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Lecture 2 Linear algebra

• A fundamental example
We introduce the set P1 of all affine functions. We say the a map f from R to R belongs to
the space P1 if and only if there exits a and b in R such that for each t ∈ R, f (t) = at +b. In
other words P1 = { f : R−→ R,∃a, b ∈ R, ∀t ∈ R, f (t) = at +b}.
The sum f + g of two affine functions is again an affine function. If g(t) = α t +β , the map
f +g is defined by the relation ( f +g)(t) = f (t)+g(t). Then ( f +g)(t) = (a+α) t +(b+β )

and the sum f + g is again an affine function. The addition of two functions of P1 is a new
function in the space P1.
The external multiplication of a scalar λ by an element f ∈ P1 is defined by the relation
(λ . f )(t) = λ f (t) for each t ∈ R. We observe that the result of this external product af a
scalar by an affine function is again an affine function because (λ . f )(t) = (λ a) t +(λ b) for
every argument t ∈ R.

• Vector space
A vector space (E,+, ·) is the datum of a set of vectors E, an addition E×E −→ E associating
a unique vector x+ y to each pair (x, y) ∈ E2, and an external multiplication of a scalar by a
vector R×E −→ E: for each λ ∈R and an arbitrary x ∈ E the vector vecteur λ ·x belongs to
the space E.
The addition in the vector space E defines an commutative group: we have the associativity:
(x+ y)+ z = x+(y+ z), the commutativity: x+ y = y+ x, the existence of a neutral element:
x+ 0 = 0+ x = x and each vector has en opposite: x+(−x) = (−x)+ x = 0. Moreover, the
external multiplication by a scalar is coherent with the addition and the usual multiplication by
numbers: 1 · x = x, (λ +µ) · x = (λ · x)+(µ · x), λ · (x+ y) = (λ · x)+(λ · y) and
λ · (µ · x) = (λ µ) · x.
A space vector allows a lot of calculus. In particular, it extends for spaces of functions the
common properties of vectors in the ordinary three-dimensional euclidian space.
For any integer n ≥ 1, the set Rn is a vector space on the field of numbers with the usual
addition, component by component. We have an analogous property in Cn with numbers chosen
as complex numbers. If m ≥ 1 is an other integer, the set Mnm(R) of matrices with n lines and
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m columns is also a vector space on the associated field of numbers. The space P1 introduced
previously is also a vector space on real numbers. The associated elements can be named as
“vectors”, even if they are functions!

• Linear combination
We suppose given an integer n ≥ 1 and a family x1, . . . , xn of vectors in the vector space E.
We suppose also given a family λ1, . . . , λn of numbers. A linear combination of these vectors
associated with this family of numbers is a vector x ∈ E that can be written under the form
x = λ1 · x1 + . . . +λn · xn = ∑

n
j=1 λ j · x j.

For example, if f0 is the constant function equal to 1 in the space P1 (this means that f0(t) = 1
for each t ∈ R), and if f1 is the linear function R ∋ t 7−→ t ∈ R, the linear combination of
these two vectors associated with the real numbers b and a is the resulting linear combination
f = b f0 +a f1; it is simply the affine function R ∋ t 7−→ at +b ∈ R.
Remark that when we write f (t) = at +b, we write an equality betwen numbers whereas if we
write f = a f1 +b f0, this is an equality between two functions (or two vectors !).

• Vector subspace
We suppose given a vector space (E,+, ·) and a subset F ⊂ E of this space. This set is a
vector subspace if and only if the addition in E and the external multiplication by numbers,
well defined in F ⊂ E allows the triple (F,+, ·) to be a vector space.
A necessary and sufficient condition for a subset F of the vector space E to be a vector subspace
is first that F containts 0, the neutral element for the addition in E and secondly that any linear
combination of vectors in F belongs again in the subset F . This last condition can be also
formulated as follows: for each pair of vectors x and y in F , the sum x+y belongs to à F and
for each scalar λ and each vector x ∈ F , the product λ · x belongs again in F .
For example, the set F0 of constant functions is a vector subspace of space P1. Similarly, the
set F1 of all linear functions is also a vector subspace of space P1.

• Vector subspace generated by a finite family of vectors
We suppose given a finite family x1, . . . , xn of vectors in the vector space E. The set
< x1, . . . , xn > of all linear combinations of the form ∑

n
j=1 λ j · x j is a subspace of the vector

space E. By definition, it is the vector subspace < x1, . . . , xn > generated by this family of n
vectors. We have: < x1, . . . , xn >= {∑

n
j=1 λ j · x j, λ1, . . . , λn ∈ R}.

We have for example with the notations introduced previously < f0 >= F0 and < f1 >= F1.

• Basis if a vector space with a finite dimension
We consider a vector space E and an integer n ≥ 1. A basis (e1, e2, . . . , en) of the space E
is a family of vectors such every vector x ∈ E as a linear combination in < e1, . . . , en > in
a unique way: x = ∑

n
j=1 x j · e j. The scalar coefficients x1, . . . , xn exist and are unique: ∀x ∈

E, ∃!x1, . . . , xn ∈ R, x = ∑
n
j=1 x j · e j. The coefficients x1, . . . , xn are called the coordinates of

the vector x relatively to the basis (e1, e2, . . . , en).
For example, in the space P1 introduced previously, the family ( f0, f1) is a basis.
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• Dimension of a vector space
If the vector space E admits a basis composed with exactly n vecteurs, we say that the space E
if of dimension n : we write dimE = n.
We have for example dimP1 = 2, dimRn = n and dimMnm = nm. If n = m = 2, we have

the decomposition
(

a b
c d

)
= a

(
1 0
0 0

)
+b

(
0 1
0 0

)
+ c

(
0 0
1 0

)
+d

(
0 0
0 1

)
that explicits a

basis of spae M2,2 ≡ M2.

• Linear map
We consider two vector spaces E and F and a map u : E −→ F : for each x ∈ E, there exists a
unique vector y = u(x) image of x by the map u. We say that the map u is linear if and only
if the two following conditions of compatibility are satisfied. Compatibility with the addition:
∀x, y ∈ E, u(x+ y) = u(x)+u(y), and compatibility with the external multiplication:
∀λ ∈ R, u(λ .x) = λ .u(x). Examples of such linear maps are proposed in the first exercice of
this chapter.
We denote by L (E, F) the set of all linear maps from E to F . This set if a vector space with an
addition defined by ∀x ∈ E, (u+ v)(x) = u(x)+ v(x) and an external multiplication satisfying
∀λ ∈R, ∀x ∈ E, (λ .u)(x) = λ .u(x). If F = E, we reduce the notation with L (E)≡L (E, E),
space of endomorphisms of the vector space E.

• Kernel and image
If u ∈ L (E, F) is a linear map between the two spaces E and F , the kernel Ker u is defined
by Ker u = {x ∈ E, u(x) = 0}. It is a vector sub-space of the space E.
With the same linear map u ∈ L (E, F), the image Im u is included in F and is defined by
Im u = {y ∈ F, ∃x ∈ E, y = u(x)}. It is a vector sub-space of the space F .
Observe that if dim E = n, then we have always the relation dim(Ker u)+dim(Im u) = dim E.

• Matrix of a linear map relatively to a set of bases
We consider a vector space E of finite dimension n and we introduce a basis (e1, e2, . . . , en)

of this space. We suppose given also a vector space F of dimension p and we introduce
a basis ( f1, f2, . . . , fp) of the vector space F . For j = 1, . . . , n, the vector u(e j) ∈ F can
be secomposed in a unique way in the basis ( f1, f2, . . . , fp) : there exists unique coefficients
a1 j, a2 j, . . . , ap j in such a way that u(e j) = ∑

p
i=1 ai j · fi. We regroup these n p coefficients into

a matrix Mu ≡
(
ai j

)
1≤i≤p,1≤ j≤n with p lines and n columns. This matrix is the matrix of the

linear map u relatively to the bases (e1, e2, . . . , en) of E and ( f1, f2, . . . , fp) of F . We can

write it in the following way: Mu =



a11 a12 · · · a1 j · · · a1n

a21 a22 · · · a2 j · · · a2n
...

...
...

...
ai1 ai2 · · · ai j · · · ain
...

...
...

...
ap1 ap2 · · · ap j · · · apn


.
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• Output of a given vector

With the previous notations, we regroup the components x1, x2, . . . , xn of the vector

x = ∑
n
j=1 x j · e j in the basis (e1, e2, . . . , en) of E into a single vector X with one column and

n lines: X =


x1

x2
...

xn

 .

Analogously, the coordinates y1, y2, . . . , yp of the vector y = u(x) = ∑
p
i=1 yi · fi in the basis

( f1, f2, . . . , fp) of F are presented with a vector Y with one column and p liges :

Y =


y1

y2
...

yp

.

Then the coordinates yi =∑
n
j=1 ai j x j can be expressed with the help of the product of the matrix

Mu with the vector X : Y =



y1

y2
...
yi
...

yp


=



a11 a12 · · · a1 j · · · a1n

a21 a22 · · · a2 j · · · a2n
...

...
...

...
ai1 ai2 · · · ai j · · · ain
...

...
...

...
ap1 ap2 · · · ap j · · · apn


·



x1

x2
...

x j
...

xn


= Mu · X .

The coordinates Y of the image vector u(x) are obtained by the mutiplication of the matrice
Mu of operator u by the coordinates X of the vector x ∈ E.

• Composition of linear maps and product of matrices

We consider now three vector spaces D , E and F with various dimensions q, n and p and two
linear maps v : D−→E from D to E and u : E −→F from E to F . Thus we have the following
diagam D v−→ E u−→ F that allows to define the composed map u◦v : (u◦v)(ξ ) = u

(
v(ξ )

)
for

an arbitrary vector ξ ∈ D. The compoosition u◦v of these two linear maps is also a linear map.

We consider a basis (d1, d2, . . . , dq) of the space D and do not forget the two previous fam-
ilies (e1, e2, . . . , en) and ( f1, f2, . . . , fp) in the spaces E and F respectively. We suppose
that v(dk) = ∑

n
j=1 b jk e j . Then in the bases (dk) and (e j), the map v is represented by a ma-

trix Mv with n lines and q columns that can be written Mv =
(
b jk

)
1≤ j≤n,1≤k≤q. We have

(u◦v)(dk) = ∑
p
i=1

(
∑

n
j=1 ai j b jk

)
fi an this means that relatively to the bases (dk) et ( fi), the

map u◦v obtained by compostion admits a matrix Mu◦v = (cik) with p lines and q columns
with cik = ∑

n
j=1 ai j b jk for 1 ≤ i ≤ p and 1 ≤ k ≤ q. We note that the matrix Mu◦v is equal to

the product of the matrices Mu and Mv: Mu◦v = Mu Mv, which means
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c11 · · · c1k · · · c1q
...

...
...

ci1 · · · cik · · · ciq
...

...
...

cp1 · · · cpk · · · cpq

 =


a11 · · · a1 j · · · a1n

...
...

...
ai1 · · · ai j · · · ain
...

...
...

ap1 · · · ap j · · · apn

 ·


b11 · · · b1k · · · b1q

...
...

...
b j1 · · · b jk · · · b jq

...
...

...
bn1 · · · bnk · · · bnq

.

In this product of two matrices, Mu◦v = Mu Mv, we remark that the number n of columns of the
left matrix (these Mu) is equal to the number of lines n of the matrix on the right (here Mv). In
the other cases, the product Mu Mv cannot be defined.

Exercices
• Matrix of linear operators
We introduce the space P1 of affine functions, the functions f0 and f1 defined by the relations
f0(t) = 1 and f1(t) = t for any arbitrary t ∈R. We consider also the vector space F =R. Let u
the map that to each f ∈ P1 of the form f (t) = at+b associates the number a: u( f ) = a. With
the same notations for the function f , we define also the map v such that v( f ) = b.
a) Recall why the family ( f0, f1) is a basis of the space P1.
b) Propose a basis for the space F .
c) What are the dimensions of P1 and F?
d) Prove that the map u is linear from P1 to F .
e) What is the matrix Mu of the linear map u relatively to the bases proposed in questions a)
and b) ?
f) Prove that the map v is linear from P1 to F : v ∈ L (P1, F).
g) What is the matrix Mv of the linear map v relatively to the bases used in the previous
questions?

• Matrix of an other linear operator
With the notations introduced in the previous exercice for the space P1 and the basis ( f0, f1) ,
we introduce the map w defined on P1 and taking its values in P1 by the relation
w(b f0 +a f1) = (2a+3b) f1.
a) For f ∈ P1, the vector w( f ) is also a vector in P1, and w( f ) is an affine function. For an
arbitrary t ∈ R, what is the value of the number

(
w( f )

)
(t) if f (t) = at +b?

b) Precise the value of w( f0).
c) Same question for w( f1).
d) Prove that the application w : P1 −→ P1 is linear.
e) What is the matrix Mw of the linear map w relatively the the basis ( f0, f1)?

• A family of three vectors in R2

We set u1 =
(
1, 0

)
, u2 =

(
− 1

2 ,
√

3
2

)
and u3 =

(
− 1

2 ,−
√

3
2

)
.

a) Prove that these 3 vectors are linearly dependent.
b) Explicit a linear combination of these 3 vectors that is equal to zero with nontrivial coeffi-
cients.
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• An example of composition of linear maps
We note b1 = (1, 0), b2 = (0, 1) the canonical bases of R2, e1 = (1, 0, 0), e2 = (0, 1, 0),
e3 = (0, 0, 1) the canonical bases of R3 and ε1 = (1, 0, 0, 0), ε2 = (0, 1, 0, 0), ε3 = (0, 0, 1, 0),
ε4 = (0, 0, 0, 1) the canonical bases of R4.
We consider the linear map f with domain R3 and codomain R4 defined by the relations
f (e1) = 4ε1 +2ε3, f (e2) = 8ε2 − ε3 and f (e3) = ε4.
We consider also the linear map g from R4 to R2 defined by g(ε1) = (1, 1), g(ε2) = (0, 1),
g(ε3) = (1, 0) and g(ε4) = (−1,−1).
a) What is the order and the expression of the matrix M f of the operator f relatively to the
bases (e1, e2, e3) and (ε1, ε2, ε3, ε4) ?
b) Same questions for the matrix Mg of the linear map g relatively to the bases (ε1, ε2, ε3, ε4)

and (b1, b2).
c) What are the domain and the codomain of the map g◦ f ?
d) Compute the output vectors (g◦ f )(e j) for j = 1, 2, 3 in the basis (b1, b2).
e) Deduce from the previous question the matrix Mg◦ f of the mapping g◦ f relatively to the
two given bases.
f) Verify that we have the relation Mg◦ f = Mg M f .

• Bases of R3

We introduce the following three vectors u1 = (1, 1, 1)t, u2 = (0, a, 1)t and u3 = (0, 0, b)t of
the space R3, parameterized by the real numbers a and b.
a) Explicit a necessary and sufficient condition to exprees that the family (u1, u2, u3) is a
basis R3.
b) Same questions for the three vectors v1 = (0, a, b)t, v2 = (a, 0, b)t and v3 = (a, b, 0)t.

• A linear system

a) Solve the following linear system


2x− y+3z = 1

x+2y− z = 2
3x+ y+2z = 1 .

b) What is the kernel of the matrix A =

2 −1 3
1 2 −1
3 1 2

?

c) Check your result of the last question.

• An example of diagonalization

We consider the two matrices A =

(
0 1
1 0

)
and P =

(
1 1
1 −1

)
.

a) Prove that the inverse P−1 of the matrix P can be written P−1 = 1
2 P.

b) Compute the products P−1 A et AP.

c) With two different computations, prove the relation P−1 AP =

(
1 0
0 −1

)
.

• Inverse of a product
We consider two square invertible matrices A and B of order n.
a) Recall the properties satisfied by A−1 and B−1.
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b) Show that (AB)−1 = B−1 A−1.
c) What is the value of (BA)−1 ?

• A zero divisor

We consider the matrix A =

(
0 1
0 0

)
.

a) Show that A ̸= 0.
b) What is the value of A2 = A×A?

• The question of inversion of square matrices of order 2

We consider a 2×2 general matrix A =

(
a b
c d

)
∈ M2(R). We set δ = ad −bc.

a) Prove that if δ ̸= 0, we can solve every linear system of the type AX = Y , where Y is an
arbitrary column matrix with two lines.
b) If δ ̸= 0, compute the inverse matrix A−1.
c) Show that if δ = 0, there exists a matrix B ∈ M2(R) such that AB = BA = 0.
d) If A ̸= 0 is a matrix in M2(R) such that ad −bc = 0, prove that it admits at least a zero
divisor that will be explicited.

• A basis for the P2 finite element
We consider the vector space P2 composed with polynomials of degree ≤ 2.
a) Show that the family of functions f0(x) = 1, f1(x) = x and f2(x) = x2 is a basis of the
space P2.
b) We introduce three functions ϕ0, ϕ1 and ϕ2 that belong in the space P2 and satisfying the
conditions ϕ0(0) = 1, ϕ0(1) = 0, ϕ0

(1
2

)
= 0, ϕ1(0) = 0, ϕ1(1) = 1, ϕ1

(1
2

)
= 0, ϕ2(0) = 0,

ϕ2(1) = 0 and ϕ2
(1

2

)
= 1. Explicit these functions relatively to the canonic basis ( f0, f1, f2)

defined at the previous question.
[ϕ0(x) = (x−1)(2x−1), ϕ1(x) = x(2x−1), ϕ2(x) = 4x(1− x)]

c) Prove that for f ∈ P2, we have the decomposition f = f (0)ϕ0 + f (1)ϕ1 + f
(1

2

)
ϕ2.
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