High-order Implicit relaxation schemes for hyperbolic models

D. Coulette², <u>E. Franck¹²</u>, P. Helluy¹²

Seminar LBM, IHP, Paris

Thanks to: M. Boileau², C. Courtes⁴, M. Mehrenberger², L. Navoret², L. Mendoza², H. Guillard⁵, L. Thanhuser³, C. Klingenberg ³

¹Inria Nancy Grand Est, France
 ²IRMA, Strasbourg university, France
 ³Wurzburg university, Germany
 ⁴Orsay university, France
 ⁵Inria Sophia Antipolis, France

Outline

Physical and mathematical context

Implicit Relaxation method and results

Kinetic representation of hyperbolic system

Other works

2/37

Physical and mathematical context

37

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

Innia

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

¹/37

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

Innia

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

Innia

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - Disruptions: Violent instabilities which can critically damage the Tokamak.
 - Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

Inia

- **Fusion DT**: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak toroïdal chamber where the plasma is confined using powerful magnetic fields.
- Difficulty: plasma instabilities.
 - **Disruptions:** Violent instabilities which can critically damage the Tokamak.
 - □ Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.
- The simulation of these instabilities is an important topic for ITER.

Innia

MHD in a Tokamak

Simplified Extended MHD

 $\begin{cases} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = \boldsymbol{0}, \\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla p = (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \nu \nabla \cdot \boldsymbol{\Pi} \\ \partial_t p + \nabla \cdot (\boldsymbol{p} \boldsymbol{u}) + (\gamma - 1) p \nabla \cdot \boldsymbol{u} = \nabla \cdot \boldsymbol{q} + \eta \mid \nabla \times \boldsymbol{B} \mid^2 + \nu \boldsymbol{\Pi} : \nabla \boldsymbol{u} \\ \partial_t \boldsymbol{B} - \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) = \eta \nabla \times (\nabla \times \boldsymbol{B}) \\ \nabla \cdot \boldsymbol{B} = \boldsymbol{0} \end{cases}$

with ρ the density, p the pressure, \mathbf{u} the velocity, \boldsymbol{B} the magnetic field, \boldsymbol{J} the current, $\boldsymbol{\Pi}$ stress tensor and \mathbf{q} the heat flux.

MHD specificities in Tokamak

- □ Strong anisotropic flows (direction of the magnetic field) ===> complex geometries and aligned meshes (flux surface or magnetic field lines).
- MHD scaling:
 - Diffusion: Large Reynolds and magnetic Reynolds number.
 - **B_{\parallel} direction**: compressible flow and small Prandlt number.
 - **B_{\perp} direction**: quasi incompressible flow and large Prandlt number.
- **MHD Scaling** ===> compressible code with no discontinuities + fast waves.
- Quasi stationary flows + fast waves ===> implicit or semi implicit schemes.

Problem of implicit discretization

- Solution for implicit schemes:
 - □ Direct solver. CPU cost and consumption memory too large in 3D.
 - □ Iterative solver. Problem of conditioning.

Problem of conditioning

- Huge ratio between the physical wave speeds (low Mach regime) ==> huge ratio between discrete eigenvalues.
- Transport problem: anisotropic problem ==> huge ratio between discrete eigenvalues.
- High order scheme: small/high frequencies ==> huge ratio between discrete eigenvalues.
- Possible solution: preconditioning (often based on splitting and reformulation).

Storage problem

- Storage the matrix and perhaps the preconditioning: large memory consumption.
- Possibility: Jacobian free method (additional cost, but store only vectors).

Implicit Relaxation method and results

37

General principle

We consider the following nonlinear system

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + \boldsymbol{G}(\boldsymbol{U})$$

- with U a vector of N functions.
- Aim: Find a way to approximate this system with a sequence of simple systems.
- Idea: Xin-Jin (95) relaxation method (very popular in the hyperbolic and finite volume community).

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = \boldsymbol{G}(\boldsymbol{U}) \\ \partial_t \boldsymbol{V} + \alpha^2 \partial_x \boldsymbol{U} = \frac{1}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) \end{cases}$$

Limit of the hyperbolic relaxation scheme

The limit scheme of the relaxation system is

 $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) + \varepsilon \partial_x ((\alpha^2 - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + \varepsilon \partial_x \boldsymbol{G}(\boldsymbol{U}) + o(\varepsilon^2)$

□ with A(U) the Jacobian of F(U).

Conclusion: the relaxation system is an approximation of the hyperbolic original system (error in ε).

Stability: the limit system is dissipative if $(\alpha^2 - |A(U)|^2) > 0$.

General principle II

Generalization

The generalized relaxation is given by

$$\begin{cases} \partial_t \boldsymbol{U} + \partial_x \boldsymbol{V} = \boldsymbol{G}(\boldsymbol{U}) \\ \partial_t \boldsymbol{V} + \alpha^2 \partial_x \boldsymbol{U} = \frac{R(\boldsymbol{U})}{\varepsilon} (\boldsymbol{F}(\boldsymbol{U}) - \boldsymbol{V}) + \boldsymbol{H}(\boldsymbol{U}) \end{cases}$$

The limit scheme of the relaxation system is

 $\begin{aligned} \partial_t \boldsymbol{U} &+ \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) \\ &+ \varepsilon \partial_x (\boldsymbol{R}(\boldsymbol{U})^{-1} (\alpha^2 - |\boldsymbol{A}(\boldsymbol{U})|^2) \partial_x \boldsymbol{U}) + \varepsilon \partial_x (\boldsymbol{A}(\boldsymbol{U}) \boldsymbol{G}(\boldsymbol{U}) - \boldsymbol{H}(\boldsymbol{U})) + \boldsymbol{o}(\varepsilon^2) \end{aligned}$

Treatment of small diffusion

□ Taking $R(U) = (\alpha^2 - |A(U)|^2)D(U)^{-1}$, $\varepsilon = \nu$ and H(U) = A(U)G(U): we obtain the following limit system

 $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \boldsymbol{G}(\boldsymbol{U}) + \nu \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + o(\nu^2)$

Limitation of the method: the relaxation model cannot approach PDE with high diffusion.

Kinetic relaxation scheme

• We consider the classical Xin-Jin relaxation for a scalar system $\partial_t u + \partial_x F(u) = 0$:

$$\begin{cases} \partial_t u + \partial_x v = 0\\ \partial_t v + \alpha^2 \partial_x u = \frac{1}{\varepsilon} (F(u) - v) \end{cases}$$

• We diagonalize the hyperbolic matrix $\begin{pmatrix} 0 & 1 \\ \alpha^2 & 0 \end{pmatrix}$ and note f_+ and f_- the new variables. We obtain

$$\begin{aligned} \partial_t f_- - \alpha \partial_x f_- &= \frac{1}{\varepsilon} (f_{eq}^- - f_-) \\ \partial_t f_+ + \alpha \partial_x f_+ &= \frac{1}{\varepsilon} (f_{eq}^+ - f_+) \end{aligned}$$

• with
$$f_{eq}^{\pm} = \frac{u}{2} \pm \frac{F(u)}{2\alpha}$$
.

First Generalization

□ Main property: the transport is diagonal which can be easily solved.

Remark

□ In the Lattice Boltzmann community the discretization of this model is called D1Q2.

/37

Generic kinetic relaxation scheme

Kinetic relaxation system

Considered model:

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = 0, \qquad \partial_t \eta(\boldsymbol{U}) + \partial_x \boldsymbol{\zeta}(\boldsymbol{U}) \leq 0$$

- **Lattice**: $W = \{\lambda_1, ..., \lambda_{n_v}\}$ a set of velocities.
- **Mapping matrix**: P a matrix $n_c \times n_v$ $(n_c < n_v)$ such that U = Pf, with $U \in \mathbb{R}^{n_c}$.
- Kinetic relaxation system:

$$\partial_t \boldsymbol{f} + \Lambda \partial_x \boldsymbol{f} = \frac{R}{\varepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f})$$

Equilibrium vector operator $f^{eq}: \mathbb{R}^{n_c} \to \mathbb{R}^{n_v}$ such that $Pf^{eq}(U) = U$.

Consistence with the initial PDE (R. Natalini 00, F. Bouchut 99-03 ...) :

$$\mathcal{C} \left\{ \begin{array}{c} \mathsf{P}\boldsymbol{f}^{eq}(\boldsymbol{U}) = \boldsymbol{U} \\ \mathsf{P}\Lambda\boldsymbol{f}^{eq}(\boldsymbol{U}) = \mathsf{F}(\boldsymbol{U}) \end{array} \right.$$

- For source terms and small diffusion terms, it is the same as the first relaxation method.
- In 1D : same property of stability that the classical relaxation method.
- Limit of the system:

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \varepsilon \partial_x \left(\left(P \Lambda^2 \partial \boldsymbol{f}_{eq} - | \partial \boldsymbol{F}(\boldsymbol{U}) |^2 \right) \partial_x \boldsymbol{U} \right)$$

Time discretization

Main property

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Main idea: splitting scheme between transport and the relaxation (P. J. Dellar, 13).
- Key point: the macroscopic variables are conserved during the relaxation step. Therefore f^{eq}(U) explicit.

First order scheme

We define the two operators for each step :

$$T_{\Delta t} = I_d + \Delta t \Lambda \partial_x I_d$$

$$R_{\Delta t} = I_d - \Delta t \frac{\Delta t}{\varepsilon} (f^{eq}(U) - I_d)$$

- Asymptotic limit: Chapman-Enskog expansion.
- Final scheme: $T_{\Delta t} \circ R_{\Delta t}$ is consistent with $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \frac{\Delta t}{2} \partial_x (\boldsymbol{P} \Lambda^2 \partial_x \boldsymbol{f}) + \left(\frac{\Delta t}{2} + \varepsilon\right) \partial_x \left(\left(\boldsymbol{P} \Lambda^2 \partial_{\boldsymbol{U}} \boldsymbol{f}^{eq} - \boldsymbol{A}(\boldsymbol{U})^2 \right) \partial_x \boldsymbol{U} \right)$ $+ O(\varepsilon \Delta t + \Delta t^2 + \varepsilon^2)$

High-Order time schemes

Second-order scheme

- □ Scheme for transport step $T(\Delta t)$: Crank Nicolson or exact time scheme.
- □ Scheme for relaxation step $R(\Delta t)$: Crank Nicolson.
- Classical full second order scheme:

$$\Psi(\Delta t) = T\left(rac{\Delta t}{2}
ight) \circ R(\Delta t) \circ T\left(rac{\Delta t}{2}
ight).$$

Numerical test: second order but probably only for the macroscopic variables.
 AP full second order scheme:

$$\Psi_{ap}(\Delta t) = T\left(\frac{\Delta t}{4}\right) \circ R\left(\frac{\Delta t}{2}\right) \circ T\left(\frac{\Delta t}{2}\right) \circ R\left(\frac{\Delta t}{2}\right) \circ T\left(\frac{\Delta t}{4}\right)$$

 $\Box \ \ \Psi \ \ \text{and} \ \ \Psi_{ap}(0) = I_d.$

High order scheme

Using composition method

$$M_{p}(\Delta t) = \Psi_{ap}(\gamma_{1}\Delta t) \circ \Psi_{ap}(\gamma_{2}\Delta t).... \circ \Psi_{ap}(\gamma_{s}\Delta t)$$

□ with $\gamma_i \in [-1, 1]$, we obtain a *p*-order schemes.

□ Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.

E. Franck

Space discretization - transport scheme

Whishlist

- Complex geometry, curved meshes or unstructured meshes,
- CFL-free,
- Matrix-free.

Candidates for transport discretization

- LBM-like: exact transport solver,
- Implicit FV-DG schemes,
- Semi-Lagrangian schemes,
- Stochastic schemes (Glimm or particle methods).

LBM-like method: exact transport

Advantages:

□ Exact transport at the velocity $\lambda = \frac{v\Delta t}{\Delta x}$. Very very cheap cost.

Drawbacks:

□ Link time step and mesh: complex to manage large time step, unstructured grids and multiply kinetic velocities.

Space discretization

Semi Lagrangian methods

- Forward or Backward methods. Mass or nodes interpolation/projection.
- Advantages:
 - $\hfill\square$ Possible on unstructured meshes. High order in space.
 - □ Exact in time and Matrix-free.
- Drawbacks:
 - No dissipation and difficult on very unstructured grids.

Implicit FV- DG methods

- Implicit Crank Nicolson scheme + FV DG scheme
- Advantages:
 - $\hfill\square$ Very general meshes. High order in space. Dissipation to stabilize.
 - $\hfill\square$ Upwind fluxes ==> triangular block matrices.
- Drawbacks:
 - □ Second order in time: numerical time dispersion.
- Current choice 1D: SL-scheme.
- Current choice in 2D-3D: DG schemes.
 - Block triangular matrix solved avoiding storage.
 - □ Solve the problem in the topological order given by connectivity graph.

Burgers : quantitative results

Model: Viscous Burgers equations

$$\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = 0$$

Spatial discretization: SL-scheme, 5000 cells, degree 7 in space, order 2 time. **Test 1**: $\rho(t = 0, x) = sin(2\pi x)$, viscosity= 10^{-4} .

Figure: Comparison for different time step. Violet: $\Delta t = 0.001$ (CFL 5-30), Green: $\Delta t = 0.005$ (CFL 20-120), Blue $\Delta t = 0.01$ (CFL 50-300), Black : reference

1D isothermal Euler : Convergence

Model: isothermal Euler equation

$$\left(\begin{array}{c} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t \rho u + \partial_x (\rho u^2 + c^2 \rho) = 0 \end{array} \right.$$

- Lattice: (D1 Q2)ⁿ Lattice scheme.
- For the transport (and relaxations step) we use 6-order DG scheme in space.
- **Time step**: $\Delta t = \beta \frac{\Delta x}{\lambda}$ with λ the lattice velocity. $\beta = 1$ explicit time step.
- First test: acoustic wave with $\beta = 50$ and $T_f = 0.4$, Second test: smooth contact wave with $\beta = 100$ and $T_f = 20$.

Figure: convergence rates for the first test (left) and for the second test (right).

1D isothermal Euler : shock

Test case: discontinuous initial data (Sod problem). No viscosity, $\beta = 3$. 6 order space-time scheme.

Figure: density (left) and velocity (right).

- With refinement in space we can reduce the oscillations.
- **Test case**: Sod problem. $\nu = 5.10^{-4}$, $\beta = 5$. 6 order space-time scheme.

- Model : compressible ideal MHD.
- **Kinetic model** : $(D2 Q4)^n$. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- **Kinetic model** : $(D2 Q4)^n$. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- **Kinetic model** : $(D2 Q4)^n$. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Magnetic field

Velocity

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Magnetic field

Velocity

- Model : compressible ideal MHD.
- **Kinetic model** : $(D2 Q4)^n$. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Magnetic field

- Model : compressible ideal MHD.
- **Kinetic model** : $(D2 Q4)^n$. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Magnetic field

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

- Model : compressible ideal MHD.
- Kinetic model : (D2 Q4)ⁿ. Symmetric Lattice.
- Transport scheme : 2nd order Implicit DG scheme. 4th order ins space. CFL around 20.
- **Test case** : advection of the vortex (steady state without drift).
- Parameters : $\rho = 1.0$, $p_0 = 1$, $u_0 = b_0 = 0.5$, $\mathbf{u}_{drift} = [1, 1]^t$, $h(r) = exp[(1 r^2)/2]$

Numerical results: 2D-3D fluid models

- Model : liquid-gas Euler model with gravity.
- Kinetic model : $(D2 Q4)^n$. Symmetric Lattice.
- **Transport scheme** : 2 order Implicit DG scheme. 3th order in space. CFL around 6.
- **Test case** : Rayleigh-Taylor instability.

2D case in annulus

3D case in cylinder

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gas

Numerical results: 2D-3D fluid models

- Model : liquid-gas Euler model with gravity.
- Kinetic model : $(D2 Q4)^n$. Symmetric Lattice.
- **Transport scheme** : 2 order Implicit DG scheme. 3th order in space. CFL around 6.
- Test case : Rayleigh-Taylor instability.

2D case in annulus

2D cut of the 3D case

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gas

Kinetic representation of hyperbolic systems

Key point: design of the kinetic representation

Main idea

- Target: Nonlinear problem N.
- First: we construct the kinetic problem K_{ε} such that $\parallel K_{\varepsilon} N \parallel \leq C_{\varepsilon} \varepsilon$
- Second: we discretize K_{ε} such that $\parallel K_{\varepsilon} K_{\varepsilon}^{h,\Delta t} \parallel \leq C_{\Delta t} \Delta t^{\rho} + C_{h} h^{q}$
- We obtain a consistent method by triangular inequality.

First point: Analysis of the error

- Assuming: large time step and high order in space. Main problem: time error.
- The error in time comes from the transport step and relaxation step.
- If we use SL-scheme no time error in the transport step.
- Main problem: time error relaxation/splitting (order 1/2: diffusion/dispersion).
- This error homogeneous to $(P\Lambda^2 \partial f_{eq} |\partial F(U)|^2)$. The closer the wave structure of K_{eps} is to the one of N, the smaller this error.

Second point: stability

The kinetic model must be stable with the minimal sub-characteristic stability condition.

Classical kinetic representation

"Physic" kinetic representations

- Kinetic representation mimics the moment model construction of Boltzmann equation.
- Example: Euler isothermal

$$\begin{aligned} \partial_t \rho + \partial_x (\rho u) &= 0 \\ \partial_t \rho u + \partial_x (\rho u^2 + c^2 \rho) &= 0 \end{aligned}$$

D1Q3 model: three velocities $\{-\lambda, 0, \lambda\}$. Equilibrium: quadrature of Maxwellian.

$$\rho = f_{-} + f_{0} + f_{+}, \quad q = \rho u = -\lambda * f_{-} + 0 * f_{0} + \lambda * f_{+}, \quad f_{eq} = \begin{pmatrix} \frac{1}{2} (\rho u(u - \lambda) + c^{2} \rho) \\ \rho(\lambda^{2} - u^{2} - c^{2}) \\ \frac{1}{2} (\rho u(u + \lambda) + c^{2} \rho) \end{pmatrix}$$

Limit model :
$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t \rho u + \partial_x (\rho u^2 + c^2 \rho) = \varepsilon \left(\partial_{xx} u + u^3 \partial_{xx} \rho \right) \end{cases}$$

Good point: no diffusion on ρ equation. **Bad point**: stable only for low mach.

Vectorial kinetic representations

- Vectorial kinetic model (B. Graille 14): [D1Q2]² one relaxation model {-λ, λ} (previous slide) by equation.
- **Good point**: stable on sub-characteristic condition $\lambda > \lambda_{max}$.
- Bad point: large error. Wave propagation approximated by transport at maximal velocity in the two directions.

New kinetic models. Scalar case I

Idea

- Design vectorial kinetic model with un-symmetric velocities and additional central velocity (typically zero).
- Problem: Stability not trivial. Idea: use entropy construction (F. Dubois 13).
- We consider $\partial_t \rho + \partial_x F(\rho)$ with the entropy equation $\partial_t \eta(\rho) + \partial_x \zeta(\rho) \leq 0$.
- We consider a model D1Q3 with $V = \{\lambda_{-}, \lambda_{0}, \lambda_{+}\}$. We take

$$\rho = f_{-} + f_0 + f_{+}, \quad F(\rho) = \lambda_{-} f_{-} + \lambda_0 f_0 + \lambda_{+} f_{+}$$

- We define an entropy $H = h_-(f_-) + h_0(f_0) + h_+(f_+)$ with h_0 , h_{\pm} convex functions.
- We define $\phi = \partial_{\rho} \eta(\rho)$ and $\eta^*(\phi)$ the dual entropy (by the Legendre transform).

Lemma

If the following condition are satisfied

$$\eta^*(\phi) = h_- + h_0 + h_+, \quad \zeta^*(\phi) = \lambda_- h_- + \lambda_0 h_0 + \lambda_+ h_+$$

We have $\partial_t H(f) \leq 0$ and this entropy admits a minimum defined by

$$(f^{eq})_i = rac{\partial h_i^*}{\partial \phi}$$

/ 37

Scalar case II

Design kinetic model

- Method: choose a physical entropy. Compute the atomic dual entropies and the equilibrium.
- Stability condition: convex condition of the atomic entropy.
- We fix arbitrary $h_0^{\star}(\phi)$ consequently we obtain the following solution

$$\begin{cases} h_{-}^{\star}(\phi) = -\frac{[\zeta^{\star}(\phi) - \lambda_{+}\eta^{\star}(\phi)] + (\lambda_{+} - \lambda_{0})h_{0}^{\star}(\phi)}{(\lambda_{+} - \lambda_{-})}\\ h_{+}^{\star}(\phi) = \frac{[\zeta^{\star}(\phi) - \lambda_{-}\eta^{\star}(\phi)] + (\lambda_{-} - \lambda_{0})h_{0}^{\star}(\phi)}{(\lambda_{+} - \lambda_{-})} \end{cases}$$

The function h₀^{*}(φ) which "saturate" the convex conditions on the three equations.
 Using final atomic entropies we derivate to obtain the equilibrium.

$$\begin{cases} f_{-}^{eq} = \frac{\lambda_{0}}{\lambda_{+} - \lambda_{-}} \rho - \frac{F^{-}(\rho)}{\lambda_{0} - \lambda_{-}} \\ f_{0}^{eq} = \left(\rho - \left(\frac{F^{+}(\rho)}{(\lambda_{+} - \lambda_{0})} - \frac{F^{-}(\rho)}{(\lambda_{0} - \lambda_{-})} \right) \right) \\ f_{+}^{eq} = -\frac{\lambda_{0}}{\lambda_{+} - \lambda_{-}} \rho + \frac{F^{+}(\rho)}{\lambda_{+} - \lambda_{0}} \end{cases}$$

with

$$F^{\pm} = \int \left[(\partial F(\rho) - \lambda_0)
ight]^{\pm} + C_{\pm}$$

This model D1Q3 upwind is stable on the condition $\lambda_{-} \leq F'(\rho) \leq \lambda_{+}$. Advantage: adaptation of the model depending on the flow direction.

Vectorial case

We consider the equation

 $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = 0, \quad \partial_t \eta(\boldsymbol{U}) + \partial_x \boldsymbol{\zeta}(\boldsymbol{U}) \leq 0$

• Vectorial $[D1Q3]^N$ model (to simplify $\lambda_0 = 0$). One D1Q3 model by equation.

Same theory with

$$H = h_{-}(f_{-}^{1}, ..., f_{-}^{N}) + h_{0}(f_{0}^{1}, ..., f_{0}^{N}) + h_{+}(f_{+}^{1}, ..., f_{+}^{N})$$

Problem: At the end, we must integrate the positive/ negative part of the Jacobian to compute f₀^{eq}. Not possible in general (idem in the flux-splitting theory).

D1Q3 flux-splitting model

□ Idea: we choose an entropic flux-splitting $F(U) = F^-(U) + F^+(U)$ such as $\partial_t \eta + \partial_x \zeta^-(U) + \partial_x \zeta^+(U) \le 0$.

We obtain:

$$\begin{cases} f_{-}^{eq} = -\frac{1}{\lambda_{-}} \mathbf{F}^{-}(\mathbf{U}) \\ f_{0}^{eq} = \left(\mathbf{U} - \left(\frac{\mathbf{F}^{+}(\mathbf{U})}{\lambda_{+}} + \frac{\mathbf{F}^{-}(\mathbf{U})}{\lambda_{-}}\right)\right) \\ f_{+}^{eq} = \frac{1}{\lambda_{+}} \mathbf{F}^{+}(\mathbf{U}) \end{cases}$$

Stability: $\lambda_{-}I_{d} < D < \lambda_{+}I_{d}$ with D the eigenvalues matrix of $\partial F_{0}^{\pm}(U)$.

Multi-D extension and relative velocity

- Extension of the vectorial scheme in 2D and 3D
- **2D extension**: D2q(4 * k) or D2Qq(4 * k + 1) with k = 1 or k = 2.
- **3D extension**: D3q(6 * k), D2Qq(6 * k + 1) with k = 1, k = 2 ore more.

- Increase k ==> increase the isotropic property of the kinetic model.
- The vectorial models with 0 velocity are not currently extended to 2D.
- Related future work: Extension to the relative velocity idea (T. Fevrier 15) at the vectorial models.
- Relative velocity: Relax the moment of the kinetic model in a repair moving at a given velocity (analogy with ALE).

Advection equation

Equation

$$\partial_t \rho + \partial_x (a(x)\rho) = 0$$

• with a(x) > 0 and $\partial_x a(x) > 0$. Dissipative equation.

- Test 1: Velocity is given by $a(x) = 1.0 + 0.05x^2$ with the domain [0, 5] and $T_f = 1$.
- We compare the numerical dispersion in time due to the models: □ D1Q2 model: M_a^0 ($\lambda_{\pm} = \pm 1.5$), M_b^0 ($\lambda_{\pm} = \{0, 1.5\}$), M_c^0 ($\lambda_{\pm} = \{0.75, 1.5\}$).
 - $\square D1Q3 \text{ model: } M_a^1 (\lambda_{-,0,+} = \{-1.5, 0, 1.5\}), \ M_b^1 (\lambda_{-,0,+} = \{0, 0.75, 1.5\}), \ M_c^1 \{0.75, 1.1, 1.5\})$

Figure: Left: comparison between different D1Q2 (violet M_a^0 , green M_b^0 , blue M_c^0 , dark ref solution). Right: comparison between different D1Q3 (violet M_a^1 , green M_b^1 , blue M_c^1 , dark ref solution) $\Delta t = 0.1$ (CFL $\approx 100 - 300$).

Advection equation

Equation

$$\partial_t \rho + \partial_x (a(x)\rho) = 0$$

with a(x) > 0 and $\partial_x a(x) > 0$. Dissipative equation.

- Test 1: Velocity is given by $a(x) = 1.0 + 0.05x^2$ with the domain [0, 5] and $T_f = 1$.
- We compare the numerical dispersion in time due to the models:
 - $\Box \ \ D1Q2 \ \ {\rm model}: \ \ M^0_a \ \ (\lambda_{\pm}=\pm 1.5), \ \ M^0_b \ \ (\lambda_{\pm}=\{0,1.5\}), \ \ M^0_c \ \ (\lambda_{\pm}=\{0.75,1.5\}).$
 - $\square D1Q3 \text{ model: } M_a^1 (\lambda_{-,0,+} = \{-1.5, 0, 1.5\}), \ M_b^1 (\lambda_{-,0,+} = \{0, 0.75, 1.5\}), \ M_c^1 \{0.75, 1.1, 1.5\})$

Figure: Left: comparison between different D1Q2 (violet M_a^0 , green M_b^0 , blue M_c^0 , dark ref solution). Right: comparison between different D1Q3 (violet M_a^1 , green M_b^1 , blue M_c^1 , dark ref solution) $\Delta t = 0.2$. (CFL $\approx 200 - 500$).

Burgers

Model: Viscous Burgers equations

$$\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = 0$$

- Kinetic model: (D1Q2) or D1Q3.
- Spatial discretization: SL-scheme, 1000 cells, order 7 space, order 2 time.
- **Test 2**: rarefaction wave, no viscosity.

Figure: Left: comparison between different velocity set. $V = \{-2.1, 2.1\}$ (violet) $V = \{0.9, 2.1\}$ (green) , $V = \{-2.1, 0, 2.1\}$ (yellow) and $V = \{0.9, 1.5, 2.1\}$ (blue). $\Delta t = 0.05$ (CFL 50-200)

Remark: Choice of kinetic model important to minimize time numerical dispersion.

1D Euler equations: quantitatives results

Model: Euler equation

$$\begin{aligned} \partial_t \rho + \partial_x (\rho u) &= 0 \\ \partial_t \rho u + \partial_x (\rho u^2 + p) &= 0 \\ \partial_t \rho E + \partial_x (\rho E u + p u) &= 0 \end{aligned}$$

- Kinetic model: (D1Q2) or D1Q3.
- For the transport (and relaxations step) we use 11-order SL scheme in space.

$$u(t = 0, x) = -\sqrt{\gamma} \operatorname{sign}(x) M(1.0 - \cos(2\pi x/L))$$
$$p(t = 0, x) = \frac{1}{M^2} (1.0 + M\gamma(1.0 - \cos(2\pi x/L))) \quad M = \frac{1}{11}$$

Discretization: 4000 cells (for a domain L = [-20, 20]) and order 11.

Figure: Density. Second time scheme: D1Q2 with $\lambda = 16$ (violet), D1Q3 with $\lambda = 26$ (green) and reference (black). Left : $\Delta t = 0.01$ (CFL 1-5). Right: $\Delta t = 0.05$ (CFL 5-20).

1D Euler equations: quantitatives results

Model: Euler equation

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0 \\ \partial_t \rho u + \partial_x (\rho u^2 + p) = 0 \\ \partial_t \rho E + \partial_x (\rho E u + p u) = 0 \end{cases}$$

- Kinetic model: (D1Q2) or D1Q3.
- For the transport (and relaxations step) we use 11-order SL scheme in space.

$$u(t = 0, x) = -\sqrt{\gamma} \operatorname{sign}(x) M(1.0 - \cos(2\pi x/L))$$
$$p(t = 0, x) = \frac{1}{M^2} (1.0 + M\gamma(1.0 - \cos(2\pi x/L))) \quad M = \frac{1}{11}$$

Discretization: 4000 cells (for a domain L = [-20, 20]) and order 11.

Figure: Density. Second time scheme: D1Q2 with $\lambda = 16$ (violet), D1Q3 with $\lambda = 26$ (green) and reference (black). Left : $\Delta t = 0.05$ (CFL 5-20). Right: $\Delta t = 0.1$ (CFL 10-50).

Other works

(nría-

Current Work I: equilibrium

Equilibrium

- Classical problem: $\partial_t U + \partial_x F(U) = S(U)$. Steady-state important to preserve: $\partial_x F(U) = S(U)$
- **Problem**: kinetic relaxation scheme not appropriate for that.
 - First problem: construct kinetic source to have equilibrium in relaxation step.
 - □ Main problem: time and spatial error in the transport step.

Example: Euler with gravity. Equilibrium between gradient pressure and gravity.

Result: convergence with second order in time but no preservation of the steady state.

Current Work II: diffusion

• We want solve the equation: $\partial_t \rho + \partial_x (u\rho) = D \partial_{xx} \rho$

Kinetic system proposed (S. Jin, F. Bouchut):

$$\begin{cases} \partial_t f_- - \frac{\lambda}{\varepsilon} \partial_x f_- = \frac{1}{\varepsilon^2} (f_{eq}^- - f_-) \\ \partial_t f_+ + \frac{\lambda}{\varepsilon} \partial_x f_+ = \frac{1}{\varepsilon^2} (f_{eq}^+ - f_+) \end{cases}$$

• with $f_{eq}^{\pm} = \frac{\rho}{2} \pm \frac{\varepsilon(u\rho)}{2\lambda}$. The limit is given by:

 $\partial_t \rho + \partial_x (\mu \rho) = \partial_x ((\lambda^2 - \varepsilon^2 | \partial F(\rho) |^2) \partial_x \rho) + \lambda^2 \varepsilon^2 \partial_x (\partial_{xx} F(\rho) + \partial F(\rho)_{xx} \rho) - \lambda^2 \varepsilon^2 \partial_{xxxx} \rho$

• We introduce $\alpha > |\partial F(\rho)|$. Choosing $D = \lambda^2 - \varepsilon^2 \alpha^2$ we obtain

$$\partial_t \rho + \partial_x(u\rho) = \partial_x(D\partial_x \rho) + O(\varepsilon^2)$$

Results $(\Delta t >> \Delta_{exp})$ (Order 1. Left: $\frac{\Delta t}{c} = 0.1$, Middle: $\frac{\Delta t}{c} = 1$, Right: $\frac{\Delta t}{c} = 10$):

37

Current Work II: diffusion

• We want solve the equation: $\partial_t \rho + \partial_x(u\rho) = D\partial_{xx}\rho$

Kinetic system proposed (S. Jin, F. Bouchut):

$$\begin{cases} \partial_t f_- - \frac{\lambda}{\varepsilon} \partial_x f_- = \frac{1}{\varepsilon^2} (f_{eq}^- - f_-) \\ \partial_t f_+ + \frac{\lambda}{\varepsilon} \partial_x f_+ = \frac{1}{\varepsilon^2} (f_{eq}^+ - f_+) \end{cases}$$

• with $f_{eq}^{\pm} = \frac{\rho}{2} \pm \frac{\varepsilon(u\rho)}{2\lambda}$. The limit is given by:

 $\partial_t \rho + \partial_x (u\rho) = \partial_x ((\lambda^2 - \varepsilon^2 \mid \partial F(\rho) \mid^2) \partial_x \rho) + \lambda^2 \varepsilon^2 \partial_x (\partial_{xx} F(\rho) + \partial F(\rho)_{xx} \rho) - \lambda^2 \varepsilon^2 \partial_{xxx} \rho$

• We introduce $\alpha > | \partial F(\rho) |$. Choosing $D = \lambda^2 - \varepsilon^2 \alpha^2$ we obtain

$$\partial_t \rho + \partial_x(u\rho) = \partial_x(D\partial_x \rho) + O(\varepsilon^2)$$

Results (Order 2. Left: $\frac{\Delta t}{\varepsilon} = 0.1$, Middle: $\frac{\Delta t}{\varepsilon} = 1$, Right: $\frac{\Delta t}{\varepsilon} = 10$):

Current Work II: diffusion

• We want solve the equation: $\partial_t \rho + \partial_x (u\rho) = D \partial_{xx} \rho$

Kinetic system proposed (S. Jin, F. Bouchut):

$$\begin{cases} \partial_t f_- - \frac{\lambda}{\varepsilon} \partial_x f_- = \frac{1}{\varepsilon^2} (f_{eq}^- - f_-) \\ \partial_t f_+ + \frac{\lambda}{\varepsilon} \partial_x f_+ = \frac{1}{\varepsilon^2} (f_{eq}^+ - f_+) \end{cases}$$

• with $f_{eq}^{\pm} = \frac{\rho}{2} \pm \frac{\varepsilon(u\rho)}{2\lambda}$. The limit is given by:

 $\partial_t \rho + \partial_x (u\rho) = \partial_x ((\lambda^2 - \varepsilon^2 \mid \partial F(\rho) \mid^2) \partial_x \rho) + \lambda^2 \varepsilon^2 \partial_x (\partial_{xx} F(\rho) + \partial F(\rho)_{xx} \rho) - \lambda^2 \varepsilon^2 \partial_{xxxx} \rho$

• We introduce $\alpha > | \partial F(\rho) |$. Choosing $D = \lambda^2 - \varepsilon^2 \alpha^2$ we obtain

$$\partial_t \rho + \partial_x (u\rho) = \partial_x (D\partial_x \rho) + O(\varepsilon^2)$$

Consistency limit condition: $\varepsilon > \Delta t$. ε is a non physical parameter. We can choose $\varepsilon = \alpha \Delta t$ with $\alpha >> 1$

	$\alpha =$	10	$\alpha = 50$	
	Error	order	Error	order
$\Delta t = 0.02$	$1.7E^{-2}$	-	$3.5E^{-1}$	-
$\Delta t = 0.01$	$4.4E^{-4}$	5.3	$1.5E^{-1}$	1.2
$\Delta t = 0.005$	$1.4E^{-5}$	5	$3.36E^{-2}$	2.1
$\Delta t = 0.0025$	$5.6E^{-6}$	1.3	$1.78E^{-3}$	4.2

Convergent only for α >> 1 since spitting scheme are not AP. Future work: Design AP scheme.

Current Work III: Positive discretization

- Most important error: the error due to the relaxation.
- Time numerical dispersion: when ε is zero the second order relaxation scheme is $f^* = 2f^{eq} f^n$. We oscillate around the equilibrium.
- More the wave structure is close to the original one more $|| f^{eq} f^n ||$ is small. Reduce the oscillations around f^{eq} .

Limiting/entropic technic for relaxation

Relaxation step:
$$f^{n+1} = f^{eq} + w_1(\varepsilon)(f^n - f^{eq})$$
 with $w_1(\varepsilon) = \frac{\varepsilon - (1-\theta)\Delta t}{\varepsilon + \theta \Delta t}$

- □ Entropic correction (I. V. Karlin 98): find ε such that $H(f^{eq} + w_1(\varepsilon)(f^n f^{eq})) = H(f^n)$ with H the entropy.
- □ **Limiting technic**: We have $w_1 = -1$ ordre 2. $w_1 = 0$ ordre 1.

□
$$f^{n+1} = f^{eq} + \phi(w_1(\varepsilon))(f^n - f^{eq})$$
 with ϕ a limiter such that $\phi(w_1) \approx -1$ if $|| f^n - f^{eq} || < tol$ and $\phi(w_1) \approx 0$ if $|| f^n - f^{eq} || >> 1$.

Spatial dispersion

- Limiting technic for DG solver. **Problem**: time dispersion of transport DG solver. Open question
- SL- Scheme: SL method based on bounded polynomial (B. Després 16), positive FV-SL or DG-SL.

Current Work IV: Low Mach Limit

Low-Mach limit

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = 0,$$

 $\partial_t (\rho \boldsymbol{u}) + \nabla \cdot (\rho \boldsymbol{u} \otimes \boldsymbol{u}) + \frac{1}{M^2} \nabla \rho = 0$

We need $\lambda > \frac{1}{M}$. Order one : huge diffusion, ordrr two: huge dispersion for $M \ll 1$.

Similar problem: stationary MHD vortex. $\lambda = 20$

Left: init, middle: order 1 t = 30, right: order 2 t = 150.

Solution

- Kinetic model with zero velocity + SL for transport (non error in time)
- **Two scales kinetic model** with order 1 only for the fast scale.

Conclusion

Advantages

- Initial problem: invert a nonlinear conservation law is very difficult. High CPU cost (storage and assembly of problem. Slow convergence of iterative solvers).
- Advantage of method: replace the complex nonlinear problem (with a huge and increasing cost) by some simple independent problems (with a small and stable cost).

Drawbacks

High-time error (diffusion/dispersion) since we overestimate the transport. Order 1:

	Euler imp	D1Q2 FV-DG			
	$\frac{\Delta t}{2}\partial_x(A(\boldsymbol{U})^2\partial_x\boldsymbol{U})$	$\frac{\Delta t}{2}$	$\frac{1}{2} \left(\partial_x (\lambda^2 I_d + \lambda^2 I_d - A(\boldsymbol{U})^2) \partial_x \boldsymbol{U} \right)$		
D1Q2 SL			D1Q3 SL		
$\frac{\Delta t}{2}(\partial_x(I_d\lambda^2-A(\boldsymbol{U})^2)\partial_x\boldsymbol{U})$		U)	$-\frac{\Delta t}{2}(\partial_x(I_d\lambda \mid A_v(\boldsymbol{U}) \mid -A(\boldsymbol{U})^2)\partial_x \boldsymbol{U})$		

- Additional error is reduced using transport SL scheme, good kinetic representation (and limiting technic for second order).
- Second drawback: With this method we reformulate the equations. Some points are more complex: BC, equilibrium etc.

Perspectives

BC, Equilibrium, Positivity, Diffusion, low-Mach limit, MHD, SL on general meshes.

- **Test**: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
- $\Delta t = 0.04$: CFL FV ≈ 100 , CFL HO ≈ 300 .
- (1) Implicit CN + FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

Left: scheme (1). Right: scheme (2), Black: reference solution.

- **Test**: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
- $\Delta t = 0.04$: CFL FV ≈ 100 , CFL HO ≈ 300 .
- (1) Implicit CN + FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

Left: scheme (1). Right: scheme (3), Black: reference solution.

- **Test**: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
- $\Delta t = 0.04$: CFL FV ≈ 100 , CFL HO ≈ 300 .
- (1) Implicit CN + FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

Left: scheme (1). Right: scheme (4), Black: reference solution.

- **Test**: low-mach case. 8800 cells h = 0.005, Degree of polynomial: 3.
- $\Delta t = 0.04$: CFL FV ≈ 100 , CFL HO ≈ 300 .
- (1) Implicit CN + FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

Left: scheme (1). Right: scheme (4), Black: reference solution.

Conclusion

- Conclusion: as expected D1Q3 SL closed to CN implicit scheme.
- CPU time difficult to compare since the code are different.
- But: 170 sec for (1), 110 sec for (2), 1.6 sec for (3), 1.7 sec for (4)

