Familles de modèles : des fluides au transport routier, piétonnier, ou intracellulaire

Cécile Appert-Rolland*

Laboratoire de Physique Théorique CNRS / University Paris-Sud / University Paris-Saclay

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017 1 / 88

Plan

- Introduction : model families
- Road Traffic
 - Cellular automata
 - Macroscopic models
 - Follow-the-leader models and Micro-Macro derivation
 - Kinetic model of a bidirectional road
- Pedestrians
 - Microscopic models
 - Micro-Macro derivation
 - Macroscopic models
 - Ped-following model
 - Cellular automaton for flow crossing and pattern formation
- Intracellular transport
 - Dynamics of cargo-motor complexes
 - Dynamics of the network

Modèles pour les fluides

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

ROAD TRAFFIC

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017 4 / 88

(日)

Modèles pour le traffic routier

Cellular automata simulations

Road = divided into cells Particle = vehicle State = speed (between 0 and v_{MAX}) Evolution rules = acceleration and deceleration + propagation

- Pionnering work [Nagel & Schreckenberg (1992)]
- Model by [Knospe et al (2000)]
 - finite braking capacity
 - anticipation
 - slow-to-start rule -> metastability

Many improvements, real life applications

・ロト ・四ト ・ヨト ・ヨト

Modèles pour le traffic routier

Macroscopic model for car traffic

Mass conservation

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017 9 / 88

э

Macroscopic model for car traffic

Mass conservation

Payne-Whitham model (1971)

$$\partial_t \rho + \partial_x (\rho u) = 0$$

$$\partial_t u + u \partial_x u = -\frac{1}{\rho} \rho'(\rho) \partial_x \rho + \frac{1}{\tau} (V(\rho) - u)$$

C. Appert-Rolland (LPT)

Aw-Rascle model (2000)

$$\partial_t \rho + \partial_x (\rho u) = 0$$

$$\partial_t (\rho u) + \partial_x (\rho u u) = -\rho \frac{d\rho}{dt} + \frac{1}{\tau} (V(\rho) - u)$$

where

$$d/dt = \partial_t + u\partial_x \tag{1}$$

э

Modèles pour le traffic routier

11/88

Un exemple :

[Aw et al (2000)]

$$egin{array}{rcl} \dot{x}_i &=& v_i \ \dot{v}_i &=& C_\gamma rac{(v_{i+1}-v_i)}{(x_{i+1}-x_i)^{\gamma+1}} + Arac{1}{T_r} \left(V(
ho_i)-v_i
ight) \end{array}$$

where

$$\rho_i = \frac{l}{(x_{i+1} - x_i)}$$

IHP 5th April 2017 12 / 88

Đ.

・ロト ・四ト ・ヨト ・ヨト

Micro-Macro derivation

Pas de chaos moléculaire

Systèmes homogènes

$$\rho_i = \frac{l}{(x_{i+1} - x_i)}$$

[Berg, Mason, Woods, PRE (2000)]

Systèmes inhomogènes

$$\int_0^{x_{i+1}-x_i}\rho(x+y)dy=1$$

Expansion in powers of y

Modèles pour le traffic routier

Bidirectional road

[C. Appert-Rolland, H.J. Hilhorst and G. Schehr : *Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic*, J. Stat. Mech. (2010) P08024]

Continuous space and time

- Distribution of desired velocities P(v) (Minimum v₀)
- Need a delay τ_0 to take over

For a given lane...

A vehicle with desired velocity v has to wait for a queuing time $\tau(v')$ to take over a vehicle of velocity v' < v.

For a given lane...

A vehicle with desired velocity v has to wait for a queuing time $\tau(v')$ to take over a vehicle of velocity v' < v.

→ possible to compute the effective velocity $\phi(v)$ of each vehicle having a desired velocity v

16/88

For a given lane...

A vehicle with desired velocity v has to wait for a queuing time $\tau(v')$ to take over a vehicle of velocity v' < v.

→ possible to compute the effective velocity $\phi(v)$ of each vehicle having a desired velocity v

Open boundary conditions
 Injection with rate ω

$$\frac{1}{\phi(v)} = \frac{1}{v_0} - \int_{v_0}^{v} dv' \left[v' + \int_{v_0}^{v'} dv'' (v' - v'') \bar{\omega} P(v'') \tau(v'') \right]^{-2}$$

 $\Rightarrow In particular \phi(v_0) = v_0$

Similar expressions for periodic boundary conditions

Density of platoons of a certain length

Density of free vehicles, etc ...

C. Appert-Rolland (LPT)

IHP 5th April 2017 16 / 88

Mean-field coupling between 2 lanes

The waiting time $\tau(v_{slow})$ is computed from the configuration on the other lane (distribution of holes).

How long does it take to meet in the opposite lane a hole of duration greater than τ_0 ?

- Mean-field coupling between the lanes
- Two coupled equations to solve numerically

Mean-field coupling between 2 lanes

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017

18 / 88

- Spontaneous symmetry breaking in a mean-field description of a bidirectional road
- Microscopic model: asymmetry also observed between the lanes
- Size of the vehicles negligeable if $\bar{\rho} <<$ 40 veh/km;
 - Transition around $\bar{\rho} = 5$ veh/km, observable on real data?

PEDESTRIANS

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017

2

20/88

・ロン ・ 一 レ ・ 三 と ・ 三 と …

Modèles pour le traffic piétonnier

Familles de modèles pour le transport

IHP 5th April 2017 21 / 88

- Mass conservation
- Transport in 2D space
- Destination for each pedestrian
- Less inertial effects

First Generation Models

- Boids
- Rule models
- Force models

Boids

[Craig W. Reynolds, Computer Graphics (1987)]

• Flocks, Herds, and Schools

First Generation Models

- Boids
- Rule models
- Force models

Social force model

[D. Helbing & P. Molnár, PRE (1995)]

- Position Based Model
- Multiple interactions: Sum of forces

First Generation Models

- Boids
- Rule models
- Force models

Cellular automata model

- Floor field model
- ➡ isotropy pbl

[C. Burstedde et al, Physica A 295 (2001) 507-525]

PEDGO Software

Familles de modèles pour le transport

Velocity based models

- [Paris, Pettré, Donikian (2007)]
- [RVO (2008)]
- [Pettré et al (2009)]
- [Ondrej et al (2010), Moussaïd et al (2011)]
- Determination of admissible velocities (to avoid collision in the next few seconds)
- Optimal choice among this set of velocity

[Paris et al (2007)]

- [Paris, Pettré, Donikian (2007)]
- [RVO (2008)]
- [Pettré et al (2009)] Velocities are gradually evaluated
- [Ondrej et al (2010), Moussaïd et al (2011)] → Decoupling of velocity modulus and angle
- Determination of admissible velocities (to avoid collision in the next few seconds)
- Optimal choice among this set of velocity
- Automatic composition of interactions

Familles de modèles pour le transport

- [Paris, Pettré, Donikian (2007)]
- [RVO (2008)]
- [Pettré et al (2009)]
- [Ondrej et al (2010), Moussaïd et al (2011)]

- Determination of velocities ?
- visual information
- cognitive process

Vision based model [Ondrej et al, SIGGRAPH 2010]

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017

3

24/88

[Ondrej et al, SIGGRAPH 2010] [Cutting et al, 1995]

[Ondrej et al, SIGGRAPH 2010] [Cutting et al, 1995]

[Ondrej et al, SIGGRAPH 2010] [Cutting et al, 1995]

- Movement
- Size

- Movement
- time Derivative of the Bearing Angle (DBA) \(\alphi_{ij}\)
 - ☆ Future collision if $\dot{\alpha_{ij}} = 0$
- Size
- → time to interaction (tti) τ_{ij}
 - ☆ Soon if τ_{ij} small

글 🕨 🖌 글

< 17 ▶

[Ondrej et al, SIGGRAPH 2010]

Velocity can change in

- modulus
- direction

э
[Ondrej et al, SIGGRAPH 2010]

Velocity can change in

- modulus
- direction \checkmark

э

Vision based model: Reaction

[Degond, A-R, Pettré, Theraulaz (2013) Kinetic and Related Models]

How threatening is the collision?

$$\Phi(|\dot{\alpha}_{ij}|, |\tau_{ij}|) = \Phi_0 \max\{\sigma - |\dot{\alpha}_{ij}|, 0\} \text{ with } \sigma = a + \frac{b}{(|\tau_{ij}| + \tau_0)^c}$$

Parameters *a*, *b*, and *c* can be evaluated from experiments
τ₀ will bound the angular speed of pedestrians

Vision based model: Reaction

[Degond, A-R, Pettré, Theraulaz (2013) Kinetic and Related Models]

How threatening is the collision?

$$\Phi(|\dot{\alpha}_{ij}|, |\tau_{ij}|) = \Phi_0 \max\{\sigma - |\dot{\alpha}_{ij}|, 0\} \text{ with } \sigma = \mathbf{a} + \frac{\mathbf{b}}{(|\tau_{ij}| + \tau_0)^c}$$

- One pair interaction: Φ = angular velocity
- In general:
 - Multiple interactions
 - Target ξ

→ $\Phi_c(\mathbf{x}, \mathbf{u}, \xi)$ = cost function of most threatening collision = max_j Φ

→ $\Phi_t(\mathbf{x}, \mathbf{u}, \xi)$ = cost function for deviating from the target min($\Phi_c + \Phi_t$) → optimal velocity $\mathbf{u}_i(t)$ ($||\mathbf{u}_i|| = 1$) Probability distribution $f(\mathbf{x}, \mathbf{u}, \xi, t)$

$$\partial_t f + c \mathbf{u} \cdot \nabla_x f + \nabla_u \cdot (\omega_f \mathbf{u}^{\perp} f) = d\Delta_u f.$$

Determination of $\omega_f(\mathbf{x}, \mathbf{u}, \xi, t)$:

Extremum of cost function is ill-defined when a probability distribution is considered

- $\Rightarrow \Phi_c(\mathbf{x}, \mathbf{u}, t) =$ weighted average of the cost functions Φ
- $\Rightarrow \Phi_t(\mathbf{x}, \mathbf{u}, \xi, t)$ is the same as for the IBM

$$\Rightarrow \omega_f(\mathbf{x}, \mathbf{u}, \xi, t) \mathbf{u}^{\perp} = -\nabla_u \left[\Phi_c(\mathbf{x}, \mathbf{u}, \xi, t) + \Phi_t(\mathbf{x}, \mathbf{u}, \xi, t) \right]$$

Macroscopic model

$$\rho(\mathbf{x},\xi,t) = \int_{\mathbf{u}\in\mathbb{S}^1} f(\mathbf{x},\mathbf{u},\xi,t) \, d\mathbf{u},$$
$$\mathbf{U}(\mathbf{x},\xi,t) = \frac{1}{\rho(\mathbf{x},\xi,t)} \, \int_{\mathbf{u}\in\mathbb{S}^1} f(\mathbf{x},\mathbf{u},\xi,t) \, \mathbf{u} \, d\mathbf{u}$$

Moment method

Multiply the kinetic equation by the moments of \mathbf{u} : $(1, \mathbf{u}, \cdots)$ Integrate over \mathbf{u}

➡ Closure problem → Need for a closure relation

Monokinetic closure

$$f(\mathbf{x}, \mathbf{u}, \xi, t) = \rho(\mathbf{x}, \xi, t) \delta_{\mathbf{U}(\mathbf{x}, \xi, t)}(\mathbf{u}).$$

(no noise)

$$\partial_t \mathbf{U} + c \mathbf{U} \cdot \nabla_x \mathbf{U} = \omega_{\rho \delta_U}(\mathbf{x}, \mathbf{U}(\mathbf{x}, \xi, t), \xi, t) \mathbf{U}^{\perp}(\mathbf{x}, \xi, t)$$

where again $\omega_{\rho\delta_{II}}$ is determined from a cost function.

Other closure relations are possible

Hydrodynamic limit

Force and diffusion dominate \rightarrow Development around a Local Thermodynamical Equilibrium solution f^0

$$\nabla_{u} \cdot (\omega_{f}^{0} \mathbf{u}^{\perp} f^{0}) = d\Delta_{u} f^{0}.$$

First order macroscopic model

$$\partial_t \rho_{(x,t)}(\xi) + \nabla_x \cdot (c \rho_{(x,t)}(\xi) U_{x,[\rho_{(x,t)}]}(\xi)) = 0$$

supplemented by a relation giving $U_{x,[\rho_{(x,t)}]}(\xi)$

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017 32 / 88

- Compare macroscopic models
- Can macroscopic model reproduce pattern formation?

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

PEDIGREE = PEDestrian GRoups: EmErgence of collective behavior through experiments, modelling and simulation

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017

(日)

PEDIGREE Project

IHP 5th April 2017

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Experiments

Aim:

- Well-controlled experiments
- Reference data
- Multi-scale data

High precision motion capture: VICON system

Familles de modèles pour le transport

IHP 5th April 2017

Experiments with pedestrians

Two experimental campaigns (250 persons), with the help from M2S (Univ. Rennes 2)

Ring corridor Mono- or bi-directional flow

➡ lane formation, jamming

One-dimensional circle No passing

➡ longitudinal interactions

37 / 88

Reconstruction of trajectories

- From raw data to 3D markers' trajectories
- From markers to pedestrians
- Interpolating for missing data

[M. Moussaïd, E. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron,
S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and
G. Theraulaz, *Traffic Instabilities in Self-organized Pedestrian Crowds*,
PLoS Computational Biology (2012)]

C. Appert-Rolland (LPT)

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

Macroscopic model for pedestrians in a corridor

$$\begin{aligned} \partial_t \rho_+ &+ \partial_x (\rho_+ u_+) = \mathbf{0}, \\ \partial_t \rho_- &+ \partial_x (\rho_- u_-) = \mathbf{0}, \\ \partial_t (\rho_+ u_+) &+ \partial_x (\rho_+ u_+ u_+) = -\rho_+ \left(\frac{d}{dt}\right)_+ [p(\rho_+, \rho_-)], \\ \partial_t (\rho_- u_-) &+ \partial_x (\rho_- u_- u_-) = \rho_- \left(\frac{d}{dt}\right)_- [p(\rho_-, \rho_+)], \end{aligned}$$

where

$$(d/dt)_{\pm} = \partial_t + u_{\pm}\partial_x$$

[C. A-R, P. Degond, and S. Motsch. *Two-way multi-lane trafic model for pedestrians in corridors*. Networks and Heterogeneous Media, **6**:351, (2011).]

Macroscopic model for pedestrians in a corridor

$$u_{+} = w_{+} - p(\rho_{+}, \rho_{-})$$

$$-u_{-} = w_{-} - p(\rho_{-}, \rho_{+})$$

where w is a Rieman invariant

$$\partial_t w_+ + u_+ \partial_x w_+ = 0$$

 $\partial_t w_- + u_- \partial_x w_- = 0$

Đ.

・ロト ・ 四ト ・ ヨト ・ ヨト

$$p(
ho_+,
ho_-)=P(
ho)+Q^arepsilon(
ho_+,
ho_-), \quad ext{with} \quad
ho=
ho_++
ho_-$$

$$egin{aligned} \mathcal{P}(
ho) &= M
ho^m, \quad m \geq 1, \ &\mathcal{Q}^arepsilon(
ho_+,
ho_-) &= rac{arepsilon}{q(
ho_+)\left(rac{1}{
ho}-rac{1}{
ho^*}
ight)^\gamma}, \quad \gamma > 1. \end{aligned}$$

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

$$p(
ho_+,
ho_-) = {oldsymbol{P}}(
ho_+,
ho_-), \quad ext{with} \quad
ho =
ho_+ +
ho_-$$

$$egin{aligned} \mathcal{P}(
ho) &= M
ho^m, \quad m \geq 1, \ &\mathcal{Q}^arepsilon(
ho_+,
ho_-) &= rac{arepsilon}{q(
ho_+)\left(rac{1}{
ho}-rac{1}{
ho^*}
ight)^\gamma}, \quad \gamma > 1. \end{aligned}$$

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

$$p(
ho_+,
ho_-)=P(
ho)+oldsymbol{Q}^arepsilon(
ho_+,
ho_-), \hspace{1em} ext{with} \hspace{1em}
ho=
ho_++
ho_-$$

$$P(\rho) = M\rho^{m}, \quad m \ge 1,$$
$$Q^{\varepsilon}(\rho_{+}, \rho_{-}) = \frac{\varepsilon}{q(\rho_{+})\left(\frac{1}{\rho} - \frac{1}{\rho^{*}}\right)^{\gamma}}, \quad \gamma > 1.$$

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

Ring

IHP 5th April 2017

æ

Time (s)

(ロ) (四) (日) (日) (日)

Familles de modèles pour le transport

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Density varying from 0.31 to 1.86 ped/m.

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

$$a(t) = Crac{\Delta v(t- au)}{\left[\Delta x(t)
ight]^{\gamma}}$$

[S. Lemercier et al, *A realistic model of following behavior for crowd simulation*, EUROGRAPHICS (2012)]

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017

45 / 88

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○ IHP 5th April 2017

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017 47 / 88

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Several regimes

• Free

- Weakly constrained
 - ► $t_{adaptation} = 5.32 \text{ s}$
- Strongly constrained

t_{adaptation} = 0.74 s

[A. Jelić, C. A-R, S. Lemercier, J. Pettré, *Properties of pedestrians walking in line – Fundamental diagrams*, Phys. Rev. E, **85** (2012) 036111]

IHP 5th April 2017 48 / 88

Diagonal instability: • observed in experiments

```
in
[Hoogendoorn & Daamen,
TGF'03 (Springer) 2005,
pp. 121]
```


글 🕨 🖌 글

Diagonal instability:observed in simulations

[Hoogendoorn & Bovy, Optim. Control Appl. Meth., 24 (2003) 153]

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017

Diagonal instability:

observed in simulations

[Ondrej et al, SIGGRAPH 2010]

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

Diagonal instability:

observed in simulations

[Ondrej et al, SIGGRAPH 2010] @

Familles de modèles pour le transport

э

∃ ► ★ ∃ ► ...

Diagonal instability:

observed in simulations

[Ondrej et al, SIGGRAPH 2010]

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

Diagonal instability:

observed in simulations

[Ondrej et al, SIGGRAPH 2010]

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

Diagonal instability:

observed in simulations

[Ondrej et al, SIGGRAPH 2010]

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

Diagonal instability:

observed in simulations

[Ondrei et al. SIGGRAPH 2010] @

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

- *E* = Eastbound particles
- *N* = Northbound particles

 $n^{\mathcal{E}}(\mathbf{r}), n^{\mathcal{N}}(\mathbf{r}) = \text{boolean oc-cupation variables}$

• As α increases: jamming transition

[H. J. Hilhorst, C. A-R, J. Stat. Mech. (2012) P06009]

Here we consider only the free flow phase.

C. Appert-Rolland (LPT)
Cellular automaton = geometry + rules + update

Frozen shuffle update

- Each particle has a phase $\tau_i \in [0, 1[$
- At each time step, update in the order of increasing phase.
- Alternating parallel update
 - *E* particles are updated in parallel at integer times *t*
 - \mathcal{N} particles are updated in parallel between integer times, at $t + \frac{1}{2}$

frozen shuffle update *M* = 640

 alternating parallel update

• *M* = 300

54 / 88

Summary: pattern depends on the boundary conditions

Familles de modèles pour le transport

IHP 5th April 2017

55 / 88

We postulate some mean-field equations:

$$\rho_{t+1}^{\mathcal{E}}(\mathbf{r}) = [1 - \rho_t^{\mathcal{N}}(\mathbf{r})]\rho_t^{\mathcal{E}}(\mathbf{r} - \boldsymbol{e}_x) + \rho_t^{\mathcal{N}}(\mathbf{r} + \boldsymbol{e}_x)\rho_t^{\mathcal{E}}(\mathbf{r}) \rho_{t+1}^{\mathcal{N}}(\mathbf{r}) = [1 - \rho_t^{\mathcal{E}}(\mathbf{r})]\rho_t^{\mathcal{N}}(\mathbf{r} - \boldsymbol{e}_y) + \rho_t^{\mathcal{E}}(\mathbf{r} + \boldsymbol{e}_y)\rho_t^{\mathcal{N}}(\mathbf{r})$$

- pair correlations $\langle n^{\mathcal{E}}n^{\mathcal{N}}\rangle$ have been factorized
- interaction terms (n^Xn^X) between same-type particles have been neglected (low density)

Simulations: same patterns as for the particle model

Mean field equations

PBC

- Linear stability analysis $\rho_t^{\mathcal{E},\mathcal{N}}(\mathbf{r}) = \overline{\rho} + \delta \rho_t^{\mathcal{E},\mathcal{N}}(\mathbf{r})$
- Most unstable mode traveling in the (1, 1) direction with wavelength

$$\lambda_{\max} = 2\pi/|\mathbf{q}|_{\max} = 3\sqrt{2}[1-(\sqrt{3}/\pi)\overline{\rho}] + \mathcal{O}(\overline{\rho}^2),$$

OBC

- Linear stability analysis:
- Calculation of Green function [Cividini & Hilhorst (2014) arXiv:1406.5394]
- diagonals, but no sign of the chevron effect

Chevron effect = non linear effect

From which microscopic mechanism does the (tilted) diagonal pattern emerge?

 \blacktriangleright effective interaction between two ${\cal E}$ particles crossing a flow of ${\cal N}$ particles

B + 4 B +

Ensemble averaged wake

Frozen shuffle update

60 / 88

Microscopic structure of the wake:

Central part of the wake : the shadow

Construction:

Before move: white dot

< 17 ▶

• After move: black dot

At low density, $tan\theta \simeq 1 - \rho^{\mathcal{N}}$

INTRACELLULAR TRANSPORT

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017 62 / 88

э

Intra-cellular transport

Need for transport

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017

63 / 88

Intra-cellular transport

Need for transport

From [Wittmann et al, J. Cell Biol. 161:845 (2003)]

C. Appert-Rolland (LPT)

IHP 5th April 2017 64 / 88

Intra-cellular transport

- Particular case: the axon
 - up to 1 m in human beings, a few microns for the diameter
 - crowded environment

Shemesh & Spira, Acta Neuropathol 120, 209 (2010)

Cytoskeleton

Blue = DNA

Familles de modèles pour le transport

66 / 88

[National Institute on Aging - NIH]

(日)

Molecular Motors

[From www.ulysse.u-bordeaux.fr/atelier/ikramer/biocell_diffusion]

[Image crée à partir d'une image de wikipedia de Kebes]

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Molecular Motors

Microtubules are polarized

[Modified from www.ulysse.u-bordeaux.fr/atelier/ikramer/biocell_diffusion]

() < </p>

э

Tug-of-war

Endosome inside Dictyostelium cells.

[Soppina et al (2009) PNAS]

ヘロト ヘロト ヘヨト

Tug-of-war

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017 69 / 88

Modèles pour le transport intracellulaire

Stochastic Motor Dynamics:

- attachment rate $\tilde{\omega}$

- stepping rate
$$p = p(F_i)$$

- detachment rate $\omega = \omega(F_i)$

Cargo dynamics

$$m\frac{\partial^2 x_C(t)}{\partial t^2} = -\beta \frac{\partial x_C(t)}{\partial t} + F(x_C, \{x_i\}) \text{ where } F = \sum_i F_i$$

Asymmetric teams

Kinesins and dyneins behave differently

э

Stochastic motor dynamics

Detachment rate

э

Stochastic motor dynamics

• Stepping rate (for *F_i* below stall force) :

$$s(|F_i|, [ATP]) = \frac{k_{\text{cat}}(|F_i|)[ATP]}{[ATP] + k_{\text{cat}}(|F_i|)k_b(|F_i|)^{-1}},$$

Michaelis-Menten kinetics

From [Schnitzer et al (2000) Nat. Cell Biol.]

• Stepping rate (for F_i above stall force) : backward stepping $s_b = v_b/d$

Stochastic motor dynamics

[ATP] and force dependence

Comparison for kinesin

From [Schnitzer et al (2000) Nat. Cell Biol.]

From [Visscher et al (1999) Nature]

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017 72/88

How does this cargo-motors complex behave?

э

Control by external force

Effective viscosity dependence

$$N_{+} = N_{-} = 5$$

From [Klein et al (2014) EPL]

IHP 5th April 2017 73 / 88

Control by energy supply

Stall force ATP dependance

- Dynein: F_s varies linearly from 0.3 pN at vanishing [ATP] to 1.2 pN for saturating [ATP]
- Kinesin: constant $F_s = 2.6 \text{ pN}$

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017

74/88

Why pulling by two opposite teams?

- Easy control
- More efficient in a crowded environment

Active transport versus diffusion

[Klein et al, EPJST (2014)]

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017

・ロト ・四ト ・ヨト ・ヨト

76 / 88

э

Collective effects

Cellular automata models with one type of motors

- [Lipowsky, Klumpp, & Nieuwenhuizen, P.R.L. (2001)]
- [Parmeggiani, Franosch, & Frey, P.R.L. (2003)]
- [J. Tailleur, M. Evans, & Y. Kafri, P.R.L. (2009)]
- well suited for motility assays (in vitro), predicts the experimentally observed bulk localization of high and low density domains [Nishinari, Okada, Schadschneider, & Chowdhury, P.R.L. (2005)].

Axonal transport

Falnikar & Baas, Res. Prob. Cell. Diff. 48, 47 (2009)

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

78 / 88

[M. Ebbinghaus and L. Santen, J. Stat. Mech. (2009)]

Ingredients

- Two types of motors going in opposite directions
- Confined diffusion in the surrounding cytoplasm

Bidirectional intracellular traffic

- Particles accumulate in a large cluster
- Clustering increases with system size
- ➡ No transport in thermodynamic limit

Bidirectional intracellular traffic

- Particles accumulate in a large cluster
- Clustering increases with system size

Offering multiple filaments enhances cluster formation.

MTs exhibit stochastic switching between a shrinking and a growing state, termed dynamic instability.

[A. Viel, R. A. Lue and J. Liebler, BioVisions project, http://multi media.mcb.harvard.edu]

Microtubules seen by fluorescence in S. pombe (yeast) [M. Erent, D.R. Drummond, R.A. Cross (2012) PLoS ONE 7(2): e30738]

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017

э

82 / 88

イロト イポト イヨト イヨト
Experiment by [Shemesh and Spira, Traffic (2008)]

1s (video) = 120s (real time) Scale bar = 10 μ m

- Dynamics of the lattice
 - Some sites of the microtubule are eliminated with rate k_d and recreated with rate k_p .

84 / 88

< 17 ▶

- Dynamics of the lattice
 - Some sites of the microtubule are eliminated with rate k_d and recreated with rate k_p .

Bidirectional intracellular traffic

- Recovery of efficient transport through rapid dissolution of emerging clusters (optimal value of k_d).
- Transition to a density-dependent current.

[Ebbinghaus, Appert, Santen, PRE 82 (2010) 040901]

Robust for several types of lattice dynamics

Drugs modifying the dynamics of the microtubules induce jams!

• video 1: microtubule dynamics with and without drugs (Paclitaxel)

[Shemesh and Spira, Acta Neuropathol (2009)]

Drugs modifying the dynamics of the microtubules induce jams!

• video 2: microtubule dynamics and pinocytotic vesicles transport without drugs [Shemesh and Spira, Acta Neuropathol (2009)]

< □ > < 同 > < 三 > < 三 >

Drugs modifying the dynamics of the microtubules induce jams!

• video 3: microtubule dynamics and pinocytotic vesicles transport with drugs [Shemesh and Spira, Acta Neuropathol (2009)]

THE END

THANK-YOU !!!

C. Appert-Rolland (LPT)

Familles de modèles pour le transport

IHP 5th April 2017 87 / 88

(日)

For more details: http://www.th.u-psud.fr/page_perso/Appert/

Thank-you

2

イロト イポト イヨト イヨト