le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 8 Functions of several variables

- Some examples

An affine function: $\alpha(x, y)=a x+b y+c$, a quadratic function: $q(x, y)=x^{2}-y^{2}$, a powerexponential function: $h(x, y)=x^{y}$ and a rational fraction: $r(x, y)=\frac{x^{2} y^{2}}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$, $r(0,0)=0$.

- Domain

A function f from \mathbb{R}^{2} with real values associates to each pair (x, y) of real numbers one and only one number $f(x, y)$ if (x, y) belongs to the domain D. If $(x, y) \notin D$, then the number $f(x, y)$ does not exists.
For the previous examples, we have $\left.D_{\alpha}=\mathbb{R}^{2}, D_{q}=\mathbb{R}^{2}, D_{h}=\right] 0,+\infty\left[\times \mathbb{R}\right.$ and $D_{r}=\mathbb{R}^{2}$.

- Partial functions

A function with two variables defines (at least) a double infinity of functions of a single variable. On one hand, with b given in \mathbb{R}, we have the function $x \longmapsto f(x, b)$ of the first variable. On the other hand, with $a \in \mathbb{R}$, we can introduce the function $y \longmapsto f(a, y)$ of the second variable.

- Partial derivatives

We suppose given a function $\mathbb{R}^{2} \supset D \ni(x, y) \longmapsto f(x, y) \in \mathbb{R}$ of two variables and a point (a, b) that belongs to the domain of f. We say that f admits a partial derivative at the point (a, b) according to the first variable, noted $\frac{\partial f}{\partial x}(a, b)$, if and only if the partial function $x \longmapsto f(x, b)$ is derivable at the point a; we have $\frac{\partial f}{\partial x}(a, b)=\lim _{t \rightarrow 0} \frac{1}{t}[f(a+t, b)-f(a, b)]$.
Similarly, we say that f admits a partial derivative at the point (a, b) relative to the second variable, noted $\frac{\partial f}{\partial y}(a, b)$, if and only if the partial function $y \longmapsto f(a, y)$ is derivable at the point b. In that case, $\frac{\partial f}{\partial y}(a, b)=\lim _{\theta \longrightarrow a} \frac{1}{\theta}[f(a, b+\theta)-f(a, b)]$.
For the functions proposed in the introduction, we have $\frac{\partial \alpha}{\partial x}=a, \frac{\partial \alpha}{\partial y}=b, \frac{\partial q}{\partial x}=2 x, \frac{\partial q}{\partial y}=-2 y$, $\frac{\partial h}{\partial x}=\frac{y}{x} h, \frac{\partial h}{\partial y}=(\log x) h, \frac{\partial r}{\partial x}=\frac{2 x y^{4}}{\left(x^{2}+y^{2}\right)^{2}}, \frac{\partial r}{\partial y}=\frac{2 x^{4} y}{\left(x^{2}+y^{2}\right)^{2}}$.

- Continuity

The function f is continuous at the point (a, b) if and only if the function $\varphi(u, v)$ defined by $\varphi(u, v)=f(a+u, b+v)-f(a, b)$ tends to zero if the point (u, v) tends to the origin $(0,0)$.

François Dubois

The functions α, q and r introduced previously are continuous at the point $(0,0)$.
If $f: D \longrightarrow \mathbb{R}$ is continuous for each point $(a, b) \in D$, we say that f is continuous in the domain D.
If $f: D \longrightarrow \mathbb{R}$ is continuous in D and if $g: \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function of a single variable, then the composite function $(g \circ f)(x, y) \equiv g(f(x, y))$ is a continuous function in the domain D.

- Differentiability

We suppose given a function of two variables $\mathbb{R}^{2} \supset D \ni(x, y) \longmapsto f(x, y) \in \mathbb{R}$ and a point $(a, b) \in D$. We say that f is differentiable at the point (a, b) if the function f est "close" to an affine function in the vicinity of the point (a, b). More precisely, f is differentiable at the point (a, b) if and only if there exits two numbers α et β and a function φ of two variables (u, v) that tends to zero when (u, v) tends to the origin $(0,0)$, such that we have the expansion $f(a+u, b+v)=f(a, b)+\alpha u+\beta v+\sqrt{u^{2}+v^{2}} \varphi(u, v)$.
If f is differentiable at the point (a, b), it has also partial derivatives at the point. We have the relations $\frac{\partial f}{\partial x}(a, b)=\alpha$ and $\frac{\partial f}{\partial y}(a, b)=\beta$.

- Theorem: differentiability implies continuity

When f is differentiable at the point $(a, b) \in D$, then it is continuous at the point.
Be careful! The existence of partial derivatives does not imply the differentiability! The function s defined by the conditions $s(x, y)=\frac{x^{5}}{\left(y-x^{2}\right)^{2}+x^{8}}$ if $(x, y) \neq(0,0)$ and $s(0,0)=0$ admits partial derivatives $\frac{\partial s}{\partial x}(0,0)$ and $\frac{\partial s}{\partial y}(0,0)$ at the origin but the function s is not continuous at the point (0,0).

- Remark concerning the notations

The differential $\mathrm{d} f(a, b)$ is a linear map defined by the relation
$\mathrm{d} f(a, b) .(u, v)=\frac{\partial f}{\partial x}(a, b) u+\frac{\partial f}{\partial y}(a, b) v$. Introduce the two coordinate functions $X(x, y)=x$ and $Y(x, y)=y$. Then we have $\mathrm{d} X(a, b) \cdot(u, v)=u$ and $\mathrm{d} Y(a, b) \cdot(u, v)=v$. In consequence, we can write $\mathrm{d} f(a, b) .(u, v)=\frac{\partial f}{\partial x}(a, b) \mathrm{d} X(a, b) .(u, v)+\frac{\partial f}{\partial y}(a, b) \mathrm{d} Y(a, b) .(u, v)$. This relation between numbers is true for each $(u, v) \in \mathbb{R}^{2}$. Then we can write an equality between linear forms: $\mathrm{d} f(a, b)=\frac{\partial f}{\partial x}(a, b) \mathrm{d} X(a, b)+\frac{\partial f}{\partial y}(a, b) \mathrm{d} Y(a, b)$. We usually skip the reference to the argument (a, b) and we obtain the relation $\mathrm{d} f=\frac{\partial f}{\partial x} \mathrm{~d} X+\frac{\partial f}{\partial y} \mathrm{~d} Y$. With a litle purpose of notation, we replace X by x and Y by y. Then we have $\mathrm{d} f=\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y$, the usual way for computing differentials.

- Differentiation of composite functions: a first case.

We suppose given a function of two variables $\mathbb{R}^{2} \supset D \ni(x, y) \longmapsto f(x, y) \in \mathbb{R}$ and two functions $\mathbb{R} \ni t \longmapsto X(t)$ and $\mathbb{R} \ni t \longmapsto Y(t)$ in such a way that for each t, we have the condition $(X(t), Y(t)) \in D$. Then the composite function $g(t)=f(X(t), Y(t))$ is well defined for each t. If f is differentiable on the domain D and if the functions $t \longmapsto X(t)$ and $t \longmapsto Y(t)$ are derivables, then the function $t \longmapsto g(t)$ is derivable and we have the relation $\frac{\mathrm{d} g}{\mathrm{~d} t}=\frac{\partial f}{\partial x}(X(t), Y(t)) \frac{\mathrm{d} X}{\mathrm{~d} t}+\frac{\partial f}{\partial y}(X(t), Y(t)) \frac{\mathrm{d} Y}{\mathrm{~d} t}$.

Applied Mathematics

- Differentiation of composite functions: a second case.

We replace the functions X and Y of the previous section by the two functions $\mathbb{R}^{2} \supset \Delta \ni(u, v) \longmapsto X(u, v) \in \mathbb{R}$ and $\mathbb{R}^{2} \supset \Delta \ni(u, v) \longmapsto Y(u, v) \in \mathbb{R}$ of two variables. As previously, we suppose that for each $(u, v) \in \Delta$, we have $(X(u, v), Y(u, v)) \in D$. Then the composite function $g(u, v)=f(X(u, v), Y(u, v))$ is well defined for $(u, v) \in \Delta$.
If f is differentiable on D and if the functions X and Y are differentiable on Δ, then the composite function $g(u, v)=f(X(u, v), Y(u, v))$ is differentiable on Δ and the partial derivatives are evaluated with the relations $\frac{\partial g}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial X}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial Y}{\partial u}$ and $\frac{\partial g}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial X}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial Y}{\partial v}$.

Exercices

- Kernel of the heat equation

We suppose given $\sigma>0$. For $x \in \mathbb{R}$ and $t>0$ we set $\varphi(x, t)=\frac{1}{\sqrt{t}} \exp \left(-\frac{x^{2}}{4 \sigma^{2} t}\right)$.
a) Propose an expression for the partial derivative $\frac{\partial \varphi}{\partial t}$.
b) Same question for $\frac{\partial \varphi}{\partial x}$.
c) Same question for $\frac{\partial^{2} \varphi}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial \varphi}{\partial x}\right)$.
d) Verify that the function φ is a solution of the heat equation in one space dimension:
$\frac{\partial \varphi}{\partial t}-\sigma^{2} \frac{\partial^{2} \varphi}{\partial x^{2}}=0$ for $x \in \mathbb{R}$ and $t>0$.

- Method of characteristics

We suppose given a real numer $a \in \mathbb{R}$ and a derivable function u_{0} from \mathbb{R} to \mathbb{R}. We search an unknown function $u(x, t)$ of two variables that satisfies on one hand to the advection equation $\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0$ for $x \in \mathbb{R}$ and $t>0$ and on the other hand to the initial condition $u(x, 0)=u_{0}(x)$ for each $x \in \mathbb{R}$. Independently, for a fixed $y \in \mathbb{R}$, we set $v(t)=u(a t+y, t)$.
a) Prove that if the function u is solution of the advection equation, then the derivative $\frac{\mathrm{d} v}{\mathrm{~d} t}$ is equal to zero.
b) Deduce from the previous question that for each $y \in \mathbb{R}$ and each $t \geq 0$, we have the relation $u(a t+y, t)=u_{0}(y)$.
c) Establish that every differentiable solution of the advection equation $\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0$ satisfying the initial condition $u(x, 0)=u_{0}(x)$ for each $x \in \mathbb{R}$ is necessarily of the form $u(x, t)=u_{0}(x-a t), x \in \mathbb{R}, t>0$.
d) With an elementary calculus, show that the function u defined by $u(x, t)=u_{0}(x-a t)$ is effectively a solution of the prolem composed on one hand by the advection equation $\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0$ (with $x \in \mathbb{R}$ et $t>0$) and on the other hand by the initial condition $u(x, 0)=u_{0}(x)$ (with $x \in \mathbb{R}$).

- Laplacian in polar coordinates

A point (x, y) of the affine Euclidian plane not located at the origin can be parametrized with the two dimensional polar coordinates $(r, \theta): x=r \cos \theta$ and $y=r \sin \theta$. Let f be a two times continuously differentiable function of the pair (x, y) with real values; we have $f(x, y) \in \mathbb{R}$.

François Dubois

We introduce the Laplacian of $f: \Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$ and independently the function g of the variables r and θ such that $g(r, \theta)=f(r \cos \theta, r \sin \theta)$.
a) From the relation $r^{2}=x^{2}+y^{2}$, show that the partial derivatives $\frac{\partial r}{\partial x}$ et $\frac{\partial r}{\partial y}$ are respectively equal to $\frac{x}{r}=\cos \theta$ and $\frac{y}{r}=\sin \theta$.
b) Similarly, from the the relation $\tan \theta=\frac{y}{x}$, prove that we have $\frac{\partial \theta}{\partial x}=-\frac{y}{r^{2}}=-\frac{1}{r} \sin \theta$ and $\frac{\partial \theta}{\partial y}=\frac{x}{r^{2}}=\frac{1}{r} \cos \theta$.
c) Compute $\frac{\partial g}{\partial r}$ and $\frac{\partial g}{\partial \theta}$ as functions of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
d) Deduce from the previous question that we have $\frac{\partial f}{\partial x}=\cos \theta \frac{\partial g}{\partial r}-\frac{1}{r} \sin \theta \frac{\partial g}{\partial \theta}$ and $\frac{\partial f}{\partial y}=\sin \theta \frac{\partial g}{\partial r}+\frac{1}{r} \cos \theta \frac{\partial g}{\partial \theta}$.
e) Using the four auxiliary fonctions $f_{1}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}, f_{2}(x, y)=\frac{-y}{x^{2}+y^{2}}, f_{3}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}$ and $f_{4}(x, y)=\frac{x}{x^{2}+y^{2}}$, establish the following relations $\frac{\partial}{\partial x}(\cos \theta)=\frac{1}{r} \sin ^{2} \theta$, $\frac{\partial}{\partial x}\left(-\frac{1}{r} \sin \theta\right)=\frac{2}{r^{2}} \sin \theta \cos \theta, \frac{\partial}{\partial y}(\sin \theta)=\frac{1}{r} \cos ^{2} \theta$ and $\frac{\partial}{\partial y}\left(\frac{1}{r} \cos \theta\right)=-\frac{2}{r^{2}} \sin \theta \cos \theta$.
f) Deduce from the relations obtained in the previous questions the expressions of the second partial derivatives $\frac{\partial^{2} f}{\partial x^{2}}$ and $\frac{\partial^{2} f}{\partial y^{2}}$ as fonctions of $r, \theta, \frac{\partial g}{\partial r}, \frac{\partial g}{\partial \theta}, \frac{\partial^{2} g}{\partial r^{2}}, \frac{\partial^{2} g}{\partial r \partial \theta}$ and $\frac{\partial^{2} g}{\partial \theta^{2}}$. Be careful, each result contains five terms!
g) Deduce from the previous question the identity $\Delta f(x, y)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial g}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} g}{\partial \theta^{2}}$.

