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Inverse Method for Identification of Acoustic Sources
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At liftoff, launch vehicles are subjected to a very severe overpressure and to an acoustic environment that can
induce loads acting on' payloads ini thé low:frequency domsin (frequencies lower than 40 Hz). The. overpressuse
starls at 1gmtmn of solid-rocket motors. This overpressure phase is followed by the acoustic phase. The Tiftoff
acoustié envnonment is generated by the rocket exhausts and by their impingement on the launch pad. For a
nuierical pr edlctmn of the acoiistic énvironment, the European Aerenautic Defence and Space Comipany. has
developed an inverse method via a time domain boundar y. integral equations approach that uses an. optimal
contt.'n_] methq_d,'w'i_th'diré(;t aind adjoint :eql'l'atiéns_.‘ The corresponding discrete schemes are highly accurate and
unconditionally stable. As an industrial application, the identification of acoustic sources is shown, on the Liftoff
acoustic eavironment of ARTANE 5, With the sources from acoustic pressure measuremerits on the upper part of
the' ARIANE 5 vehicle and on the pylons arcund. the launch pad having been Iocalized and eharacterized in the
time domain, the compleie environment is recovered. By integration of the resulting acoustic pressures over all
surfaces of the launchers, the loads created by the liftofi acoustlc ﬁeld ean be estimated. - .

-Nomenclature

¢ = scund speed in the air

D = integral surface operator

F = set of source parameiers _

fr = source label, eqiial to f, the palameter vector-

fi = source label equal to the P parameter
cornponent equal to the j of the vector

b = jleration’

JlF} = cost function .

K = nimber of sensors

k = label equal 1o the & of the sensor

L() = Lagrangian _

N = - numberof solver time iterations

Ny = number of degrees of freedom on the
obstacle boundary

N; = numbet-of sources

n = discrete current iteration

O (x, £) = scatiered field outside the obstacle

Qliglx, 1) = scattered field inside the obstacle

Ol = exterior scattered field source equal to p;
time »

OnE(f0) = incident field; source equal to p;
time equal to

Oops (X, 1) = measured observed pressure
Ok, = observed data tiine »
mc(x ) = incident field for source p
Oi(x, ¢, F) total field (outside)
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O{% = discrete direct total field

oF = discrete adjoint total field

O = total field; souree equal to p; time n

P = label equal to p of the source

Q" = “postprocess acoustic matrix time 7

R® = surface acoustic convohition matrix for time m

S*(fp) = boundary traces of the incident field sotrce”
equal fo p; time equal to »

SFH(f) = boundary iraces of the incident field for source
label equal to p; time equal to n; ba31s
function equal to I

t = time variable

i = discrele time (real value) j At

U = aéoustic pressure jump actoss the boundaxy

U4 = discrete direct boundary unknown

e = discrete adjoint boundary-inknown

u=» = boundary acoustic unknown time .

Xk = Jlocation of sensor-label equal to &

X, ¥ = spatial variables in three dimensions

Yo = location of source label equal to p

r = obstacle boundary

Vin = time basis function

At = time step

i = spatial basis function

r = test function {in variationnal formulation)

Qe = exterior domain obstacle

o = interior domain obstacle

I Introduction
A, Indastrial Problem

URING the liftoff phase, launch vehicles, such as the

ARTANE 5 launches, are subjected to severe loads from over-
pressure and the acoustic environment. The overpressure loads and
the acoustic loads are among the most severe loads that a launcher
can encounter during flight. The initial cause of the two load cases
is the rocket exhausts and their inferactions with the launch pad
(Figs 1and 2).

At rocket motor ignition, the sudden initiation of rocket exhausts
in the launch duct has an effect similar to the upward motion of
a piston, causing compression waves that propagate outside the
launch duct and, consequently, excite the launcher. In the case of
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“Fig. 1 ARIANE 5 liftoft.

Flg 2 ARIANE 5on its Iaunch pad

AR[ANE 5 ‘the overpressure at motm 1gmt10n is gcnerated by the
EAP (etages’ @ accélération 4 poudre sohd—rocket booste:) sohd-
rocket motors. . -

The ovexpressure is composed of the 1gn1t10n ovelpressure (IOP),
which originates from the laurich table ‘and the duct overpressure
(DOP) which ongmates from the launch ducts Flgures 24 illus-
trate this point w1l:h a plcture of the ARIANE 5 launch pad Wlth thc
ducts. :

The overpressure is a detefmjnistic load having discrete spikés at
particular frequencies, with significant levels for frequencies lower
than 40 Hz The primary sources of the acoustic field are the fluc-
tuating tarbulences in the mixing region of the rocket exhaust flow.
The acoustic loads are random and broadband. This paper is focused
on the low-frequency part of the acoustic excitation spectrum.

These two low-frequency excitations excite the launch vehicle
and induce quasi-static loads (QSL) at the payload/launcher inter-
face (Fig. 5), which the payload has to endure Consequently, it is
important to predict these loads before launches !? However, the
main difficuities in doing this are the following:

1) The overpressure can be predicted by Navier-Stokes codes On
the other hand, at present, no numerical method is available for pre-
dicting noise generated by rocket exhausts of launchers lifting off
from a launch pad. There are some relevant publications in this area,
hut they only deal with undeflected rocket exhaust noise * Conse-
quently, the estimation of the acoustic excitation requires measure-
ments from sensors mounted on the launch vehicles

2) The overpressure and the acoustic field at liftoff are of different
natures: The overpressure i3 a deterministic phenomenon analyzed

‘Fig. 3 - TOP and DOP definition.

EAP Lannch Duct Exit Aconstic Sources
@ EAP and Vuleain Bigine Acoustic Sources.’
Fig 4 Localization of ARIANE 5 low:freqnency acoustic sources.
ARIANE S
- UPFERPART -

Overpressure and acousfic loads
acting on the launcher

- Dynargicresponse of the
lanecher

QSE Ouasi Statle Load *

Fig. 5 La.unch vehicte excitation cases at Hftoff,

in the temporal domain, whereas the acoustic excitation has some
random characteristics and is broadband. The acoustic excitation
is usually defined in the frequency domain, and, consequently, the
response of structures to this excitation is also analyzed ia the fre-
quency domain .

3) In fact, the separation, in the temporal domain, between the
overpressure and the acoustic phenomenon can not be unambigu-
ously defined
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Thus,. in view of these difficulties, it is not possible at the
present time to specify an excitation defined in the time domain
corresponding to-the overpressure and acoustic.phase for analyz-
ing the low-frequency dynamic response of launchers during the
compléte liftoff phase. Currently, these two phases have to be dis-
tinguished: The dynamic response of vehicles and payloads to the
overpressure is analyzed in the time domain, and the dynamic re-
sponse to the acoustic excitation is studied in the frequency domain

To avoid the aforementioned difficulties, our 1dea is to determine
the acoustic sources from flight measurements in. the ternporal do-
main of both excitations (overpressu.re and acoustic eXCltaUOHS) by
ar inverse miéthod, Now that the sources are localized, it will be easy
to rebuild the unsteady pressure field and to estimate the pressure
levels at any point on the vehicle By the integration of the unsteady
pressures over-all surfaces of thie launcher, the loads created by the
liftoff acoustic ﬁeld cin’, be estunated Consequent]y, the response
of the. 1aunchet to the > types:of Io.ads dunng ‘the complete liftoff
phaseé-can be analyzed in the tn'ne 'dornam w1th any finite element
(FE) software

Becanse, it seems, aftet prehmmaty mvestlgatlons that identifi-
catlon of the Igcation of DOP ‘and IOP sonrces {located at duct én-
trance:and. duct exit, Tespectiv 1) Is easier than the identification
i sotirces, the ork has begun with the identification of
acoustlc ‘sources diring th ARIANE 3 launch vehlcle hftoff . ThlS
paper presents th1_ WOrk m : : :

B Introduction 10 the Inverse Acoustlc Sources Problem o

We ‘have acousttc pressure ‘measuremeints on the AREANE 51 up—
per. pait: ‘and ‘on the pylens; ‘around the launch pad, on.a. diserete
set-of sensors assocmted ‘with the ARIAN'.E 503: flaght:. WWe denote
the observed pressure by. Om (xk, tyItisa funcnon of the sensor
number k; located at position x;, ‘and of discrete tHme a. ‘In pIﬂCthB
k varies rom 1 to- K =14 -6f K= 23 for the la.tgest mvestlgated
example and n from 1 N =300 (numbet of time dormain steps for
ong direct; SJ.mulanon), in oSt of our-tésts . Thus, we have a set of
300 x 20= 6000 discrete data measurements points . -

“We wish to 1dent1fy a get £ of acoustic sources; parameterized
by a real function f,, which will be the oonttol parameter variable
used for the optimal control inverse method; fp is associated with
_ the pressure emitted by the : source at point y,:

F_:(fl,-:'rfpg '._.’fNJ') (I)

In the time domain formulation tsed here,we assume that the
emitter parameter function f, also depends on the time cvolu-
tion. For each time sampling j, we have the emission at source p,
at time j: ' ' '

1) = fp(AD)
fr= : ¥ @
= fNan |

The number of acoustic sources used varies from N, =15 to 20
Therefore, the methed is said to be a multiparameter inverse acoustic
sources problem because the number of parameters to be identified
is N, x N values, or approximately 15 x 300 = 4500 parameters

We suppose thai the associated incident acoustic sonrce field O
emitted at the source p, depends on the parameter function f,, as
mentioned earlier:

fp(t - fl’ I ypi/‘:)

, -
O, DUp) = = — !

3
The set F of'all of these acoustic fields is radiated in the air, reflected
by the launcher, producing the scatiered field OF The total com-
puted field Oy is the sum of this scattered and the direct incident
fields:

%mpaw:m—%wn+2qmem)@

p=1

This field Oy, can then be compared to the observed field Og, at
the points of observationx; and at the discrete time ¢,. The quadratic
error ot cost function j(F), depending on the set F of source pa-
rameters, is defined by

ﬂm—fmmwn—E:E]omemw(mej) ()

n=1 k—l

The objective is to find a set of sources F that minimize the cost
function j{(F)..

We use a classical opnmal control methodology -to build the
giad1ents of _](F y for vatiations in F. These techniques will be
detailed in Sec. II. Section II is devoted toa descnpnon of the
computation of the duect problem.

II " Dir ect Acoustlc Pr oblem

We consider the scattelmg problem of transient acoustic waves
in a fluid medium by a submerged 1igid object. Let §2' be a three-
dimensional object with a regular (withobt tip) bounded surface
=8¢ Let £ = RIN\Q' denote the exterior domain occupied by
the fluid medium - The domain ©¢ is assumed to be connected, but
not Q°, We denote by OF the scattered acoustic pressure created
in the fluid medium by an incident field OF; (the wave propagating
without the obstacle) and the contubutlon of ) tune domam point
source Tiumber ‘. [See Eqg, (3) 1 -

Therefore we have the followmg mltlal boundaty value pr oblem

.—AO;ff(x x)_O S :sz_e-_x_R-*; -
-BOdi&___ s ao:wu- | - o Fx R+
o n Toen R*. -

T 1 : R i

where n denotes the unit normal vector-to I, oriented from domain
Qf to Q¢ is the speed of sound i in the medium There are many
methods 16 solve this problem by the use of bouridary mtegral gqua-
tions Many authors have déveloped these miethods in aconstics,®
electromagnetism,’ * or elastodynamics 1

Some authors'! '? Have implemented \_rét‘iational approximation
of time domain integral equations (TDIE) in acoustics and some
others'®*~15 have worked on the hybridization of TD[E w1th local
paItlal differential equatlons (PFDE).

Each method consists of locking for the solutlon as a pre-
scribed combination of surface-retarded potentlals and expressing
the boundary condition as a function of the densities of the po-
tentials Equivalently, this corresponids to associaling the exterior
problem with &n appropriate interior problem

In this paper, we consider the following interior problem:

1308 (x,¢ ) ‘
e dgfr(zx'_) —AQg(x,)=0 in . Q' xR"
Odiff('xl 0) = 9‘*?_;]"&!'{(1, =0 in Qi

i Ny P
aodiff — Z aomc on T x R+ (7)

dn dn
p=1
Now, let us denote by U/ the unknown function that is equal to
0% in Q° and Ol in €. It is well-known that, because 0% is a
solution of the wave equation (6) in R3\I', it satisfies the following
representation formula;

1 Uy, t —jx —yl/c)
e. = —— V
Ofiglx, 1) o /r ny -V T3] dy

Vre UG (®)
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where
U= Ocijiff - O;iff @

is the jump of Of crossing I', and 7 =f — |x — y} is the retarded
time. Using formula {8) to compute the traces of Oyl x R, asa
function of I/, and introducing the results in the boundary cond1t:ons
of Bqs (6) and (7), one obtains the following retarded potential
boundary integral equations for the unknown function U/:

X\ 307
DU, 1) = Z W"{x 0, Vel (10)
p=1
with the surface operator D
. 1
DU 1) = 7::’5151213—-)1:”)( VXI{ZT? /r "
Uy, t— |5 —
fo[ Gof-Ix yI/C)}dJy Qn
|x’.ny o ]

Note that the operator D contains a hypersingular kernel and has
to be defined properly. One can do this by a method of regularization.
The main results are the existence and uniqueness of the solutions in
some Sabolev space, as well as a priori estimates with respect to the
data, and, finally, the property of finite velocity of propagation that
implies that the solution at time ¢ depends only on the data at times
s <=={ A coetciveness propeity linked with an’ energy identity is
available, facilitating the analysis of the approximation schemes

An equivalent formulation of Eg. (10) is developed in Refs 16—
" 21 Tt can be written, with function & i in H2[R+ HYX(T], such
that, for all ¥ in the same space

n(n(y) 58U I ¥l L
t dxdyd:
//rxr 4:fr|xfy| dﬂ > c ( 1) dxdy
= g
/ / le[ (y t— b yi)curlra—~(x,t}
st T xr 411:1x—~y| c ot

Ny P
x dx dydt = / /( aom(x E))—(x Hdxde (12)

Equation (12)i is solved in space by a surface FE method The bound-
ary, I' of the object is meshed with N, triangular elements A P1
discretization in space and time is used Fach spatial basis function
is associated with one vertex: :

@(S)) = &, @ B

which représents the Kronecker symbol on each triangle Time do-
main basis functions are denoted

=i

if telt,_1
< elt_1 4]
(=1 t—t .
Yl "_zf_l if L€ [En, g}
0 else (i4)

After the discretization of Eq. (12), we obtain the following time-
marching matrix system, denoting, by U™, the solution vecior (un-
known acoustic pressure jump on the interface [, at time ™)

n Ny
ZRnfm-#lUm:Z:Sn(fp) (15)
m=1 R =1

solved at each time step, by inversion of the matrix R,

Ny
REUHZZSn(IP)_RzUn—I' ,—RHUI (16)
p=1

where U™ is a vector whose dimension is N ;, the number of degree
of freedom on the obstacle; R"~”*! an acoustic N 7 X Ny matrix
discussed in Ref. Z; and §", the N/ dimension vector, is the conri-
bution of the incident ﬁelds on the interface I, at time ¢, Thus, we
have,

ur SN

U= )
Uk, Sk, ()

with

' aor
S (fp) = / / ‘“g(x )(p,(x) dx dr (18)
: g1 =t=ty o1

n

Using an energy identity, we are able to prove the uncornditional
stability of this schéme. The method is desctibed in some dethil in
Refs 11 and 19-24, and its implementation has confirmed stability
in a wide range of situations and for large run times never reached
before. See also Refs. 2527 for more comments on the stability
question Moreover, all of the acousnc mattices are real, sparse, and
symmetric

After the dlSCIEtlZﬂtEO]’l of formula (8) in time and space, the
computed scaitered acoustic ﬁeld is glvcn by the foxward marching
time postprocess:

O =D Q" lum (19)
with
O:szff] ] Oair(xy, 1)
Ofe=| | = : (20)
Oc',’lffk Odiﬁ(-xKa_ I_n)

and Q” mELE N ¢ postprocess Iectangulal matnces (operatox
from the interface I to near~ﬁe1d exterior pmnts)

1. Imverse Acoustic Pr 'ob‘lem :

-As in Sec, II, we recall that the incident acolistic ﬁeld is a point
souxce enitter (from the point yp) with control parameter variable
p. Yrom Eq. (3), we define the dlscrete mc1dent field at the in-
stant 1, for the source P, obsewed at d1screte pomts xk (vectox of
dimension K):

(o::f); _
Ol (F) = : (E)
(05 ),
with
t, — x — c
(052 = 2ol Z =2/ an
nixk - ypf
Using Eg. (4), we denote by
O = Ofig + Z O (F) @2)
with
O{:,[l O (31, 1)
Ou=| @ = : (23)

Ol’x,:rtk Omt(xK" 1)
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the total discrete computed (or synthetic) acoustic field data (sum-
mation of scattered and incident fields) at instant n, for the discrete
points x;. Denote by OF  the discrete total observed (or measured
acoustic field data) at instant n The inverse problem is the iden-
iification of the vector parameter F, given the measured acoustic
field O7

obs A .
We introduce the two discrete quantities

Ut=',  UY),  OLF)=[0L(F), ., ONF)] @4

and the two following discrete scalar products:

Nr

@, b, = > aihy

k=1

for elements on the boundary such as U”, of dimension N; [see
Eq 9] o
(@b = ) ot}
: k=1
for elements on the exterior domam such as OF,, of dimension X .

[See Eq. (23)] .
The dlscrete cost function, mtmduced in Eq. (5), is given by

o N,
LiE=1[08E)] =Y [ mm oer O (F) — m]x
n=1
(25)
T7he optinja] sourée function {fp)op 18 given by
(o) = min j(F) (26)

under the two discretized constrained equations, the first being the
discretized . mtegIal equation. (15) and the second the discretized
postprocessus equation (19).

By infroduction of the followiiig discrete adjoint variables or
1 agrange multiplicator (see Refs. 5 and 18):

.Ud*. : (UI*, . o UN*) O:g: — (Og“ . 02’,:)
The classical Iagrangian formulation is obtained from

L{F.U% U, 0%, 08) = T(0g)
N 7 Ny
+ Z (U ZR””"“U"‘ - ZS“(J‘p))
nel =1 p=1 K
N
+Z( mt,ot,;t ZQn m-t-iUm ZO (fp)
n=1

Ny
27
We know that if (F, U4, U%, 0%, 0%) is a saddle point of the

tot? tot
Lagrangian, then F is at leasta tocal minimum of the constrained
cost function.

The optimality conditions corresponding for U¢" and OF, are
equivalent to the direct problem (15) and (19} The optimality con-
ditions written for U¢ and O, are

ar

aun (

oL (
a0%

F,Uus,u®, 08, 08) =0, vm € [1,N] (28)

F.ULU%, 08, 08} =0, vme [1,N] (29)

These conditions give the two following steps for discretization of
a time backward adjoint systern:

X

Ot?:: - Z (Ogl Oobs)
k=1
x E
Ollol Z (0;31 - ohs) (30a)
k=1
(Rl)*UN* Q O:::
N
®RYT" 4+ +®RYUN =-3"0"0n  (30b)

Note that the time evolution system direct (forward} and adjoint
(backward) codes have exactly the same propesties Therefore, the
adjoint scheme is also unconditionally stable.

The gradient formulas for j (F ) for changes in P are then derived,
for’ the parameter functlon o

e i (f,, 3 aon
pr afp_ ;( ’ ) Z(Otm"'af-)- (3D

=1

and have to be wntten for each time 1terat10n J, fou the two variables
T=8"mdT=0.7 w1th

me ?

fo=Us o) g (é’f;"’af,ﬁ")
‘We need to compute
8(s7) 2(007),
ofy of}

inEq. (3 i). The incident field (21) is approximated in time and, by
the ase of the P1 space basis functions v/, Bq (14), we denote -

fp(tﬂ iy !xk I ypl/‘:)

(om), ==+ Azl -y,
L nesmeyle
= ding —ypl - -

The discretized tight-hand side $™ of BEq (18) is‘then written (for
the-ith spatial basis function)

S Yold ¢
S;’(fp)zf / 'ﬂg(x ) pyydx dt = ZfPA;;'
1 S0t T

(33)
With the discrete matrix A} ] 7 given in Ref 21
Therefore,
a87
L= An (34)
o
From Bq (32), the computation of 3 0;,7/8f, gives
B(OQ;P)k} _ il == 3,1/ 359
afs 47 x — Ypl

The expression of the gradients (31) is now completely established
With an initial guess for the estimated parameter {2, a quasi-Newton
optimizer is used to update the parameter value fi‘ at the optimizer
step { and to find the optimal f, that causes the gradients to vanish

L is the number of optimizer steps at the end of the inverse process:

()" = (1) = [ @iragy)], (36)
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Previous

experience

kmoveledge : Lt
{sotropic and decorrelated g0 P+AP ;

sourees /
/ 6) Optimisor

Tn Flight
Messure Dt

¥
1) Direct Integral
Equation on houndary

5) Gradient
. Evaluation

) Direct forward
Radiating

3Adjoint Backward 4) Adjoind Integral
Radisting

‘Equation on bonndary |

Fi_g. 6 . Global scheme' of the im}er‘se process minimization loe'p.

with H
of the Hessian of the cost function” '[he gradient valueé is computed
by formula (31), for the optimizer step'l A global v1ew of the
m]numzatmn pmcess is shown Fig 6.

IV Numerical Applications: ARIANE 503 Filght
Invet se Aconsttc Source Pr oblem

The methodology lias béen validated on the ARIANE 5 third and
fourth flights. The analysis was performed in thie time penod when
the: atoustic envnonment was at its maximum

An ACOUStC antenna havmg 14 acoustic measurements pomts has
been mounfed on the upper part of ARTANE 5, and-some other
acoustic. measwrement have been instatled on four pylons around
the launch pad. -

A surface mesh of ARJANE 5 has been madg usmg ‘the SDRC

'IDEAS software and is approxmately composed of 1006 tnangulax

suiface elements The inverse acoustic analysis has to cover the
low—frequency range 0/40 Hz. (measurement data are eonsequently
ﬁltered) The size of a typtcal element is alound _of the minimal
acoustic wavelength of the time domam pulse, gwmg an element
size of around 1.5 m. :

Given the data measurement acqmred durmg the 503 flight, two
sets of sources (numencal test 1 and numencal test 2) are sea:ched
The purpose is to define: 1) a finite number, as small as poss1ble
of acoustic source locations ‘and-2) acoustic sources, as simple as
possible, to investigate if it is possible to restore the acoustic levels
measured on the Iauncher-with sufficient precision (within 20%)
with simple sources. We have chosen isotropic sources. Given our
experience, we had an idea of the acoustic source locations®® 2:
below the ITauncher and at the Taunch duct exit The influence of the
number of sources has been analyzed with the two numerical tests
explained now,

A. Numerical Test 1 Definition

There are 14 sensors (K = 14) on the wpper part of the launcher
(fairing, speltra, vehicle equipment bay, etc.} There are seven acous-
tic sources (V; = 7): one source located at each duct exit, two acous-
tic sources under each EAP (etage principal cryothechnigue; central
engine stage) solid-rocket booster and one source under the EPC
Viulcain engine. The initial guess for the seven sources is chosen to
equal zero

[ q posmve-deﬁmte ‘matrix_that approximates the iverse

Pressure ampiitt:de

B, Numerical Test 2 Definition

There are 14 sensors (K = 14) on the upper pari of the launcher
(fairing, speltra, vehicle equipment bay, etc.) There are 11 acoustic
sources (N, =11): three acoustic sources on sach duct exit, two
acoustic sources under each EAP solid-rocket booster, and one under
the EPC Vulcain engine The initial guess for the 11 sources is
chosen to equal zero

Localization of sources 1-7 is the same for numencal test 1 and
numerical test 2. Compared to numerical test 1, the number of acous-
tic sources in numerical test 2 is increased For the two cases, one
direct code simulation requires N = 250 time steps, with a time step
of At =45¢ — 3 5, On a Unix workstation, two days computation
are necessary for the whole inversion process (L. =350 optimizer
step iterations),

Recall that the quadratic error ot cost function j(F), depending
on the set F.of source parameters, is the quadratic error between
measurements data Oy, and computed data O. [See Eg. (3) ]

Some of the common (Figs. 7-9, sources 1/3/5) and some of
the additional (Fig "10, source 8} physical sources from numerical

Tdentified low freqnenty source
by NUMERICAL TEST1 and NOMERICAL TEST 2

I
<

%8'_3 N H i i
: N\
T AN i PRI
5-0 w‘\“- - &.i ¥ ;Aﬁ’ t!.EHF\J'/ Wi
A

L

=
L
a

&
=3

820 B30 - Bd0 . 850 - &60 8§70- 880 €80 | 900 910
i Tirie (s} :
- [ ——NUMERICAL TESTI i “NUMERICAL TEST2 |

Fig. 7 Acoustic source 1 (left launch dirct exit).

. . Tdentified low frequency source -
by NUMERICAL TEST]and NUMERICAT TEST2

120

Pressure amplitude

B2 B3 &40 850 EED S, 80 ES0 900 910 . 920 930

Time (s) .

I—NUMERchL TEST1.~ » NUMERICAL 'I'ES’I‘2|

_ Fig.' 8 Acoustic source 3 (nght sohd-rocl(et l}_oos_ter)‘:_

[dentified low frequency source
by NUMERICAL TESTI and NUMERICAL TEST2

120

. | A/\a

: A pef Y

(Y W AT
AW

40 T T T T T T T
320 830 840 850 860 870 880 890 500 510 920 930

Time (s)
I—NUMEF!ICALTEST1 - = NUMEFHCALTESTZI

Fig. 9 Acoustic source 5 (Vulcain central engine).
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Identified low frequency source
by NUMERICATL TEST2
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Fig. 11 Comparison of the measured and computed data (sensor 1
vehicle equipment bay).

test 1 and numerical test 2, obtained after the inversion process,
are displayed: The soutce evolution £, in the tithe domain (refative
amplitude) is plotted, for each time step j < N =250 of the time
obiservation ifiterval §3/9 1 s (with a nuimerical truncation at 9 1 s).
We see few diffetences in the evolutlon vs time of commeon physical
sources; whén the niunber of sources is increased (K =7 and 11):

We find by the caleulations the asymmetry of the left and right
launch ducts and of the water injection positions in the launch ducts.
Now, aftei identification o_f the acoustic source locations, a direct
problém is solved in the two cases, to compute the acoustic levels
at the locations where the 14 sensors are mounted on the upper patt
of the launcher Those simulated acoustic levels are compared with
the real measured valués on the same sensors.

Some of the these sensots havé been selected, and the compar-
_isons for numerical test 1 and nimerical test 2 between simulated
. acoustic pressures and measured data are plotted in Figs. 11 and 12.
The agreement is quite good for the two cases. For all of the sensors,
global efror between simulated and measured data is no more than
10%, which is very small and, of course, lower than the margins
faken into account.in the éstimation of limit loads Although the
sources are different, the simulated data from numerical test 1 and
numerical test 2 are quite comparable, which shows the nonunique-
ness of the inverse problem. We have also tested the stability of the
inverse procedure for numerical test 1 identification

We find that 10% noise on measurement data impiies about 5%
error on the identified sources and 20% error on simulated data in the
launcher part. This error is lower than the margins taken into account
in the estimation of limit loads A Tichonov regularization process
should be used to stabilize data errors and o compensate the ill-
posed nature of inverse problems This is explained in the literature,
but, in our applications, the large dimension of parameter space
might explain why our numerical inverse problem seems well posed.

Errors in direct simuiation after identification are more important
on the lower part than on the upper part because most of the sensor
information comes from the upper part To overcome this problem

Comparison of measured and computed daia
{NUMERICAL TEST1 and NUMERICAL TEST2)
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Fig. 12 Compar ison of the measured and computed data (sensor 7,
fair mg) i

of finding the true solution among many incoirect solutions (due to
nenuniqueness ), it might be usefulto have a set of ground sensors, or
to have a set of sensors mounted on the lower part of the launcher

A study to find optimal and efficient ground sensors, contalmng
enough information to rebuild most of the acoustic envn’onment on
the uppet part of the fauncher; is under investigation.

s V. Conclusions .

A robust and accurate fime domain integral equation for wave
propagation was developed ' The time-marching scheme for the di-
rect acgustic source problem is unconditionally stable (no Cousant--
Friedrich-Tewy condmons) This allows a classical optimization
apploach for the inverse problem .

Direct and adjoint codes have exactly the same propemes Barlier
knowledge of the localization of sources and power parallel cor-
puters allow the industrial application of such an.inverse problem

We demonstrate the mefhod on some examples of source recon-
siTEctions in low—fxequency acoustics for the ARIANE S acoustic
solurce fdentification on the data fiom 503 ARIANE:S flight: Initial
resitlts are very prormsmg and show a good identification of the
multiparameter sources in the 0-40 Hz fréquency domain (source
function at each time step), with partial ‘acotisiic data (launcher
upper pait sensers). Tsotropic sources are sidficient to restore
the acoustic levels meastred oni the Iaunchcr, with deviations‘no
higher than 20%

The acousiic loads due to supersomc jets are broadband _High-
frequienicy acoustic loads éricountered at latncher lifioff are Iandom
HoWwever, acoustic levels for fréquencies lower than 30/40 Hz are
mamly due to dsterministic phenoimena. Indeéd, from analysis of
flight measurement, it appears thai significant low-frequency acéus-
tic Tevels are related tothe geometrical dimensions of the lainch pad
This is one reason for this success The work was facilitated by the
eatlier knowledge of the acoustic source location We have also
shown the nonuniquenéss of these inverse dcoustic sources, which
confirms that it might be difficult to simulate acoustic fields cot-
rectly'in the launch pad ground zone, without sensors in this zone.
However, a completely instrumented flight (both the upper part and
the lower part of the ARTANE 5 launcher) is foreseen, to fix the
solrce locations . -

Fature studies will be dedicated to the overpressure problem, and
exploitation of the 504 ARTANE 5 flight is under way with regards
to this problem . With regard to the locations of overpressure sources,
it is assumed in most papers that they are on the launch tablé and
at launch duct exit. According to those papers, like a space shuttle
solid-rocket motor ignition overpressure prediction methodology,
the propagation of IOP and DOP from the sources located on the
launch pad to the launch vehicle can be predicted by linear acoustics,
Consequently, for the overpressure sources localization studies, we
will assume at first that the linear acoustics are valid, and we w111
check this hypothesis.

The ultimate goal is to define, in the temporal domain, the source
of both phenomena occurring at liftoff: the overpressure and the
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acoustic excitation. Once this is done, the complete pressure field
applied to the launcher could be rebuilt
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