le c**nam**

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 4 Eigenvalues and eigenvectors

• Pair of eigenvalue and eigenvector

We consider a vector space *E* of finite dimension *n*, and a map *u* from *E* to *E*: for each $x \in E$, there exists a unique vector y = u(x) image of *x* by the map *u* and $y \in E$. We say that *u* is an endomorphism of *E* and we write $u \in \mathcal{L}(E)$. We remark that u(0) = 0. Then for each number λ , we have $u(0) = \lambda . 0$.

We say that a non-zero vector $x \in E$ is an eigenvector of the operator u (or of the linear map u) if on one hand $x \neq 0$ and on the other hand there exists some number λ such that $u(x) = \lambda \cdot x$. The number λ is called the eigenvalue associated with the eigenvector $x \neq 0$.

We say also that λ is an eigenvalue of the operator u if and only if there exists some vector $x \in E$ such that $x \neq 0$ and $u(x) = \lambda \cdot x$.

For example, consider $E = P_1$ the vector space of all affine functions with the basis (f_0, f_1) defined by $\mathbb{R} \ni t \mapsto f_0(t) = 1 \in \mathbb{R}$ and $\mathbb{R} \ni t \mapsto f_1(t) = t \in \mathbb{R}$. The operator *w* from P_1 to P_1 defined by the relation $w(b f_0 + a f_1) = (2a + 3b) f_1$ is a linear map and $\lambda = 0$ is an eigenvalue of this operator. We have $w(b f_0 + a f_1) = 0$ if and only if 2a + 3b = 0. Then taking a = 3 and b = -2 to fix the ideas, we have $w(r_1) = 0.r_1$ with $r_1 = -2f_0 + 3f_1$. We observe that $r_1 \neq 0$ then it can be called eigenvector of the linear map *w* associated with the eigenvalue $\lambda = 0$. For this very specific example, we recognize also that r_1 is a basis of the kernel Ker*w*.

• Matrix expression

If (e_1, \ldots, e_n) is a basis of the vector space *E*, we consider the matrix *A* of the linear map $u \in \mathscr{L}(E)$. A vector $x \in E$ can be decomposed in an unique way under the form $x = \sum_{j=1}^{n} x_j e_j$ and we can introduce the column matrix $X = (x_1, \ldots, x_n)^t$ of its components. Then *x* is an eigenvector of the operator *u* if and only if $X \neq 0$ and if there exists an eigenvalue $\lambda \in \mathbb{R}$ (or $\lambda \in \mathbb{C}$) such that $AX = \lambda X$.

By extension of the previous definition, we say that such a non-zero column vector X is an eigenvector of the matrix A with an associated eigenvalue equal to λ when we have the relation $AX = \lambda X$ with $X \neq 0$.

François Dubois, october 2023.

FRANÇOIS DUBOIS

• Computation of the eigenvalues

We first recall that a square matrix B with n lines and n columns is invertible if and only if its determinant is not equal to zero. If there exists a non-zero column matrix X such that BX = 0, then the matrix B is not invertible and its determinant is equal to zero.

Denote by I the identity matrix with *n* lines and *n* columns. Then the relation $AX = \lambda X$ is equivalent to the relation $(A - \lambda I) X = 0$. If X is an eigenvector of the matrix A, the matrix $B = A - \lambda I$ is not invertible and we have the relation det $(A - \lambda I) = 0$. An eigenvalue λ is a root of the polynomial $p(\lambda) \equiv \det(A - \lambda I)$. This polynomial is called the characteristic polynomial. It is a polynomial of degree *n* if the matrix A is a square matrix of order *n*. We have to keep in mind that the number of eigenvalues is always limited.

For the previous example in the vector space $E = P_1$, the matrix of the operator w in the basis (f_0, f_1) is equal to $A = \begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix}$. Then $\det(A - \lambda I) = \begin{vmatrix} -\lambda & 0 \\ 3 & 2 - \lambda \end{vmatrix} = \lambda (\lambda - 2)$. The operator w admits two eigenvalues: $\lambda = 0$ studied previously and $\lambda = 2$.

• Computation of an eigenvector once the eigenvalue is known.

We suppose that the eigenvalue λ is known. Then it satisfies det $(A - \lambda I) = 0$. An eigenvector $x \neq 0$ in the vector space is represented with a column vector X such that $(A - \lambda I) X = 0$. We have to find a non-zero solution of this set of *n* linear equations. It is possible since the determinant of the associated linear system is null.

With the previous example, we have $A = \begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix}$. If the eigenvector $r_2 = b f_0 + a f_1$ is associated with the eigenvalue $\lambda = 2$, it satisfies the relation $\begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix} = 2 \begin{pmatrix} b \\ a \end{pmatrix}$. Then we have b = 0 and a can be chosen *ad libitum*, except the value a = 0. A simple choice is $r_2 = f_1$.

• Diagonalizable operator, diagonalizable matrix

Let *E* be a vector space of dimension *n* and *u* a linear map, $u \in \mathscr{L}(E)$. If there exists a basis $(r_1, r_2, ..., r_n)$ composed by eigenvectors of the operator *u*, we say that the linear map *u* is diagonalizable. Recall that the vectors r_j are necessarily not equal to zero and moreover there exits eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ satisfying the *n* relations $u(r_j) = \lambda_j r_j$ for $1 \le j \le n$. With the matrix *A* of the operator *u* in a given basis, we introduce the column vector R_j composed with the coordinates of the vector r_j . We have the relations $A R_j = \lambda_j R_j$ and the conditions $R_j \ne 0$ for all indexes *j* satisfying $1 \le j \le n$.

It is immediate from the relations $u(r_j) = \lambda_j r_j$ that the matrix of the operator u in the basis $(r_1, r_2, ..., r_n)$ is a diagonal matrix Λ : $\Lambda_{ij} = 0$ if $i \neq j$. Moreover, the *j*th diagonal coefficient of the matrix Λ is exactly the eigenvalue λ_j . We can write $\Lambda_{ij} = \lambda_j \delta_{ij}$ with the Kroneker symbol δ_{ij} . We remark also that if P is the transfer matrix between the initial basis $(e_1, e_2, ..., e_n)$ and the basis $(r_1, r_2, ..., r_n)$ of eigenvectors, we have the relation $P^{-1}AP = \Lambda$. The matrix A has been changed into a diagonal matrix; we have diagonalized the operator $u \in \mathcal{L}(E)$.

By extension, we say that a given matrix A is diagonalizable if there exists an invertible matrix P and a diagonal matrix Λ such that $P^{-1}AP = \Lambda$. In this case, the columns R_j of the transfer matrix P are non zero column vectors and if $\Lambda = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$, we have the

relations $A R_j = \lambda_j R_j$ for all the indices *j*.

With our example $E = P_1$ and $A = \begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix}$, we have $\Lambda = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$ in the basis (r_1, r_2) with $r_1 = -2f_0 + 3f_1$ and $r_2 = f_1$ introduced previously.

• An important result

If a linear operator *u* admits *n* distinct eigenvalues, $id est \lambda_i \neq \lambda_j$ if $i \neq j$, then the linear map *u* is diagonalizable

It is the case for our example $E = P_1$ with n = 2 associated with the matrix $A = \begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix}$. The two eigenvalues, 0 and 2, are distinct.

• There exists non-diagonalizable operators

We introduce the following example in $E = P_1$. We consider the basis (f_0, f_1) and we define a linear map $\zeta \in \mathscr{L}(P_1)$ by the relations $\zeta(f_0) = 0$ and $\zeta(f_1) = f_0$. In this basis, the operator ζ has an associated matrix $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. We observe that this matrix is not equal to the zero matrix in $\mathscr{M}_2(\mathbb{R})$ due to the number 1 at the top right position. The calculus of the eigenvalues is easy and we observe that $\lambda = 0$ is the unique (double) eigenvalue of the characteristic polynomial $p(\lambda) = \det (J - \lambda I) \equiv \lambda^2$.

We say that the operator ζ is not diagonalizable: we can not find a basis of the vector space P_1 composed uniquely with eigenvectors of ζ . Indeed, if ζ is diagonalizable, we must find an invertible matrix P such that $P^{-1} JA P = \Lambda$. In this case, the matrix Λ is equal to zero, the null matrix, because the two eigenvalues are both equal to zero. Then we must have J = 0 because the transfer matrix P is invertible. We are in front of a contradiction since we know that the matrix J is not the null matrix. In consequence, our hypothesis of diagonalizability is false and the associated operator ζ is not diagonalizable.

Exercices

• Basic diagonalization

We set
$$A = \begin{pmatrix} 2 & 8 & -7 \\ 3 & -3 & 3 \\ -2 & -2 & 7 \end{pmatrix}$$
.

a) What are the eigenvalues of this matrix ?

[-6, 3, 9]

b) Suggest values for the eigenvectors, with expressions as simple as possible.

 $\left[P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}\right]$

- c) Check the previous computations through an elementary calculus.
- d) Prove that the matrix A is diagonalizable.
- e) What is the result matrix if we consider the associated operator in a basis of eigenvectors ?

FRANÇOIS DUBOIS

f) Same questions with the matrix
$$B = \begin{pmatrix} -1 & -4 & 11 \\ -4 & 14 & -4 \\ 11 & -4 & -1 \end{pmatrix}$$
.

$$\begin{bmatrix} -12, 6, 18 \end{bmatrix}, \begin{bmatrix} P = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & -2 \\ 1 & 1 & 1 \end{bmatrix} \end{bmatrix}$$

Diagonalization with complex numbers •

• Diagonalization with complex numbers We suppose given two real numbers *a* and *b*. We set $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$.

- Show that if b = 0, this matrix is diagonalizable on the field \mathbb{R} . a)
- Prove that if $b \neq 0$, the matrix A is not diagonalizable on \mathbb{R} . We make this hypothesis b) $b \neq 0$ for all subsequent questions.
- c) What are the complex eigenvalues of the matrix *A*?
- Propose a set of complex eigenvectors for the matrix A. d)

If P is the square matrix whose columns are composed with the two eigenvectors of the e) matrix A, show without any calculation the value of the matrix $\widetilde{A} = P^{-1} A P$.

A parameterized problem

For any real number *a*, we set $A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & a^2 & 0 \\ -1 & 0 & a^2 \end{pmatrix}$.

- Determine the eigenvalues and eigenvectors of the matrix A when a = 0. a)
- Same question if a = 1. b)
- Same question in all the other cases. c)
- Cayley-Hamilton theorem •

• Cayley-Hamilton theorem
We consider the two matrices
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

What are the characteristic polynomials of these two matrices ? a)

Verify that the Cayley-Hamilton theorem is satisfied: each of these matrices annul its b) characteristic polynomial.