Exercices pour la séance numéro 11

Exercice 1) Fourier inverse d'une porte par une sinusoïde

On rappelle que la conjuguée $\overline{\mathcal{F}}$ de la transformée de Fourier est définie pour une fonction f par $(\overline{\mathcal{F}}f)(\omega) = \widehat{f}(-\omega)$. On se donne un réel a strictement positif. Si P_T désigne la porte de largeur T, c'est à dire $P_T(t) = 1$ si $|t| \leq \frac{T}{2}$ et $P_T(t) = 0$ sinon, montrer que $\left[\overline{\mathcal{F}}\left(\exp\left(-i\,k\,a\,\omega\right)P_{\frac{2\pi}{a}}(\omega)\right)\right](t) = \frac{2\pi}{a}\operatorname{sinc}\left(\pi\left(\frac{t}{a}-k\right)\right)$.

Exercice 2) Convolution par une masse de Dirac

Soit a un nombre réel et f une fonction continue bornée pour fixer les idées. On note δ_a la masse de Dirac au point $a: <\delta_a$, f>=f(a) et τ_a l'opérateur de décalage de la valeur $a: (\tau_a f)(t)=f(t-a)$. Montrer que $f*\delta_a=\delta_a*f=\tau_a f$. Si $T\in \mathcal{S}'(\mathbb{R})$ est maintenant une distribution arbitraire et δ la masse de Dirac au point zéro, c'est à dire $<\delta$, $\varphi>=\varphi(0)$ pour toute fonction test $\varphi\in \mathcal{S}(\mathbb{R})$, montrer que $T*\delta=\delta*T=T$.

Exercice 3) Convolution et transformée de Fourier

Soient deux fonctions f et g. Montrer que l'on a $\mathcal{F}(fg) = \frac{1}{2\pi} (\mathcal{F}f) * (\mathcal{F}g)$. Montrer que le résultat est encore vrai si on remplace \mathcal{F} par $\overline{\mathcal{F}}$ partout dans la relation précédente. Si f est maintenant une fonction "à croissance lente", ce qui signifie que pour toute fonction $\varphi \in \mathcal{S}(\mathbb{R})$ infiniment dérivable et à décroissance rapide, $f \varphi$ est encore une fonction de l'espace $\mathcal{S}(\mathbb{R})$ et $T \in \mathcal{S}'(\mathbb{R})$ une distribution, montrer que l'on a : $\mathcal{F}(fT) = \frac{1}{2\pi} (\mathcal{F}f) * (\mathcal{F}T)$.