High-order Implicit relaxation schemes for hyperbolic models

D. Coulette ${ }^{2}$, E. Franck ${ }^{12}$, P. Helluy ${ }^{12}$

Seminar LBM, IHP, Paris

Thanks to: M. Boileau ${ }^{2}$, C. Courtes ${ }^{4}$, M. Mehrenberger ${ }^{2}$, L. Navoret ${ }^{2}$,
L. Mendoza ${ }^{2}$,H. Guillard ${ }^{5}$, L. Thanhuser ${ }^{3}$, C. Klingenberg ${ }^{3}$

> ${ }^{1}$ Inria Nancy Grand Est, France
> ${ }^{2}$ IRMA, Strasbourg university, France
> ${ }^{3}$ Wurzburg university, Germany
> ${ }^{4}$ Orsay university, France
> ${ }^{5}$ Inria Sophia Antipolis, France

Outline

Physical and mathematical context

Implicit Relaxation method and results

Kinetic representation of hyperbolic system

Other works

Physical and mathematical context

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.

■ Difficulty: plasma instabilities.
\square Disruptions: Violent instabilities which can critically damage the Tokamak.
\square Edge Localized Modes (ELM): Periodic edge instabilities which can

Deuterium

Tritium

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).
- Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.

■ Difficulty: plasma instabilities.Disruptions: Violent instabilities which can critically damage the Tokamak.
\square Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

The simulation of these instabilities is an important topic for ITER.

Figure: Tokamak

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).

Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.

■ Difficulty: plasma instabilities.
\square Disruptions: Violent instabilities which can critically damage the Tokamak.
\square Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

The simulation of these instabilities is an important topic for ITER.

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).

Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.

■ Difficulty: plasma instabilities.
\square Disruptions: Violent instabilities which can critically damage the Tokamak.
\square Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

The simulation of these instabilities is an important topic for ITER.

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).

Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.

■ Difficulty: plasma instabilities.
\square Disruptions: Violent instabilities which can critically damage the Tokamak.
\square Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

The simulation of these instabilities is an important topic for ITER.

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).

Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.

■ Difficulty: plasma instabilities.
\square Disruptions: Violent instabilities which can critically damage the Tokamak.
\square Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

The simulation of these instabilities is an important topic for ITER.

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. Free energy is released. At those energies, the atoms are ionized forming a plasma (which can be controlled by magnetic fields).

Tokamak: toroïdal chamber where the plasma is confined using powerful magnetic fields.

■ Difficulty: plasma instabilities.
\square Disruptions: Violent instabilities which can critically damage the Tokamak.
\square Edge Localized Modes (ELM): Periodic edge instabilities which can damage the Tokamak.

The simulation of these instabilities is an important topic for ITER.

MHD in a Tokamak

Simplified Extended MHD

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0, \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}+\nu \nabla \cdot \boldsymbol{\Pi} \\
\partial_{t} \boldsymbol{p}+\nabla \cdot(p \mathbf{u})+(\gamma-1) p \nabla \cdot \boldsymbol{u}=\nabla \cdot \mathbf{q}+\eta|\nabla \times \boldsymbol{B}|^{2}+\nu \boldsymbol{\Pi}: \nabla \boldsymbol{u} \\
\partial_{t} \boldsymbol{B}-\nabla \times(\boldsymbol{u} \times \boldsymbol{B})=\eta \nabla \times(\nabla \times \boldsymbol{B}) \\
\nabla \cdot \boldsymbol{B}=0
\end{array}\right.
$$

- with ρ the density, p the pressure, \mathbf{u} the velocity, \boldsymbol{B} the magnetic field, \boldsymbol{J} the current, Π stress tensor and \mathbf{q} the heat flux.

MHD specificities in Tokamak

\square Strong anisotropic flows (direction of the magnetic field) $===>$ complex geometries and aligned meshes (flux surface or magnetic field lines).
\square MHD scaling:

- Diffusion: Large Reynolds and magnetic Reynolds number.
- $\boldsymbol{B}_{\|}$direction: compressible flow and small Prandlt number.
- \boldsymbol{B}_{\perp} direction: quasi incompressible flow and large Prandlt number.
\square MHD Scaling $===>$ compressible code with no discontinuities + fast waves.
\square Quasi stationary flows + fast waves $===>$ implicit or semi implicit schemes.

Problem of implicit discretization

- Solution for implicit schemes:
\square Direct solver. CPU cost and consumption memory too large in 3D.
\square Iterative solver. Problem of conditioning.

Problem of conditioning

- Huge ratio between the physical wave speeds (low Mach regime) $==>$ huge ratio between discrete eigenvalues.
- Transport problem: anisotropic problem $==>$ huge ratio between discrete eigenvalues.
- High order scheme: small/high frequencies $==>$ huge ratio between discrete eigenvalues.
- Possible solution: preconditioning (often based on splitting and reformulation).

Storage problem

- Storage the matrix and perhaps the preconditioning: large memory consumption.
- Possibility: Jacobian free method (additional cost, but store only vectors).

Implicit Relaxation method and results

General principle

- We consider the following nonlinear system

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\nu \partial_{x}\left(D(\boldsymbol{U}) \partial_{x} \boldsymbol{U}\right)+\boldsymbol{G}(\boldsymbol{U})
$$

- with \boldsymbol{U} a vector of N functions.
- Aim: Find a way to approximate this system with a sequence of simple systems.
- Idea: Xin-Jin (95) relaxation method (very popular in the hyperbolic and finite volume community).

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{V}=\boldsymbol{G}(\boldsymbol{U}) \\
\partial_{t} \boldsymbol{V}+\alpha^{2} \partial_{x} \boldsymbol{U}=\frac{1}{\varepsilon}(\boldsymbol{F}(\boldsymbol{U})-\boldsymbol{V})
\end{array}\right.
$$

Limit of the hyperbolic relaxation scheme

\square The limit scheme of the relaxation system is

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\boldsymbol{G}(\boldsymbol{U})+\varepsilon \partial_{x}\left(\left(\alpha^{2}-|A(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)+\varepsilon \partial_{x} \boldsymbol{G}(\boldsymbol{U})+o\left(\varepsilon^{2}\right)
$$

\square with $A(\boldsymbol{U})$ the Jacobian of $\boldsymbol{F}(\boldsymbol{U})$.

- Conclusion: the relaxation system is an approximation of the hyperbolic original system (error in ε).
- Stability: the limit system is dissipative if $\left(\alpha^{2}-|\boldsymbol{A}(\boldsymbol{U})|^{2}\right)>0$.

General principle II

Generalization

\square The generalized relaxation is given by

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{V}=\boldsymbol{G}(\boldsymbol{U}) \\
\partial_{t} \boldsymbol{V}+\alpha^{2} \partial_{x} \boldsymbol{U}=\frac{R(\boldsymbol{U})}{\varepsilon}(\boldsymbol{F}(\boldsymbol{U})-\boldsymbol{V})+\boldsymbol{H}(\boldsymbol{U})
\end{array}\right.
$$

\square The limit scheme of the relaxation system is

$$
\begin{aligned}
& \partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\boldsymbol{G}(\boldsymbol{U}) \\
& +\varepsilon \partial_{\times}\left(R(\boldsymbol{U})^{-1}\left(\alpha^{2}-|A(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)+\varepsilon \partial_{\times}(A(\boldsymbol{U}) \boldsymbol{G}(\boldsymbol{U})-\boldsymbol{H}(\boldsymbol{U}))+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

Treatment of small diffusion

\square Taking $R(\boldsymbol{U})=\left(\alpha^{2}-|\boldsymbol{A}(\boldsymbol{U})|^{2}\right) D(\boldsymbol{U})^{-1}, \varepsilon=\nu$ and $\boldsymbol{H}(\boldsymbol{U})=\boldsymbol{A}(\boldsymbol{U}) \boldsymbol{G}(\boldsymbol{U})$: we obtain the following limit system

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\boldsymbol{G}(\boldsymbol{U})+\nu \partial_{x}\left(D(\boldsymbol{U}) \partial_{x} \boldsymbol{U}\right)+o\left(\nu^{2}\right)
$$

- Limitation of the method: the relaxation model cannot approach PDE with high diffusion.

Kinetic relaxation scheme

- We consider the classical Xin-Jin relaxation for a scalar system $\partial_{t} u+\partial_{x} F(u)=0$:

$$
\left\{\begin{array}{l}
\partial_{t} u+\partial_{x} v=0 \\
\partial_{t} v+\alpha^{2} \partial_{x} u=\frac{1}{\varepsilon}(F(u)-v)
\end{array}\right.
$$

- We diagonalize the hyperbolic matrix $\left(\begin{array}{cc}0 & 1 \\ \alpha^{2} & 0\end{array}\right)$ and note f_{+}and f_{-}the new variables. We obtain

$$
\left\{\begin{aligned}
\partial_{t} f_{-}-\alpha \partial_{x} f_{-} & =\frac{1}{\varepsilon}\left(f_{e q}^{-}-f_{-}\right) \\
\partial_{t} f_{+}+\alpha \partial_{x} f_{+} & =\frac{1}{\varepsilon}\left(f_{e q}^{+}-f_{+}\right)
\end{aligned}\right.
$$

- with $f_{e q}^{ \pm}=\frac{u}{2} \pm \frac{F(u)}{2 \alpha}$.

First Generalization

\square Main property: the transport is diagonal which can be easily solved.

Remark

\square In the Lattice Boltzmann community the discretization of this model is called D1Q2.

Generic kinetic relaxation scheme

Kinetic relaxation system

- Considered model:

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=0, \quad \partial_{t} \eta(\boldsymbol{U})+\partial_{x} \boldsymbol{\zeta}(\boldsymbol{U}) \leq 0
$$

- Lattice: $W=\left\{\lambda_{1}, \ldots ., \lambda_{n_{v}}\right\}$ a set of velocities.
- Mapping matrix: P a matrix $n_{c} \times n_{v}\left(n_{c}<n_{v}\right)$ such that $\boldsymbol{U}=P \boldsymbol{f}$, with $U \in \mathbb{R}^{n_{c}}$.
- Kinetic relaxation system:

$$
\partial_{t} \boldsymbol{f}+\Lambda \partial_{x} \boldsymbol{f}=\frac{R}{\varepsilon}\left(\boldsymbol{f}^{e q}(\boldsymbol{U})-\boldsymbol{f}\right)
$$

- Equilibrium vector operator $\boldsymbol{f}^{e q}: \mathbb{R}^{n_{c}} \rightarrow \mathbb{R}^{n_{v}}$ such that $P \boldsymbol{f}^{e q}(\boldsymbol{U})=\boldsymbol{U}$.

■ Consistence with the initial PDE (R. Natalini 00, F. Bouchut 99-03 ...) :

$$
\mathcal{C}\left\{\begin{array}{c}
P \boldsymbol{f}^{e q}(\boldsymbol{U})=\boldsymbol{U} \\
P \wedge \boldsymbol{f}^{\boldsymbol{e}}(\boldsymbol{U})=F(\boldsymbol{U})
\end{array}\right.
$$

- For source terms and small diffusion terms, it is the same as the first relaxation method.
- In 1D : same property of stability that the classical relaxation method.
- Limit of the system:

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\varepsilon \partial_{x}\left(\left(P \Lambda^{2} \partial \boldsymbol{f}_{e q}-|\partial \boldsymbol{F}(\boldsymbol{U})|^{2}\right) \partial_{x} \boldsymbol{U}\right)
$$

Time discretization

Main property

- Relaxation system: "the nonlinearity is local and the non locality is linear".
- Main idea: splitting scheme between transport and the relaxation (P. J. Dellar, 13).
- Key point: the macroscopic variables are conserved during the relaxation step. Therefore $\boldsymbol{f}^{e q}(\boldsymbol{U})$ explicit.

First order scheme

- We define the two operators for each step :

$$
\begin{gathered}
T_{\Delta t}=I_{d}+\Delta t \Lambda \partial_{x} I_{d} \\
R_{\Delta t}=I_{d}-\Delta t \frac{\Delta t}{\varepsilon}\left(\boldsymbol{f}^{e q}(\boldsymbol{U})-I_{d}\right)
\end{gathered}
$$

- Asymptotic limit: Chapman-Enskog expansion.
- Final scheme: $T_{\Delta t} \circ R_{\Delta t}$ is consistent with

$$
\begin{aligned}
& \partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=\frac{\Delta t}{2} \partial_{x}\left(P \wedge^{2} \partial_{x} \boldsymbol{f}\right)+\left(\frac{\Delta t}{2}+\varepsilon\right) \partial_{x}\left(\left(P \wedge^{2} \partial_{\boldsymbol{U}} \boldsymbol{f}^{e q}-A(\boldsymbol{U})^{2}\right) \partial_{x} \boldsymbol{U}\right) \\
& +O\left(\varepsilon \Delta t+\Delta t^{2}+\varepsilon^{2}\right)
\end{aligned}
$$

High-Order time schemes

Second-order scheme

\square Scheme for transport step $T(\Delta t)$: Crank Nicolson or exact time scheme.
\square Scheme for relaxation step $R(\Delta t)$: Crank Nicolson.
\square Classical full second order scheme:

$$
\Psi(\Delta t)=T\left(\frac{\Delta t}{2}\right) \circ R(\Delta t) \circ T\left(\frac{\Delta t}{2}\right) .
$$

\square Numerical test: second order but probably only for the macroscopic variables.
\square AP full second order scheme:

$$
\Psi_{a p}(\Delta t)=T\left(\frac{\Delta t}{4}\right) \circ R\left(\frac{\Delta t}{2}\right) \circ T\left(\frac{\Delta t}{2}\right) \circ R\left(\frac{\Delta t}{2}\right) \circ T\left(\frac{\Delta t}{4}\right) .
$$

$\square \Psi$ and $\Psi_{a p}$ symmetric in time. $\Psi_{a p}(0)=I_{d}$.

High order scheme

\square Using composition method

$$
M_{p}(\Delta t)=\Psi_{a p}\left(\gamma_{1} \Delta t\right) \circ \Psi_{a p}\left(\gamma_{2} \Delta t\right) \ldots \ldots \circ \Psi_{a p}\left(\gamma_{s} \Delta t\right)
$$

\square with $\gamma_{i} \in[-1,1]$, we obtain a p-order schemes.
\square Susuki scheme : $s=5, p=4$. Kahan-Li scheme: $s=9, p=6$.

Space discretization - transport scheme

Whishlist

- Complex geometry, curved meshes or unstructured meshes,
- CFL-free,
- Matrix-free.

Candidates for transport discretization

- LBM-like: exact transport solver,
- Implicit FV-DG schemes,
- Semi-Lagrangian schemes,
- Stochastic schemes (Glimm or particle methods).

LBM-like method: exact transport

- Advantages:
\square Exact transport at the velocity $\lambda=\frac{v \Delta t}{\Delta x}$. Very very cheap cost.
- Drawbacks:
\square Link time step and mesh: complex to manage large time step, unstructured grids and multiply kinetic velocities.

Space discretization

Semi Lagrangian methods

- Forward or Backward methods. Mass or nodes interpolation/projection.
- Advantages:
\square Possible on unstructured meshes. High order in space.
\square Exact in time and Matrix-free.
- Drawbacks:
\square No dissipation and difficult on very unstructured grids.

Implicit FV- DG methods

- Implicit Crank Nicolson scheme + FV DG scheme
- Advantages:
\square Very general meshes. High order in space. Dissipation to stabilize.
\square Upwind fluxes $==>$ triangular block matrices.
- Drawbacks:
\square Second order in time: numerical time dispersion.
- Current choice 1D: SL-scheme.
- Current choice in 2D-3D: DG schemes.
\square Block - triangular matrix solved avoiding storage.
\square Solve the problem in the topological order given by connectivity graph.

Burgers: quantitative results

- Model: Viscous Burgers equations

$$
\partial_{t} \rho+\partial_{\times}\left(\frac{\rho^{2}}{2}\right)=0
$$

- Spatial discretization: SL-scheme, 5000 cells, degree 7 in space, order 2 time.
- Test 1: $\rho(t=0, x)=\sin (2 \pi x)$, viscosity $=10^{-4}$.

Figure: Comparison for different time step. Violet: $\Delta t=0.001$ (CFL 5-30), Green: $\Delta t=0.005$ (CFL 20-120), Blue $\Delta t=0.01$ (CFL 50-300), Black : reference

1D isothermal Euler: Convergence

- Model: isothermal Euler equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t} \rho u+\partial_{x}\left(\rho u^{2}+c^{2} \rho\right)=0
\end{array}\right.
$$

- Lattice: $(D 1-Q 2)^{n}$ Lattice scheme.
- For the transport (and relaxations step) we use 6 -order DG scheme in space.
- Time step: $\Delta t=\beta \frac{\Delta x}{\lambda}$ with λ the lattice velocity. $\beta=1$ explicit time step.
- First test: acoustic wave with $\beta=50$ and $T_{f}=0.4$, Second test: smooth contact wave with $\beta=100$ and $T_{f}=20$.

Figure: convergence rates for the first test (left) and for the second test (right).

1D isothermal Euler: shock

■ Test case: discontinuous initial data (Sod problem). No viscosity, $\beta=3$. 6 order space-time scheme.

Figure: density (left) and velocity (right).

- With refinement in space we can reduce the oscillations.
- Test case: Sod problem. $\nu=5.10^{-4}, \beta=5.6$ order space-time scheme.

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).

■ Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D MHD drifting vortex

- Model : compressible ideal MHD.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : $2^{\text {nd }}$ order Implicit DG scheme. 4th order ins space. CFL around 20.
- Test case : advection of the vortex (steady state without drift).
\square Parameters : $\rho=1.0, p_{0}=1, u_{0}=b_{0}=0.5, \mathbf{u}_{d r i f t}=[1,1]^{t}, h(r)=\exp \left[\left(1-r^{2}\right) / 2\right]$

Magnetic field

Velocity

Numerical results: 2D-3D fluid models

- Model : liquid-gas Euler model with gravity.
- Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
- Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.
- Test case : Rayleigh-Taylor instability.

2D case in annulus

Figure: Plot of the mass fraction of gas

3D case in cylinder

Figure: Plot of the mass fraction of gas

Numerical results: 2D-3D fluid models

- Model : liquid-gas Euler model with gravity.

■ Kinetic model : $(D 2-Q 4)^{n}$. Symmetric Lattice.
■ Transport scheme : 2 order Implicit DG scheme. 3th order in space. CFL around 6.

- Test case: Rayleigh-Taylor instability.

2D case in annulus
2D cut of the 3D case

Figure: Plot of the mass fraction of gas

Figure: Plot of the mass fraction of gas

Kinetic representation of hyperbolic systems

Key point: design of the kinetic representation

Main idea

- Target: Nonlinear problem N.
- First: we construct the kinetic problem K_{ε} such that $\left\|K_{\varepsilon}-N\right\| \leq C_{\varepsilon} \varepsilon$
- Second: we discretize K_{ε} such that $\left\|K_{\varepsilon}-K_{\varepsilon}^{h, \Delta t}\right\| \leq C_{\Delta t} \Delta t^{p}+C_{h} h^{q}$
- We obtain a consistent method by triangular inequality.

First point: Analysis of the error

- Assuming: large time step and high order in space. Main problem: time error.
- The error in time comes from the transport step and relaxation step.
- If we use SL-scheme no time error in the transport step.
- Main problem: time error relaxation/splitting (order 1/2: diffusion/dispersion).
- This error homogeneous to $\left(P \wedge^{2} \partial \boldsymbol{f}_{e q}-|\partial \boldsymbol{F}(\boldsymbol{U})|^{2}\right)$. The closer the wave structure of $K_{e p s}$ is to the one of N , the smaller this error.

Second point: stability

- The kinetic model must be stable with the minimal sub-characteristic stability condition.

Classical kinetic representation

"Physic" kinetic representations

- Kinetic representation mimics the moment model construction of Boltzmann equation.
- Example: Euler isothermal

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t} \rho u+\partial_{x}\left(\rho u^{2}+c^{2} \rho\right)=0
\end{array}\right.
$$

■ D1Q3 model: three velocities $\{-\lambda, 0, \lambda\}$. Equilibrium: quadrature of Maxwellian.

$$
\rho=f_{-}+f_{0}+f_{+}, \quad q=\rho u=-\lambda * f_{-}+0 * f_{0}+\lambda * f_{+}, \quad \boldsymbol{f}_{e q}=\left(\begin{array}{c}
\frac{1}{2}\left(\rho u(u-\lambda)+c^{2} \rho\right) \\
\rho\left(\lambda^{2}-u^{2}-c^{2}\right) \\
\frac{1}{2}\left(\rho u(u+\lambda)+c^{2} \rho\right)
\end{array}\right)
$$

■ Limit model : $\quad\left\{\begin{array}{l}\partial_{t} \rho+\partial_{x}(\rho u)=0 \\ \partial_{t} \rho u+\partial_{x}\left(\rho u^{2}+c^{2} \rho\right)=\varepsilon\left(\partial_{x x} u+u^{3} \partial_{x x} \rho\right)\end{array}\right.$

- Good point: no diffusion on ρ equation. Bad point: stable only for low mach.

Vectorial kinetic representations

- Vectorial kinetic model (B. Graille 14): $[D 1 Q 2]^{2}$ one relaxation model $\{-\lambda, \lambda\}$ (previous slide) by equation.
- Good point: stable on sub-characteristic condition $\lambda>\lambda_{\max }$.
- Bad point: large error. Wave propagation approximated by transport at maximal velocity in the two directions.

New kinetic models. Scalar case I

Idea

- Design vectorial kinetic model with un-symmetric velocities and additional central velocity (typically zero).
- Problem: Stability not trivial. Idea: use entropy construction (F. Dubois 13).

■ We consider $\partial_{t} \rho+\partial_{x} F(\rho)$ with the entropy equation $\partial_{t} \eta(\rho)+\partial_{x} \zeta(\rho) \leq 0$.

- We consider a model D1Q3 with $V=\left\{\lambda_{-}, \lambda_{0}, \lambda_{+}\right\}$. We take

$$
\rho=f_{-}+f_{0}+f_{+}, \quad F(\rho)=\lambda_{-} f_{-}+\lambda_{0} f_{0}+\lambda_{+} f_{+}
$$

- We define an entropy $H=h_{-}\left(f_{-}\right)+h_{0}\left(f_{0}\right)+h_{+}\left(f_{+}\right)$with $h_{0}, h_{ \pm}$convex functions.
- We define $\phi=\partial_{\rho} \eta(\rho)$ and $\eta^{*}(\phi)$ the dual entropy (by the Legendre transform).

Lemma

- If the following condition are satisfied

$$
\eta^{*}(\phi)=h_{-}+h_{0}+h_{+}, \quad \zeta^{*}(\phi)=\lambda_{-} h_{-}+\lambda_{0} h_{0}+\lambda_{+} h_{+}
$$

- We have $\partial_{t} H(\boldsymbol{f}) \leq 0$ and this entropy admits a minimum defined by

$$
\left(f^{e q}\right)_{i}=\frac{\partial h_{i}^{*}}{\partial \phi}
$$

Scalar case II

Design kinetic model

- Method: choose a physical entropy. Compute the atomic dual entropies and the equilibrium.
- Stability condition: convex condition of the atomic entropy.
- We fix arbitrary $h_{0}^{\star}(\phi)$ consequently we obtain the following solution

$$
\left\{\begin{array}{l}
h_{-}^{\star}(\phi)=-\frac{\left[\zeta^{\star}(\phi)-\lambda_{+} \eta^{\star}(\phi)\right]+\left(\lambda_{+}-\lambda_{0}\right) h_{0}^{\star}(\phi)}{\left(\lambda_{+}-\lambda_{-}\right)} \\
h_{+}^{\star}(\phi)=\frac{\left[\zeta^{\star}(\phi)-\lambda_{-} \eta^{\star}(\phi)\right]+\left(\lambda_{-}-\lambda_{0}\right) h_{0}^{\star}(\phi)}{\left(\lambda_{+}-\lambda_{-}\right)}
\end{array}\right.
$$

- The function $h_{0}^{\star}(\phi)$ which "saturate" the convex conditions on the three equations.
- Using final atomic entropies we derivate to obtain the equilibrium.

$$
\left\{\begin{array}{l}
f_{-}^{e q}=\frac{\lambda_{0}}{\lambda_{+}-\lambda_{-}} \rho-\frac{F^{-}(\rho)}{\lambda_{0}-\lambda_{-}} \\
f_{0}^{e q}=\left(\rho-\left(\frac{F^{+}(\rho)}{\left(\lambda_{+}-\lambda_{0}\right)}-\frac{F^{-}(\rho)}{\left(\lambda_{0}-\lambda_{-}\right)}\right)\right) \\
f_{+}^{e q}=-\frac{\lambda_{0}}{\lambda_{+}-\lambda_{-}} \rho+\frac{F^{+}(\rho)}{\lambda_{+}-\lambda_{0}}
\end{array}\right.
$$

with

$$
F^{ \pm}=\int\left[\left(\partial F(\rho)-\lambda_{0}\right)\right]^{ \pm}+C_{ \pm}
$$

- This model D1Q3 upwind is stable on the condition $\lambda_{-} \leq F^{\prime}(\rho) \leq \lambda_{+}$.
- Advantage: adaptation of the model depending on the flow direction.

Vectorial case

- We consider the equation

$$
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=0, \quad \partial_{t} \eta(\boldsymbol{U})+\partial_{x} \boldsymbol{\zeta}(\boldsymbol{U}) \leq 0
$$

■ Vectorial $[D 1 Q 3]^{N}$ model (to simplify $\lambda_{0}=0$). One D1Q3 model by equation.

- Same theory with

$$
H=h_{-}\left(f_{-}^{1}, . ., f_{-}^{N}\right)+h_{0}\left(f_{0}^{1}, \ldots, f_{0}^{N}\right)+h_{+}\left(f_{+}^{1}, \ldots, f_{+}^{N}\right)
$$

- Problem: At the end, we must integrate the positive/ negative part of the Jacobian to compute $f_{0}^{\text {eq }}$. Not possible in general (idem in the flux-splitting theory).

D1Q3 flux-splitting model

\square Idea: we choose an entropic flux-splitting $\boldsymbol{F}(\boldsymbol{U})=\boldsymbol{F}^{-}(\boldsymbol{U})+\boldsymbol{F}^{+}(\boldsymbol{U})$ such as $\partial_{t} \eta+\partial_{x} \boldsymbol{\zeta}^{-}(\boldsymbol{U})+\partial_{x} \boldsymbol{\zeta}^{+}(\boldsymbol{U}) \leq 0$.
\square We obtain:

$$
\left\{\begin{array}{l}
f_{-}^{e q}=-\frac{1}{\lambda_{-}} \boldsymbol{F}^{-}(\boldsymbol{U}) \\
f_{0}^{e q}=\left(\boldsymbol{U}-\left(\frac{\boldsymbol{F}^{+}(\boldsymbol{U})}{\lambda_{+}}+\frac{\boldsymbol{F}^{-}(\boldsymbol{U})}{\lambda_{-}}\right)\right) \\
f_{+}^{e q}=\frac{1}{\lambda_{+}} \boldsymbol{F}^{+}(\boldsymbol{U})
\end{array}\right.
$$

\square Stability: $\lambda_{-} I_{d}<D<\lambda_{+} I_{d}$ with D the eigenvalues matrix of $\partial \boldsymbol{F}_{0}^{ \pm}(\boldsymbol{U})$.

Multi-D extension and relative velocity

- Extension of the vectorial scheme in 2D and 3D
- 2D extension: $D 2 q(4 * k)$ or $D 2 Q q(4 * k+1)$ with $k=1$ or $k=2$.
- 3D extension: $D 3 q(6 * k), D 2 Q q(6 * k+1)$ with $k=1, k=2$ ore more.

- Increase $k==>$ increase the isotropic property of the kinetic model.
- The vectorial models with 0 velocity are not currently extended to 2D.

■ Related future work: Extension to the relative velocity idea (T. Fevrier 15) at the vectorial models.

- Relative velocity: Relax the moment of the kinetic model in a repair moving at a given velocity (analogy with ALE).

Advection equation

- Equation

$$
\partial_{t} \rho+\partial_{x}(a(x) \rho)=0
$$

■ with $a(x)>0$ and $\partial_{x} a(x)>0$. Dissipative equation.

- Test 1: Velocity is given by $a(x)=1.0+0.05 x^{2}$ with the domain $[0,5]$ and $T_{f}=1$.
- We compare the numerical dispersion in time due to the models:
$\square D 1 Q 2$ model: $M_{a}^{0}\left(\lambda_{ \pm}= \pm 1.5\right), M_{b}^{0}\left(\lambda_{ \pm}=\{0,1.5\}\right), M_{c}^{0}\left(\lambda_{ \pm}=\{0.75,1.5\}\right)$.
$\square D 1 Q 3$ model: $M_{a}^{1}\left(\lambda_{-, 0,+}=\{-1.5,0,1.5\}\right), M_{b}^{1}\left(\lambda_{-, 0,+}=\{0,0.75,1.5\}\right), M_{c}^{1}$ \{0.75, 1.1, 1.5\})

Figure: Left: comparison between different D1Q2 (violet M_{a}^{0}, green M_{b}^{0}, blue M_{c}^{0}, dark ref solution). Right: comparison between different D1Q3 (violet M_{a}^{1}, green M_{b}^{1}, blue M_{c}^{1}, dark ref solution) $\Delta t=0.1$ (CFL $\left.\approx 100-300\right)$.

Advection equation

- Equation

$$
\partial_{t} \rho+\partial_{x}(a(x) \rho)=0
$$

- with $a(x)>0$ and $\partial_{x} a(x)>0$. Dissipative equation.
- Test 1: Velocity is given by $a(x)=1.0+0.05 x^{2}$ with the domain $[0,5]$ and $T_{f}=1$.
- We compare the numerical dispersion in time due to the models:
$\square D 1 Q 2$ model: $M_{a}^{0}\left(\lambda_{ \pm}= \pm 1.5\right), M_{b}^{0}\left(\lambda_{ \pm}=\{0,1.5\}\right), M_{c}^{0}\left(\lambda_{ \pm}=\{0.75,1.5\}\right)$.
\square D1Q3 model: $M_{a}^{1}\left(\lambda_{-, 0,+}=\{-1.5,0,1.5\}\right), M_{b}^{1}\left(\lambda_{-, 0,+}=\{0,0.75,1.5\}\right), M_{c}^{1}$ \{0.75, 1.1, 1.5\})

Figure: Left: comparison between different D1Q2 (violet M_{a}^{0}, green M_{b}^{0}, blue M_{c}^{0}, dark ref solution). Right: comparison between different D1Q3 (violet M_{a}^{1}, green M_{b}^{1}, blue M_{c}^{1}, dark ref solution) $\Delta t=0.2$. (CFL $\left.\approx 200-500\right)$.

Burgers

- Model: Viscous Burgers equations

$$
\partial_{t} \rho+\partial_{\times}\left(\frac{\rho^{2}}{2}\right)=0
$$

- Kinetic model: (D1Q2) or D1Q3.
- Spatial discretization: SL-scheme, 1000 cells, order 7 space, order 2 time.
- Test 2: rarefaction wave, no viscosity.

Figure: Left: comparison between different velocity set. $V=\{-2.1,2.1\}$ (violet) $V=\{0.9,2.1\}$ (green), $V=\{-2.1,0,2.1\}$ (yellow) and $V=\{0.9,1.5,2.1\}$ (blue). $\Delta t=0.05$ (CFL 50-200)

- Remark: Choice of kinetic model important to minimize time numerical dispersion.

1D Euler equations: quantitatives results

- Model: Euler equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t} \rho u+\partial_{x}\left(\rho u^{2}+p\right)=0 \\
\partial_{t} \rho E+\partial_{x}(\rho E u+p u)=0
\end{array}\right.
$$

- Kinetic model: (D1Q2) or D1Q3.
- For the transport (and relaxations step) we use 11-order SL scheme in space.

$$
\begin{aligned}
u(t=0, x) & =-\sqrt{\gamma} \operatorname{sign}(x) M(1.0-\cos (2 \pi x / L)) \\
p(t=0, x) & =\frac{1}{M^{2}}(1.0+M \gamma(1.0-\cos (2 \pi x / L))) \quad M=\frac{1}{11}
\end{aligned}
$$

- Discretization: 4000 cells (for a domain $L=[-20,20]$) and order 11 .

Figure: Density. Second time scheme: D1Q2 with $\lambda=16$ (violet), D1Q3 with $\lambda=26$ (green) and reference (black). Left : $\Delta t=0.01$ (CFL 1-5). Right: $\Delta t=0.05$ (CFL 5-20).

1D Euler equations: quantitatives results

- Model: Euler equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t} \rho u+\partial_{x}\left(\rho u^{2}+p\right)=0 \\
\partial_{t} \rho E+\partial_{x}(\rho E u+p u)=0
\end{array}\right.
$$

- Kinetic model: (D1Q2) or D1Q3.
- For the transport (and relaxations step) we use 11-order SL scheme in space.

$$
\begin{aligned}
u(t & =0, x) \\
p(t=0, x) & =\frac{1}{\gamma} \operatorname{sign}(x) M(1.0-\cos (2 \pi x / L)) \\
M^{2} & 1.0+M \gamma(1.0-\cos (2 \pi x / L))) \quad M=\frac{1}{11}
\end{aligned}
$$

- Discretization: 4000 cells (for a domain $L=[-20,20]$) and order 11 .

Figure: Density. Second time scheme: D1Q2 with $\lambda=16$ (violet), D1Q3 with $\lambda=26$ (green) and reference (black). Left : $\Delta t=0.05$ (CFL 5-20). Right: $\Delta t=0.1$ (CFL 10-50).

Other works

Current Work I: equilibrium

Equilibrium

- Classical problem: $\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}(\boldsymbol{U})=S(\boldsymbol{U})$. Steady-state important to preserve: $\partial_{x} \boldsymbol{F}(\boldsymbol{U})=S(\boldsymbol{U})$
- Problem: kinetic relaxation scheme not appropriate for that.
\square First problem: construct kinetic source to have equilibrium in relaxation step.
\square Main problem: time and spatial error in the transport step.
- Example: Euler with gravity. Equilibrium between gradient pressure and gravity.

- Result: convergence with second order in time but no preservation of the steady state.

Current Work II: diffusion

- We want solve the equation: $\partial_{t} \rho+\partial_{x}(u \rho)=D \partial_{x x} \rho$
- Kinetic system proposed (S. Jin, F. Bouchut):

$$
\left\{\begin{array}{l}
\partial_{t} f_{-}-\frac{\lambda}{\xi} \partial_{x} f_{-}=\frac{1}{\varepsilon^{2}}\left(f_{e q}^{-}-f_{-}\right) \\
\partial_{t} f_{+}+\frac{\hat{\lambda}}{\varepsilon} \partial_{x} f_{+}=\frac{1}{\varepsilon^{2}}\left(f_{e q}^{+}-f_{+}\right)
\end{array}\right.
$$

■ with $f_{e q}^{ \pm}=\frac{\rho}{2} \pm \frac{\varepsilon(u \rho))}{2 \lambda}$. The limit is given by:

$$
\partial_{t} \rho+\partial_{x}(u \rho)=\partial_{x}\left(\left(\lambda^{2}-\varepsilon^{2}|\partial F(\rho)|^{2}\right) \partial_{x} \rho\right)+\lambda^{2} \varepsilon^{2} \partial_{x}\left(\partial_{x x} F(\rho)+\partial F(\rho)_{x x} \rho\right)-\lambda^{2} \varepsilon^{2} \partial_{x x x x} \rho
$$

- We introduce $\alpha>|\partial F(\rho)|$. Choosing $D=\lambda^{2}-\varepsilon^{2} \alpha^{2}$ we obtain

$$
\partial_{t} \rho+\partial_{x}(u \rho)=\partial_{x}\left(D \partial_{x} \rho\right)+O\left(\varepsilon^{2}\right)
$$

- Results $\left(\Delta t \gg \Delta_{\exp }\right)\left(\right.$ Order 1. Left: $\frac{\Delta t}{\varepsilon}=0.1$, Middle: $\frac{\Delta t}{\varepsilon}=1$, Right: $\left.\frac{\Delta t}{\varepsilon}=10\right)$:

Current Work II: diffusion

- We want solve the equation: $\partial_{t} \rho+\partial_{x}(u \rho)=D \partial_{x x} \rho$
- Kinetic system proposed (S. Jin, F. Bouchut):

$$
\left\{\begin{array}{l}
\partial_{t} f_{-}-\frac{\lambda}{\xi} \partial_{x} f_{-}=\frac{1}{\varepsilon^{2}}\left(f_{e q}^{-}-f_{-}\right) \\
\partial_{t} f_{+}+\frac{\hat{\lambda}}{\varepsilon} \partial_{x} f_{+}=\frac{1}{\varepsilon^{2}}\left(f_{e q}^{+}-f_{+}\right)
\end{array}\right.
$$

■ with $f_{e q}^{ \pm}=\frac{\rho}{2} \pm \frac{\varepsilon(u \rho))}{2 \lambda}$. The limit is given by:

$$
\partial_{t} \rho+\partial_{x}(u \rho)=\partial_{x}\left(\left(\lambda^{2}-\varepsilon^{2}|\partial F(\rho)|^{2}\right) \partial_{x} \rho\right)+\lambda^{2} \varepsilon^{2} \partial_{x}\left(\partial_{x x} F(\rho)+\partial F(\rho)_{x x} \rho\right)-\lambda^{2} \varepsilon^{2} \partial_{x x x x} \rho
$$

- We introduce $\alpha>|\partial F(\rho)|$. Choosing $D=\lambda^{2}-\varepsilon^{2} \alpha^{2}$ we obtain

$$
\partial_{t} \rho+\partial_{x}(u \rho)=\partial_{x}\left(D \partial_{x} \rho\right)+O\left(\varepsilon^{2}\right)
$$

- Results (Order 2. Left: $\frac{\Delta t}{\varepsilon}=0.1$, Middle: $\frac{\Delta t}{\varepsilon}=1$, Right: $\frac{\Delta t}{\varepsilon}=10$):

Current Work II: diffusion

- We want solve the equation: $\partial_{t} \rho+\partial_{x}(u \rho)=D \partial_{x x} \rho$
- Kinetic system proposed (S. Jin, F. Bouchut):

$$
\left\{\begin{array}{l}
\partial_{t} f_{-}-\frac{\lambda}{\varepsilon} \partial_{x} f_{-}=\frac{1}{\varepsilon^{2}}\left(f_{e q}^{-}-f_{-}\right) \\
\partial_{t} f_{+}+\frac{\grave{\lambda}}{\varepsilon} \partial_{x} f_{+}=\frac{1}{\varepsilon^{2}}\left(f_{e q}^{+}-f_{+}\right)
\end{array}\right.
$$

- with $f_{e q}^{ \pm}=\frac{\rho}{2} \pm \frac{\varepsilon(u \rho))}{2 \lambda}$. The limit is given by:

$$
\partial_{t} \rho+\partial_{x}(u \rho)=\partial_{x}\left(\left(\lambda^{2}-\varepsilon^{2}|\partial F(\rho)|^{2}\right) \partial_{x} \rho\right)+\lambda^{2} \varepsilon^{2} \partial_{x}\left(\partial_{x x} F(\rho)+\partial F(\rho)_{x x} \rho\right)-\lambda^{2} \varepsilon^{2} \partial_{x x x x} \rho
$$

- We introduce $\alpha>|\partial F(\rho)|$. Choosing $D=\lambda^{2}-\varepsilon^{2} \alpha^{2}$ we obtain

$$
\partial_{t} \rho+\partial_{x}(u \rho)=\partial_{x}\left(D \partial_{x} \rho\right)+O\left(\varepsilon^{2}\right)
$$

- Consistency limit condition: $\varepsilon>\Delta t$. ε is a non physical parameter. We can choose $\varepsilon=\alpha \Delta t$ with $\alpha \gg 1$

	$\alpha=10$		$\alpha=50$	
	Error	order	Error	order
$\Delta t=0.02$	$1.7 E^{-2}$	-	$3.5 E^{-1}$	-
$\Delta t=0.01$	$4.4 E^{-4}$	5.3	$1.5 E^{-1}$	1.2
$\Delta t=0.005$	$1.4 E^{-5}$	5	$3.36 E^{-2}$	2.1
$\Delta t=0.0025$	$5.6 E^{-6}$	1.3	$1.78 E^{-3}$	4.2

■ Convergent only for $\alpha \gg 1$ since spitting scheme are not AP. Future work: Design AP scheme.

Current Work III: Positive discretization

- Most important error: the error due to the relaxation.
- Time numerical dispersion: when ε is zero the second order relaxation scheme is $\boldsymbol{f}^{*}=2 \boldsymbol{f}^{\text {eq }}-\boldsymbol{f}^{n}$. We oscillate around the equilibrium.
- More the wave structure is close to the original one more \|f $\boldsymbol{f}^{e q}-\boldsymbol{f}^{n} \|$ is small. Reduce the oscillations around $f^{e q}$.

Limiting/entropic technic for relaxation

- Relaxation step: $\boldsymbol{f}^{n+1}=\boldsymbol{f}^{e q}+w_{1}(\varepsilon)\left(\boldsymbol{f}^{n}-\boldsymbol{f}^{e q}\right)$ with $w_{1}(\varepsilon)=\frac{\varepsilon-(1-\theta) \Delta t}{\varepsilon+\theta \Delta t}$
\square Entropic correction (I. V. Karlin 98): find ε such that $H\left(\boldsymbol{f}^{e q}+w_{1}(\varepsilon)\left(\boldsymbol{f}^{n}-\boldsymbol{f}^{e q}\right)\right)=H\left(\boldsymbol{f}^{n}\right)$ with H the entropy.
\square Limiting technic: We have $w_{1}=-1$ ordre 2. $w_{1}=0$ ordre 1 .
$\square \boldsymbol{f}^{n+1}=\boldsymbol{f}^{e q}+\phi\left(w_{1}(\varepsilon)\right)\left(\boldsymbol{f}^{n}-\boldsymbol{f}^{e q}\right)$ with ϕ a limiter such that $\phi\left(w_{1}\right) \approx-1$ if $\left\|\boldsymbol{f}^{n}-\boldsymbol{f}^{e q}\right\|<$ tol and $\phi\left(w_{1}\right) \approx 0$ if $\left\|\boldsymbol{f}^{n}-\boldsymbol{f}^{e q}\right\| \gg 1$.

Spatial dispersion

- Limiting technic for DG solver. Problem: time dispersion of transport DG solver. Open question
- SL- Scheme: SL method based on bounded polynomial (B. Després 16), positive FV-SL or DG-SL.

Current Work IV: Low Mach Limit

Low-Mach limit

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0, \\
\partial_{t}(\rho \boldsymbol{u})+\nabla \cdot(\rho \boldsymbol{u} \otimes \boldsymbol{u})+\frac{1}{M^{2}} \nabla p=0
\end{array}\right.
$$

- We need $\lambda>\frac{1}{M}$. Order one : huge diffusion, ordrr two: huge dispersion for $M \ll 1$.
- Similar problem: stationary MHD vortex. $\lambda=20$

- Left: init, middle: order $1 t=30$, right: order $2 t=150$.

Solution

- Kinetic model with zero velocity + SL for transport (non error in time)
- Two scales kinetic model with order 1 only for the fast scale.

Conclusion

Advantages

- Initial problem: invert a nonlinear conservation law is very difficult. High CPU cost (storage and assembly of problem. Slow convergence of iterative solvers).
- Advantage of method: replace the complex nonlinear problem (with a huge and increasing cost) by some simple independent problems (with a small and stable cost).

Drawbacks

- High-time error (diffusion/dispersion) since we overestimate the transport. Order 1:

Euler imp	D1Q2 FV-DG
$\frac{\Delta t}{2} \partial_{x}\left(\boldsymbol{A}(\boldsymbol{U})^{2} \partial_{x} \boldsymbol{U}\right)$	$\frac{\Delta t}{2}\left(\partial_{x}\left(\lambda^{2} I_{d}+\lambda^{2} I_{d}-A(\boldsymbol{U})^{2}\right) \partial_{x} \boldsymbol{U}\right)$
D1Q2 SL	
$\frac{\Delta t}{2}\left(\partial_{x}\left(I_{d} \lambda^{2}-A(\boldsymbol{U})^{2}\right) \partial_{x} \boldsymbol{U}\right)$	$\frac{\Delta t}{2}\left(\partial_{x}\left(I_{d} \lambda\left\|A_{v}(\boldsymbol{U})\right\|-A(\boldsymbol{U})^{2}\right) \partial_{x} \boldsymbol{U}\right)$

- Additional error is reduced using transport SL scheme, good kinetic representation (and limiting technic for second order).
- Second drawback: With this method we reformulate the equations. Some points are more complex: BC, equilibrium etc.

Perspectives

- BC, Equilibrium, Positivity, Diffusion, low-Mach limit, MHD, SL on general meshes.

Conclusion II

- Test: low-mach case. 8800 cells $h=0.005$, Degree of polynomial: 3 .
- $\Delta t=0.04:$ CFL FV $\approx 100, \mathrm{CFL} \mathrm{HO} \approx 300$.
- (1) Implicit CN + FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

- Left: scheme (1). Right: scheme (2), Black: reference solution.

Conclusion II

- Test: low-mach case. 8800 cells $h=0.005$, Degree of polynomial: 3.
- $\Delta t=0.04:$ CFL FV ≈ 100, CFL HO ≈ 300.
- (1) Implicit CN + FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

- Left: scheme (1). Right: scheme (3), Black: reference solution.

Conclusion II

- Test: low-mach case. 8800 cells $h=0.005$, Degree of polynomial: 3 .
- $\Delta t=0.04:$ CFL FV ≈ 100, CFL HO ≈ 300.
- (1) Implicit CN + FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

- Left: scheme (1). Right: scheme (4), Black: reference solution.

Conclusion II

- Test: low-mach case. 8800 cells $h=0.005$, Degree of polynomial: 3 .
- $\Delta t=0.04:$ CFL FV ≈ 100, CFL HO ≈ 300.
- (1) Implicit CN + FE method, (2) D1Q2 CN + FE, (3) D1Q2 SL, (4) D1Q3 SL.

■ Left: scheme (1). Right: scheme (4), Black: reference solution.

Conclusion

- Conclusion: as expected D1Q3 SL closed to CN implicit scheme.
- CPU time difficult to compare since the code are different.
- But: 170 sec for (1), 110 sec for (2), 1.6 sec for (3), 1.7 sec for (4)

