le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Student presentation 6 (course 11)

- A singular function

For $(x, y) \in \mathbb{R}^{2}$, we define the value $f(x, y)$ by the following way: $f(x, y)=\frac{x^{5}}{\left(y-x^{2}\right)^{2}+x^{8}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$.
a) Show that for each $(x, y) \in \mathbb{R}^{2}$, the real number $f(x, y)$ is well defined.
b) Compute the values $f(x, 0)$ et $f(0, y)$ for every real number x and every real number y.
c) Going back to the definition of a partial derivative, deduce from the previous question that the function f admits two partial derivatives $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ at the origin. Precise the values of these two numbers.
d) Compute $f\left(x, x^{2}\right)$ when $y=x^{2}$ for every real number x.
e) Deduce from the previous points that the function f is not continuous at the origin $(0,0)$.
f) Prove that the function f is not differentiable at the origin, even if it has two partial derivatives at this point.

