le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 11 Change of variable in a double integral

• Change of variable in a double integral: first steps

To fix the ideas, we give ourselves the unit square $K = [0, 1] \times [0, 1]$ and two strictly positive real numbers a and b. With the linear mapping F defined by $x = a\xi$, $y = b\eta$, the unit square is transformed into a rectangle $Q = [0, a] \times [0, b]$ (see the Figure 1). If we integrate the function $f \equiv 1$ in the rectangle Q, we find $|Q| = \int_Q dx dy = ab$ while we integrate this same function $f \equiv 1$ in the square K, we obtain $|K| = \int_K d\xi d\eta = 1$. We introduce the (constant) matrix J_F of the linear application $F: J_F = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. Its determinant $\det J_F$ is equal to ab and we see that we have $\int_Q dx dy = \int_K |\det J_F| d\xi d\eta$.

Figure 1. Rectangle with side parallel to the axes

• Change of variable in a double integral: a first parallelogram We transform the unit square K with a linear transformation F defined now by $x=a\xi+c\eta,\ y=b\eta$. Then the unit square is transformed into a parallelogram Q whose can be given the coordinates of the four vertices: O(0,0) [$\xi=\eta=0$], A(a,0) [$\xi=1$, $\eta=0$], B(a+c,b) [$\xi=\eta=1$] et C(c,b) [$\xi=0,\eta=1$]. The area of the parallelogram Q is equal to its base multiplied by the height, that is ab. Moreover, the matrix J_F of the linear application F is now $J_F=\begin{pmatrix} a & c \\ 0 & b \end{pmatrix}$. Its determinant $\det J_F$ is always ab and we still have $\int_Q dx \, dy = \int_K |\det J_F| \, d\xi \, d\eta$.

Figure 2. Parallelogram: first simple case

Figure 3. Parallelogram: second case

• Change of variable in a double integral: a second parallelogram

We now set the change of variables $(\xi,\eta) \longmapsto (x,y)$ via the linear application F defined by $x=a\xi+c\eta, \ y=d\xi+b\eta$, with a,b,c and d strictly positive to fix the ideas. Then the unit square K is transformed into another parallelogram Q. The coordinates of its four vertices are the following: O(0,0) [$\xi=\eta=0$], A(a,d) [$\xi=1,\eta=0$], B(a+c,b+d) [$\xi=\eta=1$] and C(c,b) [$\xi=0,\eta=1$]. If the quadrangle OABC has a direct orientation (it turns counterclockwise) [we advise the reader to make a drawing!] then the area of the parallelogram Q can be calculated with a graphical approach [exercise!] and we have |Q|=ab-dc. If the quadrangle OABC has a retrograde orientation [we advise the reader to make another drawing!], then we see that |Q|=-ab+dc. In all cases, |Q|=|ab-dc|. The matrix J_F of the linear application F is now equal to $J_F=\begin{pmatrix} a&c\\d&b \end{pmatrix}$ and $\det J_F=ab-dc$. We notice that to calculate the area of this second parallelogram, it is enough to write $\int_Q dx\,dy=\int_K |\det J_F|\,d\xi\,d\eta$.

APPLIED MATHEMATICS

This result generalizes [exercise!] if we replace the unit square by any other square of side $\Delta x > 0$.

• Change of variable in a double integral: curvilinear quadrangle

We transform the unit square $K=[0,1]\times[0,1]$ with a nonlinear application Φ which we assume to be assumed to be of class \mathscr{C}^1 , bijective from K to $Q=\Phi(K)$. We assume the reciprocal application Φ^{-1} continuous from Q onto K. We cut the square K into $N\times N$ small squares $K_{i,j}$ of side $\Delta x=\frac{1}{N}\colon K_{i,j}=[\xi_i,\xi_{i+1}]\times[\eta_j,\eta_{j+1}],$ with $\xi_i=(i-1)\Delta x$ and $\eta_j=(j-1)\Delta x$. We introduce the points $M_{i,j}=\Phi(\xi_i,\eta_j)$ and the quadrangles $Q_{i,j}=\Phi(K_{i,j})$. Then we have $\int_Q \mathrm{d} x\,\mathrm{d} y=\sum_{1\leq i,j\leq N}\int_{Q_{i,j}}\mathrm{d} x\,\mathrm{d} y=\sum_{1\leq i,j\leq N}\int_{\Phi(K_{i,j})}\mathrm{d} x\,\mathrm{d} y$. We approach the application Φ in the square $K_{i,j}$ by a tangent affine application $F_{i,j}$ at the point (ξ_i,η_j) : $\Phi(\xi,\eta)\approx F_{i,j}(\xi,\eta)\equiv \Phi(\xi_i,\eta_j)+\mathrm{d}\Phi(\xi_i,\eta_j).(\xi-\xi_i,\eta-\eta_j)$. Then we can approximate the

 $\Phi(\xi, \eta) \approx F_{i,j}(\xi, \eta) \equiv \Phi(\xi_i, \eta_j) + d\Phi(\xi_i, \eta_j).(\xi - \xi_i, \eta - \eta_j).$ Then we can approximate the area of the curvilinear quadrangle $Q_{i,j}$ by that of the parallelogram $P_{i,j} = F_{i,j}(K_{i,j})$ obtained by replacing Φ by $F_{i,j}$: $\int_{\Phi(K_{i,j})} dx \, dy \approx \int_{P_{i,j}} dx \, dy$. But we have seen that for a parallelogram $P_{i,j}$, we have $\int_{P_{i,j}} dx \, dy = \int_{K_{i,j}} |\det J_{F_{i,j}}| \, d\xi \, d\eta$. In the present case, $J_{F_{i,j}} = d\Phi(\xi_i, \eta_j)$ and we have $\int_{Q} dx \, dy \approx \sum_{1 \leq i, j \leq N} \int_{K_{i,j}} |\det d\Phi(\xi_i, \eta_j)| \, d\xi \, d\eta$.

If the integer N tends to infinity, the sum of the right-hand side of the last expression converges towards $\int_K |\det d\Phi(\xi, \eta)| d\xi d\eta$ and we finally have $|Q| = \int_Q dx dy = \int_K |\det d\Phi(\xi, \eta)| d\xi d\eta$.

Figure 4. Around the point $M_{i,j} = \Phi(\xi_i, \eta_j)$ (big point in blue on the left), the curvilinear quadrangle $Q_{i,j}$ (in strong line) is well approximated by the parallelogram $P_{i,j}$ (in thin lines) associated with the tangent affine application $F_{i,j}$ if we have sufficiently cut out the initial square.

• Change of variable in a double integral: general case

As above, we transform the unit square $K = [0,1] \times [0,1]$ with a nonlinear function Φ of class \mathscr{C}^1 , bijective from K onto $Q = \Phi(K)$ and the reciprocal application is assumed to be continuous from Q onto K. We now give ourselves a function f integrable in the sense of Riemann in Q and we try to write the integral $\int_Q f(x,y) \, \mathrm{d}x \, \mathrm{d}y$ with an integral in the square K. We use the notations from the previous paragraph and set $f_{i,j} = f(\Phi(\xi_i, \eta_j))$: this is an approximation of the function f in the (small) curvilinear quadrangle $Q_{i,j}$. We then have $\int_Q f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \sum_{1 \le i, j \le N} \int_{Q_{i,j}} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \sum_{1 \le i, j \le N} \int_{\Phi(K_{i,j})} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$.

FRANÇOIS DUBOIS

For each curvilinear quadrangle $Q_{i,j}$, we have $\int_{\Phi(K_{i,j})} f(x,y) \, \mathrm{d}x \, \mathrm{d}y \approx f_{i,j} \int_{\Phi(K_{i,j})} \, \mathrm{d}x \, \mathrm{d}y$ and we saw in the previous paragraph that $\int_{\Phi(K_{i,j})} \, \mathrm{d}x \, \mathrm{d}y \approx \int_{P_{i,j}} \, \mathrm{d}x \, \mathrm{d}y = \int_{K_{i,j}} \left| \det \mathrm{d}\Phi(\xi_i,\eta_j) \right| \, \mathrm{d}\xi \, \mathrm{d}\eta$. We deduce that $\int_{\Phi(K_{i,j})} f(x,y) \, \mathrm{d}x \, \mathrm{d}y \approx \sum_{1 \leq i, j \leq N} \int_{K_{i,j}} f(\Phi(\xi_i,\eta_j)) \, |\det \mathrm{d}\Phi(\xi_i,\eta_j)| \, \mathrm{d}\xi \, \mathrm{d}\eta$. If the integer N tends to infinity, this last sum converges to the integral

 $\int_K f(\Phi(\xi, \eta)) |\det d\Phi(\xi, \eta)| d\xi d\eta$. We deduce the final form of the formula of change of variable of variable in a double integral:

 $\int_Q f(x,y) dx dy = \int_K f(\Phi(\xi,\eta)) |\det d\Phi(\xi,\eta)| d\xi d\eta$. The trick is not to forget the jacobian $J(\xi,\eta) \equiv |\det d\Phi(\xi,\eta)|$, absolute value of the determinant of the Jacobian matrix of partial derivatives partial derivatives $d\Phi(\xi,\eta)$!

We admit that the previous result generalizes to the case of any open set K in \mathbb{R}^n any integer $n \ge 1$ and a function f measurable on $Q = \Phi(K)$ and integrable on Q, that is, such that $\int_Q |f(x,y)| dx dy < \infty$.

As an exercise, the reader can try to find the "usual" formula of change of variable variable in the case of dimension one as a special case of the previous relation!

• Polar coordinates in the plane

The variables ξ and η are denoted r et θ and the application Φ of change of variable $(r,\theta) \longmapsto (x,y)$ is defined by $x=r\cos\theta$ et $y=r\sin\theta$. The Jacobian matrix of this transformation can be calculated without particular difficulty and we have, if we assume r>0: $J(r,\theta)=r$. Then we have $\int_{Q} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_{K} f(r\cos,r\sin\theta) \, r \, \mathrm{d}r \, \mathrm{d}\theta$ when $Q=\Phi(K)$.

• Revisiting the unidimensional case

Consider four reals numbers a, b, α and β with a < b and $\alpha < \beta$. Introduce a derivable function $\varphi : [\alpha, \beta] \longmapsto [a, b]$ realizing a bijection from $[\alpha, \beta]$ onto [a, b]. Then we have in all cases $\int_a^b f(x) dx = \int_\alpha^\beta f(\varphi(t)) |\varphi'(t)| dt$.

Exercises

- Circular domain
- a) We suppose given R > 0. Let D be the domain $D = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 \le R^2\}$. Compute the double integral $I = \iint_D x^3 y^2 dx dy$.
- b) Same question with the analogous integral $I_+ = \iint_{D_+} x^3 y^2 dx dy$ in the domain $D_+ = \{(x,y) \in \mathbb{R}^2, x \ge 0, x^2 + y^2 \le R^2\}.$ [0, $\frac{4}{105}R^7$]
- Elliptic domain

Let a > 0 and b > 0 be two fixed lengths. We introduce the domain D intersection of the interior of the ellipse satisfying the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with the first quandrant $Q_+ = \{(x, y) \in \mathbb{R}^2, x \ge 0, y \ge 0\}.$

- a) Draw the domain D.
- b) With a not so conventional change of variables, transform the calculus of the double integral $I = \iint_D xy \,dx \,dy$.
- c) Deduce from the previous question the surface |D| of this quarter of elliptic domain.
- d) Achieve the calculus of the double integral I. $\left[\frac{1}{4}\pi ab, \frac{1}{8}a^2b^2\right]$