le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 10 Double integral

• Recall on the simple integral

We suppose given two reals a < b and a function $f : [a, b] \longrightarrow \mathbb{R}$. The integral $\int_a^b f(x) \, \mathrm{d}x$ of f on the interval [a, b], denoted also as $\int_{[a, b]} f$, is a real number satisfying the following properties:

- ★ Length. If f(x) = 1 for all x, then $\int_a^b dx = b a$.
- * Linearity. If f and g are two functions $[a, b] \longrightarrow \mathbb{R}$ and λ is a real number, we have $\int_a^b \left(f(x) + g(x) \right) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$ and $\int_a^b \left(\lambda f(x) \right) dx = \lambda \int_a^b f(x) dx$.

 * Positivity. If f is a positive function, id est $f(x) \ge 0$ for all x, then the corresponding
- * Positivity. If f is a positive function, id est $f(x) \ge 0$ for all x, then the corresponding integral is positive: $\int_a^b f(x) \, \mathrm{d}x \ge 0$. We remark that this property can be in defect if we do not suppose a < b.
- * Additivity relative to the domain (Chasles's relation). If a < c < b, then $\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$.

These properties can be extended to the double integral. It is not the case for the following ones.

- Specific properties of the simple integral
- Fundamental theorem of Analysis and integration by parts. We suppose that f a continuous function $[a,b] \longmapsto \mathbb{R}$. For example, f can be a polynomial, a sinus or cosinus function, an exponential function, the absolute value or the composite of two continuous function. But f can not be the Heaviside function H proposed initially by Oliver Heaviside (1850-1925) and defined by H(x) = 0 for $x \le 0$ and H(x) = 1 when x > 0. Then the mapping ψ defined according to $\psi(x) = \int_a^x f(\xi) \, \mathrm{d}\xi$ is a derivable function of the variable x and $\frac{\mathrm{d}}{\mathrm{d}x} \Big(\int_a^x f(\xi) \, \mathrm{d}\xi \Big) = f(x)$. In consequence, $\int_a^b \frac{\mathrm{d}f}{\mathrm{d}x} \, \mathrm{d}\xi = f(b) f(a)$ if f is a continuously derivable function. The proof of this result introduces the function g defined according to $g(x) = f(x) \int_a^x \frac{\mathrm{d}f}{\mathrm{d}\xi} \, \mathrm{d}\xi$. Then g is derivable and $\frac{\mathrm{d}g}{\mathrm{d}x} = 0$ on the interval [a,b]. In consequence, the function g is a constant function : g(a) = g(b). This relation means that $f(a) = f(b) \int_a^b \frac{\mathrm{d}f}{\mathrm{d}\xi} \, \mathrm{d}\xi$ and the result is proven.

In practice, this result is expressed as follows: If we suppose given a primitive function F of the function f (that is $\frac{dF}{dx} = f(x)$), then $\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$.

FRANÇOIS DUBOIS

- \star Change of variable. We suppose that the interval [a, b] is parametrized by a one to one increasing function φ from $[\alpha, \beta]$ onto [a, b]: $x = \varphi(t)$ with $t \in [\alpha, \beta]$. Then $\int_a^b f(x) dx = \int_\alpha^\beta f(\varphi(t)) \varphi'(t) dt$.
- \star Calculus of surfaces. If the function f is positive from [a,b] to \mathbb{R} (with a < b), then the integral $\int_a^b f(x) \, \mathrm{d}x$ is equal to the area $|\Omega|$ of the domain Ω between the abscissae a and b on one hand, the abscissa axis and the curve y = f(x) on the other hand:

$$\Omega = \{(x, y) \in \mathbb{R}^2, a \le x \le b, 0 \le y \le f(x)\}.$$
 Then we have $\int_a^b f(x) dx = |\Omega|$.

• Fundamental properties of the double integral

We supose given a bounded subset Ω of the plane \mathbb{R}^2 and a bounded function $f:\Omega \longrightarrow \mathbb{R}$. The double integral of the function f on the domain Ω is a real number. It is noted $\int_{\Omega} f(x,y) dx dy$ or $\iint_{\Omega} f(x,y) dx dy$ and often more simply $\int_{\Omega} f dx dy$ or $\int_{\Omega} f$.

 \star Surface: double integral of the function "one". We introduce four real numbers a, b, c and d such that a < b and c < d. We consider the rectangle $\Omega =]a, b[\times]c, d[$ of the plane \mathbb{R}^2 . The double integral of the function $f(x,y) \equiv 1$ is simply the area (b-a)(d-c) of the rectangle: $\int_{[a,b[\times]c,d[} \mathrm{d}x\,\mathrm{d}y = (b-a)(d-c).$

More generally, if Ω is a bounded part of the plane, that is if Ω is included in a large rectangle, the double integral on Ω of the function $f(x, y) \equiv 1$ is exactly the surface $|\Omega|$ of the domain : $\int_{\Omega} dx dy = |\Omega|$.

- \star Linearity. We suppose that the double integral $\int_{\Omega} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$ of the function f is known and we give a number λ . Then $\int_{\Omega} (\lambda f)(x,y) \, \mathrm{d}x \, \mathrm{d}y = \lambda \int_{\Omega} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$. If we give also the double integral $\int_{\Omega} g(x,y) \, \mathrm{d}x \, \mathrm{d}y$ of the function g, then $\int_{\Omega} (f+g)(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_{\Omega} f(x,y) \, \mathrm{d}x \, \mathrm{d}y + \int_{\Omega} g(x,y) \, \mathrm{d}x \, \mathrm{d}y$.
- * Positivity. We suppose that the function f is positive on Ω : $f(x,y) \ge 0$, $\forall (x,y) \in \Omega$. Then $\int_{\Omega} f(x,y) \, \mathrm{d}x \, \mathrm{d}y \ge 0$. If $f \le g$ on Ω that is $f(x,y) \le g(x,y)$ for all $(x,y) \in \Omega$, then $\int_{\Omega} f(x,y) \, \mathrm{d}x \, \mathrm{d}y \le \int_{\Omega} g(x,y) \, \mathrm{d}x \, \mathrm{d}y$ [exercice].
- \star Additivity relative to the domain. We suppose the domain Ω is decomposed into a finite set of simpler sub-domains: Ω_i : $\Omega = \bigcup_{i=1}^N \Omega_i$. Moreover, the intersection $\Omega_i \cap \Omega_j$ has a null area if $i \neq j$: $|\Omega_i \cap \Omega_j| = 0$. Then the integral on Ω of any function f is the sum of the integrals on each sub-domain Ω_i of this function: $\int_{\Omega} f(x, y) \, dx \, dy = \sum_{i=1}^N \int_{\Omega_i} f(x, y) \, dx \, dy$.
- Integral of a tiered function

We suppose given a decomposition of the domain Ω as above and a tired function f on Ω , that is a constant function in each part Ω_i : $\forall i = 1, ..., N$, $\exists \lambda_i \in \mathbb{R}$, $\forall (x, y) \in \Omega_i$, $f(x, y) = \lambda_i$. The calculus of the integral of f on Ω is explicit: $\int_{\Omega} f(x, y) dx dy = \sum_{i=1}^{N} \lambda_i |\Omega_i|$ [exercise].

• Integral of a continuous function

We consider again a bounded domain $\Omega \subset \mathbb{R}^2$ and $f \in \mathscr{C}^0(\overline{\Omega})$ a continuous function on Ω up to the boundary. Then the integral of f on Ω is well defined; it is a real number, or eventually a complex number.

• Fubini theorem [Guido Fubini (1879-1943)]

We consider a bounded domain $\Omega \subset \mathbb{R}^2$ and a bounded function defined on Ω with real or eventually complex values : $\exists M \geq 0, \forall (x, y) \in \Omega, |f(x, y)| \leq M$. Then the integral of the

APPLIED MATHEMATICS

absolute value of f is finite: $\iint_{\Omega} |f(x,y)| \, \mathrm{d}x \, \mathrm{d}y < \infty$. Moreover, the double integral of f in the domain Ω is well defined and we have the inequality $|\iint_{\Omega} f(x,y) \, \mathrm{d}x \, \mathrm{d}y| \le \iint_{\Omega} |f(x,y)| \, \mathrm{d}x \, \mathrm{d}y$. The Fubini theorem says that it is always possible to integrate this function "in the order we want".

Figure 1. Calculus of the double integral in the domain Ω , first by the integration of the function f relative to g between $\varphi_{-}(x)$ and $\varphi_{+}(x)$, and secondly by simple integration relative to g of the result, between g and g.

More precisely, if Ω is between two regular curves of the form $y=\varphi(x)$ as in Figure 1, that is $\Omega=\{(x,y)\in\mathbb{R}^2, a\leq x\leq b, \varphi_-(x)\leq y\leq \varphi_+(x)\}$, we have $\int_\Omega f(x,y)\,\mathrm{d} x\,\mathrm{d} y=\int_a^b\mathrm{d} x\Big[\int_{\varphi_-(x)}^{\varphi_+(x)}\mathrm{d} y\,f(x,y)\Big].$ If Ω is included between two curves of the type $x=\psi(y)$ like in Figure 2, $id\ est$ $\Omega=\{(x,y)\in\mathbb{R}^2, c\leq y\leq d, \psi_-(y)\leq x\leq \psi_+(y)\}$, we have $\int_\Omega f(x,y)\,\mathrm{d} x\,\mathrm{d} y=\int_c^d\mathrm{d} y\Big[\int_{\psi_-(y)}^{\psi_+(y)}\mathrm{d} x\,f(x,y)\Big].$ When the domain Ω can be parametrized in two ways, the double integral can be computed by one relation or the other and we have $\int_\Omega f(x,y)\,\mathrm{d} x\,\mathrm{d} y=\int_a^b\mathrm{d} x\Big[\int_{\varphi_-(x)}^{\varphi_+(x)}\mathrm{d} y\,f(x,y)\Big]=\int_c^d\mathrm{d} y\Big[\int_{\psi_-(y)}^{\psi_+(y)}\mathrm{d} x\,f(x,y)\Big].$

• A first example of using Fubini theorem

We suppose given two real numbers a < b and an integrable function $g : [a, b] \longrightarrow \mathbb{R}$. We suppose that the function g is positive : $\forall x \in [a, b], \ g(x) \ge 0$. We consider the domain $\Omega = \{(x, y) \in \mathbb{R}^2, \ a \le x \le b, \ 0 \le y \le g(x)\}$ considered previously with the study of simple integrals. Then the Fubini theorem, with $\varphi_- = 0$, $\varphi_+ = g$ and $f(x, y) \equiv 1$ for each $(x, y) \in \Omega$, allows to conclude that $|\Omega| = \int_a^b g(x) \, \mathrm{d}x$. We recover the link between the simple integral and the calculus of surfaces.

Figure 2. Calculus of the double integral in the domain Ω , first by the integration of the function f relative to x between $\psi_{-}(y)$ and $\psi_{+}(y)$, and secondly by simple integration relative to y of the result, between c and d.

Exercices

- Inequalities
- a) If $f \le g$ on Ω that is $f(x, y) \le g(x, y)$ for all $(x, y) \in \Omega$, prove that we have the following inequality between numbers $\int_{\Omega} f(x, y) dx dy \le \int_{\Omega} g(x, y) dx dy$.

If f is a bounded function in the bounded domain Ω , we introduce the two positive functions $f^+ = \max(f, 0)$ and $f^- = \max(-f, 0)$.

- b) Prove that $f = f^+ f^-$ and $|f| = f^+ + f^-$.
- c) Deduce from the previous question that we have $\left| \iint_{\Omega} f(x, y) \, dx \, dy \right| \le \iint_{\Omega} |f(x, y)| \, dx \, dy$.
- Rectangular domains
- a) Let *D* be the domain $D = \{(x, y) \in \mathbb{R}^2, 0 \le x \le 1, 0 \le y \le 2\}.$

Compute the double integral $\int_D xy \, dx \, dy$.

[1]

- b) Same question with the domain $\Delta = \{(x, y) \in \mathbb{R}^2, 0 \le x \le \pi, 0 \le y \le \frac{\pi}{2}\}$ and the integral $J = \int \int_{\Delta} x \sin(x+y) \, dx \, dy$. $[\pi 2]$
- Double integral in a triangle

We suppose given two real numbers a > 0 and b > 0 and the triangle

 $T = \{(x, y) \in \mathbb{R}^2, x \ge 0, y \ge 0, \frac{x}{a} + \frac{y}{b} \le 1\}$. We consider the function f(x, y) = x - y.

- a) Prove that the double integral of the absolute value |f| on the triangle T is finite.
- b) Compute the double integral $I = \iint_T f(x, y) dx dy$ with the first approach suggested by the Fubini theorem: $I = \iint_T f(x, y) dx dy = \int_0^a dx \left[\int_{?}^{?} dy (x y) \right]$ with an appropriate substitution of the question marks with an algebraic expression.

APPLIED MATHEMATICS

- c) Compute the double integral I with the second approach suggested by the Fubini theorem: $I = \iint_T f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_0^b \, \mathrm{d}y \left[\int_?^? \, \mathrm{d}x \, (x-y) \right]$. The question marks will be replaced with a corect algebraic expression.
- d) Compare your results of questions b) and c). Are they identical? $\left[\frac{1}{6}ab(a-b)\right]$
- Exchanging the order of integration

We consider a function f well defined for all reals x and y.

Complete the two expressions of the double integral $\int_0^1 dy \int_y^{\sqrt{y}} dx f(x, y) = \int_2^2 dx \int_2^2 dy f(x, y)$ obtained after the exchange of the order of the integrals.

[remark that
$$\Omega = \{(x, y) \in \mathbb{R}^2, 0 \le y \le 1, y \le x \le \sqrt{y}\}$$
]