

OPTIMISATION DE FORME PAR LA MÉTHODE ADJOINTE POUR LES MÉTHODES LATTICE-BOLTZMANN APPLICATION A L'AÉRODYNAMIQUE

Isabelle Cheylan : Thèse CIFRE Renault & Laboratoire M2P2

<u>Directeur de thèse</u>: Pierre Sagaut (laboratoire M2P2) Encadrants industriels : Denis Ricot & Guillaume Fritz (Renault)

06/03/2019 INSTITUT HENRI POINCARE

CONTEXTE ET ENJEUX BILAN GÉNÉRAL EN TERME DE CONTRIBUTION À LA TRAÎNÉE AÉRODYNAMIQUE

CONTEXTE ET ENJEUX DÉFINITION DES 3 PARTS : ARCHITECTURE, TECHNOLOGIQUE, DESIGN

CONTEXTE ET ENJEUX DÉROULEMENT D'UN PROJET DE DÉVELOPPEMENT D'UN VÉHICULE

OBJECTIF DE LA THÈSE

Développement d'un solveur adjoint dans ProLB

QUESTION DE RECHERCHE

- Comment déformer le véhicule pour minimiser les efforts aérodynamiques ?
 - Utilisation d'une méthode itérative de type gradient
 - > Calcul des sensibilités des efforts aérodynamiques à la forme du véhicule
 - > Développement d'un solveur adjoint pour la LBM appliquée à l'aérodynamique
 - Indépendamment du nombre de paramètres d'optimisation (= 100 000 nœuds du maillage surfacique du véhicule)
- Motivations :
 - L'optimisation par adjoint a fait ses preuves en Navier-Stokes
 - > Aucun solveur adjoint industriel existant à ce jour pour la méthode Lattice-Boltzmann

SOMMAIRE

1) Méthode de Lattice-Boltzmann pour la mécanique des fluides

- 2) Développement du solveur adjoint et optimisation
- 3) Validation du solveur adjoint sur des cas 2D laminaires
- 4) Extension pour les écoulements 3D turbulents
- 5) Conclusions et perspectives

1. Méthode de Lattice Boltzmann pour la mécanique des fluides L'EQUATION DE BOLTZMANN CONTINUE

➢ Modélisation statistique de la dynamique des particules constituant le fluide à un niveau mésoscopique : $f(\vec{x}, \vec{c}, t)$

Opérateur de collision / local, non linéaire

Equation de Boltzmann continue :

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f = C(f)$$

Advection linéaire

1. Méthode de Lattice-Boltzmann pour la mécanique des fluides DISCRÉTISATION DE L'ESPACE DES VITESSES

- \succ c_i = Points de quadrature dans l'espace des vitesses
- Meilleur compromis précision / temps de calcul dans notre cas : écoulement athermal, faiblement compressible
- Permet le calcul des variables macroscopiques :

$$\rho = \int f \, dc = \sum_{i} f_{i}$$
$$\vec{u} = \frac{1}{\rho} \int c f \, dc = \frac{1}{\rho} \sum_{i} \vec{c_{i}} f_{i}$$

Pourquoi choisir la LBM ?

- Parallélisation rapide et efficace
- Maillage cubique généré automatiquement

1. Méthode de Lattice-Boltzmann pour la mécanique des fluides ALGORITHME DE LA LBM-BGK (LATTICE-BOLTZMANN METHOD)

Initialisation des fonctions de distribution

Calcul de la fonction d'équilibre :
$$f_i^{eq}(x_k, t) = \rho \omega_i \left(1 + \frac{c_i \cdot u}{c_s^2} + \frac{(c_i \cdot u)^2}{2c_s^4}\right)$$

Développement polynômial tronqué à l'ordre 2 de la Maxwellienne

$$\blacktriangleright \text{ Étape de collision : } f_i^{coll}(x_k, t) = f_i(x_k, t) - \frac{1}{\tau} [f_i(x_k, t) - f_i^{eq}(x_k, t)] \longleftarrow \text{ Étape locale en$$

Étape locale en espace

 $\blacktriangleright \text{ Étape de propagation : } f_i(x_k + c_i \Delta t, t + \Delta t) = f_i^{coll}(x_k, t)$

 \blacktriangleright Calcul des variables macroscopiques ρ et \vec{u}

Étape lagrangienne

1. Méthode de Lattice-Boltzmann pour la mécanique des fluides CONTRAINTES D'UNE IMPLÉMENTATION INDUSTRIELLE

1. Méthode de Lattice-Boltzmann pour la mécanique des fluides DEUX FORMULATIONS DE LA FORCE DE TRAÎNÉE

1) Calcul sur la peau du véhicule : $I_0 = \int (-P \vec{n} + \tau . \vec{n}) . \vec{x} dS$

2) Calcul dans le sillage du véhicule :

$$\int \left(\frac{\partial \vec{u}}{\partial t} + (\vec{u}.\vec{\nabla})\vec{u}\right) dV = \int \left(-\frac{1}{\rho}\vec{\nabla}p + \frac{1}{\rho}\vec{\nabla}\tau\right) dV$$

Théorème de Green-Ostrogradski
Hypothèses simplificatrices
...

$$I_0 = \int (P_0 - P_i) \, dS_{wake} + \frac{1}{2} \rho u_0^2 \int \left(\frac{u_y^2}{u_0^2} + \frac{u_z^2}{u_0^2}\right) dS_{wake} - \frac{1}{2} \rho u_0^2 \int (1 - \frac{u_x}{u_0})^2 dS_{wake}$$

(Onorato et al, 1984. SAE Technical Paper)

1. Méthode de Lattice-Boltzmann pour la mécanique des fluides ALGORITHME DE PAROI

On utilise l'interpolation de Ginzburg (Ginzburg et al., 2008. Communications in Computational Physics) :

$$f_7(x_k, t_{n+1}) = f_9^{coll}(x_k, t_n) + \frac{1 - 2d_9}{1 + 2d_9} \left[f_9^{coll}(x_k + c_i, t_n) - f_7^{coll}(x_k, t_n) \right]$$

1. Méthode de Lattice-Boltzmann pour la mécanique des fluides TURBULENCE : MODÈLE SOUS-MAILLE DE TYPE SMAGORINSKY

Calcul de la viscosité turbulente :

$$v_t = (C_S^2 \Delta x)^2 \sqrt{2 S_{ij} S_{ij}}$$

Influence sur le temps de relaxation en LBM :

$$\tau_S = \frac{\nu + \nu_t}{c_s^2} + \frac{1}{2}\Delta t$$

> Hypothèse de viscosité turbulente gelée pour l'adjoint (on néglige les variations de v_t) :

$$v_t^* = v_t$$

1. Méthode de Lattice-Boltzmann pour la mécanique des fluides MODÈLE DE COLLISION DRT (DOUBLE RELAXATION TIME)

10 moments hydrodynamiques à conserver

> En D3Q19 : 19 moments

 9 moments non hydrodynamiques à annuler (sources d'instabilités à Reynolds élevé)

> 2 temps relaxation τ^{S} et τ^{N} pour différencier les moments hydrodynamiques et non hydrodynamiques :

$$f_{i}(x_{k} + c_{i}\Delta t, t + \Delta t) = f_{i}(x_{k}, t) - \frac{1}{\tau^{N}} \left[f_{i}(x_{k}, t) - f_{i}^{eq}(x_{k}, t) \right] + \frac{\tau^{S} - \tau^{N}}{\tau^{S}\tau^{N}} \omega_{i} \frac{1}{2c_{s}^{4}} \sum_{i,j} H_{\alpha,ij}^{(2)} P_{ij}^{(1)}$$

Terme correctif

Modèle adapté aux écoulements turbulents à Reynolds élevé, construit sur la base des polynômes de Hermite ≠ MRT (D'Humières, 1992, Progress in Astronautics and Aeronautics)

SOMMAIRE

1) Méthode de Lattice-Boltzmann pour la mécanique des fluides

2) Développement du solveur adjoint et optimisation

- 3) Validation du solveur adjoint sur des cas 2D laminaires
- 4) Extension pour les écoulements 3D turbulents
- 5) Conclusions et perspectives

Quels sont les choix techniques qui ont été effectués pour développer le solveur adjoint ?

- Quelle formulation de la force de traînée utiliser ?
 - Dans le sillage
- Quel algorithme de paroi utiliser ?
 - Algorithme de Ginzburg
- Comment compresser le volume d'information associé à un problème primaire instationnaire ?

2. Développement du solveur adjoint et optimisation DÉFINITION DU PROBLÈME ADJOINT

 α : paramètre d'optimisation

f : variable d'état

X : discrétisation spatiale

► Calcul du gradient de $I_0 = I_0(\alpha, f, X)$ soumis aux contraintes $R(\alpha, f, X) = 0$:

$$7I_0 = \frac{dI_0}{d\alpha} = \frac{\partial I_0}{\partial \alpha} + \frac{\partial I_0}{\partial f} \frac{\partial f}{\partial \alpha} + \frac{\partial I_0}{\partial X} \frac{\partial X}{\partial \alpha}$$

 $\frac{\partial f}{\partial \alpha}$ trop lourd à calculer (calcul de l'écoulement à chaque fois qu'on fait varier un paramètre = nœud du maillage surfacique par ex.)

 $\frac{\partial X}{\partial x}$ négligeable si maillage surfacique très raffiné

 \Rightarrow On définit le Lagrangien J qui permet d'inclure les contraintes dans le problème d'optimisation :

$$J = I_0 + f^* R$$

• Équations adjointes : $\frac{\partial J}{\partial f} = 0$

► Gradient :
$$\nabla I_0 = \frac{dI_0}{d\alpha} = \frac{\partial I_0}{\partial \alpha} + f^* \frac{\partial R}{\partial \alpha}$$

2. Développement du solveur adjoint et optimisation ADJOINT DU MODÈLE DE COLLISION BGK

$$\frac{\partial J}{\partial f} = \frac{\partial J}{\partial f_i(x_{k0}, t_{n0})} = \frac{\partial I_0}{\partial f_i(x_{k0}, t_{n0})} + \sum_j \sum_k \sum_n f_j^* (x_k, t_n) \frac{\partial R_j(x_k, t_n)}{\partial f_i(x_{k0}, t_{n0})} = 0 \Rightarrow \quad \text{équations adjointes}$$

En cœur de fluide, *R* s'écrit : $R_i(x_k, t_n) = f_i(x_k + c_i\Delta t, t + \Delta t) - f_i(x_k, t) - \frac{1}{\tau} [f_i(x_k, t) - f_i^{eq}(x_k, t)] = 0$

On dérive par rapport à f_i puis on multiplie par f_i^*

Equation de l'ALBM : $f_i^*(x_k - c_i\Delta t, t - \Delta t) = f_i^*(x_k, t) - \frac{1}{\tau} \left[f_i^*(x_k, t) - f_i^{*,eq}(x_k, t) \right] - \left[\frac{\partial I_0}{\partial f_i(x_{k0}, t_{n0})} \right]$ (Adjoint Lattice Boltzmann Method)

La dérivée de la fonctionnelle de coût devient le **terme source** de l'adjoint

2. Développement du solveur adjoint et optimisation DÉVELOPPEMENT DU MODÈLE DE COLLISION DRT ADJOINT

$$\frac{\partial I_0}{\partial f_i(x_{k0}, t_{n0})} + \sum_j \sum_k \sum_n f_j^* (x_k, t_n) \frac{\partial R_j(x_k, t_n)}{\partial f_i(x_{k0}, t_{n0})} = 0 \Rightarrow \text{ équations adjointes}$$

$$R_i(x_k, t_n) = f_i(x_k + c_i\Delta t, t + \Delta t) - f_i(x_k, t) + \frac{1}{\tau^N} \left[f_i(x_k, t) - f_i^{eq}(x_k, t) \right] - \frac{\tau^S - \tau^N}{\tau^S \tau^N} \omega_i \frac{1}{2c_s^4} \sum_{i,j} H_{\alpha,ij}^{(2)} P_{ij}^{(1)} = 0$$

$$On \text{ dérive par rapport à } f_i \text{ puis on multiplie par } f_j^*$$

$$f_{i}^{*}(x_{k}-c_{i}\Delta t,t-\Delta t) = f_{i}^{*}(x_{k},t) - \frac{1}{\tau^{N}} \left[f_{i}^{*}(x_{k},t) - f_{i}^{*,eq}(x_{k},t) \right] + \underbrace{\left[\frac{\tau^{S}-\tau^{N}}{\tau^{S}\tau^{N}} \omega_{i} \frac{1}{2c_{s}^{4}} \sum_{i,j} H_{\alpha,ij}^{(2)} P_{ij}^{*,(1)} \right]}_{i,j} - \frac{\partial I_{0}}{\partial f_{i}(x_{k},t)}$$
Terme supplémentaire par rapport au modèle BGK

06/03/2019 INSTITUT HENRI POINCARE

2. Développement du solveur adjoint et optimisation DÉVELOPPEMENT DES ALGORITHMES ADJOINTS DE PAROI ET DE RAFFINEMENTS DE MAILLAGE

06/03/2019 INSTITUT HENRI POINCARE

2. Développement du solveur adjoint et optimisation CALCUL DU GRADIENT PAR L'ADJOINT

On calcule la traînée dans le sillage et non sur l'obstacle —

 I_o = fonction coût α = variable d'optimisation • R = équations d'état • f^* = variables adjointes

Pas de somme en temps car on fait un calcul stationnaire

Interpolation de Ginzburg à la paroi:

$$R_{i} = f_{i}(x_{k}, t_{n}) - f_{opp(i)}^{coll}(x_{k}, t_{n}) - \frac{1 - 2d}{1 + 2d} \left(f_{opp(i)}^{coll}(x_{k} + c_{i}, t_{n}) - f_{i}^{coll}(x_{k}, t_{n}) \right) = 0$$

 $\nabla I_0 = \frac{\partial I_0}{\partial \alpha} + \sum_i \sum_i f_i^*(x_k, t_n) \frac{\partial R_i(x_k, t_n)}{\partial \alpha}$

On cherche à calculer
$$\frac{\partial R_i(x_k, t_n)}{\partial \alpha} \Rightarrow \quad \text{II faut calculer } \frac{\partial d}{\partial \alpha}$$

2. Développement du solveur adjoint et optimisation CALCUL DU GRADIENT PAR L'ADJOINT

Si l'on déplace P₁ cela aura un impact sur toutes les distances d_i de tous les nœuds fluides concernés dont les directions de propagation sont en contact avec l'obstacle

$$\nabla I_{0} = \sum_{k} \sum_{i} f_{i}^{*}(x_{k}, t_{n+1}) \frac{4d}{(1+2d)^{2}} \left[f_{opp(i)}^{coll}(x_{k} + c_{i}, t_{n}) - f_{i}^{coll}(x_{k}, t_{n}) \right]$$

Somme faite pour les nœuds fluides dont la distance $d_i s'$ applique sur les triangles dont P_1 fait partie

Somme faite pour les directions des vitesses en contact avec les triangles dont P₁ fait partie

2. Développement du solveur adjoint et optimisation DESCRIPTION DE LA BOUCLE D'OPTIMISATION COMPLÈTE Calcul aérodynamique standard avec **ProLB** Maillage du $(\vec{v}+p) + f^{col} + v_{tot}$ moyenné en véhicule déformé temps en tout point du maillage volumique Lissage (points Critère atteint, voisins) + morphing géométrie finale point par point $(x_{k+1} = x_k - \lambda \nabla I_0)$ Morphing direct Calcul adjoint avec Fichier des sensibilités avec ANSA **ProLB** adjoint (x,y,z,dx,dy,dz)

SOMMAIRE

- 1) Méthode de Lattice-Boltzmann pour la mécanique des fluides
- 2) Développement du solveur adjoint et optimisation
- 3) Validation du solveur adjoint sur des cas 2D laminaires
- 4) Extension pour les écoulements 3D turbulents
- 5) Conclusions et perspectives

3. Validation du solveur adjoint sur des cas 2D laminaires ECOULEMENT LAMINAIRE STATIONNAIRE AUTOUR D'UN CYLINDRE À RE = 33

> Le modèle de raffinement de maillage dans le calcul adjoint est stable et précis

3. Validation du solveur adjoint sur des cas 2D laminaires COMPARAISON DES GRADIENTS PAR DIFFÉRENCES FINIES ET PAR L'ADJOINT

06/03/2019 INSTITUT HENRI POINCARE

3. Validation du solveur adjoint sur des cas 2D laminaires DÉCROISSANCE DE LA FORCE DE TRAÎNÉE

Décroissance de + de 12% de I_0

3. Validation du solveur adjoint sur des cas 2D laminaires ECOULEMENT LAMINAIRE INSTATIONNAIRE AUTOUR D'UN CYLINDRE À RE = 125

Sur un cycle de lâcher de tourbillons :

- 19903 mailles
- ρ, u_x, u_y, u_z, f_i
- 968 pas de temps

443 120 392 données à enregistrer

- __ __ : primaire 3. Validation du solveur adjoint sur des cas 2D laminaires : adjoint TRAITEMENT D'UN PROBLÈME INSTATIONNAIRE : lecture du (Nadarajah & Jameson, PhD thesis, Stanford, 2003) champ primaire $t0 \underbrace{-t1}_{+} \underbrace{t2}_{+} \underbrace{-t}_{+} \underbrace{-t}_{+}$ 1) Totalement instationnaire : $\nabla I_0 = \frac{1}{N} \sum f^*(t) \frac{\partial R(t)}{\partial \alpha}$ t5 t10 t15 t20 2) Echantillonnage : t1 t2 ... $\nabla I_0 = \frac{1}{K} \sum_{k=1}^{\infty} f^*(k) \frac{\partial R(k)}{\partial \alpha}$ **k**1 k2 k3 k4 3) Moyennage en temps : t1 t2 ... t0 $\nabla I_0 = f^* \frac{\partial \bar{R}}{\partial \alpha}$ $\bar{R} = \frac{1}{N} \sum R(t)$

06/03/2019 INSTITUT HENRI POINCARE

3. Validation du solveur adjoint sur des cas 2D laminaires COMPARAISON DES CHAMPS DE VITESSE PRIMAIRES ET ADJOINTS

PRIMAIRE

ADJOINT

3. Validation du solveur adjoint sur des cas 2D laminaires COMPARAISON DES GRADIENTS

Conclusion : on garde cette méthode pour le cas industriel : on utilise un résultat direct turbulent instationnaire mais moyenné en temps pour calculer un adjoint stationnaire

SOMMAIRE

- 1) Méthode de Lattice-Boltzmann pour la mécanique des fluides
- 2) Développement du solveur adjoint et optimisation
- 3) Validation du solveur adjoint sur des cas 2D laminaires
- 4) Extension pour les écoulements 3D turbulents
- 5) Conclusions et perspectives

4. Extension pour les écoulements 3D turbulents ECOULEMENT AUTOUR D'UN VÉHICULE À 130 KM/H

Mise en données :

- Reynolds $\approx 10^7 10^8$
- 5 zones de maillage

4. Extension pour les écoulements 3D turbulents CHAMPS DE VITESSE PRIMAIRE ET ADJOINT DANS UN PLAN DE COUPE LONGITUDINAL

Champ de vitesse primaire, moyenné en temps après convergence :

Champ de vitesse adjoint stationnaire convergé :

4. Extension pour les écoulements 3D turbulents LISSAGE DES SENSIBILITÉS ET OPTIMISATION DE FORME

Un algorithme de lissage par les points voisins est utilisé :

 L'algorithme d'optimisation creuse des « sillons » sur le toit du véhicule, ce qui a pour effet de diminuer sa surface frontale :

4. Extension pour les écoulements 3D turbulents COMPARAISON DES SILLAGES

Sillage du véhicule initial :

Sillage du véhicule optimisé :

4. Extension pour les écoulements 3D turbulents LIGNES DE COURANT

Véhicule initial :

1^{er} cycle d'optimisation :

Réduction de la force de traînée:

2^{ème} cycle d'optimisation :

SOMMAIRE

- 1) Méthode de Lattice-Boltzmann pour la mécanique des fluides
- 2) Développement du solveur adjoint et optimisation
- 3) Validation du solveur adjoint sur des cas 2D laminaires
- 4) Extension pour les écoulements 3D turbulents
- 5) Conclusions et perspectives

5. Conclusions et persectives CONCLUSIONS

- Développement d'éléments originaux conduisant à solveur industriel adjoint inédit en LBM, comprenant :
 - des raffinements de maillage,
 - une modélisation de la turbulence dans le calcul direct,
 - et un modèle de collision adapté aux écoulements turbulents
- ➤ Cadre mathématique rigoureux + hypothèses simplificatrices nécessaires → optimisation opérationnelle et efficace à faible coût, indépendante du nombre de paramètres
- Obtention de résultats concluants dans différentes configurations :
 - Cas académiques
 - Cas industriel

5. Conclusions et perspectives PERSPECTIVES

- Réduction du temps de calcul du solveur adjoint :
 - Amélioration du codage de la lecture du champ primaire moyenné en temps
- > Déploiement en projet chez Renault
- Optimisation multicritère (moment, déportance...) et multiphysique (acoustique, thermique)
- > Optimisation sous contraintes (volume constant par exemple)

MERCI DE VOTRE ATTENTION