le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 5 Autoadjoint operators

- Euclidian space

We consider a vector space E of finite dimension n. A scalar product is a map defined on the product space $E \times E$: for each $x \in E$ and each $y \in E$, we associate the real number denoted by (x, y) and called the scalar product of the vectors x and y. It satisfies three properties
(i) the scalar product is bilinear

$$
\begin{array}{ll}
\left(x+x^{\prime}, y\right)=(x, y)+\left(x^{\prime}, y\right), \forall x, x^{\prime}, y \in E, & (\lambda x, y)=\lambda(x, y), \forall \lambda \in \mathbb{R}, \forall x, y \in E \\
\left(x, y+y^{\prime}\right)=(x, y)+\left(x, y^{\prime}\right), \forall x, y, y^{\prime} \in E, & (x, \lambda y)=\lambda(x, y), \forall \lambda \in \mathbb{R}, \forall x, y \in E
\end{array}
$$

(ii) the scalar product is symmetric
$(y, x)=(x, y), \forall x, x^{\prime}, y \in E$
(iii) the scalar product is positive definite

$$
\begin{aligned}
& (x, x) \geq 0, \forall x \in E \\
& \text { if }(x, x)=0, \text { then } x=0 .
\end{aligned}
$$

When the vector space E is equipped with a scalar product (.,.), we speak of an Euclidian space $(E,(.,)$.$) or simply of the Euclidian space E$ when there is no ambiguity on the definition of the scalar product.
A fundamental example is the "canonical scalar product" defined in the space \mathbb{R}^{n} by the relations $(x, y)=\sum_{j=1}^{n} x_{j} y_{j}$ with $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. The bilinearity and the symmetry are easy to check. Positivity is a consequence of the fact that the x_{j} are real numbers: we have $(x, x)=\sum_{j=1}^{n}\left(x_{j}\right)^{2} \geq 0$. For the definite positive property, if $(x, x)=0$, then the previous sum of squares is equal to zero. Then each term is null and $x_{1}=\ldots=x_{n}=0$. In other words, $x=0$ in the space \mathbb{R}^{n}.

- Orthogonality

Let E be an Euclidian space. The two vectors x and y in E are orthogonals and we note $x \perp y$ if and only if their scalar product (x, y) is null. We have $x \perp y \Longleftrightarrow(x, y)=0$.
If F and G are two subspaces of the Euclidian space E, we say that F is orthogonal to G and we denote $F \perp G$ if and only if for each $x \in F$ and each $y \in G$, we have $(x, y)=0$.
We can equip the space P_{1} introduced in the previous lectures with the following scalar product: ($\left.b f_{0}+a f_{1}, b^{\prime} f_{0}+a^{\prime} f_{1}\right)=b b^{\prime}+a a^{\prime}$. It is an exercice left to the reader that this function satisfies

François Dubois

the three axioms (i), (ii) and (iii) introduced previously. Then the two basis vectors f_{0} and f_{1} are orthogonals. Moreover, the spaces $\left\langle f_{0}\right\rangle$ and $\left.<f_{1}\right\rangle$ generated by f_{0} and f_{1} respectively are orthogonal subspaces of P_{1}.
If we set $\varphi_{0}=f_{0}+f_{1}$ and $\varphi_{1}=f_{0}-f_{1}$, these two vectors are also orthogonals.

- Orthogonal basis

A basis $\left(e_{1}, \ldots, e_{n}\right)$ of the Euclidian space E is said to be orthogonal if and only if two different vectors of the basis are always orthogonals: if $i \neq j$, then $\left(e_{i}, e_{j}\right)=0$.
For example, the family $\left(\varphi_{0}, \varphi_{1}\right)$ is an orthogonal basis of the euclidien space P_{1}.

- Norm

The norm $\|x\|$ of the vector x in the Euclidian space E is defined by $\|x\|=\sqrt{(x, x)}$.
For example, in the Euclidian space P_{1} introduced previously, we have $\left\|f_{0}\right\|=\left\|f_{1}\right\|=1$ and $\left\|\varphi_{0}\right\|=\left\|\varphi_{1}\right\|=\sqrt{2}$.

- Pythagore theorem

Let x and y two orthogonal vectors in an Euclidian space E. Then if there are orthogonals, we have the relation betwwen the square of norms: $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$.
The proof consists simply in an expansion of $\|x+y\|^{2}=(x+y, x+y)$ taking into account the bilinearity of the scalar product. Then taking into account the symmetry and the orthogonality hypothesis, we have $(x, y)=(y, x)=0$. Then the conclusion is clear.

- Orthonormal basis

An orthogonal basis $\left(e_{1}, \ldots, e_{n}\right)$ of the Euclidian space E is said to be orthonormal if and only if the orthogonal vectors e_{j} have all a norm equal to unity. We then have $\left(e_{i}, e_{j}\right)=\delta_{i j}$, with $\delta_{i j}$ the Kronecker symbol equal to 1 if $i=j$ and to zero in the other cases.

- Expression of the scalar product

We consider an Euclidian space E and an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of this space. Arbitrary vectors x and y can be decomposed in this basis: $x=\sum_{j=1}^{n} x_{j} e_{j}$ and $y=\sum_{k=1}^{n} y_{k} e_{k}$. We can also introduce the column vectors of the components of x and $y: X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) Y=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$. Then $(x, y)=\sum_{j=1}^{n} x_{j} y_{j}=X^{\mathrm{t}} Y=Y^{\mathrm{t}} X$.

- Orthogonal operators

Let $u \in \mathscr{L}(E)$ a linear operator in the Euclidian space E. We say that u is orthogonal if it conserves the scalar produc of two arbitrary vectors: $\forall x \in E, \forall y \in E,(u(x), u(y))=(x, y)$.
An example of a family of orthogonal operators ρ_{θ} is given in the euclidian space P_{1} defined previously by the conditions $\rho_{\theta} \in \mathscr{L}\left(P_{1}\right), \rho_{\theta}\left(f_{0}\right)=\cos \theta f_{0}+\sin \theta f_{1}$ and
$\rho_{\theta}\left(f_{1}\right)=-\sin \theta f_{0}+\cos \theta f_{1}$.

- Orthogonal matrices

Let $u \in \mathscr{L}(E)$ an orthogonal operator in the Euclidian space E and consider an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of this space. Then the matrix R of the operator u relatively to the basis

Applied Mathematics

$\left(e_{1}, \ldots, e_{n}\right)$ satisfies the condition $R^{\mathrm{t}} R=\mathrm{I}$. In other terms, the matrix R is invertible and its inverse is equal to its transpose.

- Autoadjoint operator

Let $u \in \mathscr{L}(E)$ a linear operator in the Euclidian space E. We say that u is autoadjoint if we have the relation $(u(x), y)=(x, u(y))$ for each pair of vectors $x \in E$ and $y \in E$.
For example, in the Euclidian space P_{1} the linear operator θ defined by the two conditions $\theta\left(f_{0}\right)=f_{1}$ and $\boldsymbol{\theta}\left(f_{1}\right)=f_{0}$ defines an autoadjoint operator.

- Matrix of an autoadjoint operator in an orthonormal basis

Let $u \in \mathscr{L}(E)$ an autoadjoint operator in the Euclidian space E as previously. Consider an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of the space E and the matrix A of the operator u relatively to this basis. Then A is a symmetric matrix, equal to its transpose: $A^{\mathrm{t}}=A$.

- Spectral structure of an autoadjoint operator

Let $u \in \mathscr{L}(E)$ be an autoadjoint operator in the Euclidian space E. Then we have the following "spectral theorem": the space E admits an orthogonal basis $\left(r_{1}, \ldots, r_{n}\right)$ composed by eigenvectors of the linear map u. We have $u\left(r_{j}\right)=\lambda_{j} r_{j}$ for appropriate eigenvalues λ_{j} and the orthogonality of eigenvectors $\left(r_{i}, r_{j}\right)=0$ when $i \neq j$.
Replacing r_{j} by the normed vector $e_{j}=\frac{1}{\left\|r_{j}\right\|} r_{j}$, we have moreover the existence of an orthonormal basis of the Euclidian space E uniquely composed with eigenvectors of the autoadjoint operator u.

- Diagonalization of symmetric matrices

If the matrix A is symmetric $\left(A^{\mathrm{t}}=A\right)$, then there exists an orthogonal matrix $R\left(R^{-1}=R^{\mathrm{t}}\right)$ and a diagonal matrix Λ such that $R^{\mathrm{t}} A R=\Lambda$. Every symmetric matrix is diagonalizable in an orthonormal basis. This result express in terms of matrices the spectral theorem presented at the previous point.
We can e.g. explicit the eigenvectors of the matrix $A=\left(\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right)$ and verify that these eigenvectors are orthogonals.

- Symmetric positive definite matrices

We consider a symmetric matrix $A \in \mathscr{M}_{n}(\mathbb{R})$. This matrix is said to be positive definite if we have the two conditions: for each column vector X we have the inequality $X^{\mathrm{t}} A X \geq 0$ and if $X^{\mathrm{t}} A X=0$, then $X=0$.
In other terms, the function $(X, Y) \longmapsto X^{\mathrm{t}} A Y$ is a scalar product in the vector space $\mathscr{M}_{n 1}$ of columns vectors.

François Dubois

Exercices

- Orthogonal operators

In the space P_{1} with the basis $\left(f_{0}, f_{1}\right)$, we define the scaler product by the relations $\left(b f_{0}+a f_{1}, b^{\prime} f_{0}+a^{\prime} f_{1}\right)=b b^{\prime}+a a^{\prime}$. Let $\rho_{\theta} \in \mathscr{L}\left(P_{1}\right)$ a family of linear operators defined by the conditions $\rho_{\theta}\left(f_{0}\right)=\cos \theta f_{0}+\sin \theta f_{1}$ and $\rho_{\theta}\left(f_{1}\right)=-\sin \theta f_{0}+\cos \theta f_{1}$.
a) What is the matrix R_{θ} of the linear operator ρ_{θ} relatively to the basis $\left(f_{0}, f_{1}\right)$?
b) Prove that for an arbitrary $\theta \in \mathbb{R}$, the operator ρ_{θ} is an orthogonal operator in the Euclidian space P_{1}.

- A symmetric real matrix
We consider the following matrix $A=\left(\begin{array}{ccc}-1 & -2 & 1 \\ -2 & 2 & -2 \\ 1 & -2 & -1\end{array}\right)$.
a) Why the matrix A is diagonalizable ?
b) Determine the eigenvalues of the matrix A.
[4 simple and -2 double]
c) Determine an orthogonal basis composed with eigenvectors of the matrix A.
d) Check your results!
- Orthogonal symmetries in \mathbb{R}^{2}

For $\theta \in \mathbb{R}$, we define $S(\theta)=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)$.
a) Show that $S(\theta) \in \mathrm{O}(2, \mathbb{R})$.
b) What is the value of $\operatorname{det} S(\theta)$?
c) What is the value of $S(\theta)^{2}$?
d) What are the eigenvalues of the matrix $S(\theta)$?
e) Explicit a basis of eigenvectors of the matrix $S(\theta)$.
f) Show that the two eigenspaces are orthogonal.
g) Show that the matrix $S(\theta)$ is the matrix of an orthonal symmetry and precise the geometric characteristics of this transformation.

- An orthogonal projector in \mathbb{R}^{3}

For $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ and $y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}$, the canonical scalar product is defined by the relation $(x, y)=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$. We introduce also the subspace Q of \mathbb{R}^{3} of all vectors $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ such that $x_{1}+x_{2}+x_{3}=0$.
a) Propose en orthonal basis of the linear space Q.
b) What is the dimension of the subspace Q ?
c) Show that the orthogonal Q^{\perp} of Q is a subspace of \mathbb{R}^{3} of dimension 1 .
d) Propose a basis of the subspace Q^{\perp}.
e) If $x \in \mathbb{R}^{3}$, explicit the vectors $y \in Q$ and $z \in Q^{\perp}$ such that $x=y+z$.
f) Si $x \in \mathbb{R}^{3}$, explicit the expression of $P x$, orthogonal projection of vector x on the space Q.
g) What is the matrix M of the projector P relatively to the basis of \mathbb{R}^{3} composed by a basis of Q and a basis of Q^{\perp} considered in the previous questions.
h) What is the matrix M_{P} of the projector P relatively to the canonical basis of \mathbb{R}^{3} ?
i) What are the eigenvalues and the eigenvectors of the matrix M_{P} ?

