le c**nam**

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 5 Autoadjoint operators

• Euclidian space

We consider a vector space *E* of finite dimension *n*. A scalar product is a map defined on the product space $E \times E$: for each $x \in E$ and each $y \in E$, we associate the real number denoted by (x, y) and called the scalar product of the vectors *x* and *y*. It satisfies three properties

- (i) the scalar product is bilinear
 - $\begin{aligned} (x+x',y) &= (x,y) + (x',y), \ \forall x,x',y \in E, \\ (x,y+y') &= (x,y) + (x,y'), \ \forall x,y,y' \in E, \end{aligned} \qquad (\lambda x, y) &= \lambda (x,y), \ \forall \lambda \in \mathbb{R}, \ \forall x,y \in E \\ (x,\lambda y) &= \lambda (x,y), \ \forall \lambda \in \mathbb{R}, \ \forall x,y \in E \end{aligned}$
- (ii) the scalar product is symmetric

$$(y, x) = (x, y), \forall x, x', y \in E$$

(iii) the scalar product is positive definite

- $(x, x) \ge 0, \forall x \in E$
- if (x, x) = 0, then x = 0.

When the vector space E is equipped with a scalar product (.,.), we speak of an Euclidian space (E, (.,.)) or simply of the Euclidian space E when there is no ambiguity on the definition of the scalar product.

A fundamental example is the "canonical scalar product" defined in the space \mathbb{R}^n by the relations $(x, y) = \sum_{j=1}^n x_j y_j$ with $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$. The bilinearity and the symmetry are easy to check. Positivity is a consequence of the fact that the x_j are real numbers: we have $(x, x) = \sum_{j=1}^n (x_j)^2 \ge 0$. For the definite positive property, if (x, x) = 0, then the previous sum of squares is equal to zero. Then each term is null and $x_1 = \ldots = x_n = 0$. In other words, x = 0 in the space \mathbb{R}^n .

• Orthogonality

Let *E* be an Euclidian space. The two vectors *x* and *y* in *E* are orthogonals and we note $x \perp y$ if and only if their scalar product (x, y) is null. We have $x \perp y \iff (x, y) = 0$.

If *F* and *G* are two subspaces of the Euclidian space *E*, we say that *F* is orthogonal to *G* and we denote $F \perp G$ if and only if for each $x \in F$ and each $y \in G$, we have (x, y) = 0.

We can equip the space P_1 introduced in the previous lectures with the following scalar product: $(b f_0 + a f_1, b' f_0 + a' f_1) = b b' + a a'$. It is an exercise left to the reader that this function satisfies

FRANÇOIS DUBOIS

the three axioms (i), (ii) and (iii) introduced previously. Then the two basis vectors f_0 and f_1 are orthogonals. Moreover, the spaces $\langle f_0 \rangle$ and $\langle f_1 \rangle$ generated by f_0 and f_1 respectively are orthogonal subspaces of P_1 .

If we set $\varphi_0 = f_0 + f_1$ and $\varphi_1 = f_0 - f_1$, these two vectors are also orthogonals.

• Orthogonal basis

A basis (e_1, \ldots, e_n) of the Euclidian space *E* is said to be orthogonal if and only if two different vectors of the basis are always orthogonals: if $i \neq j$, then $(e_i, e_j) = 0$.

For example, the family (φ_0, φ_1) is an orthogonal basis of the euclidien space P_1 .

• Norm

The norm ||x|| of the vector x in the Euclidian space E is defined by $||x|| = \sqrt{(x, x)}$. For example, in the Euclidian space P_1 introduced previously, we have $||f_0|| = ||f_1|| = 1$ and $||\varphi_0|| = ||\varphi_1|| = \sqrt{2}$.

• Pythagore theorem

Let x and y two orthogonal vectors in an Euclidian space E. Then if there are orthogonals, we have the relation between the square of norms: $||x+y||^2 = ||x||^2 + ||y||^2$.

The proof consists simply in an expansion of $||x+y||^2 = (x+y, x+y)$ taking into account the bilinearity of the scalar product. Then taking into account the symmetry and the orthogonality hypothesis, we have (x, y) = (y, x) = 0. Then the conclusion is clear.

• Orthonormal basis

An orthogonal basis (e_1, \ldots, e_n) of the Euclidian space *E* is said to be orthonormal if and only if the orthogonal vectors e_j have all a norm equal to unity. We then have $(e_i, e_j) = \delta_{ij}$, with δ_{ij} the Kronecker symbol equal to 1 if i = j and to zero in the other cases.

• Expression of the scalar product

We consider an Euclidian space *E* and an orthonormal basis (e_1, \ldots, e_n) of this space. Arbitrary vectors *x* and *y* can be decomposed in this basis: $x = \sum_{j=1}^{n} x_j e_j$ and $y = \sum_{k=1}^{n} y_k e_k$. We

can also introduce the column vectors of the components of x and y: $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$.

Then $(x, y) = \sum_{j=1}^{n} x_j y_j = X^t Y = Y^t X.$

• Orthogonal operators

Let $u \in \mathscr{L}(E)$ a linear operator in the Euclidian space *E*. We say that *u* is orthogonal if it conserves the scalar produc of two arbitrary vectors: $\forall x \in E$, $\forall y \in E$, (u(x), u(y)) = (x, y). An example of a family of orthogonal operators ρ_{θ} is given in the euclidian space P_1 defined previously by the conditions $\rho_{\theta} \in \mathscr{L}(P_1)$, $\rho_{\theta}(f_0) = \cos \theta f_0 + \sin \theta f_1$ and $\rho_{\theta}(f_1) = -\sin \theta f_0 + \cos \theta f_1$.

• Orthogonal matrices

Let $u \in \mathscr{L}(E)$ an orthogonal operator in the Euclidian space *E* and consider an orthonormal basis (e_1, \ldots, e_n) of this space. Then the matrix *R* of the operator *u* relatively to the basis

APPLIED MATHEMATICS

 (e_1, \ldots, e_n) satisfies the condition $R^t R = I$. In other terms, the matrix R is invertible and its inverse is equal to its transpose.

• Autoadjoint operator

Let $u \in \mathscr{L}(E)$ a linear operator in the Euclidian space *E*. We say that *u* is autoadjoint if we have the relation (u(x), y) = (x, u(y)) for each pair of vectors $x \in E$ and $y \in E$. For example, in the Euclidian space P_1 the linear operator θ defined by the two conditions

 $\theta(f_0) = f_1$ and $\theta(f_1) = f_0$ defines an autoadjoint operator.

• Matrix of an autoadjoint operator in an orthonormal basis

Let $u \in \mathscr{L}(E)$ an autoadjoint operator in the Euclidian space *E* as previously. Consider an orthonormal basis (e_1, \ldots, e_n) of the space *E* and the matrix *A* of the operator *u* relatively to this basis. Then *A* is a symmetric matrix, equal to its transpose: $A^t = A$.

• Spectral structure of an autoadjoint operator

Let $u \in \mathscr{L}(E)$ be an autoadjoint operator in the Euclidian space *E*. Then we have the following "spectral theorem": the space *E* admits an orthogonal basis (r_1, \ldots, r_n) composed by eigenvectors of the linear map *u*. We have $u(r_j) = \lambda_j r_j$ for appropriate eigenvalues λ_j and the orthogonality of eigenvectors $(r_i, r_j) = 0$ when $i \neq j$.

Replacing r_j by the normed vector $e_j = \frac{1}{\|r_j\|} r_j$, we have moreover the existence of an orthonormal basis of the Euclidian space E uniquely composed with eigenvectors of the autoadjoint operator u.

• Diagonalization of symmetric matrices

If the matrix A is symmetric $(A^t = A)$, then there exists an orthogonal matrix R $(R^{-1} = R^t)$ and a diagonal matrix Λ such that $R^t A R = \Lambda$. Every symmetric matrix is diagonalizable in an orthonormal basis. This result express in terms of matrices the spectral theorem presented at the previous point.

We can *e.g.* explicit the eigenvectors of the matrix $A = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$ and verify that these eigenvectors are orthogonals.

• Symmetric positive definite matrices

We consider a symmetric matrix $A \in \mathcal{M}_n(\mathbb{R})$. This matrix is said to be positive definite if we have the two conditions: for each column vector X we have the inequality $X^t A X \ge 0$ and if $X^t A X = 0$, then X = 0.

In other terms, the function $(X, Y) \longrightarrow X^{t} A Y$ is a scalar product in the vector space \mathcal{M}_{n1} of columns vectors.

FRANÇOIS DUBOIS

Exercices

• Orthogonal operators

In the space P_1 with the basis (f_0, f_1) , we define the scaler product by the relations $(b f_0 + a f_1, b' f_0 + a' f_1) = b b' + a a'$. Let $\rho_{\theta} \in \mathscr{L}(P_1)$ a family of linear operators defined by the conditions $\rho_{\theta}(f_0) = \cos \theta f_0 + \sin \theta f_1$ and $\rho_{\theta}(f_1) = -\sin \theta f_0 + \cos \theta f_1$.

a) What is the matrix R_{θ} of the linear operator ρ_{θ} relatively to the basis (f_0, f_1) ?

b) Prove that for an arbitrary $\theta \in \mathbb{R}$, the operator ρ_{θ} is an orthogonal operator in the Euclidian space P_1 .

[4 simple and -2 double]

/ 1 2

• A symmetric real matrix

We consider the following matrix
$$A = \begin{pmatrix} -1 & -2 & 1 \\ -2 & 2 & -2 \\ 1 & -2 & -1 \end{pmatrix}$$

- a) Why the matrix A is diagonalizable ?
- b) Determine the eigenvalues of the matrix A.
- c) Determine an orthogonal basis composed with eigenvectors of the matrix A.
- d) Check your results!
- Orthogonal symmetries in \mathbb{R}^2

For
$$\theta \in \mathbb{R}$$
, we define $S(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$

- a) Show that $S(\theta) \in O(2, \mathbb{R})$.
- b) What is the value of det $S(\theta)$?
- c) What is the value of $S(\theta)^2$?
- d) What are the eigenvalues of the matrix $S(\theta)$?
- e) Explicit a basis of eigenvectors of the matrix $S(\theta)$.
- f) Show that the two eigenspaces are orthogonal.

g) Show that the matrix $S(\theta)$ is the matrix of an orthonal symmetry and precise the geometric characteristics of this transformation.

• An orthogonal projector in \mathbb{R}^3

For $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ and $y = (y_1, y_2, y_3) \in \mathbb{R}^3$, the canonical scalar product is defined by the relation $(x, y) = x_1 y_1 + x_2 y_2 + x_3 y_3$. We introduce also the subspace Q of \mathbb{R}^3 of all vectors $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ such that $x_1 + x_2 + x_3 = 0$.

- a) Propose en orthonal basis of the linear space Q.
- b) What is the dimension of the subspace Q?
- c) Show that the orthogonal Q^{\perp} of Q is a subspace of \mathbb{R}^3 of dimension 1.
- d) Propose a basis of the subspace Q^{\perp} .
- e) If $x \in \mathbb{R}^3$, explicit the vectors $y \in Q$ and $z \in Q^{\perp}$ such that x = y + z.
- f) Si $x \in \mathbb{R}^3$, explicit the expression of Px, orthogonal projection of vector x on the space Q.
- g) What is the matrix M of the projector P relatively to the basis of \mathbb{R}^3 composed by a basis
- of Q and a basis of Q^{\perp} considered in the previous questions.
- h) What is the matrix M_P of the projector P relatively to the canonical basis of \mathbb{R}^3 ?
- i) What are the eigenvalues and the eigenvectors of the matrix M_P ?