A density measure in rational approximation

Stéphane Fischler

Université Paris-Sud (Orsay, France)

http://www.math.u-psud.fr/~fischler/

I.C.M. (Madrid), August 29th 2006

Joint work with Tanguy Rivoal (Grenoble, France)

Let $\xi \in \mathbb{R} \setminus \mathbb{Q}$. How small can $|\xi - \frac{p}{q}|$ (or $|q\xi - p|$) be in terms of q?

Two exponents:

- the *irrationality exponent* $\mu(\xi)$ measures the *precision* of rational approximants (classical).
- the density exponent $\nu(\xi)$ measures the regularity (or density) of sequences of rational approximants (new).

Throughout the lecture, we assume $\xi \in \mathbb{R} \setminus \mathbb{Q}$.

Definition of the irrationality exponent $\mu(\xi)$

The irrationality exponent $\mu(\xi) \in \mathbb{R} \cup \{+\infty\}$ is such that the following property holds:

Let $\mu \in \mathbb{R}$. The equation

$$\left|\xi - \frac{p}{q}\right| < \frac{1}{q^{\mu}} \tag{1}$$

has

- infinitely many solutions (p, q) if $\mu < \mu(\xi)$,
- only finitely many solutions (p,q) if $\mu > \mu(\xi)$.

Lower bound: $\mu(\xi) \geq 2$.

 ξ is said to be a *Liouville number* if $\mu(\xi) = +\infty$, that is if (1) has infinitely many solutions for any $\mu \in \mathbb{R}$. For instance:

$$\xi = \sum_{n=1}^{+\infty} \frac{1}{10^{n!}}$$

Definition of the density exponent $\nu(\xi)$

Let $\mathbf{q} = (q_n)_{n \geq 1}$ be an increasing sequence of positive integers. Let p_n be the closest integer to $q_n \xi$, and

$$\alpha_{\xi}(\mathbf{q}) = \limsup_{n \to +\infty} \frac{|q_{n+1}\xi - p_{n+1}|}{|q_n\xi - p_n|},$$
$$\beta(\mathbf{q}) = \limsup_{n \to +\infty} \frac{q_{n+1}}{q_n}.$$

The density exponent $\nu(\xi)$ is the infimum of

$$\log \sqrt{\alpha_{\xi}(\mathbf{q})\beta(\mathbf{q})}$$

as **q** runs through the set of all increasing sequences such that

$$\alpha_{\xi}(\mathbf{q}) < 1$$
 and $\beta(\mathbf{q}) < +\infty$. (2)

If there is no sequence \mathbf{q} satisfying (2), we let $\nu(\xi) = +\infty$.

Lower bound: $\nu(\xi) \ge 0$.

A glance at irrationality proofs

Many irrationality proofs go by constructing **q** such that

$$q_n \xi - p_n \to 0 \text{ as } n \to \infty$$
, and $q_n \xi - p_n \neq 0 \text{ for any } n$.

Sometimes the stronger property

$$\alpha_{\xi}(\mathbf{q}) < 1$$
 and $\beta(\mathbf{q}) < +\infty$

holds (e.g. in Apéry's proof that $\zeta(3) \notin \mathbb{Q}$).

$$\nu(\xi) < \infty$$

 \Leftrightarrow there exists \mathbf{q} with

$$\alpha_{\xi}(\mathbf{q}) < 1 \text{ and } \beta(\mathbf{q}) < +\infty$$

 \Leftrightarrow there exists a proof that $\xi \notin \mathbb{Q}$ in which the sequences (q_n) and $(|q_n\xi - p_n|)$ have geometrical behaviour

A simple case, to fix the ideas

Assume there is an increasing sequence q with

$$\nu(\xi) = \log \sqrt{\alpha_{\xi}(\mathbf{q})\beta(\mathbf{q})}$$

and also

$$\alpha_{\xi}(\mathbf{q}) = \lim_{n \to +\infty} \frac{|q_{n+1}\xi - p_{n+1}|}{|q_n\xi - p_n|} < 1,$$

$$\beta(\mathbf{q}) = \lim_{n \to +\infty} \frac{q_{n+1}}{q_n} < +\infty.$$

Then

$$|q_n\xi-p_n|=(\alpha_{\xi}(\mathbf{q})+o(1))^n$$
 and $q_n=(\beta(\mathbf{q})+o(1))^n$, so that

$$q_n|q_n\xi-p_n| = (\alpha_{\xi}(\mathbf{q})\beta(\mathbf{q})+o(1))^n = e^{(2\nu(\xi)+o(1))n}.$$

In this case, $\nu(\xi)$ measures how fast $q_n|q_n\xi-p_n|$ grows with n.

If $\nu(\xi) > 0$ and n is sufficiently large then q_n can not be a convergent in the continued fraction expansion of ξ .

Now we come back to the general case

Generic behaviour

Recall that, for any $\xi \in \mathbb{R} \setminus \mathbb{Q}$,

$$2 \le \mu(\xi) \le +\infty$$
,

$$0 \le \nu(\xi) \le +\infty.$$

Theorem 1 For almost all $\xi \in \mathbb{R} \setminus \mathbb{Q}$ with respect to Lebesgue measure,

$$\mu(\xi) = 2 \ and \ \nu(\xi) = 0.$$

General philosophy: If ξ comes in "naturally" (that is, is not constructed on purpose) then it should satisfy

$$\mu(\xi) = 2 \text{ and } \nu(\xi) = 0.$$

Liouville numbers

Recall that ξ is a *Liouville number* if $\mu(\xi) = +\infty$, that is if for any $\mu \in \mathbb{R}$ the equation

$$\left|\xi - \frac{p}{q}\right| < \frac{1}{q^{\mu}}$$

has infinitely many solutions (p, q).

Theorem 2 If $\mu(\xi) = +\infty$ then $\nu(\xi) = +\infty$.

So we know that $\nu(\xi) = +\infty$ for some numbers ξ , for instance

$$\xi = \sum_{n=1}^{+\infty} \frac{1}{10^{n!}}$$

Continued fraction expansion

$$\xi = [a_0; a_1, a_2, \ldots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots}}$$

Convergents: the most precise rational approximants p/q. So $\mu(\xi)$ can be easily computed from the sequence (a_k) .

But the sequence of convergents has not (in general) a geometric growth, so it can *not* be used to compute $\nu(\xi)$... except in one case:

Theorem 3 If $a_k \leq A$ for any k, then

$$\mu(\xi) = 2,$$

$$\nu(\xi) \le \log\left(\frac{A+1}{\sqrt{A+2}}\right).$$

For a quadratic number ξ , the sequence (a_k) is ultimately periodic and

$$\nu(\xi) = 0.$$

So we know that $\nu(\xi) = 0$ for some numbers ξ .

The number e

$$e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, \ldots]$$

$$\mu(e) = 2$$

We do not know anything on $\nu(e)$, except of course

$$0 \le \nu(e) \le +\infty.$$

Is it finite? Is it zero?

The number $\zeta(3)$

$$\zeta(3) = \sum_{n=1}^{+\infty} \frac{1}{n^3}$$

Theorem 4 (Apéry, 1978) $\zeta(3)$ is irrational, and

$$\mu(\zeta(3)) < 13.42$$

Further refinements by various authors. Best known bound (Rhin-Viola, 2001):

$$\mu(\zeta(3)) < 5.52$$

Conjecture: $\mu(\zeta(3)) = 2$.

Apéry's construction yields

$$\nu(\zeta(3)) \le 3$$

The further refinements yield less precise upper bounds.

Conjecture: $\nu(\zeta(3)) = 0$.

Other hypergeometric constructions

For

$$\zeta(2) = \frac{\pi^2}{6} = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

and for log(2), the situation is the same.

$$\nu(\zeta(2)) \le 2$$

$$\nu(\log(2)) \le 1$$

The number $\zeta(5)$ is not known to be irrational.

$$\nu(\pi) < 21$$

Algebraic numbers

If ξ is algebraic then:

- $\mu(\xi) \le \deg(\xi)$ (Liouville)
- $\mu(\xi) = 2 \text{ (Roth)}$

Theorem 5 (with Adamczewski) If ξ is algebraic then $\nu(\xi)$ is finite.

Conjecture: If ξ is algebraic then $\nu(\xi) = 0$.

Open questions

Does there exist a number ξ such that

$$0 < \nu(\xi) < +\infty$$
 ?

Is it true that for any irrational $period \xi$ we have

$$\nu(\xi) = 0 \quad ?$$