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Let £ € R\ Q. How small can | — g (or
|g€ — p|) be in terms of ¢ 7

Two exponents:

e the irrationality exponent u(&) measures

the precision of rational approximants (clas-
sical).

e the density exponent v(£) measures the reg-

ularity (or density) of sequences of rational
approximants (new).

Throughout the lecture, we assume £ € R\ Q.



Definition of the irrationality exponent ()

The irrationality exponent u(§) € RU{+o0}
is such that the following property holds:

Let u € R. The equation
p 1
E——| < — 1
-0 < (1)
has

e infinitely many solutions (p, q) if u < u(§),
e only finitely many solutions (p,q) if © >
p(&).

Lower bound: pu(§) > 2.

¢ is said to be a Liouville number if p(§) =
+00, that is if (1) has infinitely many solutions
for any p € R. For instance:

= Z 10n‘



Definition of the density exponent ()

Let g = (gn)n>1 be an increasing sequence of
positive integers. Let p, be the closest integer
to gné&, and

: |Gn+1€ — Pn+1]
a¢(q) = limsup
f( ) n——+00 |(]n§ — pn|

The density exponent v(&) is the infimum of

log, /g (@)3(a)

as q runs through the set of all increasing se-
quences such that

ag(q) <1 and  fB(q) < +oo.  (2)

[f there is no sequence q satisfying (2), we let
V(&) = +o0.

Lower bound: v(£) > 0.



A glance at irrationality proofs

Many irrationality proofs go by constructing q
such that

gné — pn — 0 as n — oo, and

gné — pn, # 0 for any n.
Sometimes the stronger property

ag(q) <1 and B(q) < +oo
holds (e.g. in Apéry’s proof that ((3) € Q).

V(&) < oo
& there exists q with
ag(q) < 1 and B(q) < +o0
< there exists a proof that & € Q in which

the sequences (qn) and (|qgné — pnl)
have geometrical behaviour



A simple case, to fix the ideas

Assume there is an increasing sequence  with

v(§) = log \/ ae(q)B(q)

and also
. |Qn+1£ — pn+1’
= ]
Oég(Q) nHHJIFlOO ‘an — pn‘

<1,

Then

|gn&—pn| = (Oég(Q)+0(1)>n and g, = (B(q)+o(1))",
so that

dnlané—pn| = (ag(q)B(q)+o(1))" = (20(€)+o(1))n.

[n this case, v(&) measures how fast g, |qné — pp
orows with n.

If v(¢) > 0 and n is sufficiently large then
gn, can not be a convergent in the continued
fraction expansion of &.

Now we come back to the general case



Generic behaviour

Recall that, for any £ € R\ Q,
2 < p(§) < oo,
0 <v() < +oo.

Theorem 1 For almost all £ € R\ Q with
respect to Lebesque measure,

(&) =2 and v(§) = 0.

General philosophy: It € comes in “natu-
rally” (that is, is not constructed on purpose)
then it should satisty

u(€) = 2 and v(€) = 0.



Liouville numbers

Recall that € is a Liouville number if u(§) =
+00, that is if for any u € R the equation

-l <
has infinitely many solutlons (p, q).

Theorem 2 If (&) = +oo then v(§) = +o0.

So we know that v(£) = 400 for some numbers
&, for instance

¢ = Z 10"%'



Continued fraction expansion

1

¢ =lag;a1,a9,...] =ag+

ar + as+...
Convergents: the most precise rational approx-
imants p/q. So p(&) can be easily computed
from the sequence (ay.).

But the sequence of convergents has not (in
general) a geometric growth, so it can not be
used to compute v(§). .. except in one case:

Theorem 3 If aj. < A for any k, then
u&) =2,

V(ﬁ)élog( ek )

vVA+?2

For a quadratic number &, the sequence (ay.) is
ultimately periodic and

v(€) = 0.

So we know that v(&) = 0 for some numbers .



The number e

e=1[2:1,2,1,1,4,1,1,6,1,1,8,...]

ple) =2

We do not know anything on v(e), except of
COUrse
0 <wv(e) < +oo.

I[s it finite 7 Is it zero ?



The number ((3)

+00 1
B =) —
n
n=1
Theorem 4 (Apéry, 1978) ((3) is irrational,

and
wu(C(3)) < 13.42

Further refinements by various authors. Best

known bound (Rhin-Viola, 2001) :

p(C(3)) < 5.52
Congecture: 11(((3)) = 2.

Apéry’s construction yields

v(C(3)) <3

The tfurther refinements yield less precise upper
bounds.

Congecture: v({(3)) = 0.



Other hypergeometric constructions

For N
Y 0.0
/s 1
2 _ — = —_
n=1
and for log(2), the situation is the same.
v(G(2)) = 2

v(log(2)) <1

The number ((5) is not known to be irrational.

v(m) < 21



Algebraic numbers

If £ is algebraic then:

o (&) < deg(&) (Liouville)
® 1u(§) = 2 (Roth)

Theorem 5 (with Adamczewski) If ¢ is
algebraic then v(§) is finite.

Congecture: 1f £ is algebraic then v(&) = 0.



Open questions

Does there exist a number £ such that

0<v(é) <+oo 7

Is it true that for any irrational period & we
have

v(€) =0 7



