le c**nam**

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Student presentation 8 (course 13)

• Variational formulation for an elliptic problem

The domain Ω is a bounded part in \mathbb{R}^2 . We denote by $\Gamma \equiv \partial \Omega$ its boundary. It is supposed to be regular.

If v and w are two regular scalar functions defined on the set $\Gamma \equiv \partial \Omega$ and n the external boundary to Γ , we recall that $\frac{\partial v}{\partial n} \equiv \nabla v \cdot n \equiv \sum_j \frac{\partial v}{\partial x_i} n_j$.

a) Give some examples of such a domain. Precise the geometrical nature of the boundary Γ and give some information about the external normal *n*.

Let f be a regular given scalar function defined on the set $\Omega \cup \Gamma$. We consider the following problem: search a scalar function u defined Ω such that $-\Delta u = f$ in Ω and u = 0 on the boundary Γ . We recall that $\Delta u \equiv \sum_j \frac{\partial^2 u}{\partial x_j^2}$. This problem is called the homogeneous Dirichlet problem for the Poisson equation.

b) Show that $-\int_{\Omega} \Delta v \, w \, dx = \int_{\Omega} \nabla v \, \nabla w \, dx - \int_{\partial \Omega} \frac{\partial v}{\partial n} \, w \, d\gamma$.

Let *u* and *v* be two functions that are both solution of the problem $-\Delta \zeta = f$ in Ω and $\zeta = 0$ on Γ .

c) What is the system of equations satisfied by the difference $\varphi \equiv u - v$?

d) Deduce from the previous questions that for an arbitrary function w identically equal to zero on the boundary Γ , we have $\int_{\Omega} \nabla \varphi \cdot \nabla w \, dx = 0$.

e) Deduce from the previous questions that the function φ is idetically null and that the Dirichlet problem $-\Delta u = f$ in Ω and u = 0 on Γ admits at most one regular solution.