⊥. Let x ∈ F⊥, and set y = u(x)
and z = u2(x); then

0 = 〈u(x+ y), x+ y〉 = 〈y + z, x+ y〉 = ||y||2 + 〈z, x〉 = ||y||2 + 〈u2(x), x〉 = ||y||2 + ||u(x)||2

because x ⊥ y and y ⊥ z, and then u is sel-adjoint. In particular u(x) = 0 on F⊥, which
is the desired contradiction because F⊥ was not supposed to contain eigenvectors. So F is
dense (we cannot expect it to be the whole E because we only took F to be the vector linear
span of the Eλ (I mean, with finite sums and no series).

Now what do we mean by this direct orthogonal sum of Eλ? Call πλ the orthogonal
projection on Eλ. By Pythagorus, if x ∈ E, then

∑
λ∈Sp(u) ||πλ(x)||2 ≤ ||x||2, because this is

true for any finite sum. Notice that we are lucky here: Sp(u) is at most countable, so we
could write sums as series in a natural way. Anyway, we can take limits of finite sums, and
see that Π(x) =

∑
λ∈Sp(u) πλ(x) exists, and then that Π(x) − x ∈ F⊥. That is, Π(x) = x

(because F⊥ = {0}; in general, Π(x) would be the projection of x on F ). This gives an
orthonormal decomposition of x as

∑
λ πλ(x).

If we want, we can also take an orthonormal basis of each Eλ, λ 6= 0, and then use the
union {eµ} of the bases, and we can write x ∈ E as x = π0(x) +

∑
µ xµeµ, with xµ = 〈x, eµ〉.

The last sum is again at most countable. For π0, if E is not separable, we need an uncountable
Hilbertian basis of E0 to decompose π0(x) (but this is all right).

Next we mention a very nice feature of self-adjoint (compact) operators: the use of so-
called Rayleigh quotients to find the successive eigenfunctions of u. It is already interesting
(and used a lot) in finite dimensions.

Let u be self-adjoint and compact, and assume that it has some positive eigenvalues.
How do we find them? We start with the largest one, which we call M . we saw in (2.20)
that the supremum of the spectrum is

(2.30) M = sup
{
〈u(x), x〉 ; x ∈ E, ||x|| = 1

}
.

and if M > 0 we know that M is an eigenvalue. So (2.30) gives the formula for the largest
eigenvalue. And incidentally the sup in (2.30) is a maximum, since 〈u(x), x〉 = M when x is
a unit eigenvector of EM (i.e., ||x|| = 1 and u(x) = Mx).

Call M = λ0. Suppose there are eigenvalues λ such that 0 < λ < M , and call λ1 the
largest such eigenvalue. Then we claim that

(2.31) λ1 = sup
{
〈u(x), x〉 ; x ∈ E, ||x|| = 1 and x ⊥ Eλ0

}
.

Certainly the supremum is at least as large as λ1, because if x is a unit eigenvector associated
to λ1, then x ⊥ Eλ0 and 〈u(x), x〉 = λ1. For the other direction, we consider the restriction ũ
of u to V1 = E⊥λ0 ; we know that u(V ) ⊂ V because u(Eλ0) ⊂ Eλ0 , and ũ is again self-adjoint
and compact. Now λ1 is the largest eigenvalue for ũ (because Eλ1 ⊂ V and the eigenvalue
λ0 is now forbidden on V ), and (2.31) is exactly the same as (2.30) for ũ on V .
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As you guessed, we can iterate: if λk > 0 is the k-th largest eigenvalue for u (assuming
there are that many positive eigenvalues), then

(2.32) λk = sup
{
〈u(x), x〉 ; x ∈ E, ||x|| = 1 and x ⊥ Eλj for 0 ≤ j < k

}
.

If you prefer to count eigenvalues with their multiplicity, and at the same time construct
an orthonormal basis composed of eigenvectors, you can also do the following. Consider first
µ0 = sup

{
〈u(x), x〉 ; x ∈ E, ||x|| = 1

}
(the same formula as in (2.30)). If µ0 > 0, we have

seen that the sup is a max, and we can find a unit vector e0 such that u(e0) = µ0e0. If
λ0 = µ0 has a multiplicity larger than 1, we have a lot of choice for e0, but this does not
matter.

Then consider V1 = e⊥0 . It is easy to see that it is stable by u. So we do the same as
above, but for the restriction of u to V1. That is, we now consider µ1 = sup

{
〈u(x), x〉 ; x ∈

V1, ||x|| = 1,
}

. If µ1 > 0, it is an eigenvalue for u|V1 , the supremum is a maximum, and we
can find a unit eigenvector e1 for u|V1 , associated to µ1 (and orthogonal to e0 since it lies in
V1). We can continus like this, up to the moment when we get a number µk = 0, and then
we know that we exhausted all the positive eigenvalues and eigenvectors.

Of course the negative eigenvalues can be treated the same way (or just use −u).

Comment. Even when E is not separable, taking a compact u puts us in the separable
word. We can see this in the spectral decomposition above (u vanishes on E0, and the rest
has an at most countable Hilbertian basis), but we could also have used the fact that for
every ε = 2−k, u is within ε of a finite rank operator. When we add the dimensions of all
the corresponding images, we still get an at most countable number. Compare (if you wish)
with the fact that if the family {ui}i∈I is summable, then its support (the set of i such that
ui 6= 0) is at most countable, even though I could a priori be really huge.

3 Spectral results, self-adjoint operators

3.1 Preparation to the functional calculus: C∗-algebras

For a matrix, we know how to compute polynomials in M (such as M3 − 17M), and the
theorem of Cayley-Hamilton says that P (M) = 0 when P is the characteristic polynomial
P0 of M , or of course the product of this polynomial by any other polynomial. Thus if we
want to compute P (M), it is advisable to first make an Euclidean division of P by P0, i.e.,
write P = QP0 + R for some polynomials Q and R, and observe that P (M) = R(M) and
compute.

Here we shall consider extensions of the simpler situation where M is self-adjoint, hence
diagonalizable in an orthonormal basis. In this case P (M) is even easier to compute: in this
orthonormal basis (i.e., after conjugating with an orthogonal matrix), it becomes a diagonal
matrix with diagonal terms P (λj), where the λj are the eigenvalues. In particular, P (M)
only depends on (M and) the values of P on the spectrum, and it makes sense to define
f(M) for any function f defined on the spectrum. We want to do something like this for
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operators, and for instance define
√
u when u is compact, self-adjoint, and its spectrum is

contained in [0,+∞).
You should be warned that there are lots of way to do functional calculus on u (i.e. define

correctly f(u) for suitable functions f), and lots of assumptions on u and its spectrum that
make it possible.

We start with an unpleasant (for me; many people love it) definition part, but it will
make it easier to formalize things later. So we are about to define C∗-algebras (in french,
C∗-algèbres, or even algèbres stellaires (avec une étoile)). Our model, however, is L(E),
where E is a complex Hilbert space. We will use the complex structure, the fact that
we have a nice involution u → u∗, and a multiplication law, which is the composition of
operators. So it is not assumed to be commutative.

A C∗-algebra is an involutive complex Banach algebra. Complex Banach
aglebra means that it is a Banach space, with also a product law u, v → uv (not necessarily
commutative) with the following three properties:

• It is associative:

(3.1) (uv)w = u(vw) for u, v, w ∈ A;

• the product is linear:

(u+ v)w = uv + uw, u(v + w) = uv + uw, and λ(uv) = (λu)v = u(λv)

for λ ∈ C and u, v, w ∈ A;
(3.2)

• The following norm inequality holds:

(3.3) ||uv|| ≤ ||u||||v|| for u, v ∈ A.

The third condition could seem weird to you, but without it we would not get that far,
and more importantly we have interesting examples, so we keep it.

Something confusing to me: when you multiply || · || by a < 1, you make this last
condition ||uv|| ≤ ||u||||v|| easier (so suppose you only had ||uv|| ≤ C||u||||v||, a|| · || will
have the desired property if aC ≤ 1). This trick won’t work as such with the next property.

And “involutive” means that we also add an involution, denoted bu u → u∗, with the
properties that (u∗)∗ = u, but also which is semilinear (i.e., (λu + µv)∗ = λu∗ + µv∗), and
such that (uv)∗ = v∗u∗ for u, v ∈ A.

• Also, we add for “involutive normed” (and hence “involutive Banach”) the condition that

(3.4) ||uu∗|| = ||u||2.

Then

(3.5) ||u∗|| = ||u||

because ||u||2 = ||uu∗|| ≤ ||u||||u∗||, so ||u|| ≤ ||u∗||, and similarly ||u∗|| ≤ ||u||.
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Finally, I’ll follow a tradition (of many people but not all) that the algebra A contains
a unit, which I’ll denote by I and satisfies Iu = uI = u for u ∈ A). In French we way that
A is unifère, I think.

That’s it. I know, that makes a long list. But we have two simple examples. The first
one is the set C(K) of continuous functions f : K → C, where K is a compact set, and with
the sup norm (the involution is f → f and the identity is the constant function 1); this is
the model for a commutative C∗-algebra with a unit. The second one (non commutative)
is L(E) mentioned above. For this case, (3.4) holds because ||u∗|| = ||u|| by definition of
self-adjoint, ||uu∗|| ≤ ||u||2 is easy from the definitions (or (3.3)), and ||uu∗|| ≥ ||u||2 because
||u(x)||2 = 〈u(x), u(x)〉 = 〈u∗u(x), x〉 ≤ ||u∗u(x)|| ||x||.

From now on, unless otherwise specified, A is a C∗-algebra (with all the properties men-
tioned above and a unit). Some properties below do not need as much but I think we’ll be
able to manage for the rest of the course with this simplification.

Some definitions and basic properties mentioned for L(E) go through. The spectrum of
u ∈ A is the set of λ ∈ C such that u− λI is not invertible (in A of course).

So for L(E) this is the same as above. In the simpler case of C(K), the function f ∈ C(K)
is invertible precisely when it does not vanish, so f − λI is invertible when f does not take
the value λ, and hence Sp(f) = f(K).

The spectral radius of an element makes sense, and is given by

(3.6) ρ(u) = lim
n→+∞

||un||1/n = inf
n>0
||un||1/n

(the reason for the equality is the same as below: ||umun|| ≤ ||um|| ||un||, which is in the list
of definitions above). And for instance we have the following analogue of properties above.

Proposition 3.1. Let A be a C∗-algebra with a unit (so A 6= {0}), and u ∈ A. Then

• Sp(u) is a nonempty compact subset of C;

• ρ(u∗) = ρ(u) ≤ ||u||;
• ρ(u) = supλ∈Sp(u) |λ|;
• if u∗ = u, then ρ(u) = ||u||.

The unpleasant part is the third one, whose details we did not do above for u ∈ L(E),
and we still don’t do them now. But the idea is still to use analytic functions, then size
estimates on the coefficients of power series expansions, and finally the submultiplicativity
of the norm. Then for the last point we observe that if u = u∗, then ||u2|| = ||u||2, and by
induction ||u2m|| = ||u||2m . We take these special numbers in the definition of ρ(u) and get
ρ(u) = limm→+∞ ||u2m||2−m

= ||u||.

Now a little bit of morphisms. I let you guess what is a morphism of C∗-algebras (many
things to check though). The idea is that it has to respect a certain number of things; let
me state three in particular: ϕ(u+ v) = ϕ(u) +ϕ(v), ϕ(uv) = ϕ(u)ϕ(v), and ϕ(u∗) = ϕ(u)∗.
Here we require a unit for A and B, so we also require that ϕ(IA) = IB. Incidentally, this
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means that we can see C as a subset of A and of B, and ϕ(λIA) = λIB, so the restriction
of ϕ to CIA is trivial. We also require ϕ to be countiuous (bounded). I do not mention
anything about the norm, but see the second item of Lemma 3.2 below. The fist morphism
that we’ll construct (continuous functional calculus) will preserve the norm though.

Here are simple examples.

1. In the C(K), choose a continuous function h from K to L, and set ϕh(u) = u ◦ h.

2. In L(E), choose a unitary h ∈ L(E) and set ϕh(u) = h−1uh (conjugation is always a
good thing to try when we look for examples).

3. Closer to what we want to do, given a diagonal matrix M ∈Mn(C) with real coefficients,
associate to a function f defined on the spectrum K of M the new matrix f(M) ∈ Mn(C).
Notice that Mn(C) is a C∗-algebra too, it is morally the same as L(Rn). And please check
all the above before using it.

Lemma 3.2. Let ϕ : A→ B a morphism of C∗-algebras. Then

• Sp(ϕ(u)) ⊂ Sp(u) for u ∈ A;

• ||ϕ(u)|| ≤ ||u|| for u ∈ A.

For the first part, SpB(ϕ(x)) ⊂ SpA(u) should be a more correct way to say it. Especially
since it could happen that we consider the same u that lies in two algebras that contain each
other, and u− I could be invertible in the large one but not in the small one. The units are
the same though.

Anyway, if λ /∈ Sp(u), then u − λIA is invertible, hence ϕ(u) − λIB = ϕ(u) − λϕ(IA) =
ϕ(u−λIA) is invertible too, because ϕ((u−λIA)−1) is an inverse. So λ /∈ Sp(ϕ(u)); the first
part follows.

For the second part we write

||ϕ(u)||2 = ||ϕ(u)ϕ(u)∗|| = ||ϕ(uu∗)|| = ρ(ϕ(uu∗)) ≤ ρ(uu∗) ≤ ||uu∗|| ≤ ||u||2

by the property ||v||2 = ||vv∗||, the morphism property, the fact that uu∗ is self-adjoint, and
so ϕ(uu∗) is self-adjoint too, and hence its spectral radius is equal to its norm, then the
inclusion that we just proved, then easy stuff again.

Much much more exists, and many references too (see Paulin first).

3.2 Continuous functional calculus for bdd self-adjoint operators

We want to give a sense to f(u) when u = u∗ ∈ L(E) (a Hilbert space). But without the
compactness assumption, so that we don’t really have a decomposition of E into eigenspaces
that we could play with.

Theorem 3.3. Let E be a complex Hilbert space (not {0}) and u ∈ L(E) be self-adjoint.
Set K = Sp(u) ⊂ C and denote by C(K) the C∗-algebra of continuous functions on K
with complex values. There is a unique morphism ϕ = ϕu from C(K) to L(E) such that
ϕ(id) = u, where id is the identity mapping on K (i.e., id(λ) = λ for λ ∈ K).
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Let us stop here to comment, but this is not all: ϕu has lots of interesting properties that
we’ll mention later. For the moment, we just say that for each continuous function f : K →
C, we found a nice way to define f(u) ∈ L, so that it has the algebraic properties that we
would want. For instance, fg(u) = f(u)g(u) (the composition), or (f + g)(u) = f(u) + g(u),
or (the involution) f(u) = f(u)∗.

Here and below I take some liberties: I decided to call f(u) what the theorem calls
ϕu(f) ∈ L(E).

Notice that C(K) is commutative, so its image by ϕ will be too. That is, f(u)g(u) =
g(u)f(u): all our functions of u commute with each other. We knew this already for poly-
nomials, so it is not a surprise.

We now list additional properties of ϕ = ϕu (or the mappings f(u)). We will prove all
that later. First a little more theory:

(3.7) ϕ is an isometry from C(K) to the smallest C∗-algebra that contains u.

Not so surprising, but we’ll see. The smallest C∗-algebra in question (also called the C∗-
algebra generated by u) is also the intersection of the C∗-algebras A ⊂ L(E) that contain
u (which makes its existence easy to check, but due to the large number of laws we omit
the proof). It is commutative; the definition by intersection does not make this obvious,
but we’ll have a more constructive proof where all the objects commute. Given that our
algebra can be obtained from u by adding all the polynomials in u (that commute), then
doing diverse closure operations, and taking limits, this makes sense. Next, a very important
information (also called spectral theorem):

(3.8) Sp(f(u)) = f(Sp(u)) for f ∈ C(K)

(or, with the notation of the theorem, Sp(ϕ(f)) = f(Sp(u)). This is true when we compute
functions of a diagonalizable matrix (or operator) in finite dimension, but it fails in general
(when u is not self-adjoint), and it is quite useful. The proof is not really hard, but something
has to be done there.

(3.9) f(u) is self-adjoint iff (if and only if) f is real-valued; f(u) is nonnegative iff f ≥ 0;

(3.10) f(u) is invertible iff f 6= 0 on K, and when this happens f(u)−1 =
1

f
(u);

(3.11) f(u) = 0 iff f = 0 on K;

if λ is an eigenvalue for u, then f(λ) is an eigenvalue for f(u),

and Ker(u− λI) ⊂ Ker(f(u)− f(λ)I).
(3.12)

Some of these things are easy, but we’ll try to discuss them after the basic construction,
which will take some time.
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First, K = Sp(u) is a nonempty compact subset of the plane, so C(K) is a C∗-algebra
and the statement makes sense.

We can define P (u) when P is a polynomial with complex coefficients, and the morphism
P → P (u), from C[X] to L(E), is a morphism that preserves sums, products, and the
involution. We use the fact that u = u∗ here, because otherwise we would have P (u)∗ =
P (u∗).

We want to find a way to use this “morphism” (the term is not appropriate though
because C[X] is not complete, so it is not a C∗-algebra), essentially with an extension by
continuity, and we will need some estimates to do that cleanly.

Lemma 3.4. For P,Q ∈ C[X],

(3.13) Sp(P (u)) = P (Sp(u)) = P (K);

(3.14) |||P (u)||| = sup
λ∈K
|P (λ)|;

(3.15) P (u) = Q(u) as soon as P and Q coincide on K.

First we check that P (K) ⊂ Sp(P (u)). Let λ ∈ K; we want to check that P (λ) ∈
Sp(P (u)). Write P (X)−P (λ) = (X−λ)Q(X) for some polynomial Q. Then P (u)−P (λ)I =
(u − λI) ◦ Q(u) = Q(u) ◦ (u − λI). If (u − λI) is not injective, we use the second formula
and find that P (u) − P (λ)I is not injective. Otherwise, (u − λI) is not surjective, and we
use the second formula to find that P (u)− P (λ)I is not surjective.

Conversely, let µ ∈ Sp(P (u)); we want to show that µ ∈ P (K). If P (X) ≡ µ, this
follows from the fact that K 6= ∅. Otherwise, call λ1, . . . , λk the roots of P − µ (and k its
degree), and write P (X)− µ = a

∏
j(X − λj), with a 6= 0 because P is not constant. Hence

P (u) − µI = aU , where U is the composition of the u − λjI. If none of the λj lies in K,
then the composition is invertible, which contradicts the fact that µ ∈ Sp(P (u)). Otherwise,
some λj lies in K, and P (λj)− µ = 0, so µ ∈ P (K) as desired. So (3.13) holds.

For (3.14), we observe that

|||P (u)|||2 = |||P (u)P (u∗)||| = sup
λ∈Sp(P (u)P (u)∗)

|λ|

= sup
λ∈Sp((PP )(u))

|λ| = sup
λ∈K
|PP (λ)| = sup

λ∈K
|P (λ)|2

(3.16)

(true in general, then because u is self-adjoint, then by Proposition 3.1 (and because P (u)P (u)∗) =
(PP )(u), then by functional calculus, then (3.13), then calculus; (3.14) follows.

For (3.15), if P = Q on K, then P −Q vanishes on K and now |||P (u)−Q(u)||| = 0 by
(3.14).

We may now return to our morphism P → P (u), from C[X] to L(E); let us call it ϕ0.
First observe that if we want a morphism ϕ as in the theorem, then it should be that if f
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is the restriction to K of a polynomial P , we have to take ϕ(f) = P (u) [because ϕ(id) = u
and then ϕ should preserve “products”, sums, and so on].

Because of (3.15), we are lucky, and P (u) depends only on the restriction of P to K, so
we can consider that ϕ is already defined on these restrictions (and equal to ϕ0, modulo the
correct identifications).

Now we want to extend this from the class CP of restrictions of polynomials to the whole
C(K), and obviously we shall use the theorem of Weierstrass, that says that CP is dense on
C(K) (for the uniform norm: we are not cheating). Now P → P (u) is uniformly continuous
from CP to L(E), (3.14) even says that it is an isometry. So ϕ0 has a unique continuous
extension to C(K). In particular, ϕ will be unique (recall from Lemma 3.2 that morphisms
are continuous).

We are finished with the construction of ϕ. Now we need to check its numerous proper-
ties. First, the extension too is an isometry. This allows us to check the various algebraic
(morphism) conditions by taking limits. Let us skip the details.

At this point we have Theorem 3.3, and we start to check the various extra properties.
For (3.7), we see that the image of ϕ is in the closure of the image of ϕ0; this is clearly

the smallest C∗-algebra that contains u (because P (u) has to lie in this C∗-algebra for
every polynomial P ). Also, the operators P (u) commute with each other, so our smallest
C∗-algebra is commutative too (take limits).

We already proved (3.8) when f is a polynomial. We have to extend this to f ∈ C(K).
Suppose first that λ /∈ f(K); then we can define a continuous function g on K by g(t) =
(f(t)− λ)−1, so that g(t)(f(t)− λ) ≡ 1 on K. Then g(u) ◦ (f(u)− λI) = [g · (f − λ)](u) = I
and (f(u)− λI) ◦ g(u) = I as well. That is, f(u)− λI is invertible and λ /∈ Sp(f(u)).

Conversely, assume that λ /∈ Sp(f(u)), so f(u)− λI is invertible and, by the same proof
with Neumann series as when we checked that Sp(u) is closed, we can find ε > 0 such that
v is invertible for any v ∈ L(E) such that |||v − f(u) + λI|| ≤ ε. Let fn be polynomial
functions that tend to f uniformly on K; then we know that the fn(u) converge in norm to
f(u). In particular, we get that for n large enough, v = fn(u)− λ′I is invertible as soon as
|λ′ − λ| ≤ ε/2. Then λ′ /∈ Sp(fn(u)) = fn(K). In other words, fn(K) stays at distance at
least ε/2 from λ, and hence λ /∈ f(K); (3.8) follows. [Check this proof because Paulin uses
a different one.]

Next consider (3.9). If f is real-valued (on K), f(u) is self-adjoint because f(u)∗ =
f(u) = f(u). If f(u) is self-adjoint then its spectrum is real and since the spectrum is f(K),
f is real (on K). For the positivity statement, it looks like we have to give the solution of the
exercise below (2.27). First suppose f ≥ 0. Then v = f(u) is self-adjoint, and its spectrum
is contained in [0,+∞). Then by (2.20) 〈v(x), x〉 ≥ 0 for all x ∈ E, which is the definition
of v nonnegative. Conversely, first observe that

(3.17) if v ∈ L(E) is nonnegative, then it is self-adjoint

This requires a small computation. We know that 〈v(x), x〉 ≥ 0 for all x, and we want to
check that 〈v(x), y〉 = 〈x, v(y)〉 for all x and y. Set a(x, y) = 〈v(x), y〉 to save notation.
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We want a(x, y) = a(y, x). By assumption, a(x + y, x + y) ≥ 0. We expand and get that
a(x, y)+a(y, x) ∈ R. The same with a(ix+y) yields a(ix, y)+a(y, ix) = i[a(x, y)−a(y, x)] ∈
R. An easy exercise now. We apply (3.17) to v = f(u) and get that it is self-adjoint (and
nonnegative). Then by (2.20) its spectrum lies in [0,+∞). But the spectrum is f(K), so
f ≥ 0 on K.

For (3.10), if f does not vanish, we have seen that by functional calculus 1
f
(u) is an

inverse for u. Conversely, if f(u) is invertible, 0 does not lie in its spectrum, which is f(K).
Next (3.11) follows, for instance, from the fact that ϕ is an isometry.
We are left with the story (3.12) about eigenvalues and eigenspaces. Suppose λ is an

eigenvalue for u and choose any eigenvector x (so u(x) = λx). Then for any polynomial,
P (u)(x) = P (λ)x. And by taking limits, this stays true for continuous functions on K:
f(u)(x) = f(λ)x; (3.12) follows.

[End of the spectral theorem for bounded self-adjoint operators]

3.3 Essential spectrum of a self-adjoint operator

The other, mysterious piece of the spectrum (eigenvalues are not mysterious, but they don’t
always exist).

Here and below, E is a (nontrivial) Hilbert space and u ∈ L(E) is self-adjoint.

Definition 3.5. The essential spectrum of u is the set Spess(u) of λ ∈ C such that there
exists a sequence {xk} in the unit sphere of E, such that

(3.18) lim
k→+∞

u(xk)− λxk = 0

and

(3.19) {xk} has no convergent subsequence.

We need to explain (3.19). Certainly (3.19) forbids us to take {xk} in a fixed vector sub-
space of finite dimension. On the other hand, if λ is an eigenvalue with infinite multiplicity,
it is fairly easy to see that u = λI on a closed subspace of infinite dimension, and then we
can take for {xk} an orthonormal system and λ ∈ Spess(u).

On the other hand, (3.18) has some flexibility: the xk are not really required to be
eigenvectors, but only approximate eigenvectors.

Exercise. Check that if there is an invertible operator v ∈ L(E) such that u1 = v−1uv
then u and u1 have the same essential spectrum. So the notion has a good chance to have a
geometrical meaning. Also, we have the following.

Theorem 3.6. For u ∈ L(E) self-adjoint, denote by V p(u) the set of eigenvalues for u.
Then

Sp(u) = V p(u) ∪ Spess(u).

In addition, Sp(u) \Spess(u) is the set of eigenvalues of u that have a finite multiplicity and
are isolated points of Sp(u).
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We have seen already (3.18), because we said that λ is an approximate eigenvalue when
there is a sequence {xk} in the unit sphere that satisfies (3.18). We even called Weyl’s
spectrum, and denoted by σ(u), the set of approximate eigenvalues. So we immediately
know (from (2.26)) that Spess(u) ⊂ σ(u) ⊂ Sp(u). Recall also that in fact σ(u) = Sp(u) by
(2.27) and because u is self-adjoint.

Let us check that every point of Sp(u) \ Spess(u) is isolated in Sp(u). We take a point
λ ∈ Sp(u) which is not isolated and show that λ ∈ Spess(u). Let {λk} be a sequence in
Sp(u) \ {λ} that tends to λ; we want to find a nice unit vector xk for every k.

Since u = u∗, Weyl’s theorem mentioned in (2.27) (he proved a few other theorems) says
that here σ(u) = Sp(u). So λk is an approximate eigenvalue for u. In particular we can pick
a unit vector xk such that ||u(xk) − λkxk|| ≤ 2−k|λ − λk|, say. So clearly we have (3.18),
but we still need to show that no subsequence of {xk} converges. So we suppose that some
subsequence converges, which we immediately denote by {xk} to simplify the notation. Set
x = limk→+∞ xk; we get that u(x) = λx (since u is continuous), and also ||x|| = 1. Now we
shall use the fact that the xk are so close to being eigenvalues for different eigenvectors that
they cannot be close to each other:

(λ− λk)〈xk, x〉 = (λ− λk)〈xk, x〉+ 〈xk, [u− λI]x〉
= (λ− λk)〈xk, x〉+ 〈[u− λI]xk, x〉

= 〈u(xk)− λkxk, x〉
(3.20)

by self-adjointness. Now by Cauchy-Schwarz

|λ− λk| |〈xk, x〉| ≤ ||u(xk)− λkxk|| ≤ 2−k|λ− λk|

and hence |〈xk, x〉| ≤ 2−k. This does not happen for a sequence of unit vectors that tends
to x. So there was no convergent subsequence, and finally our non-isolated λ lies in the
essential spectrum.

Next we need to check that for self-adjoint bounded operators,

(3.21) every isolated point of Sp(u) is an eigenvalue

[but it could have infinite multiplicity and then it lies in the essential spectrum too]. Let us
be brutal. Let µ be an isolated eigenvalue, and define f on K by f(µ) = 1 and f(λ) = 0 on
the rest of K. This is a continuous function on K, so we have f(u). In addition, (u−µI)◦f(u)
corresponds to the function (t − µ)f(t) = 0 is null. But f(u) 6= 0 because f(µ) = 1. So
it has a nontrivial image, and this image is contained in the kernel of u − µI. So µ is an
eigenvalue.

We are about finished. We checked that Sp(u) = V p(u) ∪ Spess(u). Then we said that
points of Sp(u)\Spess(u) are isolated, hence eigenvalues. The multiplicity is finite (otherwise
λ ∈ Spess(u)), so we have a direction.

We still need to see that if λ is an eigenvalue with finite multiplicity and is isolated in the
spectrum, then it does not lie in Spess(u). Notice that Eλ = Ker(u−λI) is finite-dimensional
(and closed). Since u preserves it, it also preserves V = E⊥λ , and we can study v = u|V .
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Observe first that Sp(v) ⊂ Sp(u). Indeed, suppose that u − λI is invertible, then we
claim that its restriction to V is invertible too. It is clearly injective, and for the surjectivity
we observe that if y ∈ V and x ∈ E is such that (u− λI)(x) = y, the part of x that lies in
V ⊥ = Eλ does not contribute to (u − λI)(x) = y. Here we are using that Eλ is closed and
the sum is direct.

Return to our λ with finite multiplicity. Suppose first that λ ∈ Sp(v). Then it is isolated
in Sp(v) (it is already isolated in the larger Sp(u)), hence it is an eigenvalue; impossible by
definition of V . So λ /∈ Sp(v), and u− λI is invertible in V . In particular there exists c > 0
such that ||u(x)− λx|| ≥ c||x|| for x ∈ V .

Recall we need to check that λ does not lie in Spess(u). So let {xn} be a sequence in
the unit sphere such that ||u(xn) − λxn|| tends to 0; we just need to show that we can
extract a convergent subsequence of {xn}. Write xn = yn + zn, with yn ∈ Eλ and zn ∈ V .
Since Eλ is finite dimensional (and ||yn|| ≤ ||xn|| = 1), we can extract a subsequence for
which yn converges to a limit y. Also, u(zn) − λzn = u(xn) − λxn tends to 0 too, but since
||u(zn) − λzn|| ≥ c||zn||, we see that zn tends to 0. So our subsequence converges, and this
completes our proof of Theorem 3.6.

3.4 Spectral resolution of a self-adjoint operator

At this point let us switch notation and call H (instead of E) our favorite Hilbert space. We
may need the letter E for other things.

At the end of this subsection we get a nice description of any self-adjoint operator, in
“spectral terms”. The idea is still as when we diagonalize, to cut E into orthogonal subspaces
where u acts simply, but we may have uncountably many pieces so we’ll use measures.

Notation: when E ⊂ H is a closed subspace, we call pE the orthonormal projection on
E.

Recall that we only consider continuous projections, i.e., operators p ∈ L(H) such that
p2 = p, and then there are two closed spaces F = p(H) and N = Ker(p), and p is the
projection on F in the direction N ; that is, p = 0 on N and p = I on F . We shall mostly
consider orthogonal projections, i.e., projections p such that N = F⊥. Those are also the
projection p such that p∗ = p (exercise).

Definition 3.7. A resolution of the identity on the Hilbert space H is is a family Pλ,
λ ∈ R, of orthogonal projections, such that

(3.22) Pλ ◦ Pµ = Pmin(λ,µ) for λ, µ ∈ R

(3.23) Pλ = 0 for λ small enough, and Pλ = I for λ large enough;

(3.24) lim
µ→λ+

Pµ(x) = Pλ(x) for λ ∈ R and every x ∈ H.
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Comments. For me resolution of the identity means that you cut I into sums of projec-
tions

∑
j[Pλj+1

− Pλj ] (with as many pieces as you want).
Calling Fλ = Pλ(H) the image, (3.22) is a different way of asking that Fλ ⊂ Fµ for λ < µ.

We authorize Pλ = Pµ for λ < µ (and then Pt = Pλ for λ ≤ t ≤ µ).
Next, (3.24) can be expressed as “Pµ(x) converges strongly to Pλ” when µ tends to λ+.
Finally we simplified (3.23) because we are only considering bounded operators, but the

true definition that I like would only require that Pλ tends strongly to 0 when λ tends to
−∞, and Pλ tends strongly to I when λ tends to +∞. This will make no difference here.

In (3.24) we chose the continuity on the right. This is, I think, due to a standard practice
in probability/measure theory. But if we wanted left continuity we could consider I − Pλ
and reverse the time.

Basic example (but to be refined later): let u ∈ L(H) be compact and self-adjoint. For
each λ ∈ R, call Eλ the eigenspace for λ, and then for µ ∈ R, call Fµ the orthogonal sum
of all the Eλ, λ ≤ µ. Call Pµ the orthogonal projection on Fµ. It is easy to check that this
is a resolution of identity. This uses the “diagonalization” of u proved above (because the
sum of all Eλ is the whole space!) We could not do that for general bounded self-adjoint u,
because the eigenspaces leave out a big chunk of H; we’ll find something else.

Now we want to do a bit of measure theory. Here is a theorem on Stiljes measures.

Theorem 3.8. Let F : R → R be bounded, nondecreasing, and continuous from the right.
Assume in addition that limt→−∞ F (t) = 0 (a normalization). Then there is a unique positive
Borel measure µ on R such that

(3.25) µ((−∞, a]) = F (a) for a ∈ R.

Comments. If you constructed Lebesgue’s measure, probably you know how to prove this.
But we won’t. Notice that F is allowed to have (positive) jumps, and then µ has Dirac
masses. Here we will have F (m) = 0 for some m and F (t) = F (M) for t ≥ M (for some
M ≥ m), and then it is easy to check that µ(R \ [m,M ]) = 0. We call µ the Stiljes measure
associated to F (and some times denoted by dF , but beware that it may have singular parts).
There is an easy converse: every finite positive measure on R is a Stiljes measure (can be
written like this). Obviously, take F (a) = µ((−∞, a]) and check the properties above. The
right continuity is mostly a convention (much preferred by the probabilists, so let us follow).

We would like something similar, but with projections, so we proceed as follows. Let
{Pλ} be a resolution of the identity. For every x ∈ H, we define the function Fx by Fx(λ) =
〈Pλ(x), x〉. Notice that Fx(λ) tends to 0 when λ → −∞, and to ||x||2 when λ → +∞, and
more importantly that Fx is nondecreasing, because for λ < µ,

〈Pλ(x), x〉 = ||Pλ(x)||2 ≤ ||Pµ(x)||2 = 〈Pµ(x), x〉,

where we used the self-adjointness of the projections (or just brutal computations with
orthogonal decompositions). So for each x there is a Stiljes measure associated to x (and
in fact with total mass ||x||2). Let us elaborate a little and construct operators from these
measures (where we integrate a function f).
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Proposition 3.9. Let {Pλ} be a resolution of the identity on the Hilbert space H. Then for
each f ∈ Cb(R) (bounded and continuous on R) there is a unique bounded operator w = wf
such that

(3.26) 〈wf (x), x〉 =

ˆ
λ∈R

f(λ)dFx(λ)

(the integral against f of the Stiljes measure associated to Fx(λ) = 〈Pλ(x), x〉). Moreover, w
is self-adjoint when f is real-valued and nonnegative when f ≥ 0.

This is nice. But only called a proposition because to be honest, the converse will be
more interesting. If we assume (3.23), the measures Fx are all supported on some interval
[m,M ], and we don’t need f to be bounded. That is, wf is defined when f ∈ C(R). Not
surprising, because the values of f on R \ [m,M ] won’t matter. The following notation will
help when we apply the proposition:

(3.27) wf =

ˆ
R
f(λ)dPλ.

We did not define this directly, because we fear to do operator-valued measures, but what
we defined instead was a list of “projections” of this operator: all the numbers 〈wf (x), x〉,
which at the end amounts to the same thing, but makes sense more easily. Notice that if u
is linear and you know all the 〈u(x), x〉, then you can also compute all the 〈u(x), y〉, and this
gives you u. Exercise: do the computation; this looks like computing a bilinear form from
its quadratic form, and if you are not used to this start when H and u are real. Hint: You
will need 〈u(x+ y), x+ y〉 and 〈u(x+ iy), x+ iy〉.

We are ready for the proof. The uniqueness follows from what we just said (also called
polarisation). For the existence, we start from what we have: for each x ∈ H, call q(x) =´
f(λ)dFx(λ) =

´
f(λ)dµx(λ) (if you prefer this notation). We also know that |q(x)| ≤´

|f |dµx ≤ ||f ||∞µx(R) ≤ ||f ||∞||x||2. Then we check linearity: we set

a(x, y) =
1

2

(
q(x+ y)− q(x)− q(y)

)
+
i

2

(
q(x+ iy)− q(x)− q(y)

)
;

this is a sesquilinear (linear in x, semilinear in y) form. This is unpleasant, but if we have
the right formulas it cannot fail. The points is that we can expand things like Fx+y(λ) =
〈Pλ(x + y), x + y〉 using the linearity of each Pλ, and then compute. Once we have the
sesquilinearity (and boundedness) of a, we can conclude that it is given by a linear operator
(use the Riesz theorem to define w(x) by its effect on all y ∈ H).

Finally the fact that w is self-adjoint when f is real and nonnegative when f ≥ 0 is
easy to check, because we are precisely given the 〈w(x), x〉 (and can compute the 〈w(x), y〉
if needed). The reader guessed that we’d skip the details.

Comments.

• The operator w = wf of the proposition can be seen as roughly diagonalized by the
description (3.27), in the sense that for instance, if f is close to the constant α on the
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interval I = (a, b], then on the space W which is the orthonormal complement of Pa(H) in
Pb(H), the operator looks a lot like αI, as we can check by computing 〈w(x), x〉 for x ∈ W .
Notice that then we only integrate on (a, b].

• We only took f continuous in (3.26) and (3.27), but we could take f bounded (but Borel-
measurable to make sure it will be measurable for all the µx) and we still get a bounded
operator wf , defined for f ∈ L∞(R). For me, L∞(R) will be the set of bounded Borel
functions on R, with the sup norm. I’ll refrain to say L∞ here, because usually one works
modulo functions that vanish almost everywhere, and here it is a little delicate because we
are using a lot of measures µx at the same time. But this is not a serious issue.

Now we head for the converse of the proposition: the resolution of the identity associated
to a self-adjoint operator u ∈ L(H), and then how to write u and functions of u as in the
proposition above. We cut the statement in three, but the theorems are linked and we will
prove them together.

Theorem 3.10 (Spectral resolution of u). Let u ∈ L(H) be self-adjoint. There is a unique
resolution of the identity {Pλ}, λ ∈ R (on H) such that for f ∈ C(Sp(u)),

(3.28) f(u) =

ˆ
λ∈Sp(u)

f(λ)dPλ.

Here the left-hand side is the continuous functional calculus on u (defined in Theorem 3.3),
and the right-hand side is using the formula (3.27).

We integrated on Sp(u) because f is not defined on the rest of R, but we’ll see that dPλ
(and we should say the d〈Pλx, x〉) never charge(s) R \ Sp(u).

We call {Pλ} the spectral resolution of u. We’ll see soon that it allows us to compute
bounded functions of u (and not only continuous ones).

How do we get it? We will find it more convenient to prove a good part of the following
thing first:

Theorem 3.11 (Bounded functional calculus for u, definition). Let u ∈ L(H) be self-
adjoint. Call K = Sp(u). There is a unique morphism ψ from the C∗-algebra L∞(K) (the
set of bounded Borel functions on K, with the sup norm) to L(H), such that ψ(id) = u, and
which has the following continuity property

if g ∈ L∞(K) is the pointwise limit (everywhere) of a bounded

sequence {gk} in L∞(K), then the ψ(gk) converge strongly to ψ(g).
(3.29)

Some comments before we continue with the properties of ψ. We are still using the space
L∞ of bounded functions (with the strong sup norm), which means that we do not try yet
to determine whether two bounded functions are equivalent, but I feel ready to announce
that two functions that are equivalent for all the measures µx = d〈Pλ, x〉 associated to the
resolution of the identity of Theorem 3.10 will give the same ψ(f), hence we could improve
a tiny bit the continuity (3.29).

36



You know that C(K) is not dense at all in L∞ (or the reasonable L∞), so the norm
continuity of ψ is not enough to prove the uniqueness of ψ. And also, it is important to be
allowed to use (3.29) to compute lots of ψ(f).

Recall, the strong convergence means that ψ(gk)(x) converges (in H) to ψ(g)(x) for every
x ∈ H (but |||ψ(gk)(x)− ψ(g)(x)||| does not need to tend to 0).

Finally,

Theorem 3.12 (Bounded functional calculus, properties). Let u ∈ L(H) be self-adjoint,
and set K = Sp(u). Let ψ be as in Theorem 3.11. Then

(3.30) ψ extends the continuous functional calculus ϕ of Theorem 3.3;

(3.31) |||ψ(f)||| ≤ sup
t∈K
|f(t)|;

(3.32) ψ(f) is self-adjoint (resp. non-negative) when f is real-valued (resp. ≥ 0) on K;

(3.33) ψ(f) ◦ v = v ◦ ψ(f) for all v ∈ L(H) such that v ◦ u = u ◦ v;

if λ is an eigenvalue for u, then ψ(λ) is an eigenvalue for ψ(f)

and Ker(u− λI) ⊂ Ker(ψ(f)− f(λ)I).
(3.34)

No big surprise here, I hope. From the end of the proof on, we may again write f(u)
instead of ψ(f), but for the moment let us not do that and reserve the notation for the
continuous functional calculus.

The functorial identities of ψ (many things are preserved) are the same as for ϕ a long
time ago; we added the better convergence theorem to accommodate bounded functions.

The uniqueness of ψ comes from the fact that it must be an extension of ϕ (by uniqueness
of ϕ), our convergence condition, and the fact that every bounded Borel function is the
pointwise limit of some sequence of (bounded) continuous functions. Note however that this
fact requires some proof, which we will not do here!!

How do we define ψ? For x, y ∈ H and f ∈ C(K), we have a definition of 〈f(u)(x), y〉
(coming from the continuous functional calculus). For fixed x and y, this defines a continuous
linear form on C(K), hence there is a finite Borel measure µ = µx,y such that

ˆ
K

fdµx,y = 〈f(u)(x), y〉 for f ∈ C(K).

Then we can say a bit more about the µx,y. First,

(3.35) ||µx,r|| ≤ ||x|| ||y||

because ||µx,r|| (the total variation of the measure) is the norm of the linear form, and
by functional calculus; then µ has the expected sesquilinear and symmetry dependence on
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x and y (by functional calculus again). Because of this, we may now observe that for
g ∈ L∞ = L∞(K), the application

(x, y)→
ˆ
K

gdµx,y

is a bounded sesquilinear form on H, so by Riez (or Riez-Fréchet?) it is given by a (unique)
operator ψ(g) ∈ L(H). That is,

ˆ
K

gdµx,y = 〈ψ(g)(x), y〉 for x, y ∈ H.

This gives a definition of ψ. Then there are some various things to verify: linearity, complex
conjugation, norm, etc. Let me just mention a few.

We put stress on the continuity condition. Now we have to check it: we suppose that
g ∈ L∞(K) is the pointwise limit of a bounded sequence {gk} in L∞(K), and we want
to prove the strong convergence of the ψ(gk) to ψ(g). What we can easily get is that for
x, y ∈ H, the 〈ψ(gn)(x), y〉 =

´
K
gndµx,y converge to

´
K
gdµx,y = 〈ψ(g)(x), y〉 (by dominated

convergence for a single measure). This is “weak convergence”. We shall use the following
classical lemma, which is often useful.

Lemma 3.13. Let {zk} be a sequence in a Hilbert space H, which converges weakly to z ∈ H,
in the sense that

(3.36) lim
k→+∞

〈zk, y〉 = 〈z, y〉 for every y ∈ H.

Suppose in addition that we lose no mass, i.e.,

(3.37) lim
k→+∞

||zk|| = ||z||.

Then limk→+∞ ||zk − z|| = 0.

Easy proof, since ||zk− z||2 = ||zn||2 + ||z||2−2Re〈zk, z〉, so we even only need y = z.

Returning to our sequence {ψ(gn)(x)}, we see that it is enough to check that ||ψ(gn)(x)||
tends to ||ψ(g)(x)||; fortunately we can use the same trick again:

||ψ(gn)(x)||2 = 〈ψ(gn)(x), ψ(gn(x))〉 = 〈ψ(gn)∗ψ(gn)(x), x〉 = 〈ψ(|gn|2)(x), x〉,

and the last term goes to the limit well, because |gn|2 converges pointwise to |g|2, and then
we can proceed backwards.

Let me leave out the proofs of (3.31) and (3.32). Maybe you were surprised by the
statement of (3.33), but the point is that the statement is true for continuous functions f ,
even though we did not state it this way, because it holds for polynomial functions and then
extends by continuity. Here it is the same, but we use the strong continuity of the definition
of ψ. Finally (3.34) goes as before (true for continuous functions, then go to the limit).
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Now we worry about Theorem 3.10. We start with the uniqueness. Consider the formula
(3.28). More precisely it means that for all f ∈ C(K) and x, y ∈ H,

〈f(u)(x), x〉 =

ˆ
λ∈K

f(λ)d〈Pλ(x), x〉.

It follows that the Stiljes measure µx = d〈Pλ(x), x〉 is uniquely determined, or equivalently
〈Pλ(x), x〉 is uniquely determined and again by polarisation we can recover 〈Pλ(x), y〉, which
yields Pλ.

Now the existence. We waited all this time because now we have ψ, and it is natural
to take Pλ = ψ(χλ), where χλ is the characteristic function of (−∞, λ]. If we did not want
to wait, we could have guessed that we should take for Pλ a limit of operators f(u), where
f(t) = 1 for t ≤ λ and f(t) = 0 for t a little larger than λ. The remaining verification (that
this works) is not surprising; we have the functional calculus, so for instance Pλ ◦ Pµ, which
corresponds to the product χλχµ, is equal to Pmin(λ,µ).

3.5 What next?

We’ll stop here because of lack of time, but there are many more things to say. First
we studied self-adjoint bounded operators (we have examples later), but other classes of
operators are interesting. Such as unitary or (see later) unbounded operators.

You’d be surprised: there are many circumstances where you want to define and use
functions of an operator (or even, in some cases, of a few operators (say, that commute with
each other)).

Same general comments with C∗-algebra: there is a whole interesting world to discover
for those who want. Good if you are bored with usual functions because they commute, but
not only. See for instance books of Dixmier, Connes, Yoshida.

Related but not discussed here, semigroups (I have a good but tough memory of Yoshida).
Let me mention representations results, which I never know exactly how to interpret. The

simplest says that every Hilbert space is isometric to an L2(I, µ), and even with a measure
on I which is a counting measure. I think it means that you won’t ever get more information
on your space H by knowing that it is an L2(µ) (except of course if you are interested in
results that relate to this µ precisely).

The second one says that any commutative C∗-algebra is in fact a C0(A) (continuous
functions on a locally compact space A that tend to 0), if you want to allow algebras without
a unit, and a C(K), K compact if you have a unit. In this case this looks simpler (but the
theorem says that any proof in C(K) has to extend).

The last case is a theorem of Gelfand-Naimark which says that if A is a C∗-algebra, it is
isomorphic (through an isometry) to a closed subalgebra of a L(H). Maybe the right way to
interpret is that the structure of C∗-algebra is well concieved (general results on the structure
of L(H) should have a C∗-algebra proof). Unless the devil is in the “closed subalgebra” part.
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4 Some results of measure theory/analysis

Suddently you’ll be surprised to see some sections in French. There are good reasons for this:
the fact that preparing a class takes some time (hence an incentive to talk about what I know
a bit more) and using some already written notes (in French) saves even more time. So the
following sections are brutal inclusions of some other text. But contrary to the part above
where I relied on Paulin’s notes and added errors, I own the copyright for what follows (errors
included). I’ll still try to butcher the notes a bit, to make the result shorter; the original is
on my web page : https://www.imo.universite-paris-saclay.fr/∼gdavid/CoursM2.pdf

4.1 Lusin’s theorem

Theorem 4.1. On se donne un espace métrique localement compact E (par exemple, E =
Rn), une mesure finie µ sur E, muni des boréliens, et une fonction f définie sur E,
borélienne, et à valeurs dans Rm, ou Cm, ou R. Mais si elle est à valeurs dans R, on la
suppose finie presque-partout. Alors pour tout ε > 0, il existe g continue (et finie partout),
telle que µ({x ∈ E ; f(x) 6= g(x)}) ≤ ε.

Pourquoi j’aime bien: on vous dit tout le temps qu’une fonction Borélienne, ou même
un ensemble Borélien, ça peut être très compliqué. Oui mais, si on a le droit de jeter à la
poubelle un morceau aussi petit qu’on veut, ce qui reste est simple.

On commence par quelques réductions faciles. On peut supposer que f est finie partout
(la remplacer par 0 sur un ensemble de mesure nulle ne change pas la conclusion), puis à
valeurs réelles (appliquer l’argument à chaque coordonnée et avec ε/n, puis prendre l’union
des mauvais ensembles), puis même à valeurs dans ]−M,M [ (choisir M assez grand pour que
µ({x ∈ E ; |f(x)| ≥M}) ≤ ε/2), et enfin à valeurs dans [0, 1[ (considérer [M + f(x)]/2M .)

Par un argument standard de théorie de la mesure, on peut écrire f =
∑

k≥1 2−k 1Ek
,

avec des ensembles Ek boréliens. Les sommes partielles sont les approximations standard de
f par des fonctions à valeurs dans 2−kN, et une manière d’écrire la somme directement est
de dire que pour tout x, f(x) =

∑
k≥1 2−k 1Ek

est l’écriture standard de f(x) en base 2. Et

sauf erreur de calcul, 1Ek
(x) = e(2kf(x))− 2e(2k−1f(x)), où e(y) est la partie entière de y;

d’où la mesurabilité.
Maintenant, la mesure µ étant régulière, on sait que pour tout k, on peut trouver un

compact Kk et un ouvert Vk tels que Kk ⊂ Ek ⊂ Vk et µ(Vk \Kk) < εk, où l’on peut choisir
εk > 0 très petit, par exemple, εk = 2−kε.

Par un théorème de topologie (Urysson, je crois), il existe une fonction continue gk telle
que gk(x) = 1 sur Kk, gk(x) = 0 hors de Vk, et 0 ≤ gk(x) ≤ 1 sur Vk \ Kk. D’ailleurs,
ici l’espace est métrique et il est facile de donner une formule pour gk(x) en fonction de
la distance de x au complémentaire de Vk. La série

∑
k 2−kgk converge normalement, et sa

somme g est continue. Il reste à voir que g(x) = f(x) hors d’un ensemble Z tel que µ(Z) ≤ ε.
Mais on peut prendre Z = ∪k[Vk \Kk], et utiliser le fait que µ(Vk \Kk) < εk.
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Le théorème a un corollaire facile: la fonction f est une limite simple presque-partout de
fonctions continues. Mais à mon sens c’est moins impressionnant.

4.2 Egorov’s theorem

Theorem 4.2. Soit (E,A, µ) un espace de probabilité, et soit {ϕn} une suite de fonctions
mesurables, disons de E dans R, telle que limn→+∞ ϕn(x) = 0 pour µ-preque tout x ∈ E.
Alors, pour tout ε > 0, il existe F ⊂ E mesurable tel que µ(E \ F ) ≤ ε et

lim
n→+∞

ϕn(x) = 0 uniformément sur F .

J’ai pris une limite nulle pour simplifier. Si la suite {ϕn} tend vers ϕ 6= 0, on a le même
résultat de convergence uniforme sur un grand ensemble en appliquant le théorème à ϕn−ϕ.

Donc on doit jeter un petit ensemble pour rendre la limite uniforme. C’est sans doute à
cause de cette ressemblance avec Lusin ci-dessus que je confonds souvent.

Quitte à remplacer les ϕn par 0 sur un ensemble de mesure nulle, et ajouter cet ensemble
à E \ F , on peut supposer que limn→+∞ ϕn(x) = 0 partout. Posons αk = 2−k. Fixons k et
notons

AN,k =
{
x ∈ E ; |ϕn(x)| ≥ αk pour au moins un n ≥ N

}
pour N ≥ 1. Puisque limn→+∞ ϕn(x) = 0 partout, l’intersection (visiblement décroissante)
des AN,k est vide. Donc il existe N(k) tel que µ(AN(k),k) ≤ ε2−k−1.

Ensuite posons Z = ∪kAN(k),k, et F = E\Z. Alors µ(E\F ) = µ(Z) ≤
∑
µ(AN(k),k) ≤ ε,

et il ne reste plus qu’à vérifier (1).
On doit montrer que pour tout α > 0, il existe N tel que |ϕn(x)| ≤ α pour x ∈ F et

n ≥ N . On choisit k tel que αk < α et N = N(k). Alors si x ∈ F , x n’est pas dans
AN(k),k ⊂ Z, donc ϕn(x) ≤ αk < α pour tout n ≥ N , come souhaité.

4.3 Maximal functions and he Lebesgue differentiation theorem

On commence par la fonction maximale de Hardy-Littlewood.
On se donne une mesure de référence µ, borélienne et positive sur Rn (penser à la mesure

de Lebesgue), et qu’on va aussi prendre localement finie (de Radon). On se donne aussi une
seconde mesure (borélienne positive) ν. On pose

Mµ(ν(x)) = sup
r>0

1

µ(B(x, r))

ˆ
B(x,r)

dν ∈ [0,+∞],

avec la convention que 0/0 = 0 quand µ(B(x, r)) = 0. C’est la fonction maximale (de Hardy-
Littlewood, ou est-ce seulement dans le cas ou µ est la mesure de Lebesgue qu’ils avaient
regardé?) de ν.

On n’utilisera que le cas où µ est la mesure de Lebesgue, mais il n’y a pas de grosse
différence tout de suite. Je ne regarde pas la mesurabilité (je vous laisse vérifier; avec la
mesure de Lebesgue, qui charge toutes les boules, il n’y a pas de problème).
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Le cas qui arrive le plus souvent est celui d’une mesure de densité, quand dν(x) =
|f(x)|dµ(x), avec f localement intégrable pour µ, et alors cela donne

Mµf(x) = sup
r>0

1

µ(B(x, r))

ˆ
B(x,r)

|f | dµ.

Le plus souvent, dµ est la mesure de Lebesgue, et Mµ(ν) est noté ν∗.
On se demande si ces fonctions sont intégrables ou dans des Lp(dµ). Ca sera utile parce

que pas mal de problèmes avec des sup ou des limites dépendent de fonctions maximales;
voir plus loin pour au moins un exemple.

Lemma 4.3. Si ν est une mesure finie, Mµ(ν) ∈ L1
faible(dµ), avec

µ
(
{x ∈ Rn ;Mµ(ν(x)) > λ}

)
≤ Cnν(Rn)

λ
pour tout λ > 0.

Notation: pour p > 0, on note

||g||Lp
faible(dµ) = sup

λ>0

{
λp µ

(
{x ∈ Rn ; |g(x)| > λ}

)}1/p
,

et ensuite Lpfaible(dµ) est la classe des fonctions mesurables g telles que
||g||Lp

faible(dµ) < +∞. C’est bien un espace vectoriel complet, mais attention, ||g||Lp
faible(dµ)

n’est pas une norme, l’inégalité triangulaire n’est pas vérifiée avec la constante 1. Bien sûr,
Lp ⊂ Lpfaible, par Tchebyshev.

Noter que le lemme devient faux quand on remplace L1
faible par L1: prendre la mesure de

Lebesgue sur R, et la fonction f = 1[0,1] dont la fonction maximale est en 1/x à l’infini.

Corollary 4.4. Si f ∈ L1(dµ), alors Mµf ∈ L1
faible(dµ), avec ||Mµf ||L1

faible(dµ) ≤ Cn||f ||L1(dµ).

Démonstration. Le corollaire est immédiat dès qu’on a le lemme. Pour le lemme, on pose
Oλ = {x ∈ Rn ;Mµ(ν(x)) > λ}, et pour tout x ∈ Oλ, on se donne une boule Bx = B(x, r)
centrée en x telle que ν(Bx) > λµ(Bx). On veut appliquer le lemme de recouvrement de
Besicovitch, [Comment for the english version. In the french notes, I was trying to use the
Besicovitch covering lemma because I like it, but there is a simpler proof with the usual
5-covering lemma of Vitali. See near (4.2) below. Anyway some covering lemma is used.
Not described here.] donc on va se contenter de recouvrir Ω = Oλ∩B(0, R) (pour n’importe
quel R > 0) par une collection au plus dénombrable de boules Bx, x ∈ X ⊂ Ω, qui sont de
recouvrement borné comme dans le lemme. Alors

µ(Ω) ≤ µ
( ⋃
x∈X

Bx

)
≤
∑
x∈X

µ(Bx) ≤ λ−1
∑
x∈X

ν(Bx) = λ−1
∑
x∈X

ˆ
Rn

1Bxdν

= λ−1

ˆ
Rn

(∑
x∈X

1Bx

)
dν ≤ λ−1

ˆ
Rn

C1dν = C1λ
−1ν(Rn)

(4.1)
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par définition des boules, puis le corollaire de Beppo-Lévi sur les séries, et enfin le fait que∑
x∈X 1Bx ≤ Cn partout. Il ne reste plus qu’à faire tendre R vers +∞ pour récupérer le fait

que µ(Oλ) ≤ C1λ
−1ν(Rn).

On peut vérifier (pas ici) que si µ(B(x, r)) est une fonction continue de (x, r), alors Mµ(ν)
est semi-continue inférieurement. Autrement dit, que si l’on pose Oλ = {x ∈ Rn ;Mµ(ν(x)) >
λ} comme ci-dessus, alors Oλ est ouvert pour tout λ > 0.

Une variante de Mµ est la fonction maximale non centrée définie par

M ′
µ(ν(x)) = sup

B

1

µ(B)

ˆ
B

dν ∈ [0,+∞],

où le sup est pris sur toutes les boules B qui contiennent x. Mattila prend les boules fermées,
mais sauf erreur de ma part ou pourrait les prendre ouvertes aussi sans rien changer. La
fonction M ′

µf = M ′
µ(fdµ) est définie pareillement. Si la mesure µ est doublante, c.-à.-d. s’il

existe C ≥ 1 tel que

µ(B(x, 2r)) ≤ Cµ(B(x, r)) pour tout x ∈ Rn et tout r > 0,

on a le même genre de résultat que plus haut:

||M ′
µ(ν)||L1

faible(dµ) ≤ C(n, µ) ν(Rn),

et pareil pour les fonctions de L1:

||M ′
µf ||L1

faible(dµ) ≤ C(n, µ)||f ||L1(dµ).

Démonstration sans se fatiguer: si B est une boule qui contient x, et si r est son diamètre,
elle est contenue dans B(x, 2r), donc

1

µ(B)

ˆ
B

dν ≤ 1

µ(B)

ˆ
B(x,2r)

dν ≤ C2 1

µ(B(x, 2r))

ˆ
B(x,2r)

dν ≤ C2Mµ(ν(x)),

car B(x, 2r) ⊂ 3B ⊂ 4B, donc µ(B(x, 2r)) ≤ C2µ(B). On prend le sup et on trouve que
M ′

µ(ν(x)) ≤ C2Mµ(ν(x)) partout.

La vraie démonstration raisonnable est d’utiliser le lemme de 5-recouvrement (qui est
plus facile à démontrer et marche dans d’autres contextes), et de faire comme plus haut en
passant par les 5B. En plus, ça donne une inégalité plus précise (restricted type inequality):

µ
(
{x ∈ Rn ;M ′

µ(ν(x)) > λ}
)
≤ Cnλ

−1ν
(
{x ∈ Rn ;M ′

µ(ν(x)) > λ}
)
.

Voici en gros comment ça marche [and this is probably the best proof of Lemma 4.3
for you]. On pose O′λ = {x ∈ Rn ;M ′

µ(ν(x)) > λ}, et on recouvre O′λ par des boules
Bj = B(xj, rj) telles que ν(Bj) > λµ(Bj). [Chaque x ∈ O′λ est contenu dans une telle boule
par définition.] Pour ne pas avoir d’ennui avec la taille des boules, occupons-nous seulement

43



pour l’instant de la variante de M
(R)
µ où l’on ne considère que des boules de rayon inférieur

à R, où l’on s’est donné R (très grand) à l’avance.
Alors tous les rayons des Bj sont inférieurs à R, et le lemme de 5-recouvrement donne

une famille Bj, j ∈ J , de boules disjointes, mais telle que les 5Bj recouvre O′λ. Et

µ(O′λ) ≤ µ(∪j∈J5Bj) ≤
∑
j∈J

µ(5Bj) ≤ C3
∑
j∈J

µ(Bj)

≤ C3λ−1
∑
j∈J

ν(Bj) ≤ C3λ−1ν(∪jBj) ≤ C3λ−1ν(O′λ),
(4.2)

où la dernière inégalité vient de ce que M ′
µ(ν(x)) > λ pour tout x ∈ Bj, puisque ν(Bj) >

λµ(Bj) et par définition de M ′
µ.

Dans le cas général, on note que l’ensemble O′λ associé à M ′
µ(ν) est l’union croissante

dénombrable des ensembles associés à M
(R)
µ (ν), et on passe à la limite dans (4.2).

Theorem 4.5 (Hardy-Littlewood). Pour 1 < p ≤ +∞, l’opérateur maximal f → Mµf est
borné sur Lp. plus préciément, il existe C = C(p, n) tel que ||Mµf ||Lp(dµ) ≤ C||f ||Lp(dµ).
Même énoncé pour la fonction maximale non centrée quand µ est doublante.

Quand p = +∞, c’est clair (et même C = 1). Le cas général s’en déduit, par interpolation
avec la continuité L1 → L1

faible; we won’t do that here; maybe see the french notes, or maybe
Pascal Auscher will do it.

Maintenant un théorème (important) qui s’en déduit facilement. Pour changer, on se
place dans Rn, avec la mesure de Lebesgue.

Theorem 4.6 (Théorème de différentiation de Lebesgue.). Pour toute fonction f localement
intégrable pour dx, on a

(1) lim
r→0

1

|B(x, r)|

ˆ
B(x,r)

|f(x)− f(y)|dy = 0

pour presque-tout x ∈ Rn.

Corollaire souvent utile, même quand dµ = dx: le cas de la fonction caractéristique de
B borélien. Essentially the same statement; the density of E (respectively, Rn \ E) is 1
(respectively, 0) almost-everywhere on E.

Notons aussi qu’ici on se donne un représentant (quelconque) de f avant d’écrire (1);
bien sûr, si on modifie f sur un ensemble de mesure nulle, on modifie la liste des x tels que
(1) a lieu, mais pas le théorème.

On a noté |B(x, r)| la mesure de Lebesgue de B(x, r). Une conséquence facile, à cause
de l’inégalité triangulaire, est que

(2) f(x) = lim
r→0

1

|B(x, r)|

ˆ
B(x,r)

f(y)dy
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pour presque-tout x ∈ Rn.

Démonstration. On peut se contenter du cas où f ∈ L1, puisque pour regarder ce qui se
passe dans B(0, R), on peut remplacer f par f 1B(0,2R) ∈ L1.

Pour f continue, le théorème est trivial. Le cas général sera obtenu, de manière en fait
très standard, par un argument de densité et de fonction maximale. Posons, pour x ∈ Rn et
r > 0,

(3) ωf (x, r) =
1

|B(x, r)|

ˆ
B(x,r)

|f(x)− f(y)|dy,

puis

(4) ωf (x) = lim sup
r→0

ωf (x, r).

On veut prouver que ωf (x) = 0 presque-partout. La chose est vraie sur une classe dense,
car

(5) ωf (x) = 0 partout quand f est continue.

Par ailleurs, l’inégalité triangulaire dit que

(6) ωf+g(x, r) ≤ ωf (x, r) + ωg(x, r)

pour tout choix de f , g, x, et r, ce qui donne aussitôt

ωf+g(x) = lim sup
r→0

ωf+g(x, r) ≤ lim sup
r→0

[ωf (x, r) + ωg(x, r)]

≤ lim sup
r→0

ωf (x, r) + lim sup
r→0

ωg(x, r) ≤ ωf (x) + ωg(x).
(4.3)

Enfin, on va utiliser le fait, assez clair, que

(8) ωf (x) ≤ |f(x)|+Mdxf(x),

où Mdxf (qu’on noterait plutôt f ∗), est la fonction maximale (centrée) de Hardy-Littlewood.
Soient f ∈ L1 et ε > 0. Choisissons g continue telle que ||f − g||L1 ≤ ε. Alors

(9) ωf (x) ≤ ωf−g(x) + ωg(x) = ωf−g(x) ≤ |f − g|(x) +Mdx(f − g)(x),

par (5), donc (9) donne

|{x ; |ωf (x)| > λ}| ≤ |{x ; |(f − g)(x)| > λ/2}|+ |{x ; |Mdx(f − g)(x)| > λ/2}|
≤ 2||f − g||L1/λ+ 2||Mdx(f − g)||L1

faible
/λ ≤ 2ελ+ 2Cελ

(4.4)

par le théorème maximal. On fixe λ et on applique ça avec ε aussi petit qu’on veut, et on
trouve |{x ; |ωf (x)| > λ}| = 0. Finalement, ωf (x) = 0 presque-partout.
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4.4 Sobolev spaces

Here and below, Ω is an open subset of Rn, which we will often take bounded (I’ll try to
remember to say when we use this) and connected (otherwise, we can work independently
on each connected component of Ω.

We put on Ω the (restriction of the) Lebesgue measure, which I’ll denote by dx unless
this creates confusion. And |E| will denote the Lebesgue measure of the Borel set E (we
won’t need non-Borel sets).

Of course ∆f =
∑n

j=1
∂2f
∂xj2

, but we want to define a natural space where this is defined.

The following brutal definition will be completed after the statement.

Definition 4.7. Let 1 ≤ p ≤ +∞ The Sobolev space W 1,p(Ω) is the space of functions
f ∈ Lp(Ω) such that the partial derivatives ∂f

∂xj
lie in Lp(Ω). Then W 2,p(Ω) is the space of

functions f ∈ W 1,p(Ω) such that all the derivatives ∂2f
∂xj∂xj

lie in Lp(Ω).

You already guessed the definition of W k,p, k ≥ 0 integer.
When I mean derivative, I mean in the sense of distribution. Thus, for f ∈ Lp, we say

that ∂f
∂xj
∈ Lp(Ω) when there is a function gj ∈ Lp(Ω) such that

(4.5)

ˆ
Ω

f(x)
∂ϕ(x)

∂xj
dx = −

ˆ
Ω

gj(x)ϕ(x)dx for every ϕ ∈ C∞c (Ω).

Where C∞c (Ω) is the set of C∞ functions with compact support in Ω. That is, we always
compute the derivatives in the middle of Ω, not on the boundary. This makes sense because
we would have (4.5) if f were C1 and gj = ∂f

∂xj
; this would be a consequence of an integration

by parts (a simple form of Green’s theorem here: we just want to know that for a compactly
supported C1 function ϕf in Ω, the integral of ∂f

∂xj
(ϕf) vanishes. And we can proceed line

by line).
There is a natural norm on W 1,p(Ω), which is

(4.6) ||f ||W 1,p = ||f ||Lp(Ω) + ||∇f ||Lp(Ω).

Here I abuse notation, by calling ∇f(x) the vector in Rn whose coordinates are the gj(x),
where gj = ∂f

∂xj
(the function that satisfies (4.5)). The way that we group the different

derivatives |gj| together to make a number |∇f | does not matter so much, but it is cleaner
that way. And I’ll not bother for W 2,p, where I will just define

(4.7) ||f ||W 2,p = ||f ||Lp(Ω) + ||∇f ||Lp(Ω) +
∑

1≤i≤j≤n

|| ∂2f

∂xj∂xj
||Lp(Ω).

We skip the natural things to check: W k,p, with the norm above, is a Banach space. And
also, locally in the middle of Ω, smooth functions are dense in W k,p.
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When Ω = Rn, for instance, we don’t need all these derivatives, and (due in particular
to the fact that the Riesz transforms are bounded on Lp(Rn), so it is not a free theorem, we
get that

(4.8) ||f ||W 1,p ≤ C||f ||Lp(Rn) + C||∆f ||Lp(Rn).

That is, f and ∆f control the other derivatives of order ≤ 2.
For our spectral stories, p = 2 will be enough. In this case (4.8) can be made much

simpler, because we can use the description in terms of the Fourier trtansform f̂ . But on
general domains Ω (and you can even think about Ω = B(0, 1)), the story is not as simple.

Example. Take Ω = I = (a, b), a bounded interval in R. Take f ∈ L1
loc(I) (the minimum

if we want to see f as a distribution). We claim that f ∈ W 1,p(I) if and only if there exists
g ∈ Lp(I) such that

(4.9) f(y)− f(x) =

ˆ y

x

g(t)dt for a < x < y < b.

And then of course f ′ = g in the sense of distributions.
Indeed if (4.9) holds, observe that g ∈ L1(I) by Hölder, so we can also define f(a) and

f(b), which will make things simpler. Write, for ϕ ∈ C∞c (I),
ˆ
I

f(x)
∂ϕ(x)

∂x
dx = f(a)

ˆ
I

∂ϕ(x)

∂x
dx+

ˆ ˆ
x,y∈I;y≤x

g(y)
∂ϕ(x)

∂x
dxdy =

ˆ ˆ
x,y∈I;y≤x

g(y)
∂ϕ(x)

∂x
dxdy

while ˆ
I

g(y)ϕ(y)dy = −
ˆ ˆ

x,y∈I;y≤x
g(y)

∂ϕ(x)

dx
dxdy

because g(b) = 0, so the desired result follows from Fubini. You can take this as a poor man’s
integration by parts (because we don’t know that f is C1). Conversely, if g = ∂f

∂x
∈ Lp, then

we can use the above to see that when we remove
´ x
a
g(t)dt from f , we get a function f̃ whose

distributional derivative is 0. With a little more work, we get that f̃ is constant and the
result follows. The little more work is not as simple as one would think: you have to check
that if

´
fϕ′ = 0 for every compactly supported smooth function ϕ, then f is constant. But

this is classical and I’ll skip.
This case is nice and simple because there is a simple way to recover f when you know f ′;

this is not always so simple in Ω ⊂ Rn. Even in this simple case, it is good to know that the
usual derivative (I’ll call it Df) exists almost everywhere [this is a consequence (exercise) of
the Lebesgue density theorem].

In fact there is a theorem of Calderón, which generalizes a (celebrated) result of Rademacher
(who did it only for Lipschitz functions), that says that if f ∈ W 1,p(Ω) for some p ≥ 1, then
for almost every x ∈ Ω, f has a differential Df(x) at x. That is, we can write the expansion
f(y) = f(x) +Df(x)(y − x) + o(||y − x||) near x.

Let us also mention that even in dimension 1, the existence of a differential almost
everywhere does not imply much on the distribution derivative of f ; for the function whose
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graph is called de devil’s staircase, there is a differential almost everywhere, which is 0, but
the function is not constant.

Below, up to the next subsection about Poincaré and Sobolev, I copy more detailed french
notes, but with more or less the same content as what we just said.

On va commencer par définir les espaces W k,p(U) lorsque k est un entier positif (ou nul)
et p ∈ [1,+∞].

Pour k = 0, prendre W 0,p(U) = Lp(U), avec la même norme.
Pour k = 1 (le plus important pour nous), on dira que f ∈ W 1,p(U) si f ∈ Lp et si de

plus ses dérivée premières (les ∂f
∂xi

), prises au sens des distributions, sont dans Lp(U). [Voir

la traduction ci-dessous.] Et on prendra la norme ||f ||W 1,p(U) = ||f ||p +
∑

i ||
∂f
∂xi
||p.

Pour k entier plus grand, on dit que f ∈ W k,p(U) si f , ainsi que toutes ses dérivées
jusqu’à l’ordre k (toujours prises au sens des distributions) sont dans Lp, et on peut prendre
pour norme la somme des normes Lp.

Traduction. Soit f localement intégrable sur U . Alors, elle définit une distribution sur U ,
en posant 〈f, ϕ〉 =

´
U
f(x)ϕ(x)dx pour ϕ ∈ C∞c (U) (effet de la distribution sur la fonction

test).
Ensuite, on définit les distributions ∂f

∂xi
par 〈 ∂f

∂xi
, ϕ〉 = −〈f, ∂ϕ

∂xi
〉 pour ϕ ∈ C∞c (U).

Donc on dira que la dérivée partielle ∂f
∂xi

est dans Lp s’il existe gi ∈ Lp telle que

(1) −〈f, ∂ϕ
∂xi
〉 = 〈gi, ϕ〉 pour toute fonction test ϕ ∈ C∞c (U).

Assez facile à vérifier: s’il existe g ∈ Lp telle que (1) ait lieu, elle est unique. Ou, de
manière à peu près équivalente, si la fonction g ∈ L1

loc définit une distribution nulle, elle est
nulle presque-partout. Si c’était faux, la théorie des distributions en souffrirait beaucoup.
On verra plus bas une démonstration un peu particulière basée sur le théorème de densité
de Lebesgue, en dimension 1.

Parfois, le fait que ∂f
∂xi

est dans Lp se décide plus facilement par dualité. Commençons
par discuter dans le cas où 1 < p ≤ +∞. Soit q l’exposant conjugué de p.

Si ∂f
∂xi

est dans Lp, alors, en utilisant (1) on trouve que

(2) |〈f, ∂ϕ
∂xi
〉| ≤ C||ϕ||q pour tout ϕ ∈ C∞c (U),

avec C = ||gi||p. Par un petit passage à la limite, ceci implique d’ailleurs que

(3) |〈f, ∂ϕ
∂xi
〉| ≤ C||ϕ||q pour tout ϕ ∈ C1

c (U)

(avec la même constante C). Et réciproquement, si on a (2) ou (3) (et si p > 1), ceci
implique que l’application ϕ → 〈f, ∂ϕ

∂xi
〉 s’étend en une forme linéaire continue sur Lq, donc

(par Riesz), est donnée par une fonction de Lp. Bref, quand p > 1, (2) ou (3) implique que
∂f
∂xi

est dans Lp.
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Quand p = 1, il y a un autre espace un peu plus grand que W 1,1(U), l’espace BV des
fonctions f ∈ L1 (ou alors, f ∈ L1

loc, cela pourrait dépendre des auteurs) telles que pour tout
i, ∂f

∂xi
est une mesure (signée ou complexe) finie. Il se trouve que le dual de la fermeture,

pour la norme sup, de l’ensemble des fonctions bornées à support compact, est justement
l’espace vectoriel des mesures finies sur U , muni de la norme ||ν|| = variation totale de ν.
Donc, quand p = 1 et q = +∞, (2) et (3) caractérisent le fait que ∂f

∂xi
est une mesure (signée)

finie. On en reparlera au chapitre sur BV.

Quand p = 2 et U = Rn, les choses s’expriment très bien en termes de transformée de
Fourier. L’espace W k,2 est alors le plus souvent noté Hk, et il est assez facile de voir que
f ∈ Hk(Rn) si et seulement si

(4) ||f ||2Hk =

ˆ
Rn

(1 + |ξ|2)k|f̂(ξ)|2dξ < +∞.

Noter au passage que quand f ∈ L2, f̂(ξ) est définie presque-partout, donc le membre de
droite a un sens.

Du coup, il est facile de définir Hs pour tout s ≥ 0, en utilisant (2) (en fait, même
pour pour tout s ∈ R). On voyage entre les Hs en appliquant diverses puissances réelles de

l’opérateur positif I −∆, dont l’effet en transformée de Fourier est juste de multiplier f̂(ξ)
par 1 + |ξ|2.

Et on peut faire pareil chez les W k,p(Rn) (au moins pour 1 < p < +∞, SVP vérifiez dans
les autres cas avant de dire que c’est ma faute); il y a quelques petites vérifications à faire,
pour savoir par exemple que (I −∆)l/2 est un isomorphisme de W k+l,p dans W k,p, ou pour
vérifier que pour k = 1 nos deux définitions de W 1,p coincident, ou encore pour définir W k,p

pour k non entier.
Deux mots des espaces homogènes aussi. On notera Ẇ k,p(U) l’espace des fonctions lo-

calement intégrables sur U , dont les dérivées d’ordre k sont dans Lp, et muni de la norme
“homogène” obtenue en sommant les normes Lp des dérivées d’ordre k. [On ne met rien
pour contrôler le caractère L1

loc, mais celui-ci découle des estimations sur les dérivées, comme
on le verra de manière implicite plus bas.] Sur Rn et pour les k non entiers, on utiliserait les
puissances de −∆ au lieu de I −∆, en faisant un peu plus attention.

Remarque (produit et localisation). Soient f ∈ W 1,p et g de classe C1 sur U , disons

bornée et avec une dérivée bornée. Alors fg ∈ W 1,p, avec ∂(fg)
∂xi

= ∂f
∂xi

g + ∂g
∂xi

f .
En effet, le membre de droite est bien dans Lp, donc il s’agit seulement de montrer que

pour ϕ ∈ C∞c , −
´
fg ∂ϕ

∂xi
= −

´
f ∂(gϕ)

∂xi
+
´

∂g
∂xi

f ϕ. Toutes les intégrales portent sur un

compact (le support de ϕ), et il s’agit seulement d’intégrer l’identité ∂(gϕ)
∂xi

= g ∂ϕ
∂xi

+ ∂g
∂xi
ϕ

contre f ∈ L1
loc .

L’intérêt de cette remarque est aussi qu’elle permet de définir l’espace W 1,p
loc (U) comme

étant l’espace des fonctions telles que fg ∈ W 1,p(U) pour g ∈ C1
c (U). La dérivée ∂f

∂xi
est

alors la fonction de Lploc(U) telle que si K ⊂ U est compact, et g ∈ C1
c (U) est égale à 1 sur

un voisinage de K, alors ∂f
∂xi

= ∂(fg)
∂xi

sur K.
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Exemple. Plaçons-nous sur U =]a, b[⊂ R. Vérifions d’abord que pour obtenir f ∈ W 1,p(U),
il suffit de prendre g ∈ Lp(U) et λ ∈ R, et de poser

(5) f(x) = λ+

ˆ x

a

g(t)dt pour x ∈ U .

Et alors f ′ = g (au sens des distributions).

En effet, il suffit de voir que
´ b
a
f(x)ϕ′(x)dx = −

´ b
a
g(t)ϕ(t)dt pour pour ϕ ∈ C∞c (U).

On note d’abord que λ ne contribue ni au membre de gauche (trivialement), ni au membre
de droite (parce que

´
ϕ′(x)dx = 0 puisque ϕ est à support compact). On applique ensuite

le théorème de Fubini pour calculer

ˆ
U

ˆ
U

g(t)ϕ′(x)1x>t dxdt. Quand on intègre d’abord en

x, on trouve le membre de droite. Quand on intègre d’abord en t, on trouve le membre de
gauche.
Exercice: généraliser ce qui précède à une mesure finie (disons, signée). Il faut quand même
faire un peu attention à la contribution des bornes quand on écrit Fubini (mais pas dans la
définition de f).

Réciproquement, si f ∈ W 1,p, alors il existe λ telle qu’on ait la formule plus haut. En
effet, on pose g = f ′ et F (x) =

´ x
a
g(t)dt, et on note que F ∈ W 1,p, avec F ′ = g = f ′.

Donc la dérivée de F −f au sens des distributions est nulle, i.e.,
´
U

(f −F )ϕ′ = 0 pour toute
fonction test ϕ. Il reste à vérifier que G = f−F est (égale presque-partout à une) constante,
dès qu’elle est localement intégrable et que sa dérivées est nulle. Il y a divers moyens de le
vérifier, mais le plus amusant (compte tenu de ce qu’on a fait) sera d’utiliser le théorème de
densité de Lebesgue.

Soient x et y deux points de densité de Lebesgue de G = f − F , avec x 6= y, et vérifions
que G(x) = G(y). On en déduira le résultat, en fixant x et en notant que presque-tout
point y ∈ U est un point de densité de Lebesgue, donc tel que G(y) = G(x). On se
donne une fonction bosse ψ de classe C∞ à support dans [0, 1] et d’intégrale 1, on pose
ψk(t) = 2kψ(2kt) (toujours d’intégrale 1), et ensuite ϕk à support compact, dont la dérivée
est ϕ′k(t) = ψk(t− x)− ψk(t− y). Le support de ϕk est contenu dans U pour k assez grand,
donc on sait que

´
U
G(t)[ψk(t− x)− ψk(t− y)]dt = 0. Mais

∣∣G(x)−
ˆ
U

G(t)ψk(t− x)dt
∣∣ =

∣∣∣ ˆ x+t

x−t
[G(x)−G(t)]ψk(t− x)dt

∣∣∣
≤
ˆ x+t

x−t

∣∣G(x)−G(t)
∣∣|ψk(t− x)|dt ≤ ||g||∞

1

t

ˆ x+t

x−t

∣∣G(x)−G(t)
∣∣dt,(4.10)

qui tend vers 0 par la version un peu forte du théorème de densité de Lebesgue (voir plus
haut).

Pareillement,
´
U
G(t)ψk(t− x)dt tend vers G(y); on trouve G(x) = G(y), et ceci termine

notre description par (5) des fonctions de W 1,p sur un intervalle borné. Bien sûr, on a noté
que pour la discussion ci-dessus, on aurait pu se contenter de regarder le cas où p = 1.
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Signalons encore que puisqu’on a (1), on peut prouver que f est différentiable presque-
partout, avec la dérivée g = f ′. En fait, si f est un point de Lebesgue pour g, on a

lim
r→0

f(x+ r)− f(x)

r
= lim

r→0

1

r

ˆ x+r

x

g(t)dt = g(x),

et de même lim
r→0

f(x− r)− f(x)

−r
= g(x).

Mais par contre il existe des fonctions non constantes dont la dérivée existe et est nulle
presque-partout. Par exemple, la fonction de Lebesgue, dont le graphe est aussi surnomé
escalier du diable. En fait, quand on intègre une mesure finie ν = ν1 + ν2, où ν1 = gdx est
absolument continue par rapport à la mesure de Lebesgue et ν2 est une mesure singulière, on
trouve une dérivée égale à g Lebesgue-presque-partout, et par contre (si ν2 est une mesure
positive), la dérivée de f est +∞ en ν2-presque tout point. Si ceci vous rappelle le résultat
sur la différentiation des mesures, c’est normal, c’est bien de cela qu’il s’agit.
Exercice: vérifier qu’en effet la primitive d’une mesure singulière (par rapport à Lebesgue)
a bien une dérivée nulle Lebesgue-p.p..

4.5 Poincaré and Sobolev

When we know ∇f (and I mean the distribution derivative) on Ω, is there a way to recover
f and prove nice estimates on f? We have seen yes on the interval.

Suppose f is smooth (say, C1). For x, y ∈ Ω, we can always recover f(y)− f(x) as

(4.11) f(y)− f(x) =

ˆ
I

∇f(γ(t)) · γ′(t)dt

for any C1 path γ : I = [a, b]→ Ω such that γ(a) = x and γ(b) = y. We shall practice this,
but notice that if we only know that f ∈ W 1,p(Ω), and even assuming that (4.11) is true,
we could be unlucky and integrate on a path γ such that |∇f(x)| = +∞ on γ. Then (4.11)
won’t help much.

Before I return to this, let me mention that when Ω = Rn, for instance, there are ways
to avoid (4.11), because you may be able to say that the Fourier transform ∂jf = ∂f

∂xj
is the

product of f̂ by iξj, say, compute f̂ from the iξj f̂ , write f as an operator applied to those,
and study that operator. On Ω we can’t do that so easily, even though there are ways to
localize some Fourier transform estimates.

Return to the control of f(y)− f(x) in terms of ∇f ∈ Lp.
And return to the french notes at the same time

On aura aussi besoin d’un lemme d’approximation des fonctions de W 1,p par des fonctions
régulières. We’ll almost certainly take this for granted in the course.

Lemma 4.8. On se donne U ⊂ Rn, 1 ≤ p < +∞, et f ∈ W 1,p
loc (U). Pour tout compact

K ⊂ U , il existe une suite {fk} dans C∞c (U) telle que

lim
k→+∞

fk = f dans Lp(K) et, pour 1 ≤ i ≤ n, lim
k→+∞

∂fk
∂xi

=
∂f

∂xi
dans Lp(K).
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On pourrait d’ailleurs (par extraction standard) trouver une même suite qui marche pour
tous les compacts. Démonstration sans trop de détails: on essaie fk = f ∗ ψk, où {ψk} est
une approximation de l’identité, avec support(ψk) ⊂ B(0, 2−k). Pour k assez grand pour
que K + B(0, 2−k) ⊂⊂ U , fk est bien définie sur K. Le fait que {fk} converge vers f dans
Lp(K) est très classique. Pour la seconde partie, vérifions d’abord que ∂fk

∂xi
= ∂f

∂xi
∗ψk dans un

voisinage de K (et pour k assez grand). On vérifie ceci sur une fonction test ϕ (de support
contenu dans ce voisinage de K, et pour peu que celui-ci reste à distance > 2−k du bord).
Le membre de droite donneˆ

U

{ˆ
B(0,2−k)

∂f

∂xi
(x− u)ψk(u)du

}
ϕ(x)dx

=

ˆ
B(0,2−k)

ψk(u)
{ˆ

U

∂f

∂xi
(x− u)ϕ(x)dx

}
du

=

ˆ
B(0,2−k)

ψk(u)
{ˆ

U

∂f

∂xi
(y)ϕ(y + u)dx

}
du

= −
ˆ
B(0,2−k)

ψk(u)

ˆ
U

f(y)
∂ϕ

∂xi
(y + u)dydu

= −
ˆ
U

ˆ
B(0,2−k)

f(y)ψk(u)
∂ϕ

∂xi
(y + u)dudy

(4.12)

(on a utilisé la définition de ∂f
∂xi

après avoir vérifié que pour k assez grand, le support de
ϕ(x+ u) est encore contenu dans U). Le membre de gauche donne

−
ˆ
U

fk
∂ϕ

∂xi
= −
ˆ
U

ˆ
B(0,2−k)

f(x− u)ψk(u)
∂ϕ

∂xi
(x)

= −
ˆ
U

ˆ
B(0,2−k)

f(y)ψk(u)
∂ϕ

∂xi
(y + u) dxdu,

(4.13)

et on constate que c’est pareil.
Cette vérification faite, on vérifie que ∂fk

∂xi
= ∂f

∂xi
∗ ψk converge bien vers ∂f

∂xi
dans Lp(K)

comme plus haut. Enfin, nos fonctions ne sont pas à support compact, donc on les multiplie
par une fonction C∞ qui vaut 1 dans un voisinage de K mais est à support compact dans
U .

This one, called Lemme 2 in the french notes, is easy and will be used later.

Lemma 4.9. On se donne p ≥ 1, f ∈ Lp(V ), et une suite {fk} dans W 1,p(V ). On suppose
que f = limk→∞ fk dans Lp(V ) et que les ∂fk

∂xi
convergent dans Lp(V ) vers des fonctions gi.

Alors f ∈ W 1,p(V ) et ∂f
∂xi

= gi.

Soit ϕ ∈ C∞c (V ). Alors〈 ∂f
∂xi

, ϕ
〉

= −
〈
f,
∂ϕ

∂xi

〉
= − lim

k→+∞

ˆ
V

fk(x)
∂ϕ

∂xi
(x)dx

= lim
k→+∞

ˆ
V

∂fk
∂xi

(x)ϕ(x)dx =

ˆ
V

gi(x)ϕ(x)dx = 〈gi, ϕ〉.
(4.14)
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Il n’y a pas de problème de convergence, puisque ∂ϕ
∂xi

et ϕ sont bornées et à supports compacts
dans V .

En fait, le lemme marche encore en supposant seulement que f et les gi sont dans Lp,
que f = limk→∞ fk faiblement, et que gi = limk→∞

∂fk
∂xi

faiblement.

Now we replace (4.11) with a more general and flexible identity.

On est à peu près prêts pour essayer de majorer |f(x) − f(y)| en fonction du gradient
de f près de x et y. On verra après comment en déduire des inégalités fonctionnelles sur les
W 1,p.

Pour l’instant, supposons que x et y sont donnés et que f est de classe C1 près de x et
y (on aura besoin ce ça dans un petit double cône Cx,y autour de x et y).

Quelques notations. On se donne α ∈]0, 1] pour faire général, mais α = 1 devrait suffire.
On note

(4) D(x, y) = Dα(x, y) =
{
z ∈ Rn : |z − x| = |z − y| et

∣∣∣z − x+ y

2

∣∣∣ ≤ α |x− y|
}
,

un bout d’hyperdisque à mi-chemin, et

(5) C(x, y) = Cα(x, y) = conv
(
{x} ∪ {y} ∪D(x, y)

)
(l’enveloppe convexe), qui est une sorte de double cône (une carotte de bureau de tabac)
avec ses pointes en x et y.

On paramètre aussi des chemins γ`, ` ∈ D(x, y): pour ` ∈ D(x, y), γ` est le chemin de x
à y obtenu en joignant x à ` puis à y par les segments [x, `] et [`, y]. On paramètre γ` par sa
projection sur l’intervalle [x, y], et on note aussi γ` : [x, y]→ C(x, y) le paramétrage.

Pour la suite des calculs, on suppose que C(x, y) ⊂ U et que la fonction f est de classe
C1 sur C(x, y). Les accroissements finis, appliqués à f ◦ γ`, donnent

(6) |f(x)− f(y)| ≤
ˆ

[x,y]

|∇f(γ`(t))||γ′`(t)|dt =

ˆ
Γ`

|∇f |dH1

où la dernière égalité ne sert qu’à essayer de rendre la chose plus géométrique (on ne l’utilisera
pas) et Γ` = [x, `] ∪ [`, y]. On moyennise cela par rapport à ` ∈ D(x, y), et on trouve

(7) |f(x)− f(y)| ≤ 1

Hn−1(D(x, y))

ˆ
D(x,y)

ˆ
[x,y]

|∇f(γ`(u))||γ′`(u)|dud`

où l’on a noté indifféremment d` et dHn−1(`) la mesure de surface. On fait le changement
de variable (`, u)→ γ`(u) et on trouve

(8) |f(x)− f(y)| ≤
ˆ
C(x,y)

|∇f(z)|θ(z)dz,

où dz est la mesure de Lebesgue et θ(z) vient du déterminant Jacobien. Le calcul donne

(9) θ(z) ≤ C(n, α)wx,y(z),
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avec

(10) wx,y(z) = 1C(x,y)(z)
{
|z − x|1−n + |z − y|1−n

}
.

Autrement dit, la mesure image de Hn−1(D(x, y))−1du d` par (`, u)→ γ`(u) est inférieure à
C(n, α)wx,y(z).

Remarque. Les calculs suivants donnent des majorations (parce que c’est ce qui nous
intéresse ici), mais on aurait pu calculer de manière plus précise, en écrivant vraiment la
formule des accroissements finis. On aurait obtenu une formule du type f(y) − f(x) =´
C(x,y)

Kx,y(z)∇f(z) dz, où Kx,y(z) est une matrice qui dépend de z (et avec certaines pro-

priétés d’invariance par rapport à x − y). Noter que si on fait tendre y vers l’infini (ici, en
partant dans une direction donnée), on obtient une formule qui permet de calculer f à partir
de ∇f , par convolution avec un noyau matriciel (et en supposant que f est C1 à support
compact, au moins pour commencer). A cause de la manière dont on s’y est pris (avec la
forme de notre cône), la formule n’est pas invariante par rotations, mais en intégrant sur
toutes les droites partant de x, on aurait une formule invariante par rotation. A savoir,

f(x) = −cn
ˆ
Rn

∇f · y − x
|y − x|n

dy, et où cn est la mesure de la sphère unité. [Ca ne peut

être que ça, par homogénéité, invariance par dilatations, et en calculant la constante sur des
fonctions particulières, par exemple tendant vers la fonction caractéristique d’une sphère.]

Et ce serait la même formule qu’on peut obtenir en partant de ∇f , et en lui appliquant
l’opérateur ∆−1∇ (à définir plus facilement en transformée de Fourier), qui est bien un
opérateur de convolution. Bref, les calculs faits plus hauts sont moins jolis et homogènes,
mais ils sont robustes et marchent tout seul dans des domaines.

Il va falloir commencer à distinguer des cas. Si on veut une vraie estimation ponctuelle
de |f(x) − f(y)|, valable pour f ∈ W 1,p quelconque, il faudra s’assurer que |∇f(z)| est
intégrable contre wx,y(z), et ça ne marchera bien tel quel que si p > n. On va commencer
par ce cas-là. Au fait, le cas n = 1 est trop facile; voir le cas traité plus haut.

Notons q = p
p−1

l’exposant conjugué de p. Si p > n, alors q < n
n−1

, le poids |z|q(1−n) est
localement integrable, et

(11) ||wx,y||q ≤ 2
{ˆ
|z−x|≤|x−y|

|z − x|q(1−n)
}1/q

≤ C |x− y|(1−n)+n
q = C |x− y|

p−n
p

(ce qui sera utile pour la normalisation). Finalement Hölder et (6) donnent

(12) |f(x)− f(y)| ≤ C ||∇f ||Lp(C(x,y))||wx,y||q ≤ C |x− y|
p−n
p

{ˆ
C(x,y)

|∇f |p
}1/p

.

[Statement for Hölder continuity]

Proposition 4.10. Soient U un ouvert de Rn, p ∈]n,+∞], et f ∈ W 1,p
loc (U). Soient x, y ∈ U ,

tels que de double cône C(x, y) soit contenu dans U . Alors

(13) |f(x)− f(y)| ≤ C |x− y|
p−n
p

{ˆ
C(x,y)

|∇f |p
}1/p

.
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[The rest of the proof is a limiting argument. I don’t dare to remove but you’ll pass.]
Ici C ne dépend que de n, p, et α (l’ouverture). En fait, il faudrait dire que f est égale
presque-partout à une fonction continue, qui vérifie (13).

Pour démontrer ceci, on se donne f , et on l’approxime par des fonctions régulières fk
comme au lemme 1 (Lemma 4.8). A cause de la façon dont on a écrit le lemme, où la suite
{fk} dépend du compact, on va s’y reprendre à deux fois.

D’abord, on se donne une boule fermée B = B(x0, r) contenue dans U , et on construit les
fk comme au lemme 1 (Lemma 4.8). Quitte à extraire une sous-suite, on peut supposer que
la suite {fk}, qui converge déja dans L1(B) vers f , converge aussi presque-partout. Noter
que pour x, y ∈ B1 = B(x0, r/10), le double cône C(x, y) est contenu dans B ⊂ U , donc on
peut appliquer (12) aux fk et il vient

(14) |fk(x)− fk(y)| ≤ C |x− y|
p−n
p

{ˆ
B

|∇fk|p
}1/p

≤ A|x− y|
p−n
p

pour un nombre A < +∞ (car les ∇fk convergent dans Lp(B), donc leur norme est bornée).
Si f(x) est la limite des fk(x) (ce qui arrive presque-partout), et pareil pour f(y), on en

déduit que |f(x) − f(y)| ≤ A|x − y|
p−n
p . Ceci vaut pour x, y dans une partie de mesure

pleine de B1. On en déduit la continuité de f , après changement sur une partie de mesure
nulle.

Maintenant on peut supposer f continue, on fixe x et y comme dans l’énoncé, et on
applique le lemme 1 (Lemma 4.8) avec le compact C(x, y). La démonstration du lemme
donne aussi la convergence uniforme des fk vers f , et (13) se déduit de (12), et du fait que
les ∇fk convergent vers ∇f dans Lp(C(x, y)).

Passons très brièvement au cas où p = n. Prenons la fonction f(x) = ln(ln( 1
|x|)), au

voisinage de 0. Alors |∇f(x)| = 1
|x| ln( 1

|x| )
, qui est bien dans Ln près de 0 (car n ≥ 2).

Donc f ∈ W 1,n
loc , et pourtant elle n’est ni continue ni bornée. Mais f est quand même

exponentiellement intégrable quand f ∈ W 1,n; voir le chapitre sur BMO, la seconde remarque
juste après le théorème de John et Nirenberg.

Next we go for Poincaré (the version with an average on a ball). For us p = q will be
enough.

Quand p < n, f n’est pas continue, mais par contre elle est localement dans des Lq

meilleurs que Lp. Le plus pratique pour écrire ceci semble être en termes d’inégalités de
Poincaré, qui sont une manière de dire comment f ∈ Lq localement. Si on voulait des
propriétés globales sur tout Rn, on serait facilement canulé par des questions d’homogénéité.
[Sauf peut-être justement pour p = n.]

On va utiliser les notations suivantes pour simplifier: |B| est la mesure de Lebesgue de
B et, si f ∈ L1(B), mBf = 1

|B|

´
B
f(x)dx est la moyenne de f sur B.
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Proposition 4.11. Soient p ∈ [1, n] et r ∈ [1, np
n−p [. Il existe une constante C(n, p, r) telle

que pour toute boule ouverte B et tout f ∈ W 1,p(B),

(15)

{
1

|B|

ˆ
B

|f(x)−mBf |r
}1/r

≤ C(n, p, r) |B|1/n
{

1

|B|

ˆ
B

|∇f(x)|p
}1/p

.

Quelques commentaires avant de commencer la démonstration.
Déjà, r = p est assez intéressant, et en plus se simplifie un peu, puisqu’on doit faire moins

attention à l’homogénéité, et écrire juste

(15′)

ˆ
B

|f(x)−mBf |p ≤ C(n, p) diam(B)p
ˆ
B

|∇f(x)|p.

Quand p = n, tout r < +∞ est autorisé. Et même, f est localement exponentiellement
intégrable, comme on le verra pour les fonctions de BMO. Quand p > n tout r < +∞ est
autorisé aussi, mais la Proposition 1 (Proposition 4.10) donne directement une borne sur
|f(x) − mBf | qui est meilleure que (15). Donc on on s’est carrément mis dans le cas où
p ≤ n, et on n’a rien perdu.

J’ai mis les puissances de manière à simplifier la vérification d’homogénéité. Il est logique
que chaque membre soit homogène de degré 1 en f . Pour ce qui est de l’homogénéité en
fonction du rayon R de B, penser que quand |∇f(x)| est de l’ordre de 1, les deux membres
sont en principe de l’ordre de R ou |B|1/n.

Noter que par Hölder, l’inégalité pour r entrâıne celle pour r′ < r. C’est pourquoi on
pourra se contenter du cas où r > p (noter que np

n−p > p).

On va commencer par le cas où f est de classe C1, il faudra faire un petit passage à la
limite à la fin.

Comme l’homogénéité est correcte, on pourrait se ramener facilement au cas où B =
B(0, 1), mais on va essayer de faire directement le cas général où B = B(X,R).

Posons B1 = B(X,R/10), et notons que quand x ∈ B et y ∈ B1, alors le bi-cône C(x, y)
est contenu dans B. Alors (8) et (9) disent que

(16) |f(x)− f(y)| ≤ C

ˆ
C(x,y)

|∇f(z)|wx,y(z)dz

On fait la moyenne par rapport à y ∈ B1 et on trouve

(17) |f(x)−mB1f | ≤ CR−n
ˆ
y∈B1

ˆ
z∈C(x,y)

|∇f(z)|ωx,y(z) dzdy,

On se souvient que wx,y(z) = 1C(x,y)(z)
{
|z − x|1−n + |z − y|1−n

}
(par (10)), et quand on

intègre ceci par rapport à y ∈ B1, on trouve moins que CRn(R1−n + |z − x|1−n). Donc

(18) |f(x)−mB1f | ≤ C

ˆ
z∈B
|∇f(z)| (R1−n + |z − x|1−n)dz.

56



On pose h(u) = (R1−n + |u|1−n)1B(0,2R)(u), et on garde (18) sous la forme synthétique

(19) |f(x)−mB1f | ≤ C [(1B |∇f |) ∗ h](x).

Puis on se souvient que la convolution envoie Lp × Lq dans Lr, où 1
p

+ 1
q

= 1
r

+ 1. Ici, on a

déjà p (puisque ∇f ∈ Lp(B)) et r (avec p < r < np
n−p). Si on prenait r = np

n−p , on trouverait
1
q

= n−p
np

+1− 1
p

= n−1
n

et q = n
n−1

. Ici on prend r plus petit, donc q plus petit. Bref, q < n
n−1

,
ce qui tombe bien, parce que cela implique que h est localement dans Lq. Noter encore que
r = p donne q = 1, donc on est dans des valeurs acceptables de q.

Retournons à (19). On trouve

(20) ||f(x)−mB1f ||r ≤ C ||h||q ||∇f ||Lp(B)

et en plus

(21) ||h||q ≤ C
{
R(1−n)qRn

}1/q

= R1−n+n
q .

C’est ce qu’il fallait pour (15), modulo deux choses. D’abord, la vérification de l’homogénéité
en R. La puissance de R est 1−n+ n

q
= 1−n+n(1 + 1

r
− 1

p
) = 1 + n

r
− n

p
. C’est exactement

ce qu’il faut puisque |B| est de l’ordre de Rn.
La seconde chose est qu’on a remplacé mBf par mB1f . Mais

|mBf −mB1f | ≤
1

|B|

ˆ
B

|f(x)−mB1f | dx ≤
{

1

|B|

ˆ
B

|f(x)−mBf |r
}1/r

≤ C(n, p, r) |B|1/n
{

1

|B|

ˆ
B

|∇f(x)|p
}1/p

.

(4.15)

par inégalité triangulaire, puis Hölder, puis ce qu’on vient de montrer; le remplacement de
mBf par mB1f ne coûte donc pas plus que le second membre.

Notons encore qu’en fait, dans les calculs ci-dessus, on peut remplacer B1 = B(X,R/10)
par n’importe quelle boule B(X,R1), avec R/11 ≤ R1 ≤ R/9. Soit en notant que la
démonstration marche encore, soit en faisant comme pour (22).

On a presque fini. On a vérifié (15), mais seulement pour les fonctions f de classe C1.
Dans le cas général, on se donne une boule B′ = B(X,R′) ⊂ B, avec R′ juste un peu plus
petit que R, et on commence par utiliser le lemme 1 pour trouver une suite de fonctions fk
de classe C1, qui convergent vers f dans Lp(B′), et telles que les ∇fk convergent vers ∇f
dans Lp(B′). Quitte à extraire une sous-suite on peut même s’arranger pour que fk(x) tende
vers f(x) pour presque tout x ∈ B′. On sait que

(23)

{ˆ
B′
|fk(x)−mB′1

fk|r
}1/r

≤ C

{ˆ
B′
|∇fk|p

}1/p

,

où en principe on devrait prendre B′1 = B(X,R′/10), mais où, à cause de la remarque
précédente sur R/11 ≤ R1 ≤ R/9, on peut carrément garder B′1 = B1 (ce qui simplifie un
peu le passage à la limite ci-dessous).
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On fait tendre k vers +∞, et on trouve que

(24)

{ˆ
B′
|f(x)−mB′1

f |r
}1/r

≤ C

{ˆ
B′
|∇f |p

}1/p

≤ C

{ˆ
B

|∇f |p
}1/p

,

ou l’on a utilisé Fatou pour l’intégrale de gauche. On fait tendre R′ vers R et on trouve
l’analogue de (15) avec mB1f . Et ensuite on remplace mB1f par mBf comme avant, avec
(22). La proposition s’en déduit.

Exercice. Montrer que, sous les hypothèses de la proposition 4.11, on a aussi

(25)

{
1

|B|2

ˆ
B

ˆ
B

|f(x)− f(y)|r
}1/r

≤ C(n, p, r) |B|1/n
{

1

|B|

ˆ
B

|∇f(x)|p
}1/p

.

We add this other version of Poincaré’s inequality (compact support).

Corollary 4.12. Soient p ∈ [1, n] et r ∈ [1, np
n−p [. Il existe une constante C(n, p, r) telle que

pour toute boule ouverte B et tout f ∈ W 1,p
0 (B),

(4.16)

{
1

|B|

ˆ
B

|f(x)|r
}1/r

≤ C(n, p, r) |B|1/n
{

1

|B|

ˆ
B

|∇f(x)|p
}1/p

.

Pareil en supposant seulement que f ∈ W 1,p
0 (Ω) pour un ouvert Ω ⊂ B.

Rappelons que W 1,p
0 (B) est l’adhérence de C∞c (B) dans W 1,p

0 (B). La différence avec le
résultat précédent est qu’on suppose en plus que f est dans l’adhérence dans W 1,p(B) des
fonctions-test à support compact, et que par contre on n’a pas à retirer la moyenne de f sur
une boule.

Démonstration rapide. The proof uses the following: when you take f ∈ W 1,p(Ω) and

extend it by taking f = 0 outside of Ω, you still get a function f̃ ∈ W 1,p(Rn) with the same
norm as f (in W 1,p(Ω)).

One proves this from the definition: there is a sequence of test functions fk that tend to
f in W 1,k(Ω); we can of course extend them. Then the sequence converges in W 1,k(Rn) (by
the Cauchy criterion), and the limit is our extension.

Ensuite, on utilise la proposition 4.11 sur 2B (et en particulier en intégrant sur B ou sur
2B \B) pour évaluer la taille de mBf . Le résultat en découle.

4.6 Rellich-Kondrachov

Here is the form that we’ll use in these notes.

Theorem 4.13. Let Ω ⊂ Rn be bounded, and 1 ≤ p < +∞. Then the unit ball of W 1,p
0 (Ω)

is a relatively compact subset of Lp(Ω) (for the Lp norm). And also of Lq(Ω) for q < np
n−p .
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The case when p > n is not so interesting because then the Hölder property gives com-
pactness. Similarly, taking q smaller is less interesting (because of Hölder), so we may assume
q ≥ p.

The argument seems to be the same as below (for BV); at a point you need to estimate{ ´
Q
|∇f |b

}q/p
and then sum the estimates. And you just throw a power (q− p)/p away (by

saying it is bounded) and get away with it.
Here the vanishing condition at the boundary is useful to start the argument: you want

to say that
´
|f |q < +∞ before you start the covering argument.

The same result for W 1,p(Ω), even if Ω is connected and you restrict to functions whose
average on a given ball is 0 (you don’t want your space to contain a copy of R) fails when
the domain Ω is sufficiently ugly.

The main ingredient for this is Corollary 4.12, naturally together with the fact that
completely bounded (précompact in french) plus complete implies compact. That is, at the
end of the argument we prove that for all ε > 0, we can cover our ball with a finite (but very
large) number of balls of radius ε (in Lp).

Here I will just put the french notes on the special case of p = 1 (but with the enlarged
BV space which is a little larger than W 1,1 and different boundary conditions. The idea is
the same: get a better local control.

Theorem 4.14. Soient Q un cube ou une boule (ouvert) de Rn, M > 0, et notons A
l’ensemble des fonctions f ∈ BV (Q) telles que

´
Q
|Df | ≤ M et |

´
Q
f | ≤ M . Alors A est

une partie compacte de L1(Q).

Replace BV with W 1,2 if you want. Notons que la restriction sur l’intégrale de f (ou
quelque chose de semblable) est nécessaire, à cause des fonctions constantes et puisque R
n’est pas compact.

Rappelons que notre ensemble est une partie complète de L1, parceque L1 est complet et
A est fermé: la condition d’intégrale passe à la limite, et pour la condition sur la variation,
on utilise le théorème de semi-continuité inférieure. Il s’agit donc de montrer que A (muni
de la distance ||f − g||1) est précompact. On se donne donc ε > 0 et on doit vérifier que A
peut être recouvert par un nombre fini de boules de rayon ε.

On va se contenter du cas où Q est un cube; le cas d’une boule s’y ramène par changement
de variable bilipschitzien, ou en modifiant un peu la construction avec des ensembles moins
propres que des petits cubes. On se donne η > 0 très petit (à calculer à la fin en fonction de
ε, et on recouvre Q par des cubes Rj d’intérieurs disjoints, de diamètre ≤ η. Il en faut un
nombre fini.

Noter qu’à cause de l’inégalité de Poincaré,
´
Q
|f | ≤ |

´
Q
f | +

´
Q
|f − mQ(f)| ≤ M +

CQ
´
Q
|Df | ≤ C ′QM pour f ∈ A. Alors

(13 = 8)
1

|Rj|

ˆ
Rj

|f | ≤ 1

|Rj|

ˆ
Q

|f | ≤
C ′QM

|Rj|
pour f ∈ A.
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On a besoin d’un ensemble fini. Prenons l’ensemble des fonctions g de la forme

(9) g =
∑
j

αj1Rj
,

où chaque α est un multiple entier de η tel que |α| ≤ C′QM

|Rj | . Ca fait beaucoup de fonctions g,

mais un nombre fini quand même. On va d’ailleurs voir que le fait que la norme de g dans
BV puisse être bien plus grande que M n’a aucune importance.

Soit donc f ∈ A donnée. On choisit g comme en (9), de manière que
∣∣αj −mj

∣∣ ≤ η, en
posant mj = 1

|Rj |

´
Rj
f . C’est possible à cause de (8). Et

||f − g||1 =
∑
j

ˆ
Rj

|f − g| ≤
∑
j

ˆ
Rj

|f −mj|+
∑
j

ˆ
Rj

|mj − αj|

≤ C
∑
j

ˆ
Rj

diam(Rj)|Df |+ η
∑
j

|Rj|

≤ Cη
∑
j

ˆ
Rj

|Df |+ η|Q| ≤ CηM + η|Q|

(4.17)

par Poincaré sur chaque Rj; l’homogénéité joue pour nous, et c’est normal puisque f est un
peu régulière. Bref, quand on prend η assez petit, le membre de droite est plus petit que ε;
on en déduit le théorème.

Remarque: il y a plein de variantes de ce genre d’argument; je ne suis pas sûr d’avoir
choisi la plus simple. L’argument marche encore pour un domaine connexe assez général, en
travaillant un peu plus la géométrie. Mais il ne faut pas permettre un domaine qui soit trop
pincé par endroits, pour pouvoir contrôler, y compris localement, la norme L1 à partir de´
|Df | et de l’intégrale de f .

Variante du théorème: prenons Ω un ouvert borné, et soit A l’ensemble des fonctions
caractéristiques d’ensembles F dont le périmètre dans Ω est au plus M . A nouveau A est
compact dans L1(Ω).

On peut même prendre les fonctions f ∈ BV (Ω) telles que |f(x)| ≤ M presque-partout
sur Ω, et

´
Ω
|Df | ≤M , avec la même démonstration.

Démonstration. D’abord, A est encore complet: si f est la limite dans L1 d’une suite
{fk} dans A, on peut extraire une sous-suite qui converge presque partout vers f , et donc
f(x) ∈ {0, 1} presque-partout. Le fait que f ∈ BV (Ω) est encore dû au théorème de
semicontinuité.

Ensuite on fait comme plus haut. Soit ε > 0. On se donne η > 0 (à choisir bientôt), et
on essaie de recouvrir Ω par des petits cubes de diamètre au plus η presque disjoints. On
en met autant qu’on peut, mais il reste une partie V de Ω. Malgré tout, |Ω \ V | tend vers 0
quand η tend vers 0 (par convergence dominée, pour être un peu paresseux). A part ça, on
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utilise la même formule (9), mais on peut se contenter des cubes choisis, et (pour ce qui est
des fonctions caractéristiques) de coefficients αj ∈ [0, 1]. Au lieu de (10), on a

||f − g||1 ≤
∑
j

ˆ
Rj

|f − g|+ |Ω \ V | ≤ CηM + η|Q|+ |Ω \ V |(4.18)

par le même calcul que plus haut, et on conclut pareil.

5 The laplacian on an open set of Rn

This will be our main example. You’ll be immediately amused that this is not a bounded
operator, so we’ll have to cheat if we want to apply the results above (we still want to study
its spectrum and things like that). This will also be a good excuse to having done a bit of
analysis and function spaces.

5.1 The Laplacian on a line segment

As you may guess, this is a simple variant of the next example, the Laplacian on a domain
Ω. We want to diagonalize the Laplacian, and we’ll find a trick: find an inverse, which is a
bounded, even compact self-adjoint operator, and use the diagonalization of the inverse.

Consider I = (a, b) ⊂ R, and consider −∆ : f → −f ′′. This is a well-defined operator
from W 2,2(I) to L2(I), for instance, and we can try to compute an inverse. Of course it
sounds a little silly to write ∆f for f ′′, but this won’t hurt.

Example 1: the Dirichlet condition. Well, this would be the natural thing to do, but−∆
has a kernel (the affine functions) and we shall try to get rid of the problem by considering
the subspace

(5.1) W 2,2
0 : W 2,2

0 (I) =
{
f ∈ W 2,2(I) ; f(a) = f(b) = 0

}
.

Normally this is not the definition of W 2,2
0 , which instead should be the closure of C∞c (I)

in W 2,2. But it is not hard to see that (5.1) is correct, essentially because f → f(a) is a
bounded linear functional on W 2,2.

We want to find an inverse to the operator f → f ′′, from W 2,2
0 to L2 = L2(I), and the

simplest seems to take antiderivatives twice. That is, given f ∈ L2, consider Pf defined by

(5.2) Pf(x) =

ˆ x

a

f(t)dt.

It is easy to see that Pf ∈ W 1,2 = W 1,2(I) and in addition Pf(a) = 0 and Pf(b) =
´
I
f(x)dx.

Then of course we consider −P 2 and this could be a nice inverse for −∆. But P 2(f) does
not lie in W 2,2

0 , because probably P 2f(b) 6= 0. So we fix this, and replace −P 2(f) with Lf ,
where

(5.3) Lf(x) = −P 2f(x) + c(x− a), where c = c(f) =
1

b− a

ˆ
I

Pf(x)dx.
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Our L is still a bounded operator on L2, and now Lf ∈ W 2,2
0 because it has the right second

derivative (as before), and

Lf(b) = −P 2f(b) + c(b− a) = −
ˆ
I

Pf(x)dx+ c(b− a) = 0

because P 2f is the integral of its derivative Pf , and Pf(a) = 0. It is easy to check that
L : L2 → W 2,2

0 is the inverse of −∆ : W 2,2
0 → L2.

Next we claim that L̃ : L2 → L2 (obtained by composing L with the injection from W 2,2
0

to L2, is a compact operator. This follows from the fact that L sends the unit ball of L2 to
B, where B is a ball of W 2,2 of radius C(a, b). Then we use the Rellich-Kondrachov theorem.

Finally, we want to check that L̃ : L2 → L2 is self-adjoint. This is where we have to
be careful (see below for trouble in a similar-looking situation). For f, g ∈ L2, we want to
compute

〈Lf, g〉 =

ˆ
I

Lf(x)g(x)dx.

We integrate by parts (using the primitive Pg of g, and the poor man’s integration by parts):

〈Lf, g〉 = [L(f)Pg]ba −
ˆ
I

(Lf)′(x)Pg(x)dx =

ˆ
[Pf(x)− c(f)]Pg(x)dx

because L(f) vanishes at a and b, and its derivative is −Pf + c(f), with c = c(f) as in (5.3).
Thus

〈Lf, g〉 =

ˆ
Pf(x)Pg(x)dx− c(f)

ˆ
Pg(x)dx =

ˆ
Pf(x)Pg(x)dx− (b− a)c(f)c(g).

The same computation with 〈f, Lg〉 shows that 〈Lf, g〉 = 〈f, Lg〉 (or if you prefer, the
formula above clearly defines a sesquilinear form).

So L is self-adjoint. But it is also positive, i.e., 〈Lf, f〉 > 0 for f ∈ L2 (unless f = 0).
Indeed,

〈Lf, f〉 =

ˆ
|Pf(x)|2 − (b− a)c(f)2 =

ˆ
|Pf(x)− c(f)|2 = ||Pf − c(f)||22

by Pythagorus (or because Pf(x) − c(f) has integral 0, hence is orthogonal to constants).
The point is that for L2-norms, the most efficient way to take a primitive was not P . Of
course this positivity is the reason why we prefer −∆.

So L̃ : L2 → L2 is compact self-adjoint. In addition, its “eigenspace” E0, i.e., the set of
f ∈ L2 such that Lf = 0, is reduced to 0. All this means that we can find an orthonormal
basis of L2 which is composed of eigenvectors for L. The situation is simple enough for us
to compute eigenvalues and eigenvectors.

Note that since λ 6= 0 (and in fact λ > 0 because the operator is positive, but we’ll pretend
not to know that), every eigenvector for L is an eigenvector for −∆, and conversely (because
−∆ has no kernel, at least in the present Dirichlet configuration where we restricted to W 2,2

0 ).
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Let us rather study eigenvectors for −∆; this is more natural (and what we wanted). Let f
be an eigenvector for −∆, with eigenvalue λ. Then f ∈ W 2,2

0 (by definition) and −f ′′ = λf .
This is in the sense of distribution, but then the equation implies that f ′ (the integral of
f ′′ ∈ L2) is continuous, then the equation says that f ∈ C3, and so on, so f is just a regular
solution, and f(x) = αexp(i

√
λx) + βexp(−i

√
λx) on I. If we pretend not to know that

λ > 0, we just take a complex square root.
Now f ∈ W 2,2

0 , so f(a) = f(b) = 0. That is, αexp(i
√
λx) = −βexp(−i

√
λx) for x = a, b.

If α = 0, we get β = 0 and f is not an eigenfunction. So α 6= 0, and similarly β 6= 0. Now
we multiply these two equations, simplify, and get that exp(2i

√
λ(b − a)) = 1. Or in other

words, that
√
λ(b− a) is an integer multiple of π. That is, the only (possible) eigenvalues of

−∆ on W 2,2
0 are the numbers

(5.4) λ = k2π2(b− a)−2 for some integer k ≥ 1.

In the mean time we confirmed what we knew: λ must be real because L is self-adjoint, and
even positive because L is positive.

Conversely, if k is of this form (5.4), the solutions are combinations of exp(±i
√
λx) =

exp(±ikπx
b−a), our choice of k makes these functions periodic, and in order to make f vanish

at both a and b, we have to choose an appropriate combination of exponentials, namely

(5.5) f(t) = C sin(
kπ(x− a)

b− a
).

We easily check that this is a solution, that vanishes both at a and b, so we feel good and we
have the full spectral decomposition of −∆ on W 2,2. Incidentally, the squares in (5.4) are
not shocking, given the eigenvectors in (5.5), because −∆ has two derivatives.

Remark (trouble with d?) Why did we not do directly the same thing with the operator
d, defined on W 1,2

0 = W 1,2
0 (I) by df = f ′?

We have a good candidate, it seems, to invert d, which is the operator P above (see
(5.2)). But if we start from f ∈ L2, then Pf usually does not lie in W 1,2

0 , because probably
Pf(b) 6= 0. So we should restrict our attention to the closed subspace

(5.6) H =
{
g ∈ L2 ;

ˆ
I

g = 0
}

This seems fine because now Pf ∈ W 1,2
0 (i.e., Pf(b) = Pf(a) = 0) when f ∈ H, and we

don’t seem to lose much because f ′ ∈ H when f ∈ W 1,2
0 . So we have a beautiful inverse P

to d : W 1,2
0 → H. It is not hard to check that P , seen from H to L2, is still compact. Now,

is is self-adjoint? We compute with the expected integration by parts: for f, g ∈ H,

(5.7) 〈Pf, g〉 =

ˆ
I

Pf(x)g(x)dx = [Pf(x)Pg(x)]ba −
ˆ
I

f(x)Pg(x)dx = −〈f, Pg〉

where the integrated term vanishes because Pf(a) = Pf(b) = 0. This is still true for g ∈ L2

if you want (I am beginning to attract your attention to something).
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OK, the sign is wrong. This is not shocking, because recall that in Fourier transform, d
is associated to the multiplication by iξ (or −iξ if I did my calculation wrong), so maybe
it is more reasonable to expect that −id, or equivalently iP , is self-adjoint and maybe
positive? That would not disturb much. And indeed the computation above yields 〈iPf, g〉 =
−i
´
I
f ′(x)Pg(x)dx = 〈f, iLg〉, so it looks that we could diagonalize iL after all.

Yet, when we try to find eigenvectors, we get the equation f ′ = −iλf , which has no solu-
tion in W 1,0

0 (I) (except 0) because the boundary constraint is too tough. What happened?
Well, unfortunately iP maps H to W 1,0

0 ⊂ L2, but W 1,0
0 is not contained in H, so we cannot

say that iP : H → H and hence we cannot apply the spectral theorem to iP . So we missed
by a tiny bit, but this is enough to create trouble.

The moral of this is that with unbounded operators, we always have to be careful about
what is the domain (here it would be W 1,0

0 ) and the image, before we do duality. Or said in
other terms, you can look self-adjoint, but in fact not be.

Example 2: the Neumann condition.
What if we don’t like the Dirichlet condition f(a) = f(b) = 0 that defines W 2,2

0 (I), and
prefer to work with the whole W 2,2 or another boundary condition?

Since many people like the so-called Neumann condition, we’ll start with this. We now
work on W 2,2

n (I) =
{
f ∈ W 1,2(I) ; f ′(a) = f ′(b) = 0

}
. We can guess its image in L2: this

will be the same set H as above (f ′(a) = f ′(b) implies that
´
f ′′ = 0).

Now we cannot directly look for the inverse of ∆ : W 2,2
n → H, because −∆ has a

kernel. This is the space of dimension 1 of constant functions (normally we would have
affine functions, but the Neumann condition kills the linear part), so it is better to work on
the orthogonal of the kernel, i.e., on W 2,2

0 (I) ∩H.
Now what is the inverse L of −∆? To f ∈ H we associate its primitive Pf that vanishes

on a and hence on b too. Then we take another primitive, but P 2f may not do the job because
although P 2f satisfies the Neumann condition (and any other primitive of Pf would do, just
because Pf ∈ W 1,2

0 ), it may not be orthogonal to the kernel. So we replace P 2f with the
primitive of Pf that has integral 0, i.e., we take

(5.8) Lf = −P 2f + e, with e = e(f) =
1

b− a

ˆ
I

P 2f(x)dx.

This way
´
Lf = 0 and Lf is orthogonal to the kernel.

We let the reader check that L : H → W 2,2
n ∩H is the inverse of −∆ : W 2,2

n ∩H → H,
and that the image of the unit ball of H is relatively compact in H (i.e., that L : H → H is
compact). We are worried about self-adjoint, so we check. For f, g ∈ H,

(5.9) 〈Lg, g〉 =

ˆ
[e(f)− P 2]g = [(e(f)− P 2)Pg]ba +

ˆ
PfPg =

ˆ
PfPg

because Pg = 0 on the boundary. So again L is self-adjoint, and even positive, and we
can diagonalize. We have one more eigenvalue for −∆ than before, since −∆ has a kernel
of dimension 1 on W 1,2

n . For the other eigenvalues, let us no longer pretend that we don’t
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know that they are positive. So let f ∈ W 1,2
n be an eigenvector for −∆, associated to

to the eigenvalue λ > 0. As before, −f ′′ = λf , so f(x) = αexp(i
√
λx) + βexp(−i

√
λx)

on I. This time the boundary constraints are that f ′(a) = f ′(b) = 0, so 0 = f ′(a) =
i
√
λ
[
αexp(i

√
λa) − βexp(−i

√
λa)
]
, and similarly for b. These are the same equations as

before, except for a minus sign (see 5 lines above (5.4)) and the same proof yields that
exp(2i

√
λ(b− a)) = 1, and then that λ is given by (5.4).

So the eigenvalues are the same as before, but the eigenfunctions are different. This time
the computation yields

(5.10) f(t) = C cos(
kπ(x− a)

b− a
)

(compare with (5.5)).

Example 3: : the periodic condition. This is where we see [a, b] as the torus R/(b−a)Z.
We can rename L2(I) as L2

per (the values at the boundary don’t make sense in L2), and call

W 1,2
per (respectively W 2,2

per) (the restrictions to I of) functions in W 1,2
loc (R) (respectively W 2,2

loc (R)
that are (b− a)-periodic.

Can we diagonalize −∆ on W 1,2
per? As earlier, we have a kernel (the constant functions),

and also first and second derivatives of periodic functions have integral 0. So we should
define the inverse L of −∆ on the same set H as before (or the obvious equivalent Hper).
We don’t need to change P : it goes from H to W 1,2

0 (I) ⊂ W 1,2
per, and then we apply P again,

we run into W 2,2
0 (I) ⊂ W 2,2

per. As before, P 2(f) is not always orthogonal the kernel N of −∆
(and if we want a nice orthogonal diagonalization, we prefer our inverse L to map into N⊥,
so we project on N⊥ by removing the integral of P 2f . That is, we take the same formula
for Lf as in (5.8).

As before, this defines an inverse L : H → W 2,2 ∩H of −∆ : W 2,2 ∩H = W 2,2 ∩N⊥, and
a simple form of Rellich Kondrachev says that L is compact. In addition, L is self-adjoint
and positive by the proof in (5.9).

What are the eigenvalues and eigenvectors for −∆ this time? We still have the eigenvalue
0, with the space E0 of constant functions, and otherwise λ > 0, the eigenvalues still satisfy
f ′′ = −λf on I, hence f(x) = αexp(i

√
λx) + βexp(−i

√
λx). Now we have the periodicity

constraint, which we can write down as f(b) = f(a) and f ′(b) = f ′(a) (you could imagine
other conditions maybe, but this will be enough). The first equation is αexp(i

√
λb) +

βexp(−i
√
λb) = X, where X is the same thing at the point a. The second equation is

the same except everything is multiplied by
√
λ, and also β is replaced by −β. We add and

subtract and find an equation for α, namely αexp(i
√
λb) = αexp(i

√
λa), and the same for

β. So we get the necessary condition that exp(i
√
λ(b− a)) = 1, i.e. λ(b− a) ∈ 2πZ. So now

the eigenvalues are given by

(5.11) λ = k2(2π)2(b− a)−2 for some integer k ≥ 1.

not exactly as in (5.4), and each of its number is an eigenvalue, because both exp(i
√
λx)

and exp(−i
√
λx) work. In the simple case of I = [0, 2π], the eigenvalues are the λ = k2 and
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the basis of eigenvalues that we get is the usual trigonometric system eikx, k ∈ bZ. Not so
surprising after the fact.

Exercise. Consider D : f → −if ′, defined on W 1,2
per(I). This time, can you find an inverse

to D : W 2,2
per ∩ H → H, which is self-adjoint and diagonalizable? Does the answer fit with

the previous exercise? Observe that our chances are much better than in the remark above
because the eik

x
b−a are a basis of eigenvalues!

Exercise. Finally I leave the most obvious example, the diagonalization of ∆ on the large
space W 1,2 as an exercise. I’ll suggest two ways here, but the reader should be warned that
I did not do the exercise entirely. Let us take I = [0, π] to simplify the computations.

First we try brutally. The image of W 2,2 by −∆ is the same as in the previous two
examples, i.e., H, because W 2,2 is the direct sum of W 2,2

0 , for instance, with the set of affine
functions that are in the kernel anyway. Then we compute the kernel N of −∆ on W 2,2, and
we find that N is the span of e0 = 1/(2π) and e1 = ẽ1/||ẽ1||, where ẽ1(x) = x− π (chosen to
be orthogonal to e0). Then we can try to devise an inverse. A first try is L as above but it
only sends H to W 2,2∩H (even on W 2,2

n ∩H, but this won’t help). So we compose it with π,
the orthonormal projection on e⊥1 . This does not change ∆ ◦ L, because we add a multiple
of e1, but now the image is in W 2,2 ∩N .

Is this one self-adjoint? Normally yes, essentially because π is self-adjoint on L2, but
I let you check. Compactness is ass usual, and so (maybe) we have the desired inverse

L̃ = pi ◦L of −∆ : W 1,2∩N to H. We are left with the task of diagonalizing L̃; as usual the
eigenfunctions are of the form f(x) = αexp(i

√
λx) + βexp(−i

√
λx), but now the boundary

constraints are different (and less pleasant): f should just have vanishing integral and first
moment. I let you try.

Then there is a slightly less brutal way. We know that W 2,2
n is a subspace of W 2,2, and

we can find a basis of the orthogonal complement of W 2,2
n in W 2,2: we take the two functions

sin(2x) and cos(2x), correctly normalized (adding a multiple of one of them fixes the value
of f ′ at one endpoint without changing the other). Now we are lucky: both functions are
eigenvectors of −∆, with eigenvalue 4. We can complete with a basis of W 2,2

n .

5.2 Solutions of −∆u = f on a bounded domain Ω

We guessed that the case of the Laplacian on an open domain Ω ⊂ Rn should be more
interesting (but we won’t be able to compute everything!). Recall that

(5.12) ∆f =
n∑
j=1

∂2f

∂x2
j

(for f smooth, or else we consider f ∈ L1
loc(Ω) and take this in the sense of distributions).

We’ll try to follow the same program as above: find an orthonormal basis of L2(Ω) which
is entirely composed of eigenvectors for ∆.

As before, we will not try to do the spectral theory of the unbounded operator −∆, even
though this would be possible because, with the right definitions, −∆ is self-adjoint and even
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positive. Instead we take a more analytic road and try to invert −∆ in some appropriate
space (here L2). Our life will be easier if

(5.13) Ω is bounded,

so even though this is not really necessary, we assume it. Also we assume that Ω is connected
(otherwise, −∆ acts independently on each component of Ω and we are just complicating
our lives uselessly).

Strangely the inverse mapping that we will construct will go from L2 to the space W 1,2
0 (Ω),

which is the closure of C∞c in W 1,2
0 (Ω). The reader may have expected the more natural

W 2,2
0 (Ω), where at least the Laplacian is well defined, but it turns out we don’t want to

have the unpleasant task of estimating second derivatives other than the Laplacian, so we’ll
manage with W 1,2

0 . Our main tool here will thus be the following theorem.

Theorem 5.1. For each f ∈ L2(Ω), there is a unique function u ∈ W 1,2
0 (Ω) such that

(5.14) ∆u = −f (as a distribution).

In addition ||u||W 1,2(Ω) ≤ CΩ||f ||L2.

We’ll prove this first, and you probably have an idea of how we will try to proceed then.
Here I created trouble for myself (a little bit on purpose). I should have said u is a weak

solution to ∆u = −f . See the discussion below; at least the advantage here is that (5.14) is
well defined from what we said so far.

First of all, let us relax a little with the complex numbers. We will prove this for real-
valued g (and with real-valued solutions f). Then for complex-valued g, we can easily find a
solution (solve two equations). The uniqueness is not a bother either: if there is no nontrivial
real solution for ∆u = 0, there is no complex solution either (because the real and imaginary
parts would be solutions). For other operators than ∆ (typically, operators with complex
coefficients) we would need to be more prudent, but here no, so we can happily forget the
complex numbers.

Next ∆u = −f is a very simple example of what one may call a variational equation:
there is a functional (we shall call it Q below) such that the minimizers of this functional
satisfy that equation as an Euler-Lagrange equation. This makes it simpler to find solutions,
because minimizing functionals is always fun.

So here we go: we want to solve ∆u = −f , and we introduce a functional Q = Qf ,
defined by

(5.15) Q(u) =

ˆ
Ω

|∇u|2 − 2fu

[for f with complex coefficients we would take
´
Re(fu) here, but we don’t need to]. The

natural domain of definition of Q that we will take is precisely W 1,2
0 = W 1,2

0 (Ω).
Notice that the linear part u → −2

´
fu is continuous on W 1,2

0 (Ω). because |
´

Ω
fu| ≤´

Ω
|fu| ≤ ||f ||L2(Ω)||u||L2(Ω) ≤ ||f ||L2(Ω)||u||W 1,2(Ω). The other part ||∇u||2 is part of the

square of the norm, so it is (defined and) continuous too. So Q is well defined on W 1,2
0 .
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Now we want to minimize Q in W 1,2
0 . And we claim it is strictly convex, which will help

a lot. That is, for u, v ∈ W 1,2
0 ,

(5.16) Q
(u+ v

2

)
−1

2
[Q(u)+Q(v)] =

ˆ
Ω

|∇
(u+ v

2

)
|2−1

2

(
|∇u|2+|∇v|2

)
= −1

4

ˆ
Ω

|∇(u−v)|2

(naturally the linear part goes away). So the average does significantly better than u or v.
Then the existence of a unique minimizer, i.e.,

(5.17) u0 ∈ W 1,2
0 such that Q(u0) = m := inf

u∈W 1,2
0

Q(u)

follows in a standard way that we explain now.
Before we start, observe that m ≤ 0 (try u = 0). Next notice that if Q(u) ≤ 0, then´

Ω
|∇u|2 ≤ 2

´
|fu| ≤ 2||f ||||u|| ≤ C||f ||

{ ´
Ω
|∇u|2

}1/2
, because the version of Poincaré’s

inequality for compactly supported functions that we proved above yieds

(5.18) ||u||2 ≤ CΩ||∇u||2 for u ∈ W 1,2
0 :

see the version of Poincaré’s inequality for compactly supported functions. We simplify and

find that
{ ´

Ω
|∇u|2

}1/2 ≤ C||f ||2 when Q(u) ≤ 0.
Because of this, m is the same if we restrict our attention to the u ∈ W 1,2 such that{ ´

Ω
|∇u|2

}1/2 ≤ C||f ||2. For these it is obvious that 2
´
|fu| ≤ 2||f ||||u|| ≤ C||f ||2, so in

particular m is finite.
Let return to the existence and uniqueness. Let {uk} be a minimizing sequence, and

notice that if k and l large enough, then Q(uk) ≤ m + ε and Q(ul) ≤ m + ε, so by (5.16),
not only uk,l = uk+ul

2
does better than uk and ul on average, but even

Q(uk,l) ≤
1

2
[Q(uk) +Q(ul)]−

1

4

ˆ
Ω

|∇(uk − ul)|2 ≤ m+ ε− 1

4

ˆ
Ω

|∇(uk − ul)|2,

which forces
´

Ω
|∇(uk − ul)|2 ≤ 4ε. That is,

(5.19) {∇uk} is a Cauchy sequence in L2(Ω).

This immediately forces {uk} to be a Cauchy sequence in L2(Ω). Call the limit u. We
want to show that u is a minimizer of Q (as in (5.17)).

Since {∇uk} is also a Cauchy sequence in L2(Ω), it has a limit V (a vector-valued
function). Now there is a lemma that says that in any ball B, if {uk} is a sequence in
W 1,k(B) that converges in Lk(B) to a limit u, and such that {∇uk} converges to V ∈ Lk(B),
then u ∈ W 1,k and its distribution derivative is given by V . Here we are interested in k = 2,
but any k ≥ 1 would work, and we could also weaken our convergence assumptions. The easy
proof consists in observing that for every test function ϕ, the

´
uk

∂ϕ
∂xj

= −
´

∂uk
∂xj
ϕ converge

to
´
u ∂ϕ
∂xj

= −
´
Vjϕ.
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Thus u ∈ W 1,2 and {uk} converges to u in W 1,2(Ω) (by (5.19) and (5.18)). In addition,
u ∈ W 1,2

0 because the uk lie in W 1,2
0 (which is closed in W 1,2 by definition). Finally it is easy

to see that Q(u) = limk→+∞Q(uk) = m (the functional is continuous on W 1,2, for the same
reasons as we said it is defined). So u is a minimizer.

Incidentally, the minimizer of Q is unique, by the convexity property (5.16). That’s the
advantage of (strictly) convex functionals, and otherwise any minimizing sequence would not
converge readily without at least extracting a subsequence.

We also promised that ||u||W 1,2 ≤ C||f ||2. This comes from the fact that the minimum m
of the functional is less than 0 (try u = 0), then by (5.15), the fact that 2|

´
fu| ≤ 2||f ||2||u||2,

and (5.18).

Comment. Here we wanted to go fast, so se used convexity and the special form of ∆. But
there is a (quite classical) similar argument that works also, at least for the operators L of
the form (called divergence form) L = −divA∇, where A = A(x) is a matrix with bounded
measurable coefficients that satisfy a suitable ellipticity condition. Then our convexity trick
can be replaced by a simple but powerful tool, the Lax-Milgran theorem. It is good to
know that to L = −divA∇ we can associate a sesquilinear form on W 1,2(Ω), given by

(5.20) F(u, v) =

ˆ
Ω

〈A∇u,∇v〉,

which is just
´

Ω
〈∇u,∇v〉 when L = −∆, and which has some good positivity properties.

Return to −∆ and Q = Qf . Now we have our minimizer for Q and we need to show that
it is the unique solution of −∆u = f on W 1,2

0 . We first show that u is a weak solution of
∆u = −f in Ω. This means that for every test function ϕ ∈ C∞c (Ω),

(5.21) 〈∇u,∇ϕ〉L2 = 〈f, ϕ〉L2

or if you prefer, more explicitely

(5.22)

ˆ
Ω

∇u · ∇ϕ =

ˆ
Ω

fϕ

(we decided to stay real, so we don’t need to put bars in the ϕ-terms). This is what you
would get from an integration by parts if you knew that u is smooth and is a “strong”
solution, since we could write that

(5.23) 0 =

ˆ
Ω

(∆u+ f)ϕ =

ˆ
V

fϕ+

ˆ
V

(∆u)ϕ =

ˆ
V

fϕ−
ˆ
V

∇u · ∇ϕ,

where as a precaution I decided that I could reduce the first integral to a nice smooth domain
V ⊂ Ω that is large enough to contain a neighborhood of the support of λ, so that when we
apply Green’s formula to get the last identity, the integrated term on ∂V vanishes because
of ϕ.
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Now we show that u is a weak solution. We use the fact that for all t ∈ R, u+ tϕ lies in
W 1,2

0 , so Q(u+ tϕ) ≥ Q(u) (by minimization). We use (5.15) and expand:

(5.24) Q(u+ tϕ) =

ˆ
Ω

|∇(u+ tϕ)|2 − 2f(u+ tϕ) = Q(u) + 2t

ˆ
Ω

∇u · ∇ϕ− fϕ+ t2A,

where we don’t care about A, because we just need to know that Q(u+ tϕ) has a derivative
at t = 0, and say that this derivative vanishes because u is a minimizer. We get that´

Ω
∇u · ∇ϕ− fϕ = 0, as required for (5.22).
We promised a distribution solution and now we obtained a weak solution; what is the

difference? We need to explain more what happens with distribution derivatives. At this
point we know that u ∈ W 1,2

0 , which means that the first derivatives ∂ju = ∂u
∂xj

are given by

L2 functions (call them vj). By (5.14) we mean that for every test function ϕ,

(5.25) 0 = 〈∆u, ϕ〉+ 〈f, ϕ〉 =

ˆ
Ω

fϕ−
∑
j

〈∂ju, ∂jϕ〉 =

ˆ
Ω

fϕ+
∑
j

ˆ
Ω

〈u, ∂j∂jϕ〉

where the first brackets describe the duality of a distribution with a measure, and then we
use the definitions. The second part would give a direct definition of a distribution solution,
but the first part is good enough for us, because

∑
j〈∂ju, ∂jϕ〉 =

∑
j〈vj, ∂jϕ〉 =

´
Ω
∇u · ∇ϕ

and now we recognize (5.22).
Here is a related comment. A natural space that we could have tried instead of W 1,2

0

would have been W 2,2
0 (Ω). Then we would immediately have had a definition of ∆u as an

L2 function, which sounds fair. But we would also have needed to prove that all the other
second derivatives of u also lie in L2. Now ∆ is special, and for instance in Ω = Rn a simple
Fourier transform computation shows that u ∈ W 2,2(Rn) as soon as u and ∆u lie in L2 (or
as soon as u − ∆u ∈ L2); that is, ∆u controls the other derivatives of order 2. The same
thing actually holds in nice domains, but I have big doubts about ugly bounded open sets.
But for what we want to do here, we don’t need to prove that u ∈ W 2,2

0 (Ω) and so W 1,2
0 (Ω)

is better.

Good, u is also a distribution solution. Now is it unique? That is, if u ∈ W 1,2
0 is a

distribution (or weak) solution to ∆u = 0, can we say that u = 0? Again, this looks all
right: −∆ is the best known example of an elliptic operator, for which any weak solution is
not only a strong solution, but C∞. An in addition u = 0 (morally) on the boundary, so we
expect u to vanish on Ω. But we don’t want to prove all this, and we don’t want to use any
regularity for Ω. So we return to the functional.

If u is a weak solution of ∆u = 0, then by (5.22) with f = 0,
´

Ω
∇u · ∇ϕ = 0 for all

test functions ϕ. Take a sequence of test functions ϕk that converges to u in W 1,2; this is
possible precisely because u ∈ W 1,2

0 . And by taking limits above,
´

Ω
|∇u|2 = 0. Now u = 0

in W 1,2
0 , by (5.18). Too easy.

This completes the proof of Theorem 5.1.

70



5.3 The spectrum of −∆ on a bounded domain Ω

Again bounded is not vital, but we assume that Ω is a bounded domain in Rn.
We want to use Theorem 5.1 to say some things about the spectrum and eigenvalues of

−∆ on Ω.
We want to repeat what we did in dimension 1, with less precise computations. Call G

(for Green) the operator that to f ∈ L2(Ω) associates the unique solution u of −∆u = f
obtained in Theorem 5.1. This is a bounded linear operator on L2 = L2(Ω); the linearity
follows from the uniqueness in the theorem.

Now see G as an operator on L2 (compose with the canonical injection). Then G is
compact, because the image of the unit ball of L2 is, by the theorem, contained in a ball of
W 1,2

0 , which is relatively compact in L2 by the Rellich-Kondrachov theorem.
Next we claim that G : L2 → L2 is self-adjoint and positive. Let f, g ∈ L2 be given, and

set u = Gf and v = Gg. We have seen in (5.22) (the weak equation) that
´

Ω
∇u·∇ϕ =

´
Ω
fϕ

for every test function ϕ. This stays true, by density of C∞c in W 1,2
0 , when ϕ is replaced by

v. Thus
´

Ω
∇u · ∇v =

´
Ω
fv. By symmetry,

´
Ω
∇u · ∇v =

´
Ω
ug. Thus

´
Ω
fv =

´
Ω
ug. This

is also true with g replaced by g, so we get (with easy to guess notation)

(5.26) 〈Gf, g〉 =

ˆ
Ω

Gfg =

ˆ
Ω

ug =

ˆ
Ω

fv = 〈f,Gg〉.

As for the positivity, we take g = f and get that

(5.27) 〈Gf, f〉 =

ˆ
Ω

uf =

ˆ
Ω

∇u · ∇u = ||∇u||2.

At this point, we can apply the spectral theorem. Notice that the kernel Ker(G) is {0},
because if u = 0 then f = −∆u = 0. So we can find an orthonormal basis of eigenvectors for
G. Let us summarize this, but by calling λ−1

j the eigenvalues for G, so that the corresponding
eigenfunctions satisfy −∆f = λjf .

Corollary 5.2. There is an orthonormal basis {ei}, i ∈ N, of L2(Ω), and a nondecreasing
sequence {λi}, i ∈ N of positive numbers, with limi→+∞ λi = +∞, such that

(5.28) −∆ei = λiei for i ∈ N.

Notice also that since Gei = λ−1
i ei, each ei lies in W 1,2

0 (Ω). Inside, due to the ellipticity
of −∆, it is even smooth.

Do not dream of computing all the eigenvalues and eigenvectors of −∆ on Ω ⊂ Rn. In a
very simple domain like the ball, maybe (I don’t recall), but in general, no way.

But the first eigenvalue for −∆ (precisely the largest eigenvalue for G, because we did
not compute G(L2)) has a geometric sense, so let us discuss it. Here is a statement

Corollary 5.3. Let µ0 be the largest eigenvalue of G : L2 → L2, and set λ0 = µ−1
0 . Then

λ0 = C2, where C is the best constant in the Poincaré inequality

(5.29) ||u||L2(Ω) ≤ C||∇u||L2(Ω) for u ∈ W 1,2
0 (Ω).

And the best constant C in (5.29) is precisely obtained for u ∈ Eµ0 =
{
u ∈ L2 ; G(f) = µ0f

}
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Thus the optimal functions for Poincaré are the span of the ei that correspond to µ0.
Don’t get confused with too many inverses. The unit ball is actually the bounded open

set with the worse (the largest) constant C, say, given its volume, and it fits with the fact
that it has the largest spectral gap λ0. Said otherwise, if Ω is very thin and small, then C
can be taken very small. This looks good, but it prevents the existence of an eigenvector e0

with ||e0|| not much smaller than the norm of its Laplacian.
Let us try to compute norms. Let u =

∑
i αiei be any finite linear combination of the ei,

and set f =
∑

i λiαiei. Notice that u = G(f) because G(ei) = µiei. Also, ||u||2 =
∑

i |αi|2.
Recall from (5.27) that

(5.30) ||∇u||22 = 〈Gf, f〉 =
〈∑

αiei,
∑

λiαiei

〉
=
∑
i

λi|αi|2.

First suppose that f lies in the kernel of G − µ0I. Then all the coefficients λi are equal to
λ0, and so ||∇u||22 = λ0

∑
i |αi|2 = λ0||u||22. In this case (5.29) with C =

√
λ0 is an identity

for u.
It remains to show that all the other functions of W 1,2

0 do even better (so that then
(5.29) holds with C =

√
λ0). For finite linear combinations of the ej, this follows from

(5.30), because ||∇u||22 ≥ λ0

∑
i |αi|2. For the rest of W 1,0

0 , we claim (but the reader should
check the argument below with attention) that G(L2) is in fact dense in W 1,2

0 . Since both
sides of (5.29) are continuous functions of u ∈ W 1,2

0 , we get the result by continuity.
Now we try to prove that G(L2) is dense in W = W 1,2

0 . Let us put the norm ||u||2W =
||u||22+||∇u||22 on W . Then let ξ ∈ W be orthogonal to G(L2) in W . This means in particular
that for all j,

0 = 〈ξ,G(ej)〉W = 〈ξ,G(ej)〉L2 + 〈∇ξ,∇G(ej)〉L2 = µi〈ξ, ej〉L2 + 〈∇ξ,∇uj〉L2

where we set uj = G(ej). We apply (5.22) to ϕ = uj (so, after a small limiting argument
and maybe some conjugations) and get that 〈∇ξ,∇uj〉L2 = 〈ξ, ej〉L2 . Altogether, 0 = (µi +
1)〈ξ, ej〉L2 for all j, so ξ = 0 because the ej are an orthonormal basis of L2, and the proof of
Corollary 5.3 is finished.

6 Harmonic polynomials, homogeneous harmonic func-

tions

Won’t have time, did not prepare, but this sounds cool.
Look at harmonic functions on the unit disk.
We have a subspace En of such functions, which are homogeneous of degree n. For each

one, the restriction to the circle S is an eigenfunction of the Laplacian (with eigenvalue
−k2). These eigenfunctions span the whole L2(S). And finally the corresponding spaces of
homogeneous harmonic functions span the whole set of harmonic functions that lie in L2,
say.
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Same story for harmonic polynomials on the unit ball of Rn, eigenfunctions of the Lapla-
cian on the sphere, and harmonic functions on a ball.

Same story for harmonic functions on a cone.
And there are some very nice relations between eigenvalues of the Laplacian on (a sector

of) the sphere, and monotonicity formulas (Alt-Caffarelli-Friedman, Almgren) for the av-
erages of a harmonic function in small balls. A nice (but more elaborate) subject, among
others.

73


	Compact operators
	Notations and Definitions
	Duality: transposed operators
	First spectral properties of compact operators

	More about the spectrum in general
	The resolvent
	Hilbert spaces and the adjoint
	First spectral properties of self-adjoint operators
	Spectral decomposition of self-adjoint compact operators

	Spectral results, self-adjoint operators
	Preparation to the functional calculus: C-algebras
	Continuous functional calculus for bdd self-adjoint operators
	Essential spectrum of a self-adjoint operator
	Spectral resolution of a self-adjoint operator
	What next?

	Some results of measure theory/analysis
	Lusin's theorem
	Egorov's theorem
	Maximal functions and he Lebesgue differentiation theorem
	Sobolev spaces
	Poincaré and Sobolev
	 Rellich-Kondrachov

	The laplacian on an open set of Rn
	The Laplacian on a line segment
	Solutions of -u = f on a bounded domain 
	The spectrum of -  on a bounded domain 

	Harmonic polynomials, homogeneous harmonic functions

