le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 3 Changing the basis

• Linear map

We consider two vector spaces E and F and a map u from E to F: for each $x \in E$, there exists a unique vector y = u(x) image of x by the map u. We say that the map u is linear if and only if the two following conditions of compatibility are satisfied: compatibility with the addition $\forall x, y \in E, u(x+y) = u(x) + u(y)$, and compatibility with the external multiplication $\forall \lambda \in \mathbb{R}, u(\lambda.x) = \lambda.u(x)$.

We use the following example constructed as follows. We denote by P_1 the vector space of all affine functions. In particular the function f_0 defined by $\mathbb{R} \ni t \longmapsto f_0(t) = 1 \in \mathbb{R}$ and the function f_1 is such that $\mathbb{R} \ni t \longmapsto f_1(t) = t \in \mathbb{R}$. The affine functions f_0 and f_1 are vectors in the space P_1 . The family (f_0, f_1) is a basis of P_1 . Each $f \in P_1$ can be decomposed in the following way: $f = b f_0 + a f_1$ and the real coefficients a and b are unique. The application b from b to b is defined by the relation b to b is defined by the relation b in b is a linear map defined on b and taking its values in b.

Kernel

We consider a linear map $u \in \mathcal{L}(E, F)$ between the vector spaces E and F. The kernel Ker u is a subset of E defined by the following condition: $x \in \text{Ker } u$ if and only if u(x) = 0. The kernel Ker u is a vector subspace of the space E. In particular, $\text{Ker } u \subset E$.

With the previous example $w \in \mathcal{L}(P_1)$ and we have

Ker
$$w = \{ f \in P_1, \exists a \in \mathbb{R}, \forall t \in \mathbb{R}, f(t) = a(t - \frac{2}{3}) \} = \langle \varphi \rangle$$
 with $\varphi(t) = t - \frac{2}{3}$.

Image

We consider a linear map $u \in \mathcal{L}(E, F)$ between the vector spaces E and F. The Image $\operatorname{Im} u$ is a subset of F defined by the condition that $y \in \operatorname{Im} u$ if and only if there exists $x \in E$ such that y = u(x). The image $\operatorname{Im} u$ is a vector subspace of the space F and $\operatorname{Im} u \subset F$.

For the previous example with $w \in \mathcal{L}(P_1)$, we have

Im
$$w = \{ f \in P_1, \exists \alpha \in \mathbb{R}, f = \alpha f_1 \} = < f_1 >.$$

• Conservation of the dimension

We consider a vector space E with a finite dimension: $\dim E = n$, where n is a nonnegative integer, and we introduce also $u \in \mathcal{L}(E)$. Then the spaces $\ker u$ and $\operatorname{Im} u$ are of finite dimensions and we have the relation $\dim \ker u + \dim \operatorname{Im} u = \dim E$.

FRANÇOIS DUBOIS

For the previous example with $w \in \mathcal{L}(P_1)$, we have dim Ker w = 1 and dim Im w = 1 whereas $\dim P_1 = 2$ as we observed in the previous chapter.

• Matrix of a linear map relatively to a set of bases

We consider a vector space E of finite dimension n and we introduce a basis (e_1, e_2, \ldots, e_n) of this space. We suppose given also a vector space F of dimension p and we introduce a basis (f_1, f_2, \ldots, f_p) of the vector space F. For $j = 1, \ldots, n$, the vector $u(e_j) \in F$ can be secomposed in a unique way in the basis (f_1, f_2, \ldots, f_p) : there exists unique coefficients $a_{1j}, a_{2j}, \ldots, a_{pj}$ in such a way that $u(e_j) = \sum_{i=1}^p a_{ij} \cdot f_i$. We regroup these np coefficients into a matrix $M_u \equiv (a_{ij})_{1 \le i \le p, 1 \le j \le n}$ with p lines and p columns. This matrix is the matrix of the linear map p relatively to the bases (e_1, e_2, \ldots, e_n) of p and p and p of p. We can

write it in the following way:
$$M_u = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pj} & \cdots & a_{pn} \end{pmatrix}$$

With the linear map $w \in \mathcal{L}(P_1)$ introduced previously, the associated matrix M_w is given by the relation $M_w = \begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix}$ relatively to the basis (f_0, f_1) .

• Output of a given vector

With the previous notations, we regroup the components x_1, x_2, \dots, x_n of the vector $x = \sum_{j=1}^n x_j \cdot e_j$ in the basis (e_1, e_2, \dots, e_n) of E into a single vector X with one column and

$$n \text{ lines: } X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Analogously, the coordinates y_1, y_2, \ldots, y_p of the vector $y = u(x) = \sum_{i=1}^p y_i \cdot f_i$ in the basis (f_1, f_2, \ldots, f_p) of F are presented with a vector Y with one column and p liges:

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{pmatrix}.$$

Then the coordinates $y_i = \sum_{j=1}^n a_{ij} x_j$ can be expressed with the help of the product of the matrix

$$M_{u} \text{ with the vector } X \colon Y = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{i} \\ \vdots \\ y_{p} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pj} & \cdots & a_{pn} \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{j} \\ \vdots \\ x_{n} \end{pmatrix} = M_{u} \cdot X.$$

APPLIED MATHEMATICS

The coordinates Y of the image vector u(x) are obtained by the mutiplication of the matrice M_u of operator u by the coordinates X of the vector $x \in E$: $Y = M_u X$.

With the previous linear map $w \in \mathcal{L}(P_1)$ and the vector $x = 4f_0 - f_1$, we have $X = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$.

We can perform the product and $Y = M_w X = \begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix}$. $\begin{pmatrix} 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 10 \end{pmatrix}$. Thus $w(x) = 10 f_1$.

Bijectivity

Racall that a map u from E to F is bijective if and only if for each $y \in F$, the equation u(x) = y has unique solution x that belongs to the domain E.

Theorem. Let E be a vector space of finite dimension: $\dim E = n$ with $n \in \mathbb{N}$, and let u be a linear map from E to E ($u \in \mathcal{L}(E)$). Then u is bijective if and only if one of the following conditions is satisfied: (i) u is injective, (ii) $\ker u = \{0\}$, (iii) u is surjective, (iv) $\operatorname{Im} u = E$, (v) u transforms a given basis of E into a new basis of E, (vi) the matrix M_u of the operator u relatively to a given basis is invertible in \mathcal{M}_n .

The linear map $w \in \mathcal{L}(P_1)$ introduced previously is not bijectie. We have for example Ker u of dimension 1. We remark also that the matrix M_w is clearly not invertible.

The linear map $\theta \in \mathcal{L}(P_1)$ defined by $P_1 \ni f = b f_0 + a f_1 \longmapsto \theta(f) = a f_0 + b f_1 \in P_1$ is bijective. Its matrix M_{θ} is equal to $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and is invertible.

• Change of basis

Let E be the vector space $\langle e_1, e_2, \ldots, e_n \rangle$ of dimension n. Then the family (e_1, e_2, \ldots, e_n) is a basis of E. Each vector $x \in E$ can be decomposed as a linear combination of the vectors of this basis: $x = \sum_{j=1}^n x_j e_j$ and the coordinates x_j are uniquely defined. We introduce a new family of vectors $\widetilde{e}_1, \widetilde{e}_2, \ldots, \widetilde{e}_n$ defined by their decomposition in the previous basis: $\widetilde{e}_k = \sum_{j=1}^n P_{jk} e_j$. The coefficients P_{jk} for $1 \le j, k \le n$ compose a square matrix P with n lines and n columns, called the transfer matrix. The components of the new vector \widetilde{e}_k define the kth column of the transfer matrix. We have the following result.

Theorem. The family of vectors $(\tilde{e}_1, \tilde{e}_2, \dots, \tilde{e}_n)$ is a basis of the space E if and only if the transfer matrix P is invertible.

If we wish to write the new coordinates \widetilde{x}_k of the previous vector $x \in E$, we have the relation $P\widetilde{X} = X$ between the column vector X of the old coordinates x_j and the column vector \widetilde{X} of the new coordinates \widetilde{x}_k : $x = \sum_{j=1}^n x_j e_j = \sum_{k=1}^n \widetilde{x}_k \widetilde{e}_k$. To explicit the coordinates in the new basis, it is necessary to solve a linear system associated with the transfer matrix.

• Change of matrix of a linear map when changing the basis of the vector space

With the standard hypothesis of a finite dimensional vector space E of dimension $n \in \mathbb{N}$, we consider a linear map $u \in \mathcal{L}(E)$ and the associated matrix M_u relatively a given basis (e_1, e_2, \ldots, e_n) . When we change the basis of E for a new basis $(\widetilde{e}_1, \widetilde{e}_2, \ldots, \widetilde{e}_n)$ of the same space, we introduce an invertible transfer matrix P. Then the matrix \widetilde{M}_u of the linear map u in the new basis is related to the previous data according to the relation $\widetilde{M}_u = P^{-1}M_u P$.

FRANÇOIS DUBOIS

Exercices

• A change of basis in the space of affine functions

We denote by P_1 the space of affine functions. The basis functions f_0 and f_1 are defined by the relations $f_0(t) = 1$ and $f_1(t) = t$ for any arbitrary $t \in \mathbb{R}$. We consider the two new functions φ_0 and φ_1 defined by the relations $\varphi_0(t) = 1 + t$ and $\varphi_1(t) = 1 - t$ for an arbitrary $t \in \mathbb{R}$.

- a) Express the two vectors φ_0 and φ_1 as linear combinations of f_0 and f_1 .
- b) What is the transfer matrix P between the family (f_0, f_1) and the new family (φ_0, φ_1) ?
- c) Prove that the family (φ_0, φ_1) is a basis of the space P_1 .
- d) What are the coordinates of the affine function f defined by f(t) = at + b (for an arbitrary real number $t \in \mathbb{R}$) in the basis (φ_0, φ_1) ?
- Changing the basis of a linear map

We still denote by P_1 the space of affine functions and by (f_0, f_1) and (φ_0, φ_1) the bases defined previously. The operator w (or the linear map w) is defined by the relation $w(b f_0 + a f_1) = (2a + 3b) f_1$.

- a) Recall the value of the matrix M_w of the linear map w relatively to the basis (f_0, f_1) .
- b) With a relation introduced in this chapter, precise the value of the matrix M_w in the new basis (φ_0, φ_1) .
- c) Express the vectors $w(\varphi_0)$ and $w(\varphi_1)$ in the basis (φ_0, φ_1) and recover the result of the previous question.
- Changing the basis for an other linear map

We still denote by P_1 the space of affine functions and by (f_0, f_1) and (φ_0, φ_1) the bases introduced during the first exercise. The operator θ is defined by the relation $\theta(bf_0 + af_1) = af_0 + bf_1$.

- a) Recall the value of the matrix M_{θ} of the linear map w relatively to the basis (f_0, f_1) .
- b) Prove that the map θ is a bijection from P_1 on the space P_1 .
- c) With an algebraic relation introduced in this chapter, precise the value of the matrix \widetilde{M}_{θ} in the new basis (φ_0, φ_1) .
- d) Express the vectors $\theta(\varphi_0)$ and $\theta(\varphi_1)$ in the basis (φ_0, φ_1) and recover the result of the previous question.
- Determinant of a linear map

Let E be of dimension n, $u \in \mathcal{L}(E)$ a linear map from E to E, M_u the matrix of this map u relatively to a given basis and P the transfer matrix from the given basis and a new basis of E. We denote by \widetilde{M}_u the matrix of u relatively the new basis.

- a) Propose an algebraic relation between the matrices P, M_u and M_u .
- b) Prove that the determinant does not depend on the choice of the basis: $\det M_u = \det M_u$.
- A singular matrix

a) Solve the linear system
$$\begin{cases} 2x - y + 3z = 1 \\ x + 2y - z = 2 \\ 3x + y + 2z = 1 \end{cases}$$

APPLIED MATHEMATICS

b) Determine the kernel of the matrix $A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 2 & -1 \\ 3 & 1 & 2 \end{pmatrix}$,

id est the set of column vectors X with 3 lines such that AX = 0.

- c) Check your results.
- Changing the bases in both departure and arrival spaces

Let $u \in \mathcal{L}(E, F)$ with $\dim E = n$ and $\dim F = p$. We introduce the matrix A of the linear map u relatively to a set of two "old bases" in E and F repectively. A vector $x \in E$ is represented by the column X of its coordinates in the basis of E.

- a) What is the number of lines and the number of columns of the matrix A?
- b) What is the expression of the column vector Y composed by the coordinates of the vector $y = u(x) \in F$?

When we change the basis in the vector space E, we introduce the transfer matrix P.

- b) What is the number of lines and the number of columns of the matrix P?
- d) How the new coordinates \widetilde{X} of the vector $x \in E$ are related to the previous coordinates X and to the matrix P?

When we change the basis in the vector space F, we introduce the transfer matrix Q.

- e) What is the number of lines and the number of columns of the matrix Q?
- f) How the new coordinates \widetilde{Y} of the vector $y \in F$ are related to the previous coordinates Y and to the matrix Q?
- g) Express the matrix \widetilde{A} of the linear map u relatively to the new bases in E and in F, with the help of the matrices A, P and Q. $[\widetilde{A} = Q^{-1}AP]$

5