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The Fisher-KPP equation — a model for reaction-diffusion

∂th = ∂2x h + h − h2

In mean-field reaction-diffusion system (chemistry)
A and B diffuse A +B → 2A

For a very large concentration

h(x , t) = (proportion of A
around x at time t) =

x

h1

0

follows Fisher-KPP

Also the mean-field of an evolutionary problem
A and B diffuse A reproduces faster than B population size constant
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The Fisher-KPP equation — step initial condition

∂th = ∂2x h + h − h2

For a step initial condition, h(x , t) as a function of x .

Convergence to a travelling wave: h(µt + z , t)→ ω(z), µt
t → 2
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The Fisher-KPP equation — step initial condition

∂th = ∂2x h + h − h2

For a step initial condition, h(x , t) and h(x , t)ex−µt as a function of x .

h(µt + z , t)→ ω(z) with ω(z) ∼ Aze−z ,

(Scaling regime: h(µt + z , t)ez ≈ Aze− z2
4t ,)

µt = 2t − 3
2 ln t + Cste + o(1)
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The Fisher-KPP equation — other initial conditions

∂th = ∂2x h + h − h2

Compare h(x , t) and h(x , t) with initial conditions 1
1 + ex and 1 + .001ex/2

1 + ex

Not the same velocity, not the same travelling wave
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The Fisher-KPP equation — position of the front

∂th = ∂2x h + h − h2

Converges to a travelling wave, moving at velocity v :
h(µt + z , t)→ ωv(z),

µt
t → v

Velocity v depends only on how h0 decays at infinity

h0(x) ∼ Axαe−γx Ô⇒
⎧⎪⎪⎨⎪⎪⎩

v = 2 if γ ≥ 1,
v = γ + 1

γ > 2 if γ < 1.
Sublinear corrections depend also only on how h0 decays at infinity

Iff ∫ dx h0(x)xex <∞ µt = 2t − 3
2 ln t + C + o(1)

If h0(x) ∼ Axαe−x with α > −2 µt = 2t + α−1
2 ln t + C + o(1)

If h0(x) ∼ Axαe−γx with γ < 1 µt = vt + α
γ ln t + C + o(1)

Fisher-KPP is diffusion, linear growth and saturation
One can understand some terms with diffusion and linear growth only
Some other terms require saturation

The nature of the saturation term is not important
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The Fisher-KPP equation — universality

∂th = ∂2x h + h − h2 vc=2, γc=1
v(γ)=γ+γ−1

Diffusion, linear growth (h = 0 is unstable), saturation (h = 1 is stable).

Iff ∫ dx h0(x)xeγcx <∞, then µt = vct − 3
2γc

ln t + C + o(1)
If h0(x) ∼ e−γx and γ < γc , then v = v(γ) > vc

∂th = ∂2x h + h

////

− h42, h(x , t + 1) =

////

min [1,2∫
1

0
dεh(x − ε, t)

/

].

vc = 2, γc = 1 vc = 0.815172 . . ., γc = 5.26208 . . .

v(γ) = γ + 1
γ , v(γ) = 1

γ ln [2 eγ−1
γ ],

vc

γc

v

γ

To find v(γ):
linearise
h(x , t)∝ e−γ(x−vt)
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The Fisher-KPP front — precise position
∂th = ∂2x h + h − h2, initial condition h0, µt is the position: h(µt , t) = 1

2 .

Theorem (Bramson 1983)

µt = vct − 3
2γc

ln t + cste + o(1) for large t

if and only if ∫ dx h0(x)x eγcx <∞

Conjecture (Ebert and van Saarloos 2000)

µt = vct − 3
2γc

ln t + cste
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
iff ∫dx h0(x)x eγc x <∞

− 3
√

2π
γ5c v ′′(γc)

t−
1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
if ???

+ ⋯

¯
???

Conjecture (Our contribution)

µt = vct − 3
2γc

ln t + cste
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
iff ∫dx h0(x)x eγc x <∞

− 3
√

2π
γ5c v ′′(γc)

t−
1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
if ∫dx h0(x)x2eγc x <∞

+ K ln t
t +O(1t )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
if ∫dx h0(x)x3eγc x <∞
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Precise position — strategy

∂th = ∂2x h + h − h2 Diffusion, linear growth, saturation

There must be some saturation term
Otherwise, essentially linear
The results are universal

We construct an equation with the simplest possible saturation term
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Three approaches
First approach, on the lattice [Joint work with B. Derrida]

∂th(n, t) =
⎧⎪⎪⎨⎪⎪⎩

h(n, t) + h(n − 1, t) if h(n, t) < 1,
0 if h(n, t) = 1,

tn = [when h(n, t)
reaches 1

]

Main result Assuming h0(0) = 0 and h0(n)↘

∑
n≥1

h0(n)eλn = 1
eλ + 1

[2∑
n≥1

eλ(n− eλ+1
λ

tn) − eλ]

From there, extrain asymptotic behaviour of tn as n →∞.
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h(n, t) + h(n − 1, t) if h(n, t) < 1,
0 if h(n, t) = 1,

tn = [when h(n, t)
reaches 1

]

Third approach, in the continuum [Joint work with B. Derrida & J. Berestycki]

Let µt be the position where the front saturates:
h(x , t) = 1 if x < µt .

On the right of µt , be linear:
∂th = ∂2x h + h if x > µt .

Assume h is continuous and differentiable at µt :
h(µt , t) = 1, ∂xh(µt , t) = 0.

∂th = ∂2x h + h if x > µt , h(µt , t) = 1

/α

, ∂xh(µt , t) = 0

/β

.
Both h(x , t) and µt are unknown quantities!

Can be solved with same method as First approach. But is it a well-posed
problem ?
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Both h(x , t) and µt are unknown quantities!

Can be solved with same method as First approach. But is it a well-posed
problem ?
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Second approach, in the continuum
[Joint work with J. Berestycki, M. Roberts & S. Harris. Also studied by C. Henderson]

For any given µt⎧⎪⎪⎨⎪⎪⎩

∂th = ∂2x h + h if x > µt
h(µt , t) = 0

if µt grows too fast, h(µt + z , t)→ 0
if µt grows too slowly, h(µt + z , t)→∞
if µt grows just right, h(µt + z , t)→ ω(z)

h(x , t) =

et

∫ dy h0(y)Ey[δ(Bt − x)

1{Bs>µs ,∀s<t}

]
What are the µt such that h(µt + z , t)→ ω(z)? With a fast convergence rate?
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Let us get more technical

We focus on

∂th(n, t) =
⎧⎪⎪⎨⎪⎪⎩

h(n, t) + h(n − 1, t) if h(n, t) < 1,
0 if h(n, t) = 1.
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Model on the lattice

∂th(n, t) =
⎧⎪⎪⎨⎪⎪⎩

h(n, t) + h(n − 1, t) if h(n, t) < 1,
0 if h(n, t) = 1,

tn = [when h(n, t) reaches 1] .

Looking for h(n, t) ∼ e−γ(n−vt): γv = 1 + eγ
v(γ) = 1+eγ

γ γc = 1.27856 . . . , vc = 3.59112 . . .
γ

v

γ2γcγ1

v

vc

∑
n≥1

h0(n)eλn = 1
eλ + 1

[2∑
n≥1

eλ[n−v(λ)tn] − eλ] Assuming h0(0) = 0 and h0(n)↘

[Solve for t ∈ [tn, tn+1] with a generating function, and then glue things together]
Basic observation:

if h0(n) ∼ Ae−γn with γ < γc
pick λ = γ − ε; then ∑n≥1 h0(n)eλn ∼ A/ε
one must have tn ∼ n/v(γ) to reproduce the singularity in the R.H.S.:

[n − v(γ − ε) n
v(γ)] = nεv ′(γ)

v(γ)
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The case h0 = 0

∑
n≥1

h0(n)eλn = 1
eλ + 1

[2∑
n≥1

eλ[n−v(λ)tn] − eλ]

γ

v

γ2γcγ1

v

vc

If h0 = 0: ∑
n≥1

eλ[n−v(λ)tn] = eλ
2

= ∑
n≥1

enλ[1− v(λ)
vc ]−λv(λ)

λc vc (α lnn+rn)

Use tn = n
vc
+ α lnn+rn

γcvc
where rn = O(1).

Take now λ = γc − ε and use λ[1 − v(λ)
vc

] ≈ −γc
v ′′(γc)
2vc

ε2 =∶ −Qε2.

(nice function of ε) ≈ ∑
n≥1

e−nQε2−rnn−α ≈ (nice function of ε2) + cste(ε2)α−1

α = 3
2 to have a term of order ε

Remark: ∑
n≥1

e−nun−1.7 = 2.05 − 4.27u0.7 + 2.78u − 0.15u2 + 0.007u3 +⋯
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Bramson’s term

Ψ(λ) ∶=∑
n≥1

h0(n)eλn = 1
eλ + 1

[2∑
n≥1

eλ[n−v(λ)tn] − eλ] ; pick λ = γc − ε

If h0 = 0, to get the term of order ε right, one must take

tn =
n
vc

+
3
2 lnn +O(1)

γcvc

⇔ µt = vct − 3
2γc

ln t +O(1) Bramson!

If h0(n) ∼ Anαe−γcn

Then

Ψ(γc−ε) ≋∑
n

Anαe−εn

α = −3.1 ∶ Ψ(γc − ε) = a + bε+cε2 + kε2.1 +⋯
α = −3 ∶ Ψ(γc − ε) = a + bε + ε2 + kε2 ln ε +⋯

α = −2.9 ∶ Ψ(γc − ε) = a + bε + kε1.9 +⋯
α = −2.2 ∶ Ψ(γc − ε) = a + bε + kε1.2 +⋯
α = −2 ∶ Ψ(γc − ε) = a + kε ln ε +⋯

α = −1.7 ∶ Ψ(γc − ε) = a + kε0.7 +⋯
Bramson’s 3

2 ln t term is there if α < −2.
In fact, Bramson’s term is there iff Ψ(γc − ε) = a + bε +⋯.
Which means that Bramson’s term is there iff ∑n≥1 h0(n)n <∞.
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α = −2.9 ∶ Ψ(γc − ε) = a + bε + kε1.9 +⋯
α = −2.2 ∶ Ψ(γc − ε) = a + bε + kε1.2 +⋯
α = −2 ∶ Ψ(γc − ε) = a + kε ln ε +⋯

α = −1.7 ∶ Ψ(γc − ε) = a + kε0.7 +⋯
Bramson’s 3

2 ln t term is there if α < −2.

In fact, Bramson’s term is there iff Ψ(γc − ε) = a + bε +⋯.
Which means that Bramson’s term is there iff ∑n≥1 h0(n)n <∞.
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Ψ(λ) ∶=∑
n≥1

h0(n)eλn = 1
eλ + 1

[2∑
n≥1

eλ[n−v(λ)tn] − eλ] , and pick λ = γc − ε

Bramson’s term to get the ε term right iff ∑n≥1 h0(n)n <∞:

tn = n
vc
+

3
2 lnn+O(1)

γcvc
⇔ µt = vct − 3

2γc
ln t +O(1)

For tn = n
vc
+

3
2 lnn+C
γcvc

exactly: Ψ(γc − ε) = a + bε + kε2 ln ε +⋯

Remember:
If h0(n) ∼ Anαe−γc n

α = −3.1 ∶ Ψ(γc − ε) = a + bε+cε2 + kε2.1 +⋯
α = −3 ∶ Ψ(γc − ε) = a + bε + kε2 ln ε +⋯

α = −2.9 ∶ Ψ(γc − ε) = a + bε + kε1.9 +⋯

If α < −3, there is no ε2 ln ε term
The only way to get rid of it is to pick tn =

n
vc

+
3
2 lnn + C + K+o(1)√n

γcvc

This is the van Saarloos term, present iff Ψ(γc − ε) = a + bε+ o(ε2 ln ε)
(which is nearly the same as ∑n h0(n)eγc nn2 <∞).
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Thank you for listening!
µt = vct − 3

2γc
ln t + cste

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
iff ∫dx h0(x)x eγc x <∞

− 3
√

2π
γ5c v ′′(γc)

t−
1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
if ∫dx h0(x)x2eγc x <∞

+ K ln t
t +O(1t )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
if ∫dx h0(x)x3eγc x <∞

By matching singularities in a model on the lattice
É. Brunet and B. Derrida, An exactly solvable travelling wave equation in the
Fisher-KPP class, Journal of Statistical Physics 2015, 161 (4), 801.

Second approach, by computing some expectation of Brownian paths
J.Berestycki, É.Brunet, S.C.Harris and M.I.Roberts, Vanishing corrections for the position
in a linear model of FKPP fronts, Comm. in Mathematical Physics 2017, 349, 857

Third approach, by matching singularities in a model in the continuum
J.Berestycki, É.Brunet and B. Derrida, Exact solution and precise asymptotics of a
Fisher-KPP type front, https://arxiv.org/abs/1705.08416

Remark: for a step initial condition, with µt = 2t + δt :

∀ε > 0, ∫
∞

0
dt e−ε2t+(1−ε)δt = 1 Ô⇒ δt = −

3
2
ln t + a − 3

√
π√
t
+K ln t

t +⋯
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By matching singularities in a model on the lattice
É. Brunet and B. Derrida, An exactly solvable travelling wave equation in the
Fisher-KPP class, Journal of Statistical Physics 2015, 161 (4), 801.

Second approach, by computing some expectation of Brownian paths
J.Berestycki, É.Brunet, S.C.Harris and M.I.Roberts, Vanishing corrections for the position
in a linear model of FKPP fronts, Comm. in Mathematical Physics 2017, 349, 857

Third approach, by matching singularities in a model in the continuum
J.Berestycki, É.Brunet and B. Derrida, Exact solution and precise asymptotics of a
Fisher-KPP type front, https://arxiv.org/abs/1705.08416

Remark: for a step initial condition, with µt = 2t + δt :

∀ε > 0, ∫
∞

0
dt e−ε2t+(1−ε)δt = 1

Ô⇒ δt = −
3
2
ln t + a − 3

√
π√
t
+K ln t

t +⋯
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Bonus: linear FKPP
∂th = ∂2x h + h if x > µt , h(µt , t) = 0

h(x , t) = ∫ dy h(y ,0)

. . .etq(x , t; y)

, q(x , t; y) = Ey
Bro[δ(Bt−x)

. . .1{Bs>µs ,∀s<t}

]

Write Bs = µs + ξs and make a Girsanov transform

q(µt + x , t; y) = Ey
Bro[δ(ξt − x)1{ξs>0,∀s<t}e−

1
2 ∫

t
0 µ

′
sdξs ]e−

1
4 ∫

t
0 (µ′s)2ds

= Ey
Bro[e

− 1
2 ∫

t
0 µ

′
sdξs ∣ξt = x , ξs > 0]Ey

Bro[δ(ξt − x)1{ξs>0,∀s<t}]e−
1
4 ∫

t
0 (µ′s)2ds

= Ey
Bes[e

− 1
2 ∫

t
0 µ

′
sdξs ∣ξt = x] Ey

Bro[δ(ξt − x)1{ξs>0,∀s<t}]e−
1
4 ∫

t
0 (µ′s)2ds

Ey
Bes[e

− 1
2 ∫

t
0 µ

′
sdξs ∣ξt = x] = Ey

Bes[e
− 1
2 ∫

t
0 µ

′
s(dξs− x−y

t ds)∣ξt = x]e−
x−y
2t µt

Ey
Bes[e

− 1
2 ∫

t
0 µ

′
s(dξs− x−y

t ds)∣ξt = x] ≈ Ey
Bes[e

− 1
2 ∫

∞
0 µ′sdξs ]
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