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Let ξ ∈ R \ Q. How small can |ξ − p
q | (or

|qξ − p|) be in terms of q ?

Two exponents:

• the irrationality exponent µ(ξ) measures
the precision of rational approximants (clas-
sical).

• the density exponent ν(ξ) measures the reg-
ularity (or density) of sequences of rational
approximants (new).

Throughout the lecture, we assume ξ ∈ R \Q.



Definition of the irrationality exponent µ(ξ)

The irrationality exponent µ(ξ) ∈ R∪{+∞}
is such that the following property holds:

Let µ ∈ R. The equation∣∣∣ξ − p

q

∣∣∣ <
1

qµ (1)

has

• infinitely many solutions (p, q) if µ < µ(ξ),

• only finitely many solutions (p, q) if µ >
µ(ξ).

Lower bound: µ(ξ) ≥ 2.

ξ is said to be a Liouville number if µ(ξ) =
+∞, that is if (1) has infinitely many solutions
for any µ ∈ R. For instance:

ξ =

+∞∑
n=1

1

10n!



Definition of the density exponent ν(ξ)

Let q = (qn)n≥1 be an increasing sequence of
positive integers. Let pn be the closest integer
to qnξ, and

αξ(q) = lim sup
n→+∞

|qn+1ξ − pn+1|
|qnξ − pn|

,

β(q) = lim sup
n→+∞

qn+1

qn
.

The density exponent ν(ξ) is the infimum of

log
√

αξ(q)β(q)

as q runs through the set of all increasing se-
quences such that

αξ(q) < 1 and β(q) < +∞. (2)

If there is no sequence q satisfying (2), we let
ν(ξ) = +∞.

Lower bound: ν(ξ) ≥ 0.



A glance at irrationality proofs

Many irrationality proofs go by constructing q
such that

qnξ − pn → 0 as n →∞, and

qnξ − pn 6= 0 for any n.

Sometimes the stronger property

αξ(q) < 1 and β(q) < +∞
holds (e.g. in Apéry’s proof that ζ(3) 6∈ Q).

ν(ξ) < ∞
⇔ there exists q with

αξ(q) < 1 and β(q) < +∞
⇔ there exists a proof that ξ 6∈ Q in which

the sequences (qn) and (|qnξ − pn|)
have geometrical behaviour



A simple case, to fix the ideas

Assume there is an increasing sequence q with

ν(ξ) = log
√

αξ(q)β(q)

and also

αξ(q) = lim
n→+∞

|qn+1ξ − pn+1|
|qnξ − pn|

< 1,

β(q) = lim
n→+∞

qn+1

qn
< +∞.

Then

|qnξ−pn| = (αξ(q)+o(1))n and qn = (β(q)+o(1))n,

so that

qn|qnξ−pn| = (αξ(q)β(q)+o(1))n = e(2ν(ξ)+o(1))n.

In this case, ν(ξ) measures how fast qn|qnξ − pn|
grows with n.

If ν(ξ) > 0 and n is sufficiently large then
qn can not be a convergent in the continued
fraction expansion of ξ.

Now we come back to the general case



Generic behaviour

Recall that, for any ξ ∈ R \Q,

2 ≤ µ(ξ) ≤ +∞,

0 ≤ ν(ξ) ≤ +∞.

Theorem 1 For almost all ξ ∈ R \ Q with
respect to Lebesgue measure,

µ(ξ) = 2 and ν(ξ) = 0.

General philosophy: If ξ comes in “natu-
rally” (that is, is not constructed on purpose)
then it should satisfy

µ(ξ) = 2 and ν(ξ) = 0.



Liouville numbers

Recall that ξ is a Liouville number if µ(ξ) =
+∞, that is if for any µ ∈ R the equation∣∣∣ξ − p

q

∣∣∣ <
1

qµ

has infinitely many solutions (p, q).

Theorem 2 If µ(ξ) = +∞ then ν(ξ) = +∞.

So we know that ν(ξ) = +∞ for some numbers
ξ, for instance

ξ =

+∞∑
n=1

1

10n!



Continued fraction expansion

ξ = [a0; a1, a2, . . .] = a0 +
1

a1 + 1
a2+...

Convergents: the most precise rational approx-
imants p/q. So µ(ξ) can be easily computed
from the sequence (ak).

But the sequence of convergents has not (in
general) a geometric growth, so it can not be
used to compute ν(ξ). . . except in one case:

Theorem 3 If ak ≤ A for any k, then

µ(ξ) = 2,

ν(ξ) ≤ log

(
A + 1√
A + 2

)
.

For a quadratic number ξ, the sequence (ak) is
ultimately periodic and

ν(ξ) = 0.

So we know that ν(ξ) = 0 for some numbers ξ.



The number e

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]

µ(e) = 2

We do not know anything on ν(e), except of
course

0 ≤ ν(e) ≤ +∞.

Is it finite ? Is it zero ?



The number ζ(3)

ζ(3) =

+∞∑
n=1

1

n3

Theorem 4 (Apéry, 1978) ζ(3) is irrational,
and

µ(ζ(3)) < 13.42

Further refinements by various authors. Best
known bound (Rhin-Viola, 2001) :

µ(ζ(3)) < 5.52

Conjecture: µ(ζ(3)) = 2.

Apéry’s construction yields

ν(ζ(3)) ≤ 3

The further refinements yield less precise upper
bounds.
Conjecture: ν(ζ(3)) = 0.



Other hypergeometric constructions

For

ζ(2) =
π2

6
=

+∞∑
n=1

1

n2

and for log(2), the situation is the same.

ν(ζ(2)) ≤ 2

ν(log(2)) ≤ 1

The number ζ(5) is not known to be irrational.

ν(π) < 21



Algebraic numbers

If ξ is algebraic then:

• µ(ξ) ≤ deg(ξ) (Liouville)

• µ(ξ) = 2 (Roth)

Theorem 5 (with Adamczewski) If ξ is
algebraic then ν(ξ) is finite.

Conjecture: If ξ is algebraic then ν(ξ) = 0.



Open questions

Does there exist a number ξ such that

0 < ν(ξ) < +∞ ?

Is it true that for any irrational period ξ we
have

ν(ξ) = 0 ?


