le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 11 Change of variable in a double integral

- Change of variable in a double integral: first steps

To fix the ideas, we give ourselves the unit square $K=[0,1] \times[0,1]$ and two strictly positive real numbers a and b. With the linear mapping F defined by $x=a \xi, y=b \eta$, the unit square is transformed into a rectangle $Q=[0, a] \times[0, b]$ (see the Figure 1). If we integrate the function $f \equiv 1$ in the rectangle Q, we find $|Q|=\int_{Q} \mathrm{~d} x \mathrm{~d} y=a b$ while we integrate this same function $f \equiv 1$ in the square K, we obtain $|K|=\int_{K} \mathrm{~d} \xi \mathrm{~d} \eta=1$. We introduce the (constant) matrix J_{F} of the linear application F : $J_{F}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$. Its determinant $\operatorname{det} J_{F}$ is equal to $a b$ and we see that we have $\int_{Q} \mathrm{~d} x \mathrm{~d} y=\int_{K}\left|\operatorname{det} J_{F}\right| \mathrm{d} \xi \mathrm{d} \eta$.

Figure 1. Rectangle with side parallel to the axes

- Change of variable in a double integral: a first parallelogram

We transform the unit square K with a linear transformation F defined now by $x=a \xi+c \eta, y=b \eta$. Then the unit square is transformed into a parallelogram Q whose can be given the coordinates of the four vertices: $\mathrm{O}(0,0)[\xi=\eta=0], \mathrm{A}(a, 0)[\xi=1$,
$\eta=0], \mathrm{B}(a+c, b)[\xi=\eta=1]$ et $\mathrm{C}(c, b)[\xi=0, \eta=1]$. The area of the parallelogram Q is equal to its base multiplied by the height, that is $a b$. Moreover, the matrix J_{F} of the linear application F is now $J_{F}=\left(\begin{array}{ll}a & c \\ 0 & b\end{array}\right)$. Its determinant $\operatorname{det} J_{F}$ is always $a b$ and we still have $\int_{Q} \mathrm{~d} x \mathrm{~d} y=\int_{K}\left|\operatorname{det} J_{F}\right| \mathrm{d} \xi \mathrm{d} \eta$.

François Dubois

Figure 2. Parallelogram : first simple case

Figure 3. Parallelogram : second case

- Change of variable in a double integral: a second parallelogram

We now set the change of variables $(\xi, \eta) \longmapsto(x, y)$ via the linear application F defined by $x=a \xi+c \eta, y=d \xi+b \eta$, with a, b, c and d strictly positive to fix the ideas. Then the unit square K is transformed into another parallelogram Q. The coordinates of its four vertices are the following: $\mathrm{O}(0,0)[\xi=\eta=0], \mathrm{A}(a, d)[\xi=1, \eta=0], \mathrm{B}(a+c, b+d)[\xi=\eta=1]$ and $\mathrm{C}(c, b)[\xi=0, \eta=1]$. If the quadrangle $O A B C$ has a direct orientation (it turns counterclockwise) [we advise the reader to make a drawing!] then the area of the parallelogram Q can be calculated with a graphical approach [exercise!] and we have $|Q|=a b-d c$. If the quadrangle $O A B C$ has a retrograde orientation [we advise the reader to make another drawing!], then we see that $|Q|=-a b+d c$. In all cases, $|Q|=|a b-d c|$. The matrix J_{F} of the linear application F is now equal to $J_{F}=\left(\begin{array}{ll}a & c \\ d & b\end{array}\right)$ and $\operatorname{det} J_{F}=a b-d c$. We notice that to calculate the area of this second parallelogram, it is enough to write $\int_{Q} \mathrm{~d} x \mathrm{~d} y=\int_{K}\left|\operatorname{det} J_{F}\right| \mathrm{d} \xi \mathrm{d} \eta$.

Applied Mathematics

This result generalizes [exercise!] if we replace the unit square by any other square of side $\Delta x>0$.

- Change of variable in a double integral: curvilinear quadrangle

We transform the unit square $K=[0,1] \times[0,1]$ with a nonlinear application Φ which we assume to be assumed to be of class \mathscr{C}^{1}, bijective from K to $Q=\Phi(K)$. We assume the reciprocal application Φ^{-1} continuous from Q onto K. We cut the square K into $N \times N$ small squares $K_{i, j}$ of side $\Delta x=\frac{1}{N}: K_{i, j}=\left[\xi_{i}, \xi_{i+1}\right] \times\left[\eta_{j}, \eta_{j+1}\right]$, with $\xi_{i}=(i-1) \Delta x$ and $\eta_{j}=(j-1) \Delta x$. We introduce the points $M_{i, j}=\Phi\left(\xi_{i}, \eta_{j}\right)$ and the quadrangles $Q_{i, j}=\Phi\left(K_{i, j}\right)$. Then we have $\int_{Q} \mathrm{~d} x \mathrm{~d} y=\sum_{1 \leq i, j \leq N} \int_{Q_{i, j}} \mathrm{~d} x \mathrm{~d} y=\sum_{1 \leq i, j \leq N} \int_{\Phi\left(K_{i, j}\right)} \mathrm{d} x \mathrm{~d} y$. We approach the application Φ in the square $K_{i, j}$ by a tangent affine application $F_{i, j}$ at the point $\left(\xi_{i}, \eta_{j}\right)$:
$\Phi(\xi, \eta) \approx F_{i, j}(\xi, \eta) \equiv \Phi\left(\xi_{i}, \eta_{j}\right)+\mathrm{d} \Phi\left(\xi_{i}, \eta_{j}\right) .\left(\xi-\xi_{i}, \eta-\eta_{j}\right)$. Then we can approximate the area of the curvilinear quadrangle $Q_{i, j}$ by that of the parallelogram $P_{i, j}=F_{i, j}\left(K_{i, j}\right)$ obtained by replacing Φ by $F_{i, j}: \int_{\Phi\left(K_{i, j}\right)} \mathrm{d} x \mathrm{~d} y \approx \int_{P_{i, j}} \mathrm{~d} x \mathrm{~d} y$. But we have seen that for a parallelogram $P_{i, j}$, we have $\int_{P_{i, j}} \mathrm{~d} x \mathrm{~d} y=\int_{K_{i, j}}\left|\operatorname{det} J_{F_{i, j}}\right| \mathrm{d} \xi \mathrm{d} \eta$. In the present case, $J_{F_{i, j}}=\mathrm{d} \Phi\left(\xi_{i}, \eta_{j}\right)$ and we have $\int_{Q} \mathrm{~d} x \mathrm{~d} y \approx \sum_{1 \leq i, j \leq N} \int_{K_{i, j}}\left|\operatorname{det} \mathrm{~d} \Phi\left(\xi_{i}, \eta_{j}\right)\right| \mathrm{d} \xi \mathrm{d} \eta$.
If the integer N tends to infinity, the sum of the right-hand side of the last expression converges towards $\int_{K}|\operatorname{det} \mathrm{~d} \Phi(\xi, \eta)| \mathrm{d} \xi \mathrm{d} \eta$ and we finally have $|Q|=\int_{Q} \mathrm{~d} x \mathrm{~d} y=\int_{K}|\operatorname{det} \mathrm{~d} \Phi(\xi, \eta)| \mathrm{d} \xi \mathrm{d} \eta$.

Figure 4. Around the point $M_{i, j}=\Phi\left(\xi_{i}, \eta_{j}\right)$ (big point in blue on the left), the curvilinear quadrangle $Q_{i, j}$ (in strong line) is well approximated by the parallelogram $P_{i, j}$ (in thin lines) associated with the tangent affine application $F_{i, j}$ if we have sufficiently cut out the initial square.

- Change of variable in a double integral: general case

As above, we transform the unit square $K=[0,1] \times[0,1]$ with a nonlinear function Φ of class \mathscr{C}^{1}, bijective from K onto $Q=\Phi(K)$ and the reciprocal application is assumed to be continuous from Q onto K. We now give ourselves a function f integrable in the sense of Riemann in Q and we try to write the integral $\int_{Q} f(x, y) \mathrm{d} x \mathrm{~d} y$ with an integral in the square K. We use the notations from the previous paragraph and set $f_{i, j}=f\left(\Phi\left(\xi_{i}, \eta_{j}\right)\right)$: this is an approximation of the function f in the (small) curvilinear quadrangle $Q_{i, j}$. We then have $\int_{Q} f(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{1 \leq i, j \leq N} \int_{Q_{i, j}} f(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{1 \leq i, j \leq N} \int_{\Phi\left(K_{i, j}\right)} f(x, y) \mathrm{d} x \mathrm{~d} y$.

François Dubois

For each curvilinear quadrangle $Q_{i, j}$, we have $\int_{\Phi\left(K_{i, j}\right)} f(x, y) \mathrm{d} x \mathrm{~d} y \approx f_{i, j} \int_{\Phi\left(K_{i, j}\right)} \mathrm{d} x \mathrm{~d} y$ and we saw in the previous paragraph that $\int_{\Phi\left(K_{i, j}\right)} \mathrm{d} x \mathrm{~d} y \approx \int_{P_{i, j}} \mathrm{~d} x \mathrm{~d} y=\int_{K_{i, j}}\left|\operatorname{det} \mathrm{~d} \Phi\left(\xi_{i}, \eta_{j}\right)\right| \mathrm{d} \xi \mathrm{d} \eta$. We deduce that $\int_{\Phi\left(K_{i, j}\right)} f(x, y) \mathrm{d} x \mathrm{~d} y \approx \sum_{1 \leq i, j \leq N} \int_{K_{i, j}} f\left(\Phi\left(\xi_{i}, \eta_{j}\right)\right)\left|\operatorname{det} \mathrm{d} \Phi\left(\xi_{i}, \eta_{j}\right)\right| \mathrm{d} \xi \mathrm{d} \eta$. If the integer N tends to infinity, this last sum converges to the integral
$\int_{K} f(\Phi(\xi, \eta))|\operatorname{det} \mathrm{d} \Phi(\xi, \eta)| \mathrm{d} \xi \mathrm{d} \eta$. We deduce the final form of the formula of change of variable of variable in a double integral :
$\int_{Q} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{K} f(\Phi(\xi, \eta))|\operatorname{det} \mathrm{d} \Phi(\xi, \eta)| \mathrm{d} \xi \mathrm{d} \eta$. The trick is not to forget the jacobian $J(\xi, \eta) \equiv|\operatorname{det} \mathrm{d} \Phi(\xi, \eta)|$, absolute value of the determinant of the Jacobian matrix of partial derivatives partial derivatives $\mathrm{d} \Phi(\xi, \eta)$!
We admit that the previous result generalizes to the case of any open set K in \mathbb{R}^{n} any integer $n \geq 1$ and a function f measurable on $Q=\Phi(K)$ and integrable on Q, that is, such that $\int_{Q}|f(x, y)| \mathrm{d} x \mathrm{~d} y<\infty$.
As an exercise, the reader can try to find the "usual" formula of change of variable variable in the case of dimension one as a special case of the previous relation!

- Polar coordinates in the plane

The variables ξ and η are denoted r et θ and the application Φ of change of variable $(r, \theta) \longmapsto(x, y)$ is defined by $x=r \cos \theta$ et $y=r \sin \theta$. The Jacobian matrix of this transformation can be calculated without particular difficulty and we have, if we assume $r>0$:
$J(r, \theta)=r$. Then we have $\int_{Q} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{K} f(r \cos , r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta$ when $Q=\Phi(K)$.

- Revisiting the unidimensional case

Consider four reals numbers a, b, α and β with $a<b$ and $\alpha<\beta$. Introduce a derivable function $\varphi:[\alpha, \beta] \longmapsto[a, b]$ realizing a bijection from $[\alpha, \beta]$ onto $[a, b]$. Then we have in all cases $\int_{a}^{b} f(x) \mathrm{d} x=\int_{\alpha}^{\beta} f(\varphi(t))\left|\varphi^{\prime}(t)\right| \mathrm{d} t$.

Exercises

- Circular domain
a) We suppose given $R>0$. Let D be the domain $D=\left\{(x, y) \in \mathbb{R}^{2}, x^{2}+y^{2} \leq R^{2}\right\}$. Compute the double integral $I=\iint_{D} x^{3} y^{2} \mathrm{~d} x \mathrm{~d} y$.
b) Same question with the analogous integral $I_{+}=\iint_{D_{+}} x^{3} y^{2} \mathrm{~d} x \mathrm{~d} y$ in the domain
$D_{+}=\left\{(x, y) \in \mathbb{R}^{2}, x \geq 0, x^{2}+y^{2} \leq R^{2}\right\}$.
$\left[0, \frac{4}{105} R^{7}\right]$
- Elliptic domain

Let $a>0$ and $b>0$ be two fixed lengths. We introduce the domain D intersection of the interior of the ellipse satisfying the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with the first quandrant $Q_{+}=\left\{(x, y) \in \mathbb{R}^{2}, x \geq 0, y \geq 0\right\}$.
a) Draw the domain D.
b) With a not so conventional change of variables, transform the calculus of the double integral $I=\iint_{D} x y \mathrm{~d} x \mathrm{~d} y$.
c) Deduce from the previous question the surface $|D|$ of this quarter of elliptic domain.
d) Achieve the calculus of the double integral I. $\left[\frac{1}{4} \pi a b, \frac{1}{8} a^{2} b^{2}\right]$

