le c**nam**

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 2 Linear algebra

• A fundamental example

We introduce the set P_1 of all affine functions. We say the a map f from \mathbb{R} to \mathbb{R} belongs to the space P_1 if and only if there exits a and b in \mathbb{R} such that for each $t \in \mathbb{R}$, f(t) = at + b. In other words $P_1 = \{f : \mathbb{R} \longrightarrow \mathbb{R}, \exists a, b \in \mathbb{R}, \forall t \in \mathbb{R}, f(t) = at + b\}$.

The sum f + g of two affine functions is again an affine function. If $g(t) = \alpha t + \beta$, the map f + g is defined by the relation (f + g)(t) = f(t) + g(t). Then $(f + g)(t) = (a + \alpha)t + (b + \beta)$ and the sum f + g is again an affine function. The addition of two functions of P_1 is a new function in the space P_1 .

The external multiplication of a scalar λ by an element $f \in P_1$ is defined by the relation $(\lambda \cdot f)(t) = \lambda f(t)$ for each $t \in \mathbb{R}$. We observe that the result of this external product af a scalar by an affine function is again an affine function because $(\lambda \cdot f)(t) = (\lambda a)t + (\lambda b)$ for every argument $t \in \mathbb{R}$.

• Vector space

A vector space $(E, +, \cdot)$ is the datum of a set of vectors *E*, an addition $E \times E \longrightarrow E$ associating a unique vector x + y to each pair $(x, y) \in E^2$, and an external multiplication of a scalar by a vector $\mathbb{R} \times E \longrightarrow E$: for each $\lambda \in \mathbb{R}$ and an arbitrary $x \in E$ the vector vecteur $\lambda \cdot x$ belongs to the space *E*.

The addition in the vector space *E* defines an commutative group: we have the associativity: (x+y)+z = x + (y+z), the commutativity: x+y = y+x, the existence of a neutral element: x+0 = 0+x = x and each vector has en opposite: x + (-x) = (-x) + x = 0. Moreover, the external multiplication by a scalar is coherent with the addition and the usual multiplication by numbers: $1 \cdot x = x$, $(\lambda + \mu) \cdot x = (\lambda \cdot x) + (\mu \cdot x)$, $\lambda \cdot (x+y) = (\lambda \cdot x) + (\lambda \cdot y)$ and $\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$.

A space vector allows a lot of calculus. In particular, it extends for spaces of functions the common properties of vectors in the ordinary three-dimensional euclidian space.

For any integer $n \ge 1$, the set \mathbb{R}^n is a vector space on the field of numbers with the usual addition, component by component. We have an analogous property in \mathbb{C}^n with numbers chosen as complex numbers. If $m \ge 1$ is an other integer, the set $\mathcal{M}_{nm}(\mathbb{R})$ of matrices with n lines and

FRANÇOIS DUBOIS

m columns is also a vector space on the associated field of numbers. The space P_1 introduced previously is also a vector space on real numbers. The associated elements can be named as "vectors", even if they are functions!

• Linear combination

We suppose given an integer $n \ge 1$ and a family x_1, \ldots, x_n of vectors in the vector space *E*. We suppose also given a family $\lambda_1, \ldots, \lambda_n$ of numbers. A linear combination of these vectors associated with this family of numbers is a vector $x \in E$ that can be written under the form $x = \lambda_1 \cdot x_1 + \ldots + \lambda_n \cdot x_n = \sum_{j=1}^n \lambda_j \cdot x_j$.

For example, if f_0 is the constant function equal to 1 in the space P_1 (this means that $f_0(t) = 1$ for each $t \in \mathbb{R}$), and if f_1 is the linear function $\mathbb{R} \ni t \longmapsto t \in \mathbb{R}$, the linear combination of these two vectors associated with the real numbers b and a is the resulting linear combination $f = b f_0 + a f_1$; it is simply the affine function $\mathbb{R} \ni t \longmapsto at + b \in \mathbb{R}$.

Remark that when we write f(t) = at + b, we write an equality between numbers whereas if we write $f = a f_1 + b f_0$, this is an equality between two functions (or two vectors !).

Vector subspace

We suppose given a vector space $(E, +, \cdot)$ and a subset $F \subset E$ of this space. This set is a vector subspace if and only if the addition in E and the external multiplication by numbers, well defined in $F \subset E$ allows the triple $(F, +, \cdot)$ to be a vector space.

A necessary and sufficient condition for a subset F of the vector space E to be a vector subspace is first that F containts 0, the neutral element for the addition in E and secondly that any linear combination of vectors in F belongs again in the subset F. This last condition can be also formulated as follows: for each pair of vectors x and y in F, the sum x + y belongs to à F and for each scalar λ and each vector $x \in F$, the product $\lambda \cdot x$ belongs again in F.

For example, the set F_0 of constant functions is a vector subspace of space P_1 . Similarly, the set F_1 of all linear functions is also a vector subspace of space P_1 .

• Vector subspace generated by a finite family of vectors

We suppose given a finite family x_1, \ldots, x_n of vectors in the vector space E. The set

 $\langle x_1, \ldots, x_n \rangle$ of all linear combinations of the form $\sum_{j=1}^n \lambda_j \cdot x_j$ is a subspace of the vector space *E*. By definition, it is the vector subspace $\langle x_1, \ldots, x_n \rangle$ generated by this family of *n* vectors. We have: $\langle x_1, \ldots, x_n \rangle = \{\sum_{j=1}^n \lambda_j \cdot x_j, \lambda_1, \ldots, \lambda_n \in \mathbb{R}\}.$

We have for example with the notations introduced previously $\langle f_0 \rangle = F_0$ and $\langle f_1 \rangle = F_1$.

• Basis if a vector space with a finite dimension

We consider a vector space E and an integer $n \ge 1$. A basis (e_1, e_2, \ldots, e_n) of the space E is a family of vectors such every vector $x \in E$ as a linear combination in $\langle e_1, \ldots, e_n \rangle$ in a unique way: $x = \sum_{j=1}^n x_j \cdot e_j$. The scalar coefficients x_1, \ldots, x_n exist and are unique: $\forall x \in E, \exists ! x_1, \ldots, x_n \in \mathbb{R}, x = \sum_{j=1}^n x_j \cdot e_j$. The coefficients x_1, \ldots, x_n are called the coordinates of the vector x relatively to the basis (e_1, e_2, \ldots, e_n) .

For example, in the space P_1 introduced previously, the family (f_0, f_1) is a basis.

APPLIED MATHEMATICS

• Dimension of a vector space

If the vector space E admits a basis composed with exactly n vecteurs, we say that the space E if of dimension n: we write $\dim E = n$.

We have for example dim $P_1 = 2$, dim $\mathbb{R}^n = n$ and dim $\mathcal{M}_{nm} = nm$. If n = m = 2, we have the decomposition $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ that explicits a basis of spae $\mathcal{M}_{2,2} \equiv \mathcal{M}_2$.

• Linear map

We consider two vector spaces *E* and *F* and a map $u : E \longrightarrow F$: for each $x \in E$, there exists a unique vector y = u(x) image of *x* by the map *u*. We say that the map *u* is linear if and only if the two following conditions of compatibility are satisfied. Compatibility with the addition: $\forall x, y \in E, u(x+y) = u(x) + u(y)$, and compatibility with the external multiplication:

 $\forall \lambda \in \mathbb{R}, u(\lambda . x) = \lambda . u(x)$. Examples of such linear maps are proposed in the first exercice of this chapter.

We denote by $\mathscr{L}(E, F)$ the set of all linear maps from *E* to *F*. This set if a vector space with an addition defined by $\forall x \in E$, (u+v)(x) = u(x) + v(x) and an external multiplication satisfying $\forall \lambda \in \mathbb{R}, \forall x \in E, (\lambda.u)(x) = \lambda.u(x)$. If F = E, we reduce the notation with $\mathscr{L}(E) \equiv \mathscr{L}(E, E)$, space of endomorphisms of the vector space *E*.

• Kernel and image

If $u \in \mathscr{L}(E, F)$ is a linear map between the two spaces E and F, the kernel Ker u is defined by Ker $u = \{x \in E, u(x) = 0\}$. It is a vector sub-space of the space E.

With the same linear map $u \in \mathscr{L}(E, F)$, the image Im u is included in F and is defined by Im $u = \{y \in F, \exists x \in E, y = u(x)\}$. It is a vector sub-space of the space F.

Observe that if dim E = n, then we have always the relation dim(Ker u) + dim(Im u) = dim E.

• Matrix of a linear map relatively to a set of bases

We consider a vector space E of finite dimension n and we introduce a basis $(e_1, e_2, ..., e_n)$ of this space. We suppose given also a vector space F of dimension p and we introduce a basis $(f_1, f_2, ..., f_p)$ of the vector space F. For j = 1, ..., n, the vector $u(e_j) \in F$ can be secomposed in a unique way in the basis $(f_1, f_2, ..., f_p)$: there exists unique coefficients $a_{1j}, a_{2j}, ..., a_{pj}$ in such a way that $u(e_j) = \sum_{i=1}^p a_{ij} \cdot f_i$. We regroup these np coefficients into a matrix $M_u \equiv (a_{ij})_{1 \le i \le p, 1 \le j \le n}$ with p lines and n columns. This matrix is the matrix of the linear map u relatively to the bases $(e_1, e_2, ..., e_n)$ of E and $(f_1, f_2, ..., f_p)$ of F. We can

write it in the following way:
$$M_{u} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & & & \vdots & & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pj} & \cdots & a_{pn} \end{pmatrix}.$$

FRANÇOIS DUBOIS

• Output of a given vector

With the previous notations, we regroup the components x_1, x_2, \ldots, x_n of the vector

 $x = \sum_{j=1}^{n} x_j \cdot e_j \text{ in the basis } (e_1, e_2, \dots, e_n) \text{ of } E \text{ into a single vector } X \text{ with one column and}$ $n \text{ lines: } X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$

Analogously, the coordinates $y_1, y_2, ..., y_p$ of the vector $y = u(x) = \sum_{i=1}^p y_i \cdot f_i$ in the basis $(f_1, f_2, ..., f_p)$ of *F* are presented with a vector *Y* with one column and *p* liges :

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{pmatrix}.$$

Then the coordinates $y_i = \sum_{j=1}^n a_{ij} x_j$ can be expressed with the help of the product of the matrix

$$M_{u} \text{ with the vector } X: Y = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{i} \\ \vdots \\ y_{p} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pj} & \cdots & a_{pn} \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{j} \\ \vdots \\ x_{n} \end{pmatrix} = M_{u} \cdot X.$$

The coordinates *Y* of the image vector u(x) are obtained by the mutiplication of the matrice M_u of operator *u* by the coordinates *X* of the vector $x \in E$.

Composition of linear maps and product of matrices

We consider now three vector spaces D, E and F with various dimensions q, n and p and two linear maps $v: D \longrightarrow E$ from D to E and $u: E \longrightarrow F$ from E to F. Thus we have the following diagam $D \xrightarrow{v} E \xrightarrow{u} F$ that allows to define the composed map $u_o v: (u_o v)(\xi) = u(v(\xi))$ for an arbitrary vector $\xi \in D$. The composition $u_o v$ of these two linear maps is also a linear map. We consider a basis (d_1, d_2, \ldots, d_q) of the space D and do not forget the two previous families (e_1, e_2, \ldots, e_n) and (f_1, f_2, \ldots, f_p) in the spaces E and F respectively. We suppose that $v(d_k) = \sum_{j=1}^n b_{jk} e_j$. Then in the bases (d_k) and (e_j) , the map v is represented by a matrix M_v with n lines and q columns that can be written $M_v = (b_{jk})_{1 \le j \le n, 1 \le k \le q}$. We have $(u_o v)(d_k) = \sum_{i=1}^p (\sum_{j=1}^n a_{ij} b_{jk}) f_i$ an this means that relatively to the bases (d_k) et (f_i) , the map $u_o v$ obtained by compostion admits a matrix $M_{u_o v} = (c_{ik})$ with p lines and q columns with $c_{ik} = \sum_{j=1}^n a_{ij} b_{jk}$ for $1 \le i \le p$ and $1 \le k \le q$. We note that the matrix $M_{u_o v}$ is equal to the product of the matrices M_u and $M_v: M_{u_o v} = M_u M_v$, which means

APPLIED MATHEMATICS

$$\begin{pmatrix} c_{11} & \cdots & c_{1k} & \cdots & c_{1q} \\ \vdots & & \vdots & & \vdots \\ c_{i1} & \cdots & c_{ik} & \cdots & c_{iq} \\ \vdots & & \vdots & & \vdots \\ c_{p1} & \cdots & c_{pk} & \cdots & c_{pq} \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{p1} & \cdots & a_{pj} & \cdots & a_{pn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \cdots & b_{1k} & \cdots & b_{1q} \\ \vdots & & \vdots & & \vdots \\ b_{j1} & \cdots & b_{jk} & \cdots & b_{jq} \\ \vdots & & \vdots & & \vdots \\ b_{n1} & \cdots & b_{nk} & \cdots & b_{nq} \end{pmatrix}.$$

In this product of two matrices, $M_{u_0v} = M_u M_v$, we remark that the number *n* of columns of the left matrix (these M_u) is equal to the number of lines *n* of the matrix on the right (here M_v). In the other cases, the product $M_u M_v$ cannot be defined.

Exercices

Matrix of linear operators

We introduce the space P_1 of affine functions, the functions f_0 and f_1 defined by the relations $f_0(t) = 1$ and $f_1(t) = t$ for any arbitrary $t \in \mathbb{R}$. We consider also the vector space $F = \mathbb{R}$. Let u the map that to each $f \in P_1$ of the form f(t) = at + b associates the number a: u(f) = a. With the same notations for the function f, we define also the map v such that v(f) = b.

- a) Recall why the family (f_0, f_1) is a basis of the space P_1 .
- b) Propose a basis for the space *F*.
- c) What are the dimensions of P_1 and F?
- d) Prove that the map u is linear from P_1 to F.

e) What is the matrix M_u of the linear map u relatively to the bases proposed in questions a) and b)?

f) Prove that the map v is linear from P_1 to $F: v \in \mathscr{L}(P_1, F)$.

g) What is the matrix M_v of the linear map v relatively to the bases used in the previous questions?

• Matrix of an other linear operator

With the notations introduced in the previous exercice for the space P_1 and the basis (f_0, f_1) , we introduce the map w defined on P_1 and taking its values in P_1 by the relation

 $w(bf_0 + af_1) = (2a + 3b)f_1.$

a) For $f \in P_1$, the vector w(f) is also a vector in P_1 , and w(f) is an affine function. For an arbitrary $t \in \mathbb{R}$, what is the value of the number (w(f))(t) if f(t) = at + b?

- b) Precise the value of $w(f_0)$.
- c) Same question for $w(f_1)$.
- d) Prove that the application $w: P_1 \longrightarrow P_1$ is linear.
- e) What is the matrix M_w of the linear map w relatively the basis (f_0, f_1) ?
- A family of three vectors in \mathbb{R}^2

We set $u_1 = (1, 0)$, $u_2 = (-\frac{1}{2}, \frac{\sqrt{3}}{2})$ and $u_3 = (-\frac{1}{2}, -\frac{\sqrt{3}}{2})$.

a) Prove that these 3 vectors are linearly dependent.

b) Explicit a linear combination of these 3 vectors that is equal to zero with nontrivial coefficients.

FRANÇOIS DUBOIS

• An example of composition of linear maps

We note $b_1 = (1, 0), b_2 = (0, 1)$ the canonical bases of $\mathbb{R}^2, e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 1, 0), e_4 = (0, 1, 0), e_5 = (0, 1, 0), e_6 = (0, 1, 0), e_6$

 $e_3 = (0, 0, 1)$ the canonical bases of \mathbb{R}^3 and $\varepsilon_1 = (1, 0, 0, 0)$, $\varepsilon_2 = (0, 1, 0, 0)$, $\varepsilon_3 = (0, 0, 1, 0)$, $\varepsilon_4 = (0, 0, 0, 1)$ the canonical bases of \mathbb{R}^4 .

We consider the linear map f with domain \mathbb{R}^3 and codomain \mathbb{R}^4 defined by the relations $f(e_1) = 4\varepsilon_1 + 2\varepsilon_3$, $f(e_2) = 8\varepsilon_2 - \varepsilon_3$ and $f(e_3) = \varepsilon_4$.

We consider also the linear map g from \mathbb{R}^4 to \mathbb{R}^2 defined by $g(\varepsilon_1) = (1, 1)$, $g(\varepsilon_2) = (0, 1)$, $g(\varepsilon_3) = (1, 0)$ and $g(\varepsilon_4) = (-1, -1)$.

a) What is the order and the expression of the matrix M_f of the operator f relatively to the bases (e_1, e_2, e_3) and $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$?

b) Same questions for the matrix M_g of the linear map g relatively to the bases $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ and (b_1, b_2) .

c) What are the domain and the codomain of the map $g_{\circ}f$?

d) Compute the output vectors $(g_{\circ}f)(e_j)$ for j = 1, 2, 3 in the basis (b_1, b_2) .

e) Deduce from the previous question the matrix $M_{g_{\circ}f}$ of the mapping $g_{\circ}f$ relatively to the two given bases.

f) Verify that we have the relation $M_{g \circ f} = M_g M_f$.

• Bases of \mathbb{R}^3

We introduce the following three vectors $u_1 = (1, 1, 1)^t$, $u_2 = (0, a, 1)^t$ and $u_3 = (0, 0, b)^t$ of the space \mathbb{R}^3 , parameterized by the real numbers *a* and *b*.

a) Explicit a necessary and sufficient condition to express that the family (u_1, u_2, u_3) is a basis \mathbb{R}^3 .

b) Same questions for the three vectors $v_1 = (0, a, b)^t$, $v_2 = (a, 0, b)^t$ and $v_3 = (a, b, 0)^t$.

- A linear system
- a) Solve the following linear system $\begin{cases} 2x y + 3z = 1\\ x + 2y z = 2\\ 3x + y + 2z = 1. \end{cases}$ b) What is the kernel of the matrix $A = \begin{pmatrix} 2 & -1 & 3\\ 1 & 2 & -1\\ 3 & 1 & 2 \end{pmatrix}$?
- c) Check your result of the last question.
- An example of diagonalization

We consider the two matrices $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

- a) Prove that the inverse P^{-1} of the matrix P can be written $P^{-1} = \frac{1}{2}P$.
- b) Compute the products $P^{-1}A$ et AP.

c) With two different computations, prove the relation $P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

• Inverse of a product

We consider two square invertible matrices A and B of order n.

a) Recall the properties satisfied by A^{-1} and B^{-1} .

APPLIED MATHEMATICS

- b) Show that $(AB)^{-1} = B^{-1}A^{-1}$.
- c) What is the value of $(BA)^{-1}$?
- A zero divisor

We consider the matrix $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

- a) Show that $A \neq 0$.
- b) What is the value of $A^2 = A \times A$?
- The question of inversion of square matrices of order 2

We consider a 2×2 general matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathscr{M}_2(\mathbb{R})$. We set $\delta = ad - bc$.

a) Prove that if $\delta \neq 0$, we can solve every linear system of the type AX = Y, where Y is an arbitrary column matrix with two lines.

- b) If $\delta \neq 0$, compute the inverse matrix A^{-1} .
- c) Show that if $\delta = 0$, there exists a matrix $B \in \mathcal{M}_2(\mathbb{R})$ such that AB = BA = 0.
- d) If $A \neq 0$ is a matrix in $\mathcal{M}_2(\mathbb{R})$ such that ad bc = 0, prove that it admits at least a zero divisor that will be explicited.
- A basis for the P_2 finite element

We consider the vector space P_2 composed with polynomials of degree ≤ 2 .

a) Show that the family of functions $f_0(x) = 1$, $f_1(x) = x$ and $f_2(x) = x^2$ is a basis of the space P_2 .

b) We introduce three functions φ_0 , φ_1 and φ_2 that belong in the space P_2 and satisfying the conditions $\varphi_0(0) = 1$, $\varphi_0(1) = 0$, $\varphi_0(\frac{1}{2}) = 0$, $\varphi_1(0) = 0$, $\varphi_1(1) = 1$, $\varphi_1(\frac{1}{2}) = 0$, $\varphi_2(0) = 0$, $\varphi_2(1) = 0$ and $\varphi_2(\frac{1}{2}) = 1$. Explicit these functions relatively to the canonic basis (f_0, f_1, f_2) defined at the previous question.

 $[\varphi_0(x) = (x-1)(2x-1), \ \varphi_1(x) = x(2x-1), \ \varphi_2(x) = 4x(1-x)]$ c) Prove that for $f \in P_2$, we have the decomposition $f = f(0) \varphi_0 + f(1) \varphi_1 + f(\frac{1}{2}) \varphi_2$.