# Universal vanishing corrections on the position of fronts in the Fisher-KPP class 

Éric Brunet

May the $3^{\text {rd }}, 2017$, Paris

## The Fisher-KPP equation - a model for reaction-diffusion

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

The Fisher-KPP equation - a model for reaction-diffusion

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

In mean-field reaction-diffusion system (chemistry)
$A$ and $B$ diffuse $\quad A+B \rightarrow 2 A$


The Fisher-KPP equation - a model for reaction-diffusion

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

In mean-field reaction-diffusion system (chemistry)

$$
A \text { and } B \text { diffuse } \quad A+B \rightarrow 2 A
$$



For a very large concentration

$$
h(x, t)=\binom{\text { proportion of } A}{\text { around } x \text { at time } t}=\underbrace{h}_{0} \text { follows Fisher-KPP }
$$

The Fisher-KPP equation - a model for reaction-diffusion

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

In mean-field reaction-diffusion system (chemistry)

$$
A \text { and } B \text { diffuse } \quad A+B \rightarrow 2 A
$$



For a very large concentration

$$
h(x, t)=\binom{\text { proportion of } A}{\text { around } x \text { at time } t}=\underbrace{h}_{0} \text { follows Fisher-KPP }
$$

Also the mean-field of an evolutionary problem
$A$ and $B$ diffuse $\quad A$ reproduces faster than $B$ population size constant

## The Fisher-KPP equation - step initial condition

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

For a step initial condition, $h(x, t)$ as a function of $x$.


## The Fisher-KPP equation - step initial condition

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

For a step initial condition, $h(x, t)$ as a function of $x$.


Convergence to a travelling wave: $\quad h\left(\mu_{t}+z, t\right) \rightarrow \omega(z), \frac{\mu_{t}}{t} \rightarrow 2$

## The Fisher-KPP equation - step initial condition

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

For a step initial condition, $h(x, t)$ and $h(x, t) e^{x-\mu_{t}}$ as a function of $x$.


## The Fisher-KPP equation - step initial condition

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

For a step initial condition, $h(x, t)$ and $h(x, t) e^{x-\mu_{t}}$ as a function of $x$.

$h\left(\mu_{t}+z, t\right) \rightarrow \omega(z) \quad$ with $\omega(z) \sim A z e^{-z}$,
(Scaling regime: $h\left(\mu_{t}+z, t\right) e^{z} \approx A z e^{-\frac{z^{2}}{4 t}}$ )

## The Fisher-KPP equation - step initial condition

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

For a step initial condition, $h(x, t)$ and $h(x, t) e^{x-\mu_{t}}$ as a function of $x$.

$h\left(\mu_{t}+z, t\right) \rightarrow \omega(z) \quad$ with $\omega(z) \sim A z e^{-z}$,
(Scaling regime: $\left.h\left(\mu_{t}+z, t\right) e^{z} \approx A z e^{-\frac{z^{2}}{4 t}}\right)$

$$
\mu_{t}=2 t-\frac{3}{2} \ln t+\text { Cste }+o(1)
$$

## The Fisher-KPP equation - other initial conditions

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

Compare $h(x, t)$ and $h(x, t)$ with initial conditions $\frac{1}{1+e^{x}}$ and $\frac{1+.001 e^{x / 2}}{1+e^{x}}$


## The Fisher-KPP equation - other initial conditions

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

Compare $h(x, t)$ and $h(x, t)$ with initial conditions $\frac{1}{1+e^{x}}$ and $\frac{1+.001 e^{x / 2}}{1+e^{x}}$


Not the same velocity, not the same travelling wave

## The Fisher-KPP equation - position of the front

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

- Converges to a travelling wave, moving at velocity $v$ :

$$
h\left(\mu_{t}+z, t\right) \rightarrow \omega_{v}(z), \quad \frac{\mu_{t}}{t} \rightarrow v
$$

## The Fisher-KPP equation - position of the front

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

- Converges to a travelling wave, moving at velocity $v$ :

$$
h\left(\mu_{t}+z, t\right) \rightarrow \omega_{v}(z), \quad \frac{\mu_{t}}{t} \rightarrow v
$$

- Velocity $v$ depends only on how $h_{0}$ decays at infinity

$$
h_{0}(x) \sim A x^{\alpha} e^{-\gamma x} \Longrightarrow \begin{cases}v=2 & \text { if } \gamma \geq 1, \\ v=\gamma+\frac{1}{\gamma}>2 & \text { if } \gamma<1 .\end{cases}
$$

## The Fisher-KPP equation - position of the front

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

- Converges to a travelling wave, moving at velocity $v$ :

$$
h\left(\mu_{t}+z, t\right) \rightarrow \omega_{v}(z), \quad \frac{\mu_{t}}{t} \rightarrow v
$$

- Velocity $v$ depends only on how $h_{0}$ decays at infinity

$$
h_{0}(x) \sim \boldsymbol{A} x^{\alpha} e^{-\gamma x} \Longrightarrow \begin{cases}v=2 & \text { if } \gamma \geq 1 \\ v=\gamma+\frac{1}{\gamma}>2 & \text { if } \gamma<1\end{cases}
$$

- Sublinear corrections depend also only on how $h_{0}$ decays at infinity

Iff $\int \mathrm{d} x h_{0}(x) x e^{x}<\infty$
If $h_{0}(x) \sim A x^{\alpha} e^{-x}$ with $\alpha>-2$
$\mu_{t}=2 t+\frac{\alpha-1}{2} \ln t+C+o(1)$
If $h_{0}(x) \sim A x^{\alpha} e^{-\gamma x}$ with $\gamma<1$
$\mu_{t}=v t+\frac{\alpha}{\gamma} \ln t+C+o(1)$

## The Fisher-KPP equation - position of the front

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

- Converges to a travelling wave, moving at velocity $v$ :

$$
h\left(\mu_{t}+z, t\right) \rightarrow \omega_{v}(z), \quad \frac{\mu_{t}}{t} \rightarrow v
$$

- Velocity $v$ depends only on how $h_{0}$ decays at infinity

$$
h_{0}(x) \sim \boldsymbol{A} x^{\alpha} e^{-\gamma x} \Longrightarrow \begin{cases}v=2 & \text { if } \gamma \geq 1, \\ v=\gamma+\frac{1}{\gamma}>2 & \text { if } \gamma<1 .\end{cases}
$$

- Sublinear corrections depend also only on how $h_{0}$ decays at infinity

$$
\begin{array}{ll}
\text { Iff } \int \mathrm{d} x h_{0}(x) x e^{x}<\infty & \mu_{t}=2 t-\frac{3}{2} \ln t+C+o(1) \\
\text { If } h_{0}(x) \sim A x^{\alpha} e^{-x} \text { with } \alpha>-2 & \mu_{t}=2 t+\frac{\alpha-1}{2} \ln t+C+o(1) \\
\text { If } h_{0}(x) \sim A x^{\alpha} e^{-\gamma x} \text { with } \gamma<1 & \mu_{t}=v t+\frac{\alpha}{\gamma} \ln t+C+o(1)
\end{array}
$$

- Fisher-KPP is diffusion, linear growth and saturation


## The Fisher-KPP equation - position of the front

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

- Converges to a travelling wave, moving at velocity $v$ :

$$
h\left(\mu_{t}+z, t\right) \rightarrow \omega_{v}(z), \quad \frac{\mu_{t}}{t} \rightarrow v
$$

- Velocity $v$ depends only on how $h_{0}$ decays at infinity

$$
h_{0}(x) \sim \boldsymbol{A} x^{\alpha} e^{-\gamma x} \Longrightarrow \begin{cases}v=2 & \text { if } \gamma \geq 1 \\ v=\gamma+\frac{1}{\gamma}>2 & \text { if } \gamma<1\end{cases}
$$

- Sublinear corrections depend also only on how $h_{0}$ decays at infinity

$$
\begin{array}{ll}
\text { Iff } \int \mathrm{d} x h_{0}(x) x e^{x}<\infty & \mu_{t}=2 t-\frac{3}{2} \ln t+C+o(1) \\
\text { If } h_{0}(x) \sim A x^{\alpha} e^{-x} \text { with } \alpha>-2 & \mu_{t}=2 t+\frac{\alpha-1}{2} \ln t+C+o(1) \\
\text { If } h_{0}(x) \sim A x^{\alpha} e^{-\gamma x} \text { with } \gamma<1 & \mu_{t}=v t+\frac{\alpha}{\gamma} \ln t+C+o(1)
\end{array}
$$

- Fisher-KPP is diffusion, linear growth and saturation

One can understand some terms with diffusion and linear growth only

## The Fisher-KPP equation - position of the front

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

- Converges to a travelling wave, moving at velocity $v$ :

$$
h\left(\mu_{t}+z, t\right) \rightarrow \omega_{v}(z), \quad \frac{\mu_{t}}{t} \rightarrow v
$$

- Velocity $v$ depends only on how $h_{0}$ decays at infinity

$$
h_{0}(x) \sim \boldsymbol{A} x^{\alpha} e^{-\gamma x} \Longrightarrow \begin{cases}v=2 & \text { if } \gamma \geq 1 \\ v=\gamma+\frac{1}{\gamma}>2 & \text { if } \gamma<1\end{cases}
$$

- Sublinear corrections depend also only on how $h_{0}$ decays at infinity

$$
\begin{array}{ll}
\text { Iff } \int \mathrm{d} x h_{0}(x) x e^{x}<\infty & \mu_{t}=2 t-\frac{3}{2} \ln t+C+o(1) \\
\text { If } h_{0}(x) \sim A x^{\alpha} e^{-x} \text { with } \alpha>-2 & \mu_{t}=2 t+\frac{\alpha-1}{2} \ln t+C+o(1) \\
\text { If } h_{0}(x) \sim A x^{\alpha} e^{-\gamma x} \text { with } \gamma<1 & \mu_{t}=v t+\frac{\alpha}{\gamma} \ln t+C+o(1)
\end{array}
$$

- Fisher-KPP is diffusion, linear growth and saturation

One can understand some terms with diffusion and linear growth only Some other terms require saturation

## The Fisher-KPP equation - position of the front

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

- Converges to a travelling wave, moving at velocity $v$ :

$$
h\left(\mu_{t}+z, t\right) \rightarrow \omega_{v}(z), \quad \frac{\mu_{t}}{t} \rightarrow v
$$

- Velocity $v$ depends only on how $h_{0}$ decays at infinity

$$
h_{0}(x) \sim \boldsymbol{A} x^{\alpha} e^{-\gamma x} \Longrightarrow \begin{cases}v=2 & \text { if } \gamma \geq 1 \\ v=\gamma+\frac{1}{\gamma}>2 & \text { if } \gamma<1\end{cases}
$$

- Sublinear corrections depend also only on how $h_{0}$ decays at infinity

$$
\begin{array}{ll}
\text { Iff } \int \mathrm{d} x h_{0}(x) x e^{x}<\infty & \mu_{t}=2 t-\frac{3}{2} \ln t+C+o(1) \\
\text { If } h_{0}(x) \sim A x^{\alpha} e^{-x} \text { with } \alpha>-2 & \mu_{t}=2 t+\frac{\alpha-1}{2} \ln t+C+o(1) \\
\text { If } h_{0}(x) \sim A x^{\alpha} e^{-\gamma x} \text { with } \gamma<1 & \mu_{t}=v t+\frac{\alpha}{\gamma} \ln t+C+o(1)
\end{array}
$$

- Fisher-KPP is diffusion, linear growth and saturation

One can understand some terms with diffusion and linear growth only Some other terms require saturation

- The nature of the saturation term is not important


## The Fisher-KPP equation - universality

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2} \quad \begin{gathered}
v_{c}=2, \gamma_{c}=1 \\
v(\gamma)=\gamma+\gamma^{-1}
\end{gathered}
$$

Diffusion, linear growth ( $h=0$ is unstable), saturation ( $h=1$ is stable).

$$
\begin{array}{ll}
\text { Iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty, & \text { then } \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+C+o(1) \\
\text { If } h_{0}(x) \sim e^{-\gamma x} \text { and } \gamma<\gamma_{c}, & \text { then } v=v(\gamma)>v_{c}
\end{array}
$$

## The Fisher-KPP equation - universality

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2} \quad \begin{gathered}
v_{c}=2, \gamma_{c}=1 \\
v(\gamma)=\gamma+\gamma^{-1}
\end{gathered}
$$

Diffusion, linear growth ( $h=0$ is unstable), saturation ( $h=1$ is stable).

$$
\begin{array}{ll}
\text { Iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty, & \text { then } \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+C+o(1) \\
\text { If } h_{0}(x) \sim e^{-\gamma x} \text { and } \gamma<\gamma_{c}, & \text { then } v=v(\gamma)>v_{c}
\end{array}
$$

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{42},
$$

## The Fisher-KPP equation - universality

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2} \quad \begin{gathered}
v_{c}=2, \gamma_{c}=1 \\
v(\gamma)=\gamma+\gamma^{-1}
\end{gathered}
$$

Diffusion, linear growth ( $h=0$ is unstable), saturation ( $h=1$ is stable).

$$
\begin{aligned}
& \begin{array}{l}
\text { Iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty, \quad \text { then } \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+C+o(1) \\
\text { If } h_{0}(x) \sim e^{-\gamma x} \text { and } \gamma<\gamma_{c}, \\
\text { then } v=v(\gamma)>v_{c}
\end{array} \\
& \partial_{t} h=\partial_{x}^{2} h+h-h^{42}, \quad h(x, t+1)=\min \left[1,2 \int_{0}^{1} \mathrm{~d} \epsilon h(x-\epsilon, t)\right] .
\end{aligned}
$$

## The Fisher-KPP equation - universality

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2} \quad \begin{gathered}
v_{c}=2, \gamma_{c}=1 \\
v(\gamma)=\gamma+\gamma^{-1}
\end{gathered}
$$

Diffusion, linear growth ( $h=0$ is unstable), saturation ( $h=1$ is stable).

$$
\left.\begin{array}{l}
\begin{array}{l}
\text { Iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty, \\
\text { If } h_{0}(x) \sim e^{-\gamma x} \text { and } \gamma<\gamma_{c}, \\
\text { then } \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+C+o(1) \\
\partial_{t} h=\partial_{x}^{2} h+h-h^{42},
\end{array} \quad h(x, t+1)=\min \left[1,2 \int_{0}^{1} \mathrm{~d} \epsilon h(x-\epsilon, t)\right] . \\
v_{c}=2, \gamma_{c}=1
\end{array} \quad v_{c}=0.815172 \ldots, \gamma_{c}=5.26208 \ldots .\right] .
$$

## The Fisher-KPP equation - universality

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2} \quad \begin{gathered}
v_{c}=2, \gamma_{c}=1 \\
v(\gamma)=\gamma+\gamma^{-1}
\end{gathered}
$$

Diffusion, linear growth ( $h=0$ is unstable), saturation ( $h=1$ is stable).

$$
\begin{aligned}
& \text { Iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty, \quad \text { then } \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+C+o(1) \\
& \text { If } h_{0}(x) \sim e^{-\gamma x} \text { and } \gamma<\gamma_{c} \text {, then } v=v(\gamma)>v_{c} \\
& \partial_{t} h=\partial_{x}^{2} h+h-h^{42} \text {, } \\
& h(x, t+1)=\min \left[1,2 \int_{0}^{1} \mathrm{~d} \epsilon h(x-\epsilon, t)\right] . \\
& v_{c}=2, \gamma_{c}=1 \\
& v(\gamma)=\gamma+\frac{1}{\gamma}, \quad v(\gamma)=\frac{1}{\gamma} \ln \left[2 \frac{\mathrm{e}^{\gamma}-1}{\gamma}\right],
\end{aligned}
$$

## The Fisher-KPP equation - universality

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2} \quad \begin{gathered}
v_{c}=2, \gamma_{c}=1 \\
v(\gamma)=\gamma+\gamma^{-1}
\end{gathered}
$$

Diffusion, linear growth ( $h=0$ is unstable), saturation ( $h=1$ is stable).

$$
\begin{aligned}
& \text { Iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty, \quad \text { then } \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+C+o(1) \\
& \text { If } h_{0}(x) \sim e^{-\gamma x} \text { and } \gamma<\gamma_{c} \text {, then } v=v(\gamma)>v_{c} \\
& \partial_{t} h=\partial_{x}^{2} h+h-h^{42}, \quad h(x, t+1)=\min \left[1,2 \int_{0}^{1} \mathrm{~d} \epsilon h(x-\epsilon, t)\right] \text {. } \\
& v_{c}=2, \gamma_{c}=1 \\
& v(\gamma)=\gamma+\frac{1}{\gamma}, \quad v(\gamma)=\frac{1}{\gamma} \ln \left[2 \frac{e^{\gamma}-1}{\gamma}\right],
\end{aligned}
$$

## The Fisher-KPP equation - universality

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2} \quad \begin{gathered}
v_{c}=2, \gamma_{c}=1 \\
v(\gamma)=\gamma+\gamma^{-1}
\end{gathered}
$$

Diffusion, linear growth ( $h=0$ is unstable), saturation ( $h=1$ is stable).

$$
\begin{aligned}
& \text { Iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty, \quad \text { then } \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+C+o(1) \\
& \text { If } h_{0}(x) \sim e^{-\gamma x} \text { and } \gamma<\gamma_{c} \text {, then } v=v(\gamma)>v_{c} \\
& \partial_{t} h=\partial_{x}^{2} h+h /\left|h \nmid \nmid \psi, \quad h(x, t+1)=\operatorname{h} /|h|\left[1,2 \int_{0}^{1} \mathrm{~d} \epsilon h(x-\epsilon, t)\right]\right. \text {. } \\
& v_{c}=2, \gamma_{c}=1 \\
& v(\gamma)=\gamma+\frac{1}{\gamma}, \quad v(\gamma)=\frac{1}{\gamma} \ln \left[2 \frac{e^{\gamma}-1}{\gamma}\right],
\end{aligned}
$$

## The Fisher-KPP equation - universality

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2} \quad \begin{gathered}
v_{c}=2, \gamma_{c}=1 \\
v(\gamma)=\gamma+\gamma^{-1}
\end{gathered}
$$

Diffusion, linear growth ( $h=0$ is unstable), saturation ( $h=1$ is stable).

$$
\begin{aligned}
& \text { Iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty, \quad \text { then } \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+C+o(1) \\
& \text { If } h_{0}(x) \sim e^{-\gamma x} \text { and } \gamma<\gamma_{c} \text {, then } v=v(\gamma)>v_{c} \\
& \partial_{t} h=\partial_{x}^{2} h+h /\left|h \nmid \nmid \psi, \quad h(x, t+1)=\operatorname{h} /|h|\left[1,2 \int_{0}^{1} \mathrm{~d} \epsilon h(x-\epsilon, t)\right]\right. \text {. } \\
& v_{c}=2, \gamma_{c}=1 \\
& v(\gamma)=\gamma+\frac{1}{\gamma}, \quad v(\gamma)=\frac{1}{\gamma} \ln \left[2 \frac{e^{\gamma}-1}{\gamma}\right],
\end{aligned}
$$

## The Fisher-KPP front - precise position

$\partial_{t} h=\partial_{x}^{2} h+h-h^{2}, \quad$ initial condition $h_{0}, \quad \mu_{t}$ is the position: $h\left(\mu_{t}, t\right)=\frac{1}{2}$.
Theorem (Bramson 1983)

$$
\mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\text { cste }+o(1) \quad \text { for large } t
$$

if and only if $\int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty$

The Fisher-KPP front - precise position
$\partial_{t} h=\partial_{x}^{2} h+h-h^{2}, \quad$ initial condition $h_{0}, \quad \mu_{t}$ is the position: $h\left(\mu_{t}, t\right)=\frac{1}{2}$.
Theorem (Bramson 1983)

$$
\mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\text { cste }+o(1) \quad \text { for large } t
$$

if and only if $\int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty$
Conjecture (Ebert and van Saarloos 2000)

$$
\mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\text { cste }-3 \sqrt{\frac{2 \pi}{\gamma_{c}^{5} v^{\prime \prime}\left(\gamma_{c}\right)}} t^{-\frac{1}{2}}+\cdots
$$

The Fisher-KPP front - precise position
$\partial_{t} h=\partial_{x}^{2} h+h-h^{2}, \quad$ initial condition $h_{0}, \quad \mu_{t}$ is the position: $h\left(\mu_{t}, t\right)=\frac{1}{2}$.
Theorem (Bramson 1983)

$$
\mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\text { cste }+o(1) \quad \text { for large } t
$$

if and only if $\int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty$
Conjecture (Ebert and van Saarloos 2000)

$$
\mu_{t}=\underbrace{v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\text { cste }}_{\text {iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty}-3 \sqrt{\frac{2 \pi}{\gamma_{c}^{5} v^{\prime \prime}\left(\gamma_{c}\right)}} t^{-\frac{1}{2}}+\cdots
$$

The Fisher-KPP front - precise position
$\partial_{t} h=\partial_{x}^{2} h+h-h^{2}, \quad$ initial condition $h_{0}, \quad \mu_{t}$ is the position: $h\left(\mu_{t}, t\right)=\frac{1}{2}$.
Theorem (Bramson 1983)

$$
\mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\text { cste }+o(1) \quad \text { for large } t
$$

if and only if $\int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty$
Conjecture (Ebert and van Saarloos 2000)

The Fisher-KPP front - precise position
$\partial_{t} h=\partial_{x}^{2} h+h-h^{2}, \quad$ initial condition $h_{0}, \quad \mu_{t}$ is the position: $h\left(\mu_{t}, t\right)=\frac{1}{2}$.
Theorem (Bramson 1983)

$$
\mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\text { cste }+o(1) \quad \text { for large } t
$$

if and only if $\int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty$
Conjecture (Ebert and van Saarloos 2000)

$$
\mu_{t}=\underbrace{v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\text { cste }}_{\text {iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty}-\underbrace{\sqrt{\frac{2 \pi}{\gamma_{c}^{5} v^{\prime \prime}\left(\gamma_{c}\right)}} t^{-\frac{1}{2}}}_{\text {if ??? }}+\underbrace{\cdots}_{? ? ?}
$$

The Fisher-KPP front - precise position
$\partial_{t} h=\partial_{x}^{2} h+h-h^{2}, \quad$ initial condition $h_{0}, \quad \mu_{t}$ is the position: $h\left(\mu_{t}, t\right)=\frac{1}{2}$.
Theorem (Bramson 1983)

$$
\mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\text { cste }+o(1) \quad \text { for large } t
$$

if and only if $\int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty$
Conjecture (Ebert and van Saarloos 2000)

$$
\mu_{t}=\underbrace{v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathrm{cste}}_{\text {iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty}-\underbrace{3 \sqrt{\frac{2 \pi}{\gamma_{c}^{5} v^{\prime \prime}\left(\gamma_{c}\right)}} t^{-\frac{1}{2}}}_{\text {if ??? }}+\underbrace{\cdots}_{? ? ?}
$$

Conjecture (Our contribution)

The Fisher-KPP front - precise position
$\partial_{t} h=\partial_{x}^{2} h+h-h^{2}, \quad$ initial condition $h_{0}, \quad \mu_{t}$ is the position: $h\left(\mu_{t}, t\right)=\frac{1}{2}$.
Theorem (Bramson 1983)

$$
\mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\text { cste }+o(1) \quad \text { for large } t
$$

if and only if $\int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty$
Conjecture (Ebert and van Saarloos 2000)

$$
\mu_{t}=\underbrace{v_{c} t-\frac{3}{2} \ln t+\operatorname{cste}}_{\text {iff } \int \mathrm{d} \times h_{0}(x) x e^{\gamma_{c} x}<\infty}-\underbrace{\sqrt[3]{\frac{2 \pi}{\gamma_{c}^{5} v^{\prime \prime}\left(\gamma_{c}\right)}} t^{-\frac{1}{2}}}_{\text {if ??? }}+\underbrace{\cdots}_{\text {??? }}
$$

Conjecture (Our contribution)

## Precise position - strategy

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

Diffusion, linear growth, saturation

## Precise position - strategy

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

Diffusion, linear growth, saturation

- There must be some saturation term


## Precise position - strategy

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

Diffusion, linear growth, saturation

- There must be some saturation term
- Otherwise, essentially linear


## Precise position - strategy

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2}
$$

Diffusion, linear growth, saturation

- There must be some saturation term
- Otherwise, essentially linear
- The results are universal


## Precise position — strategy

$$
\partial_{t} h=\partial_{x}^{2} h+h-h^{2} \quad \text { Diffusion, linear growth, saturation }
$$

- There must be some saturation term
- Otherwise, essentially linear
- The results are universal

We construct an equation with the simplest possible saturation term

## Three approaches

First approach, on the lattice
[Joint work with B. Derrida]

$$
\partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1 \\ 0 & \text { if } h(n, t)=1\end{cases}
$$

## Three approaches

First approach, on the lattice
[Joint work with B. Derrida]

$$
\partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1 \\ 0 & \text { if } h(n, t)=1\end{cases}
$$

## Three approaches

First approach, on the lattice
[Joint work with B. Derrida]

$$
\partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1 \\ 0 & \text { if } h(n, t)=1\end{cases}
$$



## Three approaches

First approach, on the lattice
[Joint work with B. Derrida]

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$



## Three approaches

First approach, on the lattice
[Joint work with B. Derrida]

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$



Main result
Assuming $h_{0}(0)=0$ and $h_{0}(n) \searrow$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left(n-\frac{e^{\lambda+1}}{\lambda} t_{n}\right)}-e^{\lambda}\right]
$$

## Three approaches

First approach, on the lattice
[Joint work with B. Derrida]
$\partial_{t} h(n, t)=\left\{\begin{array}{ll}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\ 0 & \text { if } h(n, t)=1,\end{array} \quad t_{n}=\left[\begin{array}{l}\text { when } h(n, t) \\ \text { reaches } 1\end{array}\right]\right.$



Main result
Assuming $h_{0}(0)=0$ and $h_{0}(n) \searrow$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left(n-\frac{e^{\lambda+1}}{\lambda} t_{n}\right)}-e^{\lambda}\right]
$$

From there, extrain asymptotic behaviour of $t_{n}$ as $n \rightarrow \infty$.

## Three approaches

First approach, on the lattice

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

- Let $\mu_{t}$ be the position where the front saturates:

$$
h(x, t)=1 \quad \text { if } x<\mu_{t} .
$$

## Three approaches

First approach, on the lattice

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

- Let $\mu_{t}$ be the position where the front saturates:

$$
h(x, t)=1 \quad \text { if } x<\mu_{t} .
$$

- On the right of $\mu_{t}$, be linear:

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t} .
$$

## Three approaches

First approach, on the lattice

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

- Let $\mu_{t}$ be the position where the front saturates:

$$
h(x, t)=1 \quad \text { if } x<\mu_{t} .
$$

- On the right of $\mu_{t}$, be linear:

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t} .
$$

- Assume $h$ is continuous and differentiable at $\mu_{t}$ :

$$
h\left(\mu_{t}, t\right)=1, \quad \partial_{x} h\left(\mu_{t}, t\right)=0 .
$$

## Three approaches

First approach, on the lattice

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

- Let $\mu_{t}$ be the position where the front saturates:

$$
h(x, t)=1 \quad \text { if } x<\mu_{t} .
$$

- On the right of $\mu_{t}$, be linear:

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t} .
$$

- Assume $h$ is continuous and differentiable at $\mu_{t}$ :

$$
h\left(\mu_{t}, t\right)=1, \quad \partial_{x} h\left(\mu_{t}, t\right)=0
$$

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=1 \quad, \quad \partial_{x} h\left(\mu_{t}, t\right)=0
$$

## Three approaches

First approach, on the lattice

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

- Let $\mu_{t}$ be the position where the front saturates:

$$
h(x, t)=1 \quad \text { if } x<\mu_{t} .
$$

- On the right of $\mu_{t}$, be linear:

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t} .
$$

- Assume $h$ is continuous and differentiable at $\mu_{t}$ :

$$
h\left(\mu_{t}, t\right)=1, \quad \partial_{x} h\left(\mu_{t}, t\right)=0
$$

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=1 \quad, \quad \partial_{x} h\left(\mu_{t}, t\right)=0 .
$$

Both $h(x, t)$ and $\mu_{t}$ are unknown quantities!

## Three approaches

First approach, on the lattice

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

- Let $\mu_{t}$ be the position where the front saturates:

$$
h(x, t)=1 \quad \text { if } x<\mu_{t} .
$$

- On the right of $\mu_{t}$, be linear:

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t} .
$$

- Assume $h$ is continuous and differentiable at $\mu_{t}$ :

$$
h\left(\mu_{t}, t\right)=1, \quad \partial_{x} h\left(\mu_{t}, t\right)=0
$$

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=\not \wedge \alpha, \quad \partial_{x} h\left(\mu_{t}, t\right)=\emptyset \beta .
$$

Both $h(x, t)$ and $\mu_{t}$ are unknown quantities!

## Three approaches

First approach, on the lattice
[Joint work with B. Derrida]

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

- Let $\mu_{t}$ be the position where the front saturates:

$$
h(x, t)=1 \quad \text { if } x<\mu_{t} .
$$

- On the right of $\mu_{t}$, be linear:

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t} .
$$

- Assume $h$ is continuous and differentiable at $\mu_{t}$ :

$$
h\left(\mu_{t}, t\right)=1, \quad \partial_{x} h\left(\mu_{t}, t\right)=0
$$

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=\nsim \alpha, \quad \partial_{x} h\left(\mu_{t}, t\right)=\emptyset \beta .
$$

Both $h(x, t)$ and $\mu_{t}$ are unknown quantities!
Can be solved with same method as First approach. But is it a well-posed problem ?

## Three approaches

First approach, on the lattice

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=\alpha, \quad \partial_{x} h\left(\mu_{t}, t\right)=\beta .
$$

Both $h(x, t)$ and $\mu_{t}$ are unknown quantities!
Second approach, in the continuum
[Joint work with J. Berestycki, M. Roberts \& S. Harris. Also studied by C. Henderson]

$$
\begin{gathered}
\text { For any given } \mu_{t} \\
\left\{\begin{array}{l}
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t} \\
h\left(\mu_{t}, t\right)=0
\end{array}\right.
\end{gathered}
$$

## Three approaches

First approach, on the lattice

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=\alpha, \quad \partial_{x} h\left(\mu_{t}, t\right)=\beta .
$$

Both $h(x, t)$ and $\mu_{t}$ are unknown quantities!
Second approach, in the continuum
[Joint work with J. Berestycki, M. Roberts \& S. Harris. Also studied by C. Henderson]

$$
\begin{gathered}
\text { For any given } \mu_{t} \\
\left\{\begin{array}{l}
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t} \\
h\left(\mu_{t}, t\right)=0
\end{array}\right.
\end{gathered}
$$

## Three approaches

First approach, on the lattice

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=\alpha, \quad \partial_{x} h\left(\mu_{t}, t\right)=\beta .
$$

Both $h(x, t)$ and $\mu_{t}$ are unknown quantities!
Second approach, in the continuum
[Joint work with J. Berestycki, M. Roberts \& S. Harris. Also studied by C. Henderson]

> For any given $\mu_{t}$
> $\left\{\begin{array}{l}\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t} \\ h\left(\mu_{t}, t\right)=0\end{array}\right.$
$h(x, t)=\int \mathrm{d} y h_{0}(y) \mathbb{E}^{y}\left[\delta\left(B_{t}-x\right)\right.$

## Three approaches

First approach, on the lattice

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=\alpha, \quad \partial_{x} h\left(\mu_{t}, t\right)=\beta .
$$

Both $h(x, t)$ and $\mu_{t}$ are unknown quantities!
Second approach, in the continuum
[Joint work with J. Berestycki, M. Roberts \& S. Harris. Also studied by C. Henderson]

> For any given $\mu_{t}$
> $\left\{\begin{array}{l}\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t} \\ h\left(\mu_{t}, t\right)=0\end{array}\right.$
$h(x, t)=e^{t} \int \mathrm{~d} y h_{0}(y) \mathbb{E}^{y}\left[\delta\left(B_{t}-x\right)\right.$

## Three approaches

First approach, on the lattice

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=\alpha, \quad \partial_{x} h\left(\mu_{t}, t\right)=\beta .
$$

Both $h(x, t)$ and $\mu_{t}$ are unknown quantities!
Second approach, in the continuum
[Joint work with J. Berestycki, M. Roberts \& S. Harris. Also studied by C. Henderson]

$$
\left.\begin{array}{l}
\text { For any given } \mu_{t}
\end{array}\right\} \begin{aligned}
& \begin{cases}\partial_{t} h=\partial_{x}^{2} h+h & \text { if } x>\mu_{t} \\
h\left(\mu_{t}, t\right)=0\end{cases} \\
& h(x, t)=e^{t} \int \mathrm{~d} y h_{0}(y) \mathbb{E}^{y}\left[\delta\left(B_{t}-x\right) \mathbb{1}_{\left\{B_{s}>\mu_{s}, \forall s<t\right\}}\right]
\end{aligned}
$$

## Three approaches

First approach, on the lattice
[Joint work with B. Derrida]

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=\alpha, \quad \partial_{x} h\left(\mu_{t}, t\right)=\beta .
$$

Both $h(x, t)$ and $\mu_{t}$ are unknown quantities!
Second approach, in the continuum
[Joint work with J. Berestycki, M. Roberts \& S. Harris. Also studied by C. Henderson]

$$
\begin{aligned}
& \text { For any given } \mu_{t} \\
& \left\{\begin{array}{l|ll}
\partial_{t} h=\partial_{x}^{2} h+h \text { if } x>\mu_{t} \\
h\left(\mu_{t}, t\right)=0
\end{array}\right.
\end{aligned} \begin{array}{ll}
\text { if } \mu_{t} \text { grows too fast, } & h\left(\mu_{t}+z, t\right) \rightarrow 0 \\
\text { if } \mu_{t} \text { grows too slowly, } & h\left(\mu_{t}+z, t\right) \rightarrow \infty \\
\text { if } \mu_{t} \text { grows just right, } & h\left(\mu_{t}+z, t\right) \rightarrow \omega(z)
\end{array}
$$

$h(x, t)=e^{t} \int \mathrm{~d} y h_{0}(y) \mathbb{E}^{y}\left[\delta\left(B_{t}-x\right) \mathbb{1}_{\left\{B_{s}>\mu_{s}, \forall s<t\right\}}\right]$

## Three approaches

First approach, on the lattice
[Joint work with B. Derrida]

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=\alpha, \quad \partial_{x} h\left(\mu_{t}, t\right)=\beta .
$$

Both $h(x, t)$ and $\mu_{t}$ are unknown quantities!
Second approach, in the continuum
[Joint work with J. Berestycki, M. Roberts \& S. Harris. Also studied by C. Henderson]

$$
\begin{aligned}
& \text { For any given } \mu_{t} \\
& \left\{\begin{array}{lll}
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t} \\
h\left(\mu_{t}, t\right)=0
\end{array}\right.
\end{aligned} \begin{array}{ll}
\text { if } \mu_{t} \text { grows too fast, } & h\left(\mu_{t}+z, t\right) \rightarrow 0 \\
\text { if } \mu_{t} \text { grows too slowly, } & h\left(\mu_{t}+z, t\right) \rightarrow \infty \\
\text { if } \mu_{t} \text { grows just right, } & h\left(\mu_{t}+z, t\right) \rightarrow \omega(z)
\end{array}
$$

$$
h(x, t)=e^{t} \int \mathrm{~d} y h_{0}(y) \mathbb{E}^{y}\left[\delta\left(B_{t}-x\right) \mathbb{1}_{\left\{B_{s}>\mu_{s}, \forall s<t\right\}}\right]
$$

What are the $\mu_{t}$ such that $h\left(\mu_{t}+z, t\right) \rightarrow \omega(z)$ ?

## Three approaches

First approach, on the lattice
[Joint work with B. Derrida]

$$
\partial_{t} h(n, t)=\left\{\begin{array}{ll}
h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,
\end{array} \quad t_{n}=\left[\begin{array}{l}
\text { when } h(n, t) \\
\text { reaches } 1
\end{array}\right]\right.
$$

Third approach, in the continuum [Joint work with B. Derrida \& J. Berestycki]

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=\alpha, \quad \partial_{x} h\left(\mu_{t}, t\right)=\beta .
$$

Both $h(x, t)$ and $\mu_{t}$ are unknown quantities!
Second approach, in the continuum
[Joint work with J. Berestycki, M. Roberts \& S. Harris. Also studied by C. Henderson]

$$
\begin{aligned}
& \text { For any given } \mu_{t} \\
& \left\{\begin{array}{l|ll}
\partial_{t} h=\partial_{x}^{2} h+h & \text { if } x>\mu_{t} \\
h\left(\mu_{t}, t\right)=0
\end{array}\right.
\end{aligned} \begin{array}{ll}
\text { if } \mu_{t} \text { grows too fast, } & h\left(\mu_{t}+z, t\right) \rightarrow 0 \\
\text { if } \mu_{t} \text { grows too slowly, } & h\left(\mu_{t}+z, t\right) \rightarrow \infty \\
\text { if } \mu_{t} \text { grows just right, } & h\left(\mu_{t}+z, t\right) \rightarrow \omega(z)
\end{array}
$$

$$
h(x, t)=e^{t} \int \mathrm{~d} y h_{0}(y) \mathbb{E}^{y}\left[\delta\left(B_{t}-x\right) \mathbb{1}_{\left\{B_{s}>\mu_{s}, \forall s<t\right\}}\right]
$$

What are the $\mu_{t}$ such that $h\left(\mu_{t}+z, t\right) \rightarrow \omega(z)$ ? With a fast convergence rate?

## Let us get more technical

We focus on

$$
\partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1 \\ 0 & \text { if } h(n, t)=1\end{cases}
$$

## Model on the lattice

$$
\begin{aligned}
& \partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1\end{cases} \\
& t_{n}=[\text { when } h(n, t) \text { reaches } 1] .
\end{aligned}
$$

## Model on the lattice

$$
\begin{aligned}
& \partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1\end{cases} \\
& t_{n}=[\text { when } h(n, t) \text { reaches } 1] .
\end{aligned}
$$

Looking for $h(n, t) \sim e^{-\gamma(n-v t)}: \quad \gamma v=1+e^{\gamma}$

## Model on the lattice

$$
\partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1 \\ 0 & \text { if } h(n, t)=1\end{cases}
$$

$$
t_{n}=[\text { when } h(n, t) \text { reaches } 1] .
$$

Looking for $h(n, t) \sim e^{-\gamma(n-v t)}: \quad \gamma v=1+e^{\gamma}$ $v(\gamma)=\frac{1+e^{\gamma}}{\gamma} \quad \gamma_{c}=1.27856 \ldots, \quad v_{c}=3.59112 \ldots$


## Model on the lattice

$$
\begin{aligned}
& \partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1, \\
0 & \text { if } h(n, t)=1,\end{cases} \\
& \quad t_{n}=[\text { when } h(n, t) \text { reaches 1]. } \\
& \text { Looking for } h(n, t) \sim e^{-\gamma(n-v t): \quad \gamma v=1+e^{\gamma}} \\
& v(\gamma)=\frac{1+e^{\gamma}}{\gamma} \quad \gamma_{c}=1.27856 \ldots, v_{c}=3.59112 \ldots
\end{aligned}
$$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] \quad \text { Assuming } h_{0}(0)=0 \text { and } h_{0}(n) \searrow
$$

## Model on the lattice

$$
\partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1 \\ 0 & \text { if } h(n, t)=1\end{cases}
$$

$$
t_{n}=[\text { when } h(n, t) \text { reaches } 1] .
$$

Looking for $h(n, t) \sim e^{-\gamma(n-v t)}: \quad \gamma v=1+e^{\gamma}$

$$
v(\gamma)=\frac{1+e^{\gamma}}{\gamma} \quad \gamma_{c}=1.27856 \ldots, \quad v_{c}=3.59112 \ldots
$$



$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] \quad \text { Assuming } h_{0}(0)=0 \text { and } h_{0}(n) \searrow
$$

[Solve for $t \in\left[t_{n}, t_{n+1}\right]$ with a generating function, and then glue things together]

## Model on the lattice

$$
\partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1 \\ 0 & \text { if } h(n, t)=1\end{cases}
$$

$$
t_{n}=[\text { when } h(n, t) \text { reaches } 1] .
$$

Looking for $h(n, t) \sim e^{-\gamma(n-v t)}: \quad \gamma v=1+e^{\gamma}$

$$
v(\gamma)=\frac{1+e^{\gamma}}{\gamma} \quad \gamma_{c}=1.27856 \ldots, \quad v_{c}=3.59112 \ldots
$$



$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] \quad \text { Assuming } h_{0}(0)=0 \text { and } h_{0}(n) \searrow
$$

[Solve for $t \in\left[t_{n}, t_{n+1}\right]$ with a generating function, and then glue things together] Basic observation:

- if $h_{0}(n) \sim A e^{-\gamma n}$ with $\gamma<\gamma_{c}$


## Model on the lattice

$$
\partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1 \\ 0 & \text { if } h(n, t)=1\end{cases}
$$

$t_{n}=[$ when $h(n, t)$ reaches 1$]$.
Looking for $h(n, t) \sim e^{-\gamma(n-v t)}: \quad \gamma v=1+e^{\gamma}$

$$
v(\gamma)=\frac{1+e^{\gamma}}{\gamma} \quad \gamma_{c}=1.27856 \ldots, v_{c}=3.59112 \ldots
$$



$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] \quad \text { Assuming } h_{0}(0)=0 \text { and } h_{0}(n) \searrow
$$

[Solve for $t \in\left[t_{n}, t_{n+1}\right]$ with a generating function, and then glue things together] Basic observation:

- if $h_{0}(n) \sim A e^{-\gamma n}$ with $\gamma<\gamma_{c}$
- pick $\lambda=\gamma-\epsilon$; then $\sum_{n \geq 1} h_{0}(n) e^{\lambda n} \sim A / \epsilon$


## Model on the lattice

$$
\begin{aligned}
& \partial_{t} h(n, t)= \begin{cases}h(n, t)+h(n-1, t) & \text { if } h(n, t)<1 \\
0 & \text { if } h(n, t)=1\end{cases} \\
& t_{n}=[\text { when } h(n, t) \text { reaches } 1] .
\end{aligned}
$$

Looking for $h(n, t) \sim e^{-\gamma(n-v t)}: \quad \gamma v=1+e^{\gamma}$

$$
v(\gamma)=\frac{1+e^{\gamma}}{\gamma} \quad \gamma_{c}=1.27856 \ldots, \quad v_{c}=3.59112 \ldots
$$



$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] \quad \text { Assuming } h_{0}(0)=0 \text { and } h_{0}(n) \searrow
$$

[Solve for $t \in\left[t_{n}, t_{n+1}\right]$ with a generating function, and then glue things together] Basic observation:

- if $h_{0}(n) \sim A e^{-\gamma n}$ with $\gamma<\gamma_{c}$
- pick $\lambda=\gamma-\epsilon$; then $\sum_{n \geq 1} h_{0}(n) e^{\lambda n} \sim A / \epsilon$
- one must have $t_{n} \sim n / v(\gamma)$ to reproduce the singularity in the R.H.S.:

$$
\left[n-v(\gamma-\epsilon) \frac{n}{v(\gamma)}\right]=n \epsilon \frac{v^{\prime}(\gamma)}{v(\gamma)}
$$

## The case $h_{0}=0$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right]
$$

The case $h_{0}=0$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right]
$$

If $h_{0}=0: \quad \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}=\frac{e^{\lambda}}{2}$

## The case $h_{0}=0$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right]
$$

If $h_{0}=0: \quad \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}=\frac{e^{\lambda}}{2}$
Use $t_{n}=\frac{n}{v_{c}}+\frac{\alpha \ln n+r_{n}}{\gamma_{c} v_{c}}$ where $r_{n}=\mathcal{O}(1)$.

## The case $h_{0}=0$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right]
$$

If $h_{0}=0: \quad \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}=\frac{e^{\lambda}}{2}=\sum_{n \geq 1} e^{n \lambda\left[1-\frac{v(\lambda)}{v_{c}}\right]-\frac{\lambda v(\lambda)}{\lambda_{c} v_{c}}\left(\alpha \ln n+r_{n}\right)}$
Use $t_{n}=\frac{n}{v_{c}}+\frac{\alpha \ln n+r_{n}}{\gamma_{c} v_{c}}$ where $r_{n}=\mathcal{O}(1)$.

The case $h_{0}=0$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right]
$$

If $h_{0}=0: \quad \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}=\frac{e^{\lambda}}{2}=\sum_{n \geq 1} e^{n \lambda\left[1-\frac{v(\lambda)}{v_{c}}\right]-\frac{\lambda v(\lambda)}{\lambda_{c} v_{c}}\left(\alpha \ln n+r_{n}\right)}$
Use $t_{n}=\frac{n}{v_{c}}+\frac{\alpha \ln n+r_{n}}{\gamma_{c} v_{c}}$ where $r_{n}=\mathcal{O}(1)$.
Take now $\lambda=\gamma_{c}-\epsilon$ and use $\lambda\left[1-\frac{v(\lambda)}{v_{c}}\right] \approx-\gamma_{c} \frac{v^{\prime \prime}\left(\gamma_{c}\right)}{2 v_{c}} \epsilon^{2}=:-Q \epsilon^{2}$.

## The case $h_{0}=0$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right]
$$

If $h_{0}=0: \quad \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}=\frac{e^{\lambda}}{2}=\sum_{n \geq 1} e^{n \lambda\left[1-\frac{v(\lambda)}{v_{c}}\right]-\frac{\lambda v(\lambda)}{\lambda_{c} v_{c}}\left(\alpha \ln n+r_{n}\right)}$
Use $t_{n}=\frac{n}{v_{c}}+\frac{\alpha \ln n+r_{n}}{\gamma_{c} v_{c}}$ where $r_{n}=\mathcal{O}(1)$.
Take now $\lambda=\gamma_{c}-\epsilon$ and use $\lambda\left[1-\frac{v(\lambda)}{v_{c}}\right] \approx-\gamma_{c} \frac{v^{\prime \prime}\left(\gamma_{c}\right)}{2 v_{c}} \epsilon^{2}=:-Q \epsilon^{2}$.
(nice function of $\epsilon$ ) $\approx \sum_{n \geq 1} e^{-n Q \epsilon^{2}-r_{n}} n^{-\alpha}$

## The case $h_{0}=0$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right]
$$

If $h_{0}=0: \quad \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}=\frac{e^{\lambda}}{2}=\sum_{n \geq 1} e^{n \lambda\left[1-\frac{v(\lambda)}{v_{c}}\right]-\frac{\lambda v(\lambda)}{\lambda_{c} v_{c}}\left(\alpha \ln n+r_{n}\right)}$
Use $t_{n}=\frac{n}{v_{c}}+\frac{\alpha \ln n+r_{n}}{\gamma_{c} v_{c}}$ where $r_{n}=\mathcal{O}(1)$.
Take now $\lambda=\gamma_{c}-\epsilon$ and use $\lambda\left[1-\frac{v(\lambda)}{v_{c}}\right] \approx-\gamma_{c} \frac{v^{\prime \prime}\left(\gamma_{c}\right)}{2 v_{c}} \epsilon^{2}=:-Q \epsilon^{2}$.
(nice function of $\epsilon$ ) $\approx \sum_{n \geq 1} e^{-n Q \epsilon^{2}-r_{n}} n^{-\alpha}$

Remark: $\sum_{n \geq 1} e^{-n u} n^{-1.7}=$

The case $h_{0}=0$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right]
$$

If $h_{0}=0: \quad \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}=\frac{e^{\lambda}}{2}=\sum_{n \geq 1} e^{n \lambda\left[1-\frac{v(\lambda)}{v_{c}}\right]-\frac{\lambda v(\lambda)}{\lambda_{c} v_{c}}\left(\alpha \ln n+r_{n}\right)}$
Use $t_{n}=\frac{n}{v_{c}}+\frac{\alpha \ln n+r_{n}}{\gamma_{c} v_{c}}$ where $r_{n}=\mathcal{O}(1)$.
Take now $\lambda=\gamma_{c}-\epsilon$ and use $\lambda\left[1-\frac{v(\lambda)}{v_{c}}\right] \approx-\gamma_{c} \frac{v^{\prime \prime}\left(\gamma_{c}\right)}{2 v_{c}} \epsilon^{2}=:-Q \epsilon^{2}$.
(nice function of $\epsilon$ ) $\approx \sum_{n \geq 1} e^{-n Q \epsilon^{2}-r_{n}} n^{-\alpha}$

Remark: $\sum_{n \geq 1} e^{-n u} n^{-1.7}=2.05-4.27 u^{0.7}+2.78 u-0.15 u^{2}+0.007 u^{3}+\cdots$

The case $h_{0}=0$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right]
$$

If $h_{0}=0: \quad \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}=\frac{e^{\lambda}}{2}=\sum_{n \geq 1} e^{n \lambda\left[1-\frac{v(\lambda)}{v_{c}}\right]-\frac{\lambda v(\lambda)}{\lambda_{c} v_{c}}\left(\alpha \ln n+r_{n}\right)}$
Use $t_{n}=\frac{n}{v_{c}}+\frac{\alpha \ln n+r_{n}}{\gamma_{c} v_{c}}$ where $r_{n}=\mathcal{O}(1)$.
Take now $\lambda=\gamma_{c}-\epsilon$ and use $\lambda\left[1-\frac{v(\lambda)}{v_{c}}\right] \approx-\gamma_{c} \frac{v^{\prime \prime}\left(\gamma_{c}\right)}{2 v_{c}} \epsilon^{2}=:-Q \epsilon^{2}$.
(nice function of $\epsilon$ ) $\approx \sum_{n \geq 1} e^{-n Q \epsilon^{2}-r_{n}} n^{-\alpha}$

Remark: $\sum e^{-n u} n^{-1.7}=2.05-4.27 u^{0.7}+2.78 u-0.15 u^{2}+0.007 u^{3}+\cdots$

$$
\sum_{n \geq 1}^{n \geq 1} e^{-n u} n^{-\alpha}=(\text { nice function of } u)+ \begin{cases}\Gamma(1-\alpha) u^{\alpha-1} & \left(\text { if } \alpha \notin \mathbb{N}^{*}\right) \\ \frac{(-1)^{\alpha}}{(\alpha-1)!} u^{\alpha-1} \ln u & \left(\text { if } \alpha \in \mathbb{N}^{*}\right)\end{cases}
$$

The case $h_{0}=0$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right]
$$

If $h_{0}=0: \quad \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}=\frac{e^{\lambda}}{2}=\sum_{n \geq 1} e^{n \lambda\left[1-\frac{v(\lambda)}{v_{c}}\right]-\frac{\lambda v(\lambda)}{\lambda_{c} v_{c}}\left(\alpha \ln n+r_{n}\right)}$
Use $t_{n}=\frac{n}{v_{c}}+\frac{\alpha \ln n+r_{n}}{\gamma_{c} v_{c}}$ where $r_{n}=\mathcal{O}(1)$.
Take now $\lambda=\gamma_{c}-\epsilon$ and use $\lambda\left[1-\frac{v(\lambda)}{v_{c}}\right] \approx-\gamma_{c} \frac{v^{\prime \prime}\left(\gamma_{c}\right)}{2 v_{c}} \epsilon^{2}=:-Q \epsilon^{2}$.
(nice function of $\epsilon$ ) $\approx \sum_{n \geq 1} e^{-n Q \epsilon^{2}-r_{n}} n^{-\alpha} \approx\left(\right.$ nice function of $\left.\epsilon^{2}\right)+\operatorname{cste}\left(\epsilon^{2}\right)^{\alpha-1}$

Remark: $\sum e^{-n u} n^{-1.7}=2.05-4.27 u^{0.7}+2.78 u-0.15 u^{2}+0.007 u^{3}+\cdots$

$$
\sum_{n \geq 1}^{n \geq 1} e^{-n u} n^{-\alpha}=(\text { nice function of } u)+ \begin{cases}\Gamma(1-\alpha) u^{\alpha-1} & \left(\text { if } \alpha \notin \mathbb{N}^{*}\right) \\ \frac{(-1)^{\alpha}}{(\alpha-1)!} u^{\alpha-1} \ln u & \left(\text { if } \alpha \in \mathbb{N}^{*}\right)\end{cases}
$$

The case $h_{0}=0$

$$
\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right]
$$

If $h_{0}=0: \quad \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}=\frac{e^{\lambda}}{2}=\sum_{n \geq 1} e^{n \lambda\left[1-\frac{v(\lambda)}{v_{c}}\right]-\frac{\lambda v(\lambda)}{\lambda_{c} v_{c}}\left(\alpha \ln n+r_{n}\right)}$
Use $t_{n}=\frac{n}{v_{c}}+\frac{\alpha \ln n+r_{n}}{\gamma_{c} v_{c}}$ where $r_{n}=\mathcal{O}(1)$.
Take now $\lambda=\gamma_{c}-\epsilon$ and use $\lambda\left[1-\frac{v(\lambda)}{v_{c}}\right] \approx-\gamma_{c} \frac{v^{\prime \prime}\left(\gamma_{c}\right)}{2 v_{c}} \epsilon^{2}=:-Q \epsilon^{2}$.
(nice function of $\epsilon$ ) $\approx \sum_{n \geq 1} e^{-n Q \epsilon^{2}-r_{n}} n^{-\alpha} \approx\left(\right.$ nice function of $\left.\epsilon^{2}\right)+\operatorname{cste}\left(\epsilon^{2}\right)^{\alpha-1}$

$$
\alpha=\frac{3}{2} \text { to have a term of order } \epsilon
$$

Remark: $\sum e^{-n u} n^{-1.7}=2.05-4.27 u^{0.7}+2.78 u-0.15 u^{2}+0.007 u^{3}+\cdots$

$$
\sum_{n \geq 1}^{n \geq 1} e^{-n u} n^{-\alpha}=(\text { nice function of } u)+ \begin{cases}\Gamma(1-\alpha) u^{\alpha-1} & \left(\text { if } \alpha \notin \mathbb{N}^{*}\right) \\ \frac{(-1)^{\alpha}}{(\alpha-1)!} u^{\alpha-1} \ln u & \left(\text { if } \alpha \in \mathbb{N}^{*}\right)\end{cases}
$$

## Bramson's term

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] ; \quad \text { pick } \lambda=\gamma_{c}-\epsilon
$$

If $h_{0}=0$, to get the term of order $\epsilon$ right, one must take

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}}
$$

## Bramson's term

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] ; \quad \text { pick } \lambda=\gamma_{c}-\epsilon
$$

If $h_{0}=0$, to get the term of order $\epsilon$ right, one must take

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1)
$$

## Bramson's term

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] ; \quad \text { pick } \lambda=\gamma_{c}-\epsilon
$$

If $h_{0}=0$, to get the term of order $\epsilon$ right, one must take

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1) \quad \text { Bramson! }
$$

## Bramson's term

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] ; \quad \text { pick } \lambda=\gamma_{c}-\epsilon
$$

If $h_{0}=0$, to get the term of order $\epsilon$ right, one must take

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1) \quad \text { Bramson! }
$$

If $h_{0}(n) \sim A n^{\alpha} e^{-\gamma_{c} n}$

## Bramson's term

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] ; \quad \text { pick } \lambda=\gamma_{c}-\epsilon
$$

If $h_{0}=0$, to get the term of order $\epsilon$ right, one must take

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1) \quad \text { Bramson! }
$$

If $h_{0}(n) \sim A n^{\alpha} e^{-\gamma_{c} n}$
Then
$\Psi\left(\gamma_{c}-\epsilon\right) \approx \sum_{n} A n^{\alpha} e^{-\epsilon n}$

## Bramson's term

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] ; \quad \text { pick } \lambda=\gamma_{c}-\epsilon
$$

If $h_{0}=0$, to get the term of order $\epsilon$ right, one must take

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1) \quad \text { Bramson! }
$$

If $h_{0}(n) \sim A n^{\alpha} e^{-\gamma_{c} n}$
Then
$\Psi\left(\gamma_{c}-\epsilon\right) \approx \sum_{n} A n^{\alpha} e^{-\epsilon n}$

$$
\alpha=-3.1: \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+c \epsilon^{2}+k \epsilon^{2.1}+\cdots
$$

$$
\alpha=-3: \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+\epsilon^{2}+k \epsilon^{2} \ln \epsilon+\cdots
$$

$$
\alpha=-2.9: \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{1.9}+\cdots
$$

$$
\alpha=-2.2: \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{1.2}+\cdots
$$

$$
\alpha=-2: \Psi\left(\gamma_{c}-\epsilon\right)=a+k \epsilon \ln \epsilon+\cdots
$$

$$
\alpha=-1.7: \Psi\left(\gamma_{c}-\epsilon\right)=a+k \epsilon^{0.7}+\cdots
$$

## Bramson's term

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] ; \quad \text { pick } \lambda=\gamma_{c}-\epsilon
$$

If $h_{0}=0$, to get the term of order $\epsilon$ right, one must take

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1) \quad \text { Bramson! }
$$

If $h_{0}(n) \sim A n^{\alpha} e^{-\gamma_{c} n}$

$$
\begin{aligned}
\alpha=-3.1: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+c \epsilon^{2}+k \epsilon^{2.1}+\cdots \\
\alpha=-3: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+\epsilon^{2}+k \epsilon^{2} \ln \epsilon+\cdots
\end{aligned}
$$

Then

$$
\alpha=-2.9: \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{1.9}+\cdots
$$

$$
\alpha=-2.2: \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{1.2}+\cdots
$$

$$
\alpha=-2: \Psi\left(\gamma_{c}-\epsilon\right)=a+k \epsilon \ln \epsilon+\cdots
$$

$$
\alpha=-1.7: \Psi\left(\gamma_{c}-\epsilon\right)=a+k \epsilon^{0.7}+\cdots
$$

Bramson's $\frac{3}{2} \ln t$ term is there if $\alpha<-2$.

## Bramson's term

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] ; \quad \text { pick } \lambda=\gamma_{c}-\epsilon
$$

If $h_{0}=0$, to get the term of order $\epsilon$ right, one must take

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1) \quad \text { Bramson! }
$$

If $h_{0}(n) \sim A n^{\alpha} e^{-\gamma_{c} n}$

$$
\begin{aligned}
\alpha=-3.1: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+c \epsilon^{2}+k \epsilon^{2.1}+\cdots \\
\alpha=-3: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+\epsilon^{2}+k \epsilon^{2} \ln \epsilon+\cdots
\end{aligned}
$$

Then $\alpha=-2.9: \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{1.9}+\cdots$ $\alpha=-2.2: \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{1.2}+\cdots$

$$
\Psi\left(\gamma_{c}-\epsilon\right) \approx \sum_{n} A n^{\alpha} e^{-\epsilon n}
$$

$$
\begin{aligned}
\alpha=-2: \Psi\left(\gamma_{c}-\epsilon\right) & =a+k \epsilon \ln \epsilon+\cdots \\
\alpha=-1.7: \Psi\left(\gamma_{c}-\epsilon\right) & =a+k \epsilon^{0.7}+\cdots
\end{aligned}
$$

Bramson's $\frac{3}{2} \ln t$ term is there if $\alpha<-2$.
In fact, Bramson's term is there iff $\Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+\cdots$.

## Bramson's term

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right] ; \quad \text { pick } \lambda=\gamma_{c}-\epsilon
$$

If $h_{0}=0$, to get the term of order $\epsilon$ right, one must take

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1) \quad \text { Bramson! }
$$

If $h_{0}(n) \sim A n^{\alpha} e^{-\gamma_{c} n}$

$$
\begin{aligned}
\alpha=-3.1: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+c \epsilon^{2}+k \epsilon^{2.1}+\cdots \\
\alpha=-3: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+\epsilon^{2}+k \epsilon^{2} \ln \epsilon+\cdots
\end{aligned}
$$

Then $\alpha=-2.9: \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{1.9}+\cdots$ $\alpha=-2.2: \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{1.2}+\cdots$

$$
\Psi\left(\gamma_{c}-\epsilon\right) \approx \sum_{n} A n^{\alpha} e^{-\epsilon n}
$$

$$
\begin{aligned}
\alpha=-2: \Psi\left(\gamma_{c}-\epsilon\right) & =a+k \epsilon \ln \epsilon+\cdots \\
\alpha=-1.7: \Psi\left(\gamma_{c}-\epsilon\right) & =a+k \epsilon^{0.7}+\cdots
\end{aligned}
$$

Bramson's $\frac{3}{2} \ln t$ term is there if $\alpha<-2$.
In fact, Bramson's term is there iff $\Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+\cdots$.
Which means that Bramson's term is there iff $\sum_{n \geq 1} h_{0}(n) n<\infty$.

## The term from Ebert and van Saarloos

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right], \quad \text { and pick } \lambda=\gamma_{c}-\epsilon
$$

Bramson's term to get the $\epsilon$ term right iff $\sum_{n \geq 1} h_{0}(n) n<\infty$ :

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1)
$$

## The term from Ebert and van Saarloos

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right], \quad \text { and pick } \lambda=\gamma_{c}-\epsilon
$$

Bramson's term to get the $\epsilon$ term right iff $\sum_{n \geq 1} h_{0}(n) n<\infty$ :

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1)
$$

For $t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+C}{\gamma_{c} v_{c}}$ exactly: $\quad \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{2} \ln \epsilon+\cdots$

## The term from Ebert and van Saarloos

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right], \quad \text { and pick } \lambda=\gamma_{c}-\epsilon
$$

Bramson's term to get the $\epsilon$ term right iff $\sum_{n \geq 1} h_{0}(n) n<\infty$ :

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1)
$$

For $t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+C}{\gamma_{c} v_{c}}$ exactly: $\quad \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{2} \ln \epsilon+\cdots$

Remember: If $h_{0}(n) \sim A n^{\alpha} e^{-\gamma_{c} n}$

$$
\begin{aligned}
\alpha=-3.1: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+c \epsilon^{2}+k \epsilon^{2.1}+\cdots \\
\alpha=-3: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+k \epsilon^{2} \ln \epsilon+\cdots \\
\alpha=-2.9: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+k \epsilon^{1.9}+\cdots
\end{aligned}
$$

## The term from Ebert and van Saarloos

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right], \quad \text { and pick } \lambda=\gamma_{c}-\epsilon
$$

Bramson's term to get the $\epsilon$ term right iff $\sum_{n \geq 1} h_{0}(n) n<\infty$ :

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1)
$$

For $t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+C}{\gamma_{c} v_{c}}$ exactly: $\quad \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{2} \ln \epsilon+\cdots$

Remember: If $h_{0}(n) \sim A n^{\alpha} e^{-\gamma_{c} n}$

$$
\begin{aligned}
\alpha=-3.1: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+c \epsilon^{2}+k \epsilon^{2.1}+\cdots \\
\alpha=-3: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+k \epsilon^{2} \ln \epsilon+\cdots \\
\alpha=-2.9: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+k \epsilon^{1.9}+\cdots
\end{aligned}
$$

- If $\alpha<-3$, there is no $\epsilon^{2} \ln \epsilon$ term


## The term from Ebert and van Saarloos

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right], \quad \text { and pick } \lambda=\gamma_{c}-\epsilon
$$

Bramson's term to get the $\epsilon$ term right iff $\sum_{n \geq 1} h_{0}(n) n<\infty$ :

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1)
$$

For $t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+C}{\gamma_{c} v_{c}}$ exactly: $\quad \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{2} \ln \epsilon+\cdots$

Remember:
If $h_{0}(n) \sim A n^{\alpha} e^{-\gamma_{c} n}$

$$
\begin{aligned}
\alpha=-3.1: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+c \epsilon^{2}+k \epsilon^{2.1}+\cdots \\
\alpha=-3: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+k \epsilon^{2} \ln \epsilon+\cdots \\
\alpha=-2.9: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+k \epsilon^{1.9}+\cdots
\end{aligned}
$$

- If $\alpha<-3$, there is no $\epsilon^{2} \ln \epsilon$ term
- The only way to get rid of it is to pick $t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+C+\frac{K+o(1)}{\sqrt{n}}}{\gamma_{c} v_{c}}$


## The term from Ebert and van Saarloos

$$
\Psi(\lambda):=\sum_{n \geq 1} h_{0}(n) e^{\lambda n}=\frac{1}{e^{\lambda}+1}\left[2 \sum_{n \geq 1} e^{\lambda\left[n-v(\lambda) t_{n}\right]}-e^{\lambda}\right], \quad \text { and pick } \lambda=\gamma_{c}-\epsilon
$$

Bramson's term to get the $\epsilon$ term right iff $\sum_{n \geq 1} h_{0}(n) n<\infty$ :

$$
t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+\mathcal{O}(1)}{\gamma_{c} v_{c}} \Leftrightarrow \mu_{t}=v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\mathcal{O}(1)
$$

For $t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+C}{\gamma_{c} v_{c}}$ exactly: $\quad \Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+k \epsilon^{2} \ln \epsilon+\cdots$

Remember:
If $h_{0}(n) \sim A n^{\alpha} e^{-\gamma_{c} n}$

$$
\begin{aligned}
\alpha=-3.1: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+c \epsilon^{2}+k \epsilon^{2.1}+\cdots \\
\alpha=-3: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+k \epsilon^{2} \ln \epsilon+\cdots \\
\alpha=-2.9: \Psi\left(\gamma_{c}-\epsilon\right) & =a+b \epsilon+k \epsilon^{1.9}+\cdots
\end{aligned}
$$

- If $\alpha<-3$, there is no $\epsilon^{2} \ln \epsilon$ term
- The only way to get rid of it is to pick $t_{n}=\frac{n}{v_{c}}+\frac{\frac{3}{2} \ln n+C+\frac{K+o(1)}{\sqrt{n}}}{\gamma_{c} v_{c}}$
- This is the van Saarloos term, present iff $\Psi\left(\gamma_{c}-\epsilon\right)=a+b \epsilon+o\left(\epsilon^{2} \ln \epsilon\right)$ (which is nearly the same as $\sum_{n} h_{0}(n) e^{\gamma_{c} n} n^{2}<\infty$ ).


## Thank you for listening! <br> $\mu_{t}=\underbrace{v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\operatorname{cste}}_{\text {iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty}-\underbrace{\sqrt[3]{\frac{2 \pi}{\gamma_{c}^{5} v^{\prime \prime}\left(\gamma_{c}\right)}} t^{-\frac{1}{2}}}_{\text {if } \int \mathrm{d} x h_{0}(x) x^{2} e^{\gamma_{c} x}<\infty}+\underbrace{K \frac{\ln t}{t}+\mathcal{O}\left(\frac{1}{t}\right)}_{\text {if } \int \mathrm{d} x h_{0}(x) x^{3} e^{\gamma_{c} x}<\infty}$

## Thank you for listening!

$$
\mu_{t}=\underbrace{v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\operatorname{cste}}_{\text {iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty}-\underbrace{\sqrt[3]{\frac{2 \pi}{\gamma_{c}^{5} v^{\prime \prime}\left(\gamma_{c}\right)} t^{-\frac{1}{2}}}}_{\text {if } \int \mathrm{d} x h_{0}(x) x^{2} e^{\gamma_{c} x}<\infty}+\underbrace{K \frac{\ln t}{t}+\mathcal{O}\left(\frac{1}{t}\right)}_{\text {if } \int \mathrm{d} x h_{0}(x) x^{3} e^{\gamma_{c} x}<\infty}
$$

By matching singularities in a model on the lattice
É. Brunet and B. Derrida, An exactly solvable travelling wave equation in the Fisher-KPP class, Journal of Statistical Physics 2015, 161 (4), 801.

## Thank you for listening!

By matching singularities in a model on the lattice
É. Brunet and B. Derrida, An exactly solvable travelling wave equation in the Fisher-KPP class, Journal of Statistical Physics 2015, 161 (4), 801.

## Second approach, by computing some expectation of Brownian paths

J.Berestycki, É.Brunet, S.C.Harris and M.I.Roberts, Vanishing corrections for the position in a linear model of FKPP fronts, Comm. in Mathematical Physics 2017, 349, 857


By matching singularities in a model on the lattice
É. Brunet and B. Derrida, An exactly solvable travelling wave equation in the Fisher-KPP class, Journal of Statistical Physics 2015, 161 (4), 801.

Second approach, by computing some expectation of Brownian paths
J.Berestycki, É.Brunet, S.C.Harris and M.I.Roberts, Vanishing corrections for the position in a linear model of FKPP fronts, Comm. in Mathematical Physics 2017, 349, 857

Third approach, by matching singularities in a model in the continuum J.Berestycki, É.Brunet and B. Derrida, Exact solution and precise asymptotics of a Fisher-KPP type front, https://arxiv.org/abs/1705.08416

## Thank you for listening!

$\mu_{t}=\underbrace{v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\operatorname{cst}}_{\text {iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty}-\underbrace{\sqrt[3]{\frac{2 \pi}{\gamma_{c}^{5} v^{\prime \prime}\left(\gamma_{c}\right)}} t^{-\frac{1}{2}}}_{\text {if } \int \mathrm{d} x h_{0}(x) x^{2} e^{\gamma_{c} x}<\infty}+\underbrace{K \frac{\ln t}{t}+\mathcal{O}\left(\frac{1}{t}\right)}_{\text {if } \int \mathrm{d} x h_{0}(x) x^{3} e^{\gamma_{c} x}<\infty}$
By matching singularities in a model on the lattice
É. Brunet and B. Derrida, An exactly solvable travelling wave equation in the Fisher-KPP class, Journal of Statistical Physics 2015, 161 (4), 801.

Second approach, by computing some expectation of Brownian paths
J.Berestycki, É.Brunet, S.C.Harris and M.I.Roberts, Vanishing corrections for the position in a linear model of FKPP fronts, Comm. in Mathematical Physics 2017, 349, 857

Third approach, by matching singularities in a model in the continuum J.Berestycki, É.Brunet and B. Derrida, Exact solution and precise asymptotics of a Fisher-KPP type front, https://arxiv.org/abs/1705.08416

Remark: for a step initial condition, with $\mu_{t}=2 t+\delta_{t}$ :

## Thank you for listening!

$\mu_{t}=\underbrace{v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\operatorname{cste}}_{\text {iff } \int \mathrm{d} x h_{0}(x) x e^{\gamma_{c} x}<\infty}-\underbrace{\sqrt[3]{\frac{2 \pi}{\gamma_{c}^{5} v^{\prime \prime}\left(\gamma_{c}\right)}} t^{-\frac{1}{2}}}_{\text {if } \int \mathrm{d} x h_{0}(x) x^{2} e^{\gamma_{c} x}<\infty}+\underbrace{K \frac{\ln t}{t}+\mathcal{O}\left(\frac{1}{t}\right)}_{\text {if } \int \mathrm{d} x h_{0}(x) x^{3} e^{\gamma_{c} x}<\infty}$
By matching singularities in a model on the lattice
É. Brunet and B. Derrida, An exactly solvable travelling wave equation in the Fisher-KPP class, Journal of Statistical Physics 2015, 161 (4), 801.

Second approach, by computing some expectation of Brownian paths
J.Berestycki, É.Brunet, S.C.Harris and M.I.Roberts, Vanishing corrections for the position in a linear model of FKPP fronts, Comm. in Mathematical Physics 2017, 349, 857

Third approach, by matching singularities in a model in the continuum J.Berestycki, É.Brunet and B. Derrida, Exact solution and precise asymptotics of a Fisher-KPP type front, https://arxiv.org/abs/1705.08416

Remark: for a step initial condition, with $\mu_{t}=2 t+\delta_{t}$ :
$\forall \epsilon>0, \quad \int_{0}^{\infty} \mathrm{d} t e^{-\epsilon^{2} t+(1-\epsilon) \delta_{t}}=1$

## Thank you for listening!

$$
\begin{aligned}
& \mu_{t}=\underbrace{v_{c} t-\frac{3}{2 \gamma_{c}} \ln t+\operatorname{cste}}-\underbrace{3 \sqrt{\frac{2 \pi}{\gamma_{c}^{5} v^{\prime \prime}\left(\gamma_{c}\right)}} t^{-\frac{1}{2}}}+\underbrace{K \frac{\ln t}{t}+\mathcal{O}\left(\frac{1}{t}\right)} \\
& \text { iff } \int \mathrm{d} x h_{0}(x) x \mathrm{e}^{\gamma_{c} x}<\infty \quad \text { if } \int \mathrm{d} x h_{0}(x) x^{2} e^{\gamma_{c} x}<\infty \quad \text { if } \int \mathrm{d} x h_{0}(x) x^{3} e^{\gamma_{c} x}<\infty
\end{aligned}
$$

By matching singularities in a model on the lattice
É. Brunet and B. Derrida, An exactly solvable travelling wave equation in the Fisher-KPP class, Journal of Statistical Physics 2015, 161 (4), 801.

Second approach, by computing some expectation of Brownian paths
J.Berestycki, É.Brunet, S.C.Harris and M.I.Roberts, Vanishing corrections for the position in a linear model of FKPP fronts, Comm. in Mathematical Physics 2017, 349, 857

Third approach, by matching singularities in a model in the continuum J.Berestycki, É.Brunet and B. Derrida, Exact solution and precise asymptotics of a Fisher-KPP type front, https://arxiv.org/abs/1705.08416

Remark: for a step initial condition, with $\mu_{t}=2 t+\delta_{t}$ :
$\forall \epsilon>0, \int_{0}^{\infty} \mathrm{d} t e^{-\epsilon^{2} t+(1-\epsilon) \delta_{t}}=1 \quad \Longrightarrow \delta_{t}=-\frac{3}{2} \ln t+a-\frac{3 \sqrt{\pi}}{\sqrt{t}}+K \frac{\ln t}{t}+\cdots$

## Bonus: linear FKPP

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=0
$$

## Bonus: linear FKPP

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=0
$$

$$
h(x, t)=\int \mathrm{d} y h(y, 0) \ldots
$$

## Bonus: linear FKPP

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=0
$$

$$
h(x, t)=\int \mathrm{d} y h(y, 0) e^{t} q(x, t ; y)
$$

## Bonus: linear FKPP

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=0
$$

$$
h(x, t)=\int \mathrm{d} y h(y, 0) e^{t} q(x, t ; y), \quad q(x, t ; y)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(B_{t}-x\right) \ldots\right.
$$

## Bonus: linear FKPP

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=0
$$

$$
h(x, t)=\int \mathrm{d} y h(y, 0) e^{t} q(x, t ; y), \quad q(x, t ; y)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(B_{t}-x\right) \mathbb{1}_{\left\{B_{s}>\mu_{s}, \forall s<t\right\}}\right]
$$

## Bonus: linear FKPP

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=0
$$

$$
h(x, t)=\int \mathrm{d} y h(y, 0) e^{t} q(x, t ; y), \quad q(x, t ; y)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(B_{t}-x\right) \mathbb{1}_{\left\{B_{s}>\mu_{s}, \forall s<t\right\}}\right]
$$

Write $B_{s}=\mu_{s}+\xi_{s}$ and make a Girsanov transform

$$
q\left(\mu_{t}+x, t ; y\right)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}} e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s}
$$

## Bonus: linear FKPP

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=0
$$

$$
h(x, t)=\int \mathrm{d} y h(y, 0) e^{t} q(x, t ; y), \quad q(x, t ; y)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(B_{t}-x\right) \mathbb{1}_{\left\{B_{s}>\mu_{s}, \forall s<t\right\}}\right]
$$

Write $B_{s}=\mu_{s}+\xi_{s}$ and make a Girsanov transform

$$
\begin{aligned}
& q\left(\mu_{t}+x, t ; y\right)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}} e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} d \xi_{s}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s} \\
& \quad=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\left.e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}} \right\rvert\, \xi_{t}=x, \xi_{s}>0\right] \mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s}
\end{aligned}
$$

## Bonus: linear FKPP

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=0
$$

$$
h(x, t)=\int \mathrm{d} y h(y, 0) e^{t} q(x, t ; y), \quad q(x, t ; y)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(B_{t}-x\right) \mathbb{1}_{\left\{B_{s}>\mu_{s}, \forall s<t\right\}}\right]
$$

Write $B_{s}=\mu_{s}+\xi_{s}$ and make a Girsanov transform

$$
\begin{aligned}
q & \left(\mu_{t}+x, t ; y\right)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}} e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s} \\
& =\mathbb{E}_{\mathrm{Bro}}^{y}\left[\left.e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}} \right\rvert\, \xi_{t}=x, \xi_{s}>0\right] \mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s} \\
& =\mathbb{E}_{\text {Bes }}^{y}\left[\left.e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}} \right\rvert\, \xi_{t}=x\right] \mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s}
\end{aligned}
$$

## Bonus: linear FKPP

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=0
$$

$$
h(x, t)=\int \mathrm{d} y h(y, 0) e^{t} q(x, t ; y), \quad q(x, t ; y)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(B_{t}-x\right) \mathbb{1}_{\left\{B_{s}>\mu_{s}, \forall s<t\right\}}\right]
$$

Write $B_{s}=\mu_{s}+\xi_{s}$ and make a Girsanov transform

$$
\left.\begin{array}{rl}
q & \left(\mu_{t}+x, t ; y\right)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}} e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s} \\
= & \mathbb{E}_{\mathrm{Bro}}^{y}\left[\left.e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}} \right\rvert\, \xi_{t}=x, \xi_{s}>0\right] \mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s} \\
= & \mathbb{E}_{\operatorname{Bes}}^{y}\left[\left.e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}} \right\rvert\, \xi_{t}=x\right] \\
\mathbb{E}_{\operatorname{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s} \\
& \mathbb{E}_{\operatorname{Bes}}^{y}\left[\left.e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}} \right\rvert\, \xi_{t}=x\right]=\mathbb{E}_{\operatorname{Bes}}^{y}\left[e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime}\left(\mathrm{d} \xi_{s}-\frac{x-y}{t} \mathrm{~d} s\right.}\right)
\end{array} \xi_{t}=x\right] e^{-\frac{x-y}{2 t} \mu_{t}} .
$$

## Bonus: linear FKPP

$$
\partial_{t} h=\partial_{x}^{2} h+h \quad \text { if } x>\mu_{t}, \quad h\left(\mu_{t}, t\right)=0
$$

$$
h(x, t)=\int \mathrm{d} y h(y, 0) e^{t} q(x, t ; y), \quad q(x, t ; y)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(B_{t}-x\right) \mathbb{1}_{\left\{B_{s}>\mu_{s}, \forall s<t\right\}}\right]
$$

Write $B_{s}=\mu_{s}+\xi_{s}$ and make a Girsanov transform

$$
\begin{aligned}
& q\left(\mu_{t}+x, t ; y\right)=\mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}} e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s} \\
& =\mathbb{E}_{\mathrm{Bro}}^{y}\left[\left.e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}} \right\rvert\, \xi_{t}=x, \xi_{s}>0\right] \mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s} \\
& =\mathbb{E}_{\operatorname{Bes}}^{y}\left[\left.e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}} \right\rvert\, \xi_{t}=x\right] \mathbb{E}_{\mathrm{Bro}}^{y}\left[\delta\left(\xi_{t}-x\right) \mathbb{1}_{\left\{\xi_{s}>0, \forall s<t\right\}}\right] e^{-\frac{1}{4} \int_{0}^{t}\left(\mu_{s}^{\prime}\right)^{2} \mathrm{~d} s} \\
& \left.\left.\mathbb{E}_{\operatorname{Bes}}^{y}\left[\left.e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime} \mathrm{d} \xi_{s}} \right\rvert\, \xi_{t}=x\right]=\mathbb{E}_{\text {Bes }}^{y}\left[e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime}\left(\mathrm{d} \xi_{s}-\frac{x-y}{t} \mathrm{~d} s\right.}\right) \right\rvert\, \xi_{t}=x\right] e^{-\frac{x-y}{2 t} \mu_{t}} \\
& \left.\left.\mathbb{E}_{\text {Bes }}^{y}\left[e^{-\frac{1}{2} \int_{0}^{t} \mu_{s}^{\prime}\left(\mathrm{d} \xi_{s} \frac{x-y}{t} \mathrm{~d} s\right.}\right) \right\rvert\, \xi_{t}=x\right] \approx \mathbb{E}_{\operatorname{Bes}}^{y}\left[e^{-\frac{1}{2} \int_{0}^{\infty} \mu_{s}^{\prime} \mathrm{d} \xi_{s}}\right]
\end{aligned}
$$

